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Abstract—Spiking Neural Networks (SNNs) can be imple-
mented with power-efficient digital as well as analog circuitry.
However, in Resistive RAM (RRAM) based SNN accelerators,
synapse weights programmed into the crossbar can differ from
their ideal values due to defects and programming errors,
degrading inference accuracy. In addition, circuit nonidealities
within analog spiking neurons that alter the neuron spiking rate
(modeled by variations in neuron firing threshold) can degrade
SNN inference accuracy when the value of inference time steps
(ITSteps) of SNN is set to a critical minimum that maximizes
network throughput. We first develop a recursive linearized check
to detect synapse weight errors with high sensitivity. This triggers
a correction methodology which sets out-of-range synapse values
to zero. For correcting the effects of firing threshold variations,
we develop a test methodology that calibrates the extent of such
variations. This is then used to proportionally increase inference
time steps during inference for chips with higher variation.
Experiments on a variety of SNNs prove the viability of the
proposed resilience methods.

Index Terms—Spiking Neural Network, Fault Tolerance, Error
Correction, Neuromorphic Computing

I. INTRODUCTION

Brain inspired Spiking Neural Networks (SNNs) are an
energy efficient alternative to Artificial Neural Networks
(ANNSs). Although SNNs are highly error resilient, synapse
weight errors due to Resistive RRAM (RRAM) device defects
and programming errors as well as circuit non-idealities within
analog spiking neurons can degrade their accuracy.

Recent research has focused on hardware acceleration and
fault tolerance of SNNs [1], [2]. In [3], a framework is
proposed to address RRAM reliability soft errors during the
training phase of RRAM based neuromorphic systems. In [4],
soft error mitigation for digital SNN accelerators is addressed.
Fault aware training and mapping (FATM) has been proposed
to mitigate stuck at faults and low voltage induced errors in
memory [5]. In [6], fault hopping is used to recover accuracy in
presence of dead and saturated neuron faults. The work of [7]
explores how RRAM crossbar non-idealities impact the accu-
racy of SNNs. However, for RRAM based mixed-signal SNN
accelerators, the problem of synapse weight error detection
during inference has remained unaddressed. In this context, we
propose recursive linearized checks to detect synapse weight
errors with high resolution. In the presence of weight errors, if
the synapse input to a neuron exceeds a calibrated cutoff, it is
set to zero to recover accuracy. We also compensate for neuron
circuit non-idealities such as comparator offset and transient
noise by re-calibrating the firing threshold of each neuron with
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an Effective Firing Threshold (EFT) and perturbing the EFT
in proportion to a Threshold Perturbation Coefficient (TPC).
We model the TPC of each neuron as a sum of systematic and
random components.

During SNN inference, the forward pass is repeated a fixed
number of time steps ITSteps, which determines a tradeoff
between SNN accuracy and inference latency. The accuracy of
the fault-free SNN stays constant over a wide range of ITSteps.
However, in the presence of systematic firing threshold varia-
tions (modeled using Systematic Perturbations Coefficient or
SPC), fault injection experiments show that SNN classification
accuracy degrades in inverse proportion to the magnitude of
SPC when fewer inference time steps (ITSteps) are used to
optimize throughput and inference latency. A natural question
is: Can we calibrate the number of necessary ITSteps for an
SNN (minimal for maximizing SNN throughput) using a test
procedure for systematic firing threshold (SPC) variability?
Such a test mechanism is developed in this research and is
used to determine ITSteps on a per-SNN basis.

In summary, the key contributions of our work are: (1)
For RRAM based SNN accelerators, we develop recursive
linearized checks to detect synapse weight errors and use
selective input suppression (SIS) to recover accuracy. (2) We
show that systematic component of neuron firing threshold
variation degrades SNN accuracy when fewer ITSteps are
used. (3) We develop a calibration test to estimate the SPC
of firing threshold variability and set appropriate number of
ITSteps for an SNN implementation (silicon).

II. PRELIMINARIES
A. Overview and Hardware Implementation of SNN

A Leaky Integrate and Fire (LIF) neuron integrates spikes
from input neurons that determine its membrane potential. At
time step ¢, the membrane potential of a LIF neuron is updated
as m(t) = Bm(t — 1) + i(¢t),Vt > 1, where § is the “Leak
Factor” (8 < 1) and i(¢) is the input to a neuron. The neuron
emits a spike if the membrane potential m(t) exceeds its firing
threshold u,y, i.e. the output of the neuron is y(t) =I[m(t) >
usp) where I(.) denotes the indicator function. Once a neuron
emits a spike, its m(t) is reset. Taking this reset into account,
the membrane potential can be written as m(t) = fm(t—1)+
i(t) —y(t—1).

