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Abstract—The reliability of emerging neuromorphic compute
fabrics is of great concern due to their widespread use in critical
data-intensive applications. Ensuring such reliability is difficult
due to the intensity of underlying computations (billions of
parameters), errors induced by low power operation and the
complex relationship between errors in computations and their
effect on network performance accuracy. We study the problem of
designing error-resilient neuromorphic systems where errors can
stem from: (a) soft errors in computation of matrix-vector
multiplications and neuron activations, (b) malicious trojan and
adversarial security attacks and (c) effects of manufacturing
process variations on analog crossbar arrays that can affect DNN
accuracy. The core principle of error detection relies on embedded
predictive neuron checks using invariants derived from the statis-
tics of nominal neuron activation patterns of hidden layers of a
neural network. Algorithmic encodings of hidden neuron function
are also used to derive invariants for checking. A  key contribution is
designing checks that are robust to the inherent nonlinearity of
neuron computations with minimal impact on error detection
coverage. Once errors are detected, they are corrected using
probabilistic methods due to the difficulties involved in exact error
diagnosis in such complex systems. The technique is scalable
across soft errors as well as a range of security attacks. The
effects of manufacturing process variations are handled through
the use of compact tests from which DNN performance can be
assessed using learning techniques. Experimental results on a
variety of neuromorphic test systems: DNNs, spiking networks
and hyperdimensional computing are presented.

Index Terms—Neural Networks, Fault Tolerance, Resilience

I. INTRODUC T I ON

The increasing complexity and capability of neuromorphic
systems has resulted in increased growth of required compute
capacity for running these systems. Fig. 1 details the two major
phases of FLOPs deployed on state-of-the-art A I  systems -
initially doubling every two years, but later doubling every 2-4
months (doubling every 2 months for language processing
applications) [1]. This increasing FLOP requirement translates
to larger energy usage (and therefore carbon emissions) for
training and running these neuromorphic systems. Patterson et
al [2] have reported that running training and neural
architecture search for a large, modern transformer model
emits more than 600,000 tons of CO2 (compared to an average
of 126,000 tons emitted over the lifetime of a single car).
However, the use of sparsity in activation, low supply voltages,
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Fig. 1: FLOPs demanded by A I  applications per year ( [1])

novel devices and 3D integration technologies can help an
mitigate this excessive energy consumption [1], [3]. However,
the use of low supply voltages along with coupled noise due to
dense device integration, and use of novel devices, accelerates
bit errors in DNN computations and accelerator memory. Of
key concern is the impact of such errors on DNN inference
accuracy [4]. One approach is fault and error-aware training of
DNNs. This is very simulation-intensive especially for large
DNNs. Moreover, analog RRAM based DNNs suffer from
the effects of manufacturing process variations. These are
particularly vulnerable to systematic process variability effects
[5].

In the following, we present an overview of an error
resilience framework for neuromorphic systems, relying on
dimensionality reduction (encoding) methods for on-line error
resilience. We also leverage computation of neuron output
gradients for error detection and suppression. For testing of
analog RRAM based DNNs that are impacted by manufactur-
ing process variations, we propose an alternative test scheme
that does not require application of a complete validation test
dataset to the DNN for determining its accuracy, thus reducing
test costs dramatically.

I I . OV E RV I E W

Error resilience techniques discussed below for neuromor-
phic systems have two components: (1) detection and correc-

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 11,2023 at 15:34:00 UTC from IEEE Xplore. Restrictions apply.



tion of soft errors in DNN computations and memory accesses
and (2) testing and tuning of DNNs under random as well as
systematic manufacturing process variability effects.

Online Error Resilience: Error detection in DNN MAC
computations has been accomplished with low overhead and
high coverage using encoded checksums [6]. Our approach
extends error detection to activation computations using re-
gressors to predict compressed (encoded) layer outputs from
compressed (encoded) layer inputs, thresholding for error
detection based on the nominal distribution of the prediction
error across training data. This achieved high error coverage
and low false alarms for activation errors with low overhead
( 2-4% FLOP overhead) [7].

Error resilience in DNN computations has been examined
in prior work, using median feature selection to filter out
extreme erroneous values (altering training to allow median
feature selection to work) [8]. Ranger [9] clamped the outputs
of DNN activation functions to their maxima and minima over
training data to prevent errors from causing misclassifications,
achieving high effectiveness at low overhead. However, these
approaches typically suffer from performance degradation for
weight parameter errors and may require modification of DNN
training ( [8]).

We also leverage neuron output distributions across training
data to establish correlations and thresholds for error suppres-
sion, allowing fast, low-overhead online error resilience in
neuromorphic systems. Our approach leverages the differences
(gradients) in neuron outputs between neighboring neurons
across training data to establish statistical thresholds for error
localization, followed by error suppression (zeroing erroneous
neuron values), achieving superior performance to prior work
with comparable overhead [10]. Similar approaches were used
for transformers, checking for out-of-range values (based
on training data neuron values) at each computation in the
transformer and setting those values to zero (suppression)s,
showing near-total effectiveness for weight parameter errors
and soft errors in transformers. Similar suppression systems
were also tested for spiking neural networks [5], suppressing
input spike trains that flagged as erroneous based on thresholds
established across training data, allowing up to 60% accuracy
improvement compared to the baseline no-resilience case. The
application of statistical thresholding using on-line statistics
calculated during training allows the use of these approaches in
reinforcement learning, achieving near-total effectiveness on the
Atari Pong DQN benchmark.

Offline Testing: Testing RRAM analog crossbar neuromor-
phic devices using the entire test dataset for each device can be
expensive for large test datasets. Our approach aims to
compress the test dataset to a representative test ensemble,
capturing correlations between the DNN response to the
compressed test set (test response ensemble) and the classifi-
cation accuracy using regressors. In this way the classification
accuracy of the DNN can be predicted from a compact test set
(subset of the test dataset). This captures and quantifies
variations and nonidealities in the DACs (integral nonideality),
RRAM devices (conductance variations due to random and

systematic manufacturing process variations and operating
temperature) and quantization errors in ADCs. RRAM vari-
ability is modeled, via Spice RRAM device simulation, by a
multiplicative weight perturbation coefficient, that modulates
the coefficients of RRAM matrix dot product computations to
reflect RRAM array nonidealities. Prediction of performance
from compressed subsets of the test dataset using a trained
regressor, allows test speedups of up to 20x on VGG16 trained
on CIFAR10 [11].

Future Work includes exploration of tuning and reconfigura-
tion of neuromorphic hardware using the results of fast offline
testing to improve device yield. These approaches can further
be extended to multimodal AI, hyperdimensional computing,
continual online learning and to advanced technologies such
as FeRAMs, MRAMs and 3-D integration, due to the gener-
alizable nature of the error models used.

I I I . CO N C L U S I O N

We discussed a framework for error resilience in neuro-
morphic systems enabling reliable, low-power neuromorphic
hardware. This will be critical for future scaling of A I  systems.
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