
Error Resilient Transformers: A Novel Soft Error Vulnerability
Guided Approach to Error Checking and Suppression

Kwondo Ma, Chandramouli Amarnath and Abhijit Chatterjee
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta GA 30332

Email: {kma64, chandamarnath}@gatech.edu, abhijit.chatterjee@ece.gatech.edu

Abstract—Transformer networks have achieved remarkable
success in Natural Language Processing (NLP) and Computer
Vision applications. However, the underlying large volumes
of Transformer computations demand high reliability and re-
silience to soft errors in processor hardware. The objective of
this research is to develop efficient techniques for design of
error resilient Transformer architectures. To enable this, we
first perform a soft error vulnerability analysis of every fully
connected layers in Transformer computations. Based on this
study, error detection and suppression modules are selectively
introduced into datapaths to restore Transformer performance
under anticipated error rate conditions. Memory access errors
and neuron output errors are detected using checksums of linear
Transformer computations. Correction consists of determining
output neurons with out-of-range values and suppressing the
same to zero. For a Transformer with nominal BLEU score of
52.7, such vulnerability guided selective error suppression can
recover language translation performance from a BLEU score
of 0 to 50.774 with as much as 0.001 probability of activation
error, incurring negligible memory and computation overheads.

Index Terms—Transformer, error resilience

I. INTRODUCTION

Transformer networks [1] have achieved remarkable suc-
cess in Natural Language Processing (NLP), overcoming the
limitations of sequential computation in Recurrent (RNN)
and long short-term memory (LSTM) networks. There has
been wide adoption of Transformer networks in word/sentence
classification [2], text generation [3], summarization, and lan-
guage translation [4]. Moreover, in recent studies, Transformer
models have been successfully applied for image recognition
[5] and object detection [6] in computer vision. The underlying
large volumes of Transformer computations demand high
reliability and resilience to soft errors in processor hardware.
A memory access error experiment on sequence-to-sequence
Transformer networks [7] for a language translation task is
illustrated in Fig. 1. An English input sentence is successfully
translated to a French output sentence (underlined text in green
box) without any errors. However, a Transformer model in
which the model weights in memory are subjected to random
bitflips with error rate of 10−6, produces significantly incorrect
French translations (underlined text in red box).

In the past, Algorithm-Based Fault Tolerance (ABFT) [8]
has addressed the design of fault-tolerant signal processing
algorithms. Techniques for efficiently detecting soft errors in
computations of perceptron and convolutional neural networks
drawing on ABFT methods were discussed in [9] and [10], re-
spectively. For error correction, there has been recent work in
suppressing erroneous neuron output values in deep neural net-
works (DNNs) to zero [11]. However, a diagnosis process to

Figure 1: An example of faulty machine translation caused by
memory access errors.

determine which neurons are erroneous requires modifications
to be made to network training algorithms to generate invariant
interrelationships among neurons and accommodate such zero-
suppression of erroneous neuron outputs. Zeroing-based error
suppression has also been used in more recent work [12]
that utilizes statistical analysis of neuron interrelationships to
diagnose erroneous neuron outputs, thus avoiding any mod-
ification of network training. A recent competing technique
works by restricting the ranges of values of the neuron outputs
in DNN hidden layers [13] based on experiments performed on
error-free circuits with training dataset, however, this requires
expensive calculations of neuron interrelationships for on-line
error correction. Moreover, the range restriction [13] suffers
performance degradation in the face of memory access errors
and restricts placement of its range-restriction systems to
nonlinear activations, batchnorm and pooling layers, limiting
its applicability to transformer networks with multiple layer
computations prior to activation operations. Similarly, related
work on error mitigation of permanent faults in systolic array
based accelerators [14] and RRAM-based neural computing
systems [15] requires additional fault-tolerant training and
cannot easily be adapted to the problem of soft error and
memory access error correction.