Prior work has proposed RRAM based architectures for
SNNs [8]. Fig. 1(a) shows such an SNN architecture, which
uses RRAM crossbars to scale spikes by their corresponding
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Figure 1: Hardware Implementation of SNN

weights. Each weight is mapped to an equivalent conductance.
Crossbar inputs are applied along rows (x,, is the input for
n-th row) and each column computes the dot product of its
row-wise conductances with the crossbar inputs. The input
to the m-th neuron S, is computed as the crossbar output
current from the m-th column, %,, = ij:l GnmZn, Where
G pm 18 the conductance in n-th row and m-th column. Within
a spiking neuron, as shown in Fig. 1(b), a capacitor is used
to store membrane potential, m(t). The membrane potential
m(t) is compared with firing threshold wj, using a comparator.
When m(t) exceeds u¢p, the comparator is high and resets the
membrane potential.

B. Fault Model

Synapse Weight Errors: In a crossbar, RRAM devices store
synapse weights. Due to manufacturing defects, some devices
are permanently stuck at “Low Resistance State” or “High
Resistance State”. When weights are programmed in a cross-
bar, the programmed state of a device might differ from its
targeted state. These factors lead to the programmed weight
being different from the actual weight. We call these errors
Synapse Weight Errors. In our error injection framework, we
inject synapse weight errors based on a Weight Error Rate
(WER), defined as the probability that the stored value of a
synapse weight is different from its actual value. For each of
the erroneous weights, we flip a fixed (user-chosen) number
of bits at random bit positions in the actual weight.

Threshold Variations: Comparators in spiking neurons do
not have expensive input offset cancellation mechanisms [9].
If the input referred offset of the comparator is {2, then
the comparator output is y(t) = I[m(t) > (uw + Q)] =
Ijm(t) > eth], where ey, is the Effective Firing Threshold,
defined as ey, = wyp + Q = (1l + —) For example,
inside a comparator as shown in Fig. l(c) the threshold
voltage difference between transistors N; and N, as well as
threshold voltage difference between P3; and P4 will appear as
an input offset. Deviations in the generation of uy, as well
as the effects of random noise can be modeled by adding the
magnitude of the deviation to the input referred offset. These
non-idealities lead to variability in the firing thresholds of each
neuron, modeled in simulation by perturbing each neuron’s
ideal firing threshold. The effective firing threshold is thus
calculated as ey, = u (1 + W) = wn (1 + p), where p is
the Threshold Perturbation Coefficient (TPC). The TPC of the
j-th neuron of the [-th layer, pl’j, is modeled as the sum of a
Systematic Perturbation Coefficient (SPC) p,,s and a Random

Perturbation Coeﬁ?czent (RPC) pmnd, ie,phl = psyS —i—pr’gnd.
We sample p/  from a normal distribution A (0, 02).

III. WEIGHT ERROR DETECTION AND CORRECTION

A. Error Detection

To detect synapse weight errors, we derive a recursively
updating check, whose left and right sides are RCL;(t)
and RCLs(t). In the absence of weight errors we expect
RCLy(t) — RCL2(t) = 0. As a result, if we observe
RCLq(t) — RCLs(t) # 0, the presence of synapse weight
errors is indicated. A proof of this is detailed below.

Lemma IIL.1. We claim that in absence of synapse weight
errors, we can compute two vectors v1 and ve such that, the
following property holds at time step t:

t—2

O+ o] Yi(t—-1-k)p
k=0

o - MY(t) Zv2 Y (t—k)gE

ey
where Y'(t) is the output of the I-th layer, M'(t) is the
membrane potential of neurons of I-th layer, W is the weight
matrix between layers | —1 and | and I'(t) is the input current
to layer I.

Proof. Membrane potential of neurons of layer [,

MYty =M (t — 1)+ I'(t) = Y'(t — 1)

=BBM (t —2) + I'(t —1) - Y'(t — 2)]
+ 1) =Yt - 1)

= B2M(t —2) + [I'(t) + BI'(t = 1)]

~ Yt -1+ Yt - 2)]

= [I'(t) + BI'(t = 1) +
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Now, we (a) multiply both sides with vT, (b) set I'(t — k) =
WY=L (t—k), v] =oT - W and (c) rearrange the equation
to obtain,

t—2

O+ o] Yi(t—-1-k)p
k=0
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To implement RC'Ly(t) and RCL2(t) (left and right side
of Equation 1 respectively), we choose v; = [71L 711 e %}T and

= WT . vy, where n is the number of neurons in the [-th
layer. Since RCLy(t) and RCLy(t) are updated recursively
based on RCLy(t—1) and RCLy(t—1), we call the resulting
checks Recursive Linearized Checks.
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B. Weight Error Recovery

