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Abstract

Formal methods have enabled breakthroughs in many fields, such as in hardware verification, machine
learning and biological systems. The key object of interest in systems biology, synthetic biology, and
molecular programming is chemical reaction networks (CRNs) which formalizes coupled chemical

reactions in a well-mixed solution. CRNs are pivotal for our understanding of biological regulatory
and metabolic networks, as well as for programming engineered molecular behavior. Although it is
clear that small CRNs are capable of complex dynamics and computational behavior, it remains
difficult to explore the space of CRNs in search for desired functionality. We use Alloy, a tool
for expressing structural constraints and behavior in software systems, to enumerate CRNs with
declaratively specified properties. We show how this framework can enumerate CRNs with a variety
of structural constraints including biologically motivated catalytic networks and metabolic networks,
and seesaw networks motivated by DNA nanotechnology. We also use the framework to explore
analog function computation in rate-independent CRNs. By computing the desired output value with
stoichiometry rather than with reaction rates (in the sense that X → Y + Y computes multiplication
by 2), such CRNs are completely robust to the choice of reaction rates or rate law. We find the
smallest CRNs computing the max, minmax, abs and ReLU (rectified linear unit) functions in a
natural subclass of rate-independent CRNs where rate-independence follows from structural network
properties.
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1 Introduction

Formal methods have enabled breakthroughs in many fields, e.g., in hardware verification [15],

machine learning [23, 32], and biological systems [5, 24, 29, 40, 61]. In this paper we apply

formal methods to Chemical Reaction Networks (CRNs), which have been objects of intense

study in systems and synthetic biology. CRNs are widely used in modeling biological

regulatory networks, and essentially identical models are also widely used in ecology [60],
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4:2 CRNs Exposed

distributed computing [2], and other fields. More recently, CRNs have been directly used as

a programming language for engineering molecules obeying prescribed interaction rules via

DNA strand displacement cascades [6, 12,53,55,57].

It is clear that small CRNs can exhibit very complex behavior. Dynamical systems, e.g.,

oscillatory, chaotic, and bistable systems, typically contain only a few reactions. Small CRNs

also exhibit interesting computational behavior. For example, the approximate majority

population protocol studied in distributed computing [1] was later identified with a variety of

biological networks [7]. Can we systematically explore the power of small reaction networks?

We present a method that exhaustively enumerates small CRNs in different classes

that are relevant for biology and for synthetic engineering systems. The enumeration is

performed using Alloy, a powerful tool for modeling structural constraints and behavior

in software systems using first-order logic with transitive closure [33]. The Alloy tool

performs scope-bounded analysis [35]. Given an Alloy model and a scope, i.e., a bound on the

universe of discourse, the analyzer translates the Alloy model to a propositional satisfiability

(SAT) formula and invokes an off-the-shelf SAT solver [20] to analyze the model. Alloy is

used in a wide range of areas in software engineering, including software design [21, 34],

analysis [19, 22, 36, 38], testing [44], and security [37]. We show how Alloy can be used to

conveniently model interesting classes of CRNs for biology and bioengineering, and we use

the Alloy analyzer to search for CRNs with specific desired functionality.

As examples of the method we first focus on a number of classes: elementary, catalytic,

metabolic. We say elementary reactions are CRNs with at most two reactants and products.

(We allow reactions to be irreversible; reversible reactions are represented by two irreversible

reactions.) Catalytic networks are those elementary CRNs in which the reactants and

products are not disjoint; i.e., the reaction is catalyzed by some species that is not consumed

in the reaction. Catalytic networks (e.g., transcriptional, phosphorylation, etc.) regulate

many aspects of the cell’s behavior [42, 48]. In general protein-protein interactions, proteins

can catalytically modify other proteins, which in turn can be catalysts in other interactions.

An important subclass of catalytic networks are metabolic networks, where the enzymes are

proteins while the substrates are small molecules; these catalytic CRNs are “bipartite” in the

sense that a species is either always a catalyst or never a catalyst. Autocatalytic networks

are another interesting subclass of catalytic networks in which the (auto)catalyst generates

another copy of itself. Autocatalysis is useful for exponential amplification and oscillation.