The goal of this research is to design error detection and
correction mechanisms for Transformer networks (with multi-
head attention and feedforward sub-networks) that leverage
prior research on error resilience in DNNs, however: (a)
require no re-engineering of Transformer network training
algorithms, (b) are effective across memory access errors
as well as errors in neuron output computations. and (c)
are computationally efficient with use of tailored checks and
error suppression techniques inserted into the most vulnerable
Transformer layers for rapid error recovery.

To achieve the above goals, we perform a soft error vulner-
ability analysis of all fully connected layers of Transformer
computations. Based on this study, error detection and sup-
pression modules are selectively introduced into the datapaths
to restore Transformer performance under stipulated error rate

conditions. Memory access errors and neuron output errors are
detected using checksums of linear Transformer computations.
Both weight and neuron output errors are corrected by sup-
pressing out-of-range erroneous neuron output values to zero.
To the best of our knowledge, our study is the first to address
soft errors in Transformer networks.

The key aspects of the proposed research are:
(1) Transformer module soft error vulnerability analysis:
Memory access errors and neuron output errors in Transformer
network are modeled using random bitflip injection. It is seen
that specific Transformer layers are more vulnerable to soft
errors than others and need to be protected aggressively.
(2) Efficient Error Detection and suppression: Efficient al-
gorithmic checksums of fully connected layers are used to
trigger error suppression on the outputs of the same. Nonlinear
activations are checked and corrected on a continual basis.
Correction consists of determining neurons with out-of-range
values and suppressing the same to zero (this resilience
strategy has not been explored in prior research). This is seen
to be the most effective strategy for Transformer resilience to
both memory access and neuron output errors.

II. BACKGROUND AND FAULT MODEL

An overview of transformer architecture and assumed fault
models are as follows.

A. Transformer Architecture

The transformer architecture [1] consists of an encoder-
decoder structure in which a stack of encoders receives a
sequence of input tokens and learns the relationships between
the sequence of tokens. From the encoder output, a stack
of decoders computes tokens of the output sequence at a
time, using prior decoder outputs as an additional input for
generating the next output sequence token in order.

1) Encoder and Decoder: Encoder and decoder networks
are composed of a stack of identical blocks and designed
with two types of sub-layers: multi-head attention and feed-
forward network. On the encoder side, a tokenized input
sequence is transformed into word embedding vectors and
summed with positional encoding with regard to the relative
position of tokens in a sequence. Two sub-layers generate
the output sequence under corresponding residual connections
and layer normalization as shown in the left half of Fig.
2. The decoder block is similar to the encoder in structure
but contains additional multi-head attention networks, which
compute keys and values of attention over encoder outputs.
The first multi-head attention in the decoder is masked to
ensure that model prediction at time i is only affected by
known outputs at time less than i.

2) Attention Mechanism: The attention sub-layer in the
encoder and decoder architecture maps inputs to sets of values,
queries and keys to encode token sequences instead of using
recurrent connections. Value determines where attention must
focus within a sequence; Query and Key are used to compute
the corresponding attention weights (scores). For computing
these quantities, three fully connected (FC) layers are utilized
as;

Q/K/V = X ·WQ/K/V +BQ/K/V , (1)

Figure 2: Transformer network architecture [1].

where X is an input, and W and B are weights and biases
of FC layers for query, key and value, respectively. When the
inputs of three FC layers are identical, self-attention is realized
(e.g., first attention block in encoder and decoder network).
When two different inputs to the FC layers are used, cross-
attention is realized (e.g., second attention block in decoder).
The scaled dot-product (SDP) attention generates its output
as a weighted sum of values as;

Z = SDP (Q,K, V) = softmax(QKT /
√
dk)V , (2)

where dk is a dimension of keys and softmax() indicates
the softmax activation function. In the original transformer
architecture, multi-head attention computes multiple linear
projections using multiple parallel attention heads and gen-
erates the same output sequence by concatenation. Finally,
there is another FC layer for projecting attention output as
Attn = Z ·WO +BO.