In the presence of severe synapse weight errors which
significantly reduce performance, inputs to certain neurons
have high values. Our error recovery mechanism aims to
reset these erroneous inputs to zero. After training of the
SNN is complete, we apply the entire training image set to
the SNN. For each layer [, we record the maximum input
(e #¢) to a neuron in the layer across all time steps. During
inference, if an input to a neuron exceeds this limit at any
time step tp, we set the input to O for the remaining time
steps, i.e., if i"I(t = to) > IL,,,¢s» then set i (t) = 0 for
t = {to,to +1,--- ,T}. Since the error recovery mechanism
selectively suppresses inputs to neurons, we call this Selective
Input Suppression (SIS).

IV. MITIGATING THRESHOLD VARIATIONS

As we reduce the Inference Timesteps (1) to reduce in-
ference latency, variations in the e, values of neurons start
to degrade SNN accuracy and accuracy degradation depends
only on the systematic component of the variation, quantified
by the Systematic Perturbation Coefficient (discussed in detail
in Section V-C). We define Cutoff SPC (pcutory) such that if
the SPC of an SNN chip (psys) is less than the Cutoff SPC
(Peutosf), then the accuracy degradation of the chip due to
systematic variation is less than §. If the accuracy of the chip
is Acc(psys) and the baseline accuracy is measured as the ac-
curacy of a chip with p,,s = 0, then the accuracy degradation
is AcCpasetine — Acc(psys). For a fixed d, we define peytor s
as: Psys < DPcutof f — Acc(psys) > Accbaseline — 9.
For every SNN chip, a calibration test is used to estimate
whether the SPC of an SNN chip (psy,) is within the Cutoff
SPC (pcutoff)- An SNN chip is deemed a “good device” if
Psys < Deutoff> Otherwise it is deemed a “bad device”. Since
we cannot measure p,,s directly, we measure the Calibration
Spiking Rate (CSR or p), of the Device Under Test (DUT) and
compare it with the Cutoff Calibration Spiking Rate (ficytof )
to predict whether the device is ”good” or ”bad”. The inference
time steps (7') of good devices are set to a small value. For
bad devices, T is set to a large value to maintain classification
accuracy. The value of p.y0r is calculated from simulation.

The test methodology has three steps: Step 1, The Cali-
bration Image Set C is built by choosing 64 random images
from the training image set. We monitor the outputs of all
neurons in the output layer. The set of output layer neurons
is referred as the Monitored Set M. We apply each image
¢ € C to the DUT. Step 2, From the output response of the
Monitored Set, we measure the CSR of the DUT, defined as:

— Dcec dmenm Z?:l Ym (1) h :

I AT , where y,,(t) is the output of
the m-th neuron in M at timestep ¢ when the c-th image
from C is applied to the DUT and |.| here denotes the set
cardinality operator. Step 3, The calibration test predicts a
DUT as ”good”(psys < Peutoss) if the measured CSR of the
DUT is more than Cutoff CSR, i.e., it > picutoff, Otherwise
it predicts the DUT as “bad”.
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Figure 2: (a) Accuracy with and without SIS for VGGS5 (b)
Accuracy Improvement Due to SIS (EBPW = Number of bits
flipped in every erroneous weight)
V. RESULTS

A. Experimental Setup

The proposed approach was validated on two Convolutional
Spiking Neural Networks (CSNN). We designed a CSNN
using the Lenet-5 [10] architecture on the MNIST dataset
[11] and a CSNN using the VGGS5 architecure on the Fash-
ionMNIST dataset [12]. These networks use rate encoding
and are trained with SNNTorch Framework [13] using cross-
entropy loss and Surrogate Gradient Descent. Fault injection
and error correction simulations were run using PyTorch.
During training, we used an initial learning rate of 3 x 10~4
and exponential learning rate decay with a decay factor of
0.9. Throughout our experiments the “Leak Factor” [ was
kept at 0.95. We evaluate Selective Input Suppression using
the metric Critical Weight Error Rate CWER, defined as
the WER for which accuracy of the faulty networks is 5%
lower than the fault-free accuracy. To evaluate the calibration

test, we define the Characterization Accuracy (CA) Score as:
_ Number of correctly categorized devices
CA Score = Total number of devices under test

B. Weight Error Correction

We evaluate the performance of SIS on a VGG5 SNN
trained on the Fashion MNIST dataset. We use 16 bit fixed
point representation for weights, with 1 sign bit, 5 integer
bits and 10 fraction bits. In every faulty weight we inject a
fixed number of bitflips, denoted by Erroneous Bits Per Weight
(EBPW). We evaluate the impact of SIS with EBPW =1 and
4. The fault-free accuracy of the network is 91.9%. Fig. 2(a)
shows the accuracy of the CSNN with and without SIS. For
EBPW = 1, SIS improves CWER from 7 x 107° to 8 x 10~4
and for EBPW = 4, SIS improves CWER from 2 x 107° to
4 x 10~*. Fig. 2(b) shows that SIS achieves up to 64% more
accuracy than a faulty SNN without SIS under high error rates.