We then turn our attention to classes of CRNs especially relevant for synthetic reaction

networks, showing how abstract molecular structure can be modeled in Alloy. In particular,

we focus on DNA strand displacement cascades, which have proved to be a uniquely pro-

grammable technology for cell-free DNA-only systems [64]. Strand displacement interactions

correspond to reactions between two types of molecules: “gates” and “strands”, where the

reacting strand displaces the strand previously sequestered in the gate complex. A simple,

yet very scalable, class of strand displacement circuits uses a simple motif called seesaw

gates [13,49,50] that makes use of a reversible strand displacement reaction. We designed

an Alloy model to enumerate such strand displacement reactions, showing that abstract

molecular structure can be incorporated into the Alloy modeling formalism.

In the second part of the paper, we use our enumeration framework to search for specific

desired functionality in a class of CRNs. In particular, we focus on the class of rate-

independent CRNs [11]. Consider the reaction X → Y + Y , and think of the concentrations

of species X and Y as input and output respectively. This reaction computes the function

of “multiplication by 2” since in the limit of time going to infinity it produces two units of

Y for every unit of X initially present. Similarly the reaction X1 + X2 → Y computes the
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A −−→ Z1 + Y

B −−→ Z2 + Y

Z1 + Z2 −−→ K

Y + K −−→ ∅

Figure 1 CRN computing Max. We think of the initial amount of A and B as inputs, and the
converging amount of Y as the output. The amount of Y eventually produced in reactions 1 and 2

is the sum of the initial amounts of A and B. The amount of K eventually produced in reaction 3 is
the minimum of the initial amounts of A and B. Reaction 4 subtracts the minimum from the sum,
yielding the maximum. (The 4th reaction generates waste species, which are not named.)

“minimum” function since the amount of Y eventually produced will be the minimum of

the initial amounts of X1 and X2. Note that such computation makes no assumption on

the rate law, such as whether the reaction obeys mass-action kinetics1 or not, allowing the

computation to be correct in a wide variety of chemical contexts. (We use the continuous

CRN model where concentrations are real-valued quantities.)

A natural subclass of CRNs whose structure enforces rate independence are those that

satisfy two constraints: feed-forward, and non-competitive.2 Intuitively, the first condition

ensures that the CRN converges to a static equilibrium where no reaction can occur. The

second condition ensures that no matter what the rates are, the system converges to the

same static equilibrium. More precisely, we define feed-forward as follows: there exists a

total ordering on the reactions such that no reaction consumes3 a species produced by a

reaction later in the ordering. We define non-competitive as follows: if a species is consumed

in a reaction then it cannot appear as a reactant somewhere else. Such constraints on the

structure of the network can be easily encoded in the Alloy specification. We also require each

reaction to consume at least one species (boundedness condition). We show in Appendix A

that these conditions ensure that the CRN is rate-independent.

Focusing on the class of feed-forward, non-competitive CRNs, we search for the smallest

reaction networks implementing max, minmax, abs, and ReLU (rectified linear unit) functions.

As an example of the kind of computation we achieve, consider the max computing CRN

shown in Figure 1. This CRN was previously studied [10, 11]; our result shows that it is

indeed the smallest. The maximum function serves an important role in rate-independent

computation since together with minimum, multiplication and division by a constant it

forms a complete basis set [9, 11]. The ReLU function was first introduced due to the

biological motivations explaining functioning of neurons in the brain cortex [27]. Since then,

it was used with great success in the machine learning community, particularly in deep

learning [25, 41] for realizing artificial neural networks. The simplicity of its implementation

suggests that CRNs can naturally realize neural computation [58]. To our knowledge, the

smallest implementations of abs (absolute value), and minmax (a two output function

computing both minimum and maximum of two inputs) that we find are novel and have not

been previously published.