3) Feed-Forward Network: The second sub-layer contains
two fully connected layers and one activation function as;

FFN(X)=[ACT (X ·WFF1+BFF1)]·WFF2+BFF2, (3)

where X is an input and ACT () indicates activation function
(e.g., RELU, GELU) of feed-forward network. The dimen-
sionality of input and output of feed-forward network has to
be preserved, and intermediate layer (i.e., first FC layer) has
four times greater dimensionality.

B. Fault Model

An assessment of error resilience of Transformer networks
have to our knowledge not been studied. We thus begin
by defining a fault model for Transformer networks. As
discussed earlier, the Transformer architecture is constructed
from multiple fully connected layers, activation functions, and
layer normalization using the unique attention mechanism

Figure 3: Example vulnerability analysis of auto-encoding
Transformer.

and residual connections. While the Transformer network
is running on hardware such as a GPU, hardware transient
faults (i.e., soft errors) can occur in computational units
and processor datapaths. We model these errors as random
bitflip injections in the neuron output values of FC layers.
Additionally, soft errors in main memory and cache can cause
data corruption errors which are manifested as random bitflips
in the weight coefficients of corresponding layers. Therefore,
we model neuron output errors and memory access errors
during the inference phase of a Transformer using random
bitflip injections.

III. PROPOSED METHODOLOGY

This section presents a soft error vulnerability analysis
of Transformer network computations. Following this, we
propose efficient error detection and efficient error suppression
method for Transformer networks.

A. Soft Error Vulnerability Analysis

We perform error vulnerability analysis by injecting neuron
output errors and weight errors into individual fully connected
layers of Transformer networks. In the selected Transformer
architecture, the encoder and decoder blocks contain 6 and 10
FC layers respectively, each of which have specific roles. For
example, the image classification auto-encoding Transformer
[5] studied in this work has 12 encoder blocks and no decoder,
totaling 72 fully connected layers. Six different FC layers in
each of encoder block are defined based on their roles as
{Query,Key, V alue,Output, FF1, FF2} (see section II-A
for details). Fig. 3 presents the results of vulnerability analysis
for neuron output errors with error rate of 10−3 (the error rate
denoting the probability of each neuron output values being
erroneous), showing the locations of erroneous FC layers
versus classification accuracy of the corresponding erroneous
Transformer. Black vertical lines in Fig. 3 divide the results
into segments of 6 data points, with each segment representing
6 FC layers in each encoder network. The vulnerability of
each encoder block is seen to be similar throughout the entire
Transformer network. Therefore, a representative vulnerability
is derived for each FC layer role of an encoder (decoder)
block by averaging the results of individual vulnerability
analysis for all FC layers.

B. Error Detection Using Algorithmic Checksum

Weight and neuron output errors cause numerical deviations
in neuron computations, which are the neuron output values of
every fully connected layers in Transformer networks. These
deviations eventually corrupt the Transformer output due to

Figure 4: Placement of error detection and suppression mod-
ules at (a) Attention network, and (b) Feed-forward network.
(c) Architecture of error detection and suppression module.

a fault propagation into sub-layers and residual connections,
causing large value deviations. To minimize error propagation,
we place error detection modules after each FC layer in the
attention and feed-forward networks, indicated with diamond
symbols in Fig. 4a and 4b.

For detecting errors in neuron output values, we utilize
algorithmic checksums. The input to the Transformer is a 2-D
matrix X ∈ Rl×d where l indicates the maximum sequence
length and d is the dimension determined by word embedding.
The computations of the n-th FC layer are thus:

Yn[i][j] = Bn[j] +
d−1∑
k=0

Xn[i][k] ∗Wn[k][j] (4)

where Bn, Wn, Xn, and Yn represent the bias vector, weight,
input, and output matrix of the n-th FC layer, respectively.