C. Threshold Variation Resilience

In absence of threshold variations, the inference latency of
VGGS SNN improves by 3x (by reducing 7" from 25 to 8) at
the expense of compromising accuracy by just 1.5% (90.4%
from 91.9%). LeNet-5 shows a similar trend, where reducing
T from 25 to 8 leads to just 1.1% loss in accuracy (97.7% to
96.6%).

We evaluate the impact of threshold variation on the accu-
racy of VGG5 SNN for a range of T'. We use p,ys to quantify
systematic variation. We sample p,qnqg ~ N (0,02) and use
30 to quantify random variation. First, we inject systematic
variation alone. To vary effective firing threshold e;;, from
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Uth /2 tO 2uy,, We sweep pgys from -0.5 to 1. Fig. 3(a)
shows the that for 7' > 15, accuracy is hardly impacted by
systematic variation. However, in the presence of maximum
systematic variation, accuracy degrades by 42% for T' = 8§,
and 21% for T' = 10. Next, we evaluate the impact of random
threshold variations alone. We sweep 30 from O to 1 and
set psys = 0. Fig. 3(b) shows that accuracy is not sensitive
to random variations for all values of 1. For T' = 8, the
maximum accuracy degradation is seen to be just 1.5%. We

Table I: Impact of SPC and RPC on Accuracy

Psys 0 0.50 | 0.50 | 0.75 | 0.75
30 0 0 0.50 0 0.25
Accuracy | 90.4 | 88.7 | 88.6 | 83.0 | 829

also evaluate the impact of systematic and random threshold
variations together for 7' = 8. Table I shows that for systematic
variation of 75% (psys = 0.75), a random variation of 25%
degrades accuracy by only 0.1% (from 83% to 82.9%). Thus,
in the presence of both systematic and random variations,
the accuracy degradation can be approximated from only the
level of the systematic variation. From the previous three
experiments, we conclude that threshold variation leads to
significant accuracy loss only for low values of T and the
accuracy loss can be accurately estimated using only the SPC.

For the calibration test designed for VGGS5 SNN, we set
T = 8 and fix § = 5%. From Fig. 3(c), we obtain Deutof f =
0.68. Fig. 3(d) shows CSR monotonically decreases with pgys
when p;.qpng is 0. So, CSR is used to estimate ps,s. To compute
Heutof s, We generate 1000 devices with pgys = peutors and
30 is sampled uniformly from [0, 1]. We compute Cutoff CSR
as the maximum CSR measured from these 1000 devices. We
obtain peyiorr = 0.2953. A device is a “good device” if its
Psys < 0.68, whereas the calibration test predicts a device as
”good device” if its p > 0.2953. Hence a device can fall in
one of four categories: (a) True Positive (TP) (b) True Negative
(TN) (c) False Positive (FP) and (d) False Negative (FN). To
measure CA score of the test, we generate 10000 SNN devices
using psys ~ uniform(—0.5,1) and 30 ~ uniform(0,1).
Table II summarises the performance of the characterization
test. It achieves a CA score of 97.78%.

Table II: Results of Calibration Test with 10000 devices

True Characterization of DUT

Good Bad

Characterization of DUT | Good | TN=7639 FN=1
using Calibration Bad FP=221 TP=2139

For an SNN with LeNet-5 architecture, systematic variation
reduces inference accuracy to 62.8% and 82.8% for T' =
8 and 10 respectively (from 97%). For T' > 15, accuracy is not
impacted by systematic variation. Accuracy is not degraded
due to random threshold variations as well. For Calibration
Test with 7' = 8, we obtain peysors = 0.8 (assuming 6 = 5%)
and ficutorr = 0.2375 from simulation. The predictions of the
calibration test can be categorized as: T'P = 1336, F'P = 308,
FN =4 and TN = 8352, giving a CA score of 96.88%.

VI. CONCLUSION

Resilience strategies for synapse weight errors and circuit
non-idealities that alter firing threshold have been discussed.
Selective Input Suppression is used to mitigate synapse weight
errors. A calibration test is proposed to optimize the latency
and accuracy of SNNs in presence of threshold variations.
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