A checksum can be computed for the output matrix over the
j-th embedding vector axis as

∑d−1
j=0 Yn[i][j] = Y s

n [i]. The
output sequence vector Y s

n represents row-wise summations
of word embeddings for every tokens in output sequence.
Similarly, we apply an identical checksum to the right side
of Eq. 4 as:

Rs
n[i] =

d−1∑
j=0

Bn[j] +
d−1∑
k=0

Xn[i][k]
d−1∑
j=0

Wn[k][j]

= Bs
n +

d−1∑
k=0

Xn[i][k]W
s
n[k]

where Bs
n is the sum of bias vector elements and W s

n is the
weight vector derived from row-wise summation of the weight
matrix. Ideally, the norm of vector subtraction ||Y s

n −Rs
n|| is

zero in the absence of faults. In actual operation, we compute
a threshold τn for the n-th FC layer which bounds this check
value: ||Y s

n − Rs
n|| < τn. The implementation of this error

detection module is demonstrated in Fig. 4(c), where the
module computes a check flag using the input and output of its
corresponding FC layer. For each FC layer in the Transformer
we save the summation of bias and weight matrix in memory,
enabling efficient error detection.

C. Error Suppression

We propose two strategies for mitigating critical errors (i.e.,
those which eventually induce a Transformer malfunction)

by suppressing large numerical deviations of neuron output
values. We clamp or drop erroneous out-of-range neuron
output values which are diagnosed based on the predetermined
operating bounds of each layer. We derive the operating
bounds of neuron output values of each FC layer by a
subset of the training dataset. Note that deriving the operating
bounds for each layer is a one-time computation. A pair of
bounds (upper and lower) per layer is determined for reference
comparison from training data. The clamping method restricts
neuron outputs of FC layer which are outside of operating
bounds by clamping them to the minimum or maximum
bounds as:

Clamp(Yn) =


ymin
n if Yn[i][j] < ymin

n

ymax
n if Yn[i][j] > ymax

n

Yn[i][j] otherwise.

(5)

where Yn is output, and (ymin
n , ymax

n) indicate the minimum
and maximum bounds of Yn in n-th layer. Our second strategy
suppresses out-of-range values by dropping them to zero. We
call this range guided drop (RGD) and is different from prior
works [11], [13].

RGD(Yn) =

{
Yn[i][j] if Yn[i][j] ∈ [ymin

n , ymax
n]

0 otherwise.
(6)

The error suppression module is triggered based on a
check flag from the detection system as shown in Fig. 4c.
The placement of the Error Detection & Suppression (EDS)
module at the n-th FC layer is:

EDS(Yn) =

{
Yn if nominal, ||Y s

n −Rs
n|| ≤ τn

Sup(Yn) if detected, ||Y s
n −Rs

n|| > τn

where Sup() ∈ {Clamp(), RGD()}. Additionally, we sup-
press post activation values because minor deviations (i.e.,
perturbations which bypass EDS modules) from two different
FC layers can be amplified under multiplication by the scaled
dot-product attention mechanism. For activation mechanisms,
error suppression is always turned “on”, indicated by red
triangle symbols in Fig. 4a and 4b.

D. Selective Error Detection-Suppression Module Placement

In this section we investigate selective Error Detection-
Suppression (EDS) module placement. Previous sections de-
termined potential placements of EDS modules based on
the architecture of Transformer networks. From the previ-
ous vulnerability analysis, module placement experiments are
conducted on every layer for all encoder/decoder blocks.
This reduces the number of possible EDS module placement
locations. For instance, 72 individual placement options are
decreased to 6 in the previous example of section III-A.

The optimal EDS module placement under these condi-
tions is one which maximizes error resilience of Transformer
network with minimum overhead. Initially, we insert EDS
modules at each potential position (i.e. for every layer in
each role) to search for which placement (role) most effec-
tively recovers Transformer performance. The EDS module
achieving the largest error correction is then left in place and
the next optimal placement under these conditions is found

Table I: Transformer networks used for evaluation

Application Image Classification Machine Translation
Model Vision Transformer [5] Marian [7]
Dataset CIFAR-10 KDE4 (EN-FR) [16]
Data description General images Language pair
of Encoder 12 6
of Decoder 0 6
Evaluation Metric Classification Accuracy BLEU score

in a greedy manner. This selective EDS module placement
allows prioritization of module insertion points based on the
vulnerability of the Transformer to errors in specific layers of
the network.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup and
methodology for vulnerability analysis and evaluation. All
experiments were conducted on a Ubuntu 22.04.1 system with
an RTX A4000 GPU using 32-bit floating point computation.

Transformer benchmark applications. Table I summa-
rizes details of models and datasets in our evaluation. For im-
age classification, we use the Vision Transformer (ViT) model
[5] on CIFAR-10 dataset, measuring classification accuracy.
For Neural Machine Translation (NMT), the Marian sequence-
to-sequence Transformer [7] is used to translate English to
French on the KDE4 dataset [16]. The BiLingual Evaluation
Understudy (BLEU) score is used to evaluate the similarity of
machine-translated text to reference translations.

Error injection. We apply PytorchFI [17], a run-time
perturbation tool for DNNs to model soft errors in FC layer
computations by injecting random bitflips into neuron outputs
of FC layers in the Transformer. To evaluate models under
errors in neuron outputs, error configurations are randomly
generated for each inference across the test dataset. For weight
errors, we inject random bitflips on pre-trained weight values
before model inference. Once we perturb the model weights
under one weight error configuration, we evaluate this faulty
model on the entire test dataset. We produce 100 weight
error configurations in advance and calculate the mean and
standard deviation of Transformer inference accuracy from
100 different inference results.

V. EXPERIMENTAL RESULTS

This section presents detailed vulnerability analyses and
evaluates the proposed error resilient Transformer networks
under neuron output errors and weight errors.

A. Vulnerability Analysis

Fig. 5 shows the results of vulnerability analysis under
soft errors in neuron computations and weight error injections
on ViT, an auto-encoding Transformer. From Fig. 5a, neuron
output errors injected into the Value layers completely corrupt
the Transformer network (i.e., relative error = 89.4%) under
an error rate of 10−3. The Value layer has the highest vul-
nerability because numerical deviations in values are directly
accumulated to the output of scaled dot-product attention due
to a matrix multiplication (see Eq. 2). Minor degradation is
observed when the two FC layers in the feed-forward network
and Output layer in attention network are perturbed. The FF1
layer (8.1% relative error) is the most vulnerable among these

(a) Neuron output error injection. (b) Weight error injection.

Figure 5: Vulnerability analysis of auto-encoding Transformer.

three layers due to the larger dimensionality of the layer of
output neurons.

Next, vulnerability due to weight errors in ViT is evaluated
in Fig. 5b. Weight errors in the feed-forward network cause
major network performance degradation because the dimen-
sions of the weight matrix in the FF1 and FF2 layers are
significantly larger than the other layers of the network. As a
result, under identical error rates, the FF1 and FF2 layers incur
greater error propagation within the network. We categorize
the other 4 layers into two groups: The Value and Output
layers have intermediate vulnerability and the Query and Key
layers have almost zero sensitivity to weight errors.

A similar result is derived from a deeper sequence-to-
sequence Transformer for language translation under weight
error injection. As shown in Fig. 6 for both encoder and
decoder, feed-forward networks possess major vulnerabilities,
followed by Value and Output layers at self-attentions and
cross-attention layers, which have intermediate sensitivity.
The FF1 layer consistently shows lower relative error than
the FF2 layer (5% lower) despite identical dimensions of
corresponding weight matrices. This is because the activation
function (e.g., RELU) after FF1 layer filters out many of the
erroneous values (negative values). Moreover, we conclude
that the Query and Key layers have notable inherent resilience
due to the softmax function right after their multiplication in
the attention network under both neuron output and weight
error injections.

B. Selective Error Detection-Suppression Module Placement

Fig. 7 illustrates the result of selective Error Detection-
Suppression (EDS) module placement with a correlated col-
umn chart and table. In this analysis, we inject a 10−4 neuron
output errors in FC layers on the ViT model, whose nominal
inference accuracy of Transformer is 99.1%. The suppression

Figure 6: Vulnerability analysis of weight errors of sequence-
to-sequence Transformer.

Figure 7: Selective EDS module placement in auto-encoding
Transformer.

strategy here is range guided drop, setting out-of-range values
to zero. Column 1⃝ in Fig. 7 indicates the Transformer
performance without error suppression. The corresponding
misclassification rate is shown as 90.4% (i.e., accuracy of
faulty Transformer = 8.7%). Column 2⃝ displays the clas-
sification accuracy of the Transformer with EDS modules
inserted in a designated layer (e.g., when we insert modules
in all Value layers, the Transformer accuracy is 75.9%).
Based on results in Column 2⃝, we select the Value layer
for module insertion, achieving the largest accuracy recovery
and reducing the misclassification rate to 23.2%. For each
best placement at each stage (marked as dashed box in the
table), the corresponding EDS module is inserted and the
next optimal placement is found in a greedy manner. Finally,
on selecting the Key layers in column 6⃝, the Transformer
accuracy is fully recovered (i.e., misclassification rate = 0%).

Using selective EDS module placement on auto-encoding
Transformer, module insertion can be similarly prioritized for
optimal recovery. The priority ordering found was “Value
>> FF2 > Output > FF1 (=Activation) > Key”, which
is consistent with the results from the above vulnerability
analysis. Suppressing the Value layers recovers 67.2% of
misclassification rate, indicating it was the most vulnerable
layer role in the auto-encoding Transformer. Then, when we
correct layers with low vulnerability (i.e., Output, FF1, and
FF2 layers) which cause more than 4% error in Fig. 5b, we
can reduce misclassification rate down to 0.9%.

C. Evaluation

We evaluate the performance of Transformer networks with
and without error resilience modules in place. Error detec-
tion provides 100% error-caused degradation coverage under
neuron output errors and weight errors. For the suppression
methodologies, we compare the performance of clamping and
range guided dropping. The proposed suppression schemes
are low cost (i.e., floating point instruction count (FLOP)
overheads from prior studies are projected to be less than 3%
[18]). Soft errors are injected into neuron output values in
the auto-encoding Transformer and into the weights of layer
matrix computations in the sequence-to-sequence Transformer.

Figure 8: Evaluation of (a) auto-encoding Transformer under
neuron output errors, (b) sequence-to-sequence Transformer
under weight errors.

1) Neuron Output Errors: We evaluate neuron output errors
using single (1-bit) and multiple (8-bits) bitflip injection in
Fig. 8a. The accuracy of erroneous Transformer decreases as
the error rate increases. Auto-encoding Transformer becomes
dysfunctional at an error rate of 10−4 for single and 10−5

for multiple bitflip injection. For single bitflip injection, error
suppression using either clamping or range guided dropping
recovers 99% of degraded accuracy at the highest error rate
of 10−3. Under word bitflip injection, the error resilient
Transformer using clamping suppression starts to degrade
when the error rate surpasses 3.2× 10−4 and sees a collapse
in functionality at an error rate of 10−3 (i.e., Transformer
inference accuracy = 16.19%). By contrast, suppression using
range guided drop can successfully recover the performance
accuracy of auto-encoding Transformer from 10% in the
absence of such suppression to 98.88% at the highest error
rate (nominal Transformer accuracy = 98.94%).

2) Weight Errors: We evaluate weight errors using single
bitflip injection in the sequence-to-sequence Transformer for
language translation (nominal BLEU score 52.71). The per-
formance of the erroneous Transformer rapidly degrades as
the error rate increases and completely collapses (i.e., 0.98
BLEU) when the error rate reaches 3.2 × 10−6 as shown by
the square marker in Fig. 8b. Using suppression via clamping
(graph with circle marker in Fig. 8b), the translation quality
slightly recovers but the network malfunctions (i.e., 2.74
BLEU) when the error rate surpasses 10−5. Clamping-based
suppression thus shows insufficient performance for weight
errors as opposed to neuron output errors. Weight errors
degrade the Transformer functionality by a larger amount
compared to neuron output errors because the repeated use
of weight values can cause multiple accumulated errors.
Consequently, under the clamping strategy, multiple neuron
outputs are clamped towards minimum and maximum bounds,
inducing degraded recovery. On the other hand, an error
resilient Transformer using range guided dropping can recover
the performance of sequence-to-sequence Transformer with 0

BLEU score to 52.42 and 50.77 under error rates of 10−4 and
10−3, respectively. In conclusion, the Transformer architecture
exhibits graceful performance degradation with range guided
drop (RGD) versus clamp error suppression mechanism with
increasing error rates.

VI. CONCLUSION

This paper presents an error resilience methodology for
Transformer networks. We present efficient error detection
using algorithmic checksum and selective error suppression, to
recover from large deviations caused by neuron output errors
and memory access (weight) errors. The proposed scheme
is validated on multiple Transformer networks and tasks,
recovering more than 96% of degraded performance due to
transient soft errors.

ACKNOWLEDGMENT

This research was supported by the U.S. National Science
Foundation under Grant: 2128149.

REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[2] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[3] A. Radford et al., “Improving language understanding by generative
pre-training,” 2018.

[4] M. Lewis et al., “Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension,” arXiv
preprint arXiv:1910.13461, 2019.

[5] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[6] N. Carion et al., “End-to-end object detection with transformers,” in
European conference on computer vision, 2020, pp. 213–229.

[7] M. Junczys-Dowmunt et al., “Marian: Fast neural machine translation
in C++,” in Proceedings of ACL 2018, System Demonstrations, 2018,
pp. 116–121.

[8] K.-H. Huang et al., “Algorithm-based fault tolerance for matrix opera-
tions,” IEEE transactions on computers.

[9] S. Pandey et al., “Error resilient neuromorphic networks using checker
neurons,” in 2018 IEEE 24th International Symposium on On-Line
Testing And Robust System Design (IOLTS). IEEE, 2018, pp. 135–
138.

[10] E. Ozen et al., “Sanity-check: Boosting the reliability of safety-critical
deep neural network applications,” in 2019 IEEE 28th Asian Test
Symposium (ATS). IEEE, 2019, pp. 7–75.

[11] ——, “Just say zero: containing critical bit-error propagation in
deep neural networks with anomalous feature suppression,” in 2020
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD). IEEE, 2020, pp. 1–9.

[12] C. Amarnath et al., “Soft error resilient deep learning systems using
neuron gradient statistics,” in 2022 IEEE 28th International Symposium
on On-Line Testing and Robust System Design (IOLTS), 2022, pp. 1–7.

[13] Z. Chen et al., “A low-cost fault corrector for deep neural networks
through range restriction,” in 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2021,
pp. 1–13.

[14] J. J. Zhang et al., “Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator,” in 2018
IEEE 36th VLSI Test Symposium (VTS). IEEE, 2018, pp. 1–6.

[15] L. Xia et al., “Fault-tolerant training with on-line fault detection for
rram-based neural computing systems,” in Proceedings of the 54th
Annual Design Automation Conference 2017, 2017, pp. 1–6.

[16] J. Tiedemann, “Parallel data, tools and interfaces in opus,” in Proceed-
ings of the Eight International Conference on Language Resources and
Evaluation (LREC’12), 2012.

[17] A. Mahmoud et al., “Pytorchfi: A runtime perturbation tool for dnns,” in
2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W). IEEE, 2020, pp. 25–31.

[18] C. Amarnath et al., “Tesda: Transform enabled statistical detection
of attacks in deep neural networks,” arXiv preprint arXiv:2110.08447,
2021.