1 “Mass-action” kinetics refers to the best-studied case where the reaction rate is proportional to the
product of the concentration of the reactants.

2 Feed-forward and non-competitive conditions are sufficient for rate-independence, but are not necessary.
However, most known examples of rate independent computation satisfy these conditions.

3 We say a reaction produces (resp. consumes) a species S if there is net stoichiometric gain (resp. loss) of
S. Thus a catalyst in a reaction is neither consumed nor produced.

DNA 26
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Listing 1 General Alloy model of CRNs. “−−” indicate start of a comment.

module crn

abstract sig Species {}
abstract sig Reaction { reactants, products: seq Species }

-- Basic semantic constraints -- for all CRNs
fact AtLeastOneReactant { -- each reaction has >=1 reactant

all r: Reaction | some r.reactants }

fact UniqueReactions { -- each reaction is unique
all disj r1, r2 : Reaction | ReactionsDifferent[r1, r2] }

pred ReactionsDifferent[r1, r2: Reaction] {
SpeciesSeqDifferent[r1.reactants, r2.reactants]
or SpeciesSeqDifferent[r1.products, r2.products] }

pred SpeciesSeqDifferent[seq1, seq2: seq Species] {
some s : Species | #indsOf[seq1, s] != #indsOf[seq2, s] }

fact ReactantsDifferentThanProducts {
all r: Reaction | SpeciesSeqDifferent[r.reactants, r.products] }

fact AllSpeciesUsed { -- each species is used in some reaction
Int.(Reaction.(reactants + products)) = Species }

pred ContainsAsReactant[r: Reaction, s: Species] { s in Int.(r.reactants) }
pred ContainsAsProduct[r: Reaction, s: Species] { s in Int.(r.products) }

Much ongoing work explores the computational power of CRNs. Previous work showed

the implementation of numerous complex behaviors, such as mapping polynomials to chemical

reactions [51], programming logic gates [43], mapping discrete, control flow, algorithms [31],

and a molecular programming language translating high-level specifications to chemical

reactions [59]. However the complexity of these reaction systems can be infeasible, asking for

novel techniques that answer what is the natural way to compute “in reactions”. To help

answer this question we can take a different, bottom-up approach, and explore what small

CRNs naturally do. We believe that insight we get from exploring reactions will help in

design of higher-level primitives that naturally map to reactions, and will provide knowledge

for more efficient design of high-level languages.

2 Modeling CRNs in Alloy

This section describes our approach to modeling chemical reaction networks (CRNs) in Alloy.

(See Appendix B for additional background on Alloy.) We first introduce a general model to

represent the broadest class of CRNs (allowing arbitrary number of reactants and products),

and next show specializations of the model for different classes such as elementary, catalytic,

metabolic, autocatalytic, and feed-forward non-competitive reactions. Next, we present models

that encode abstract molecular structure, including strands and gates model and a seesaw

model built on top of it. Our approach naturally admits a hierarchical structuring of

models where a model builds on and specializes another model – e.g., metabolic reactions are

structurally more constrained reactions than elementary. This allows a systematic exploration

of the design space of models as this section illustrates.
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General model. Our general model captures CRNs consisting of reactions with arbitrarily

many reactants and products. To model this in Alloy we define a set of species, a set of

reactions, two relations that characterize the reactants and products, and logical constraints

that define the basic structural requirements for well-formed CRNs. Listing 1 specifies the

general model in Alloy. The keyword module allows naming the model, which can be imported

in other models. The keyword sig declares a basic type and introduces a set of indivisible

atoms that do not have any internal structure. The model declares two sets: a set of species

(Species) and a set of reactions (Reaction). The signature declaration of Reaction introduces

two fields, reactants and products, each of type sequence (seq) of Species. Alloy models

a sequence as a binary relation from (non-negative) integer indices to atoms. Thus, each

of these field declarations introduces a ternary relation of type: Reaction × Int × Species.

In a case of reaction R0 : X → Y + Y , the value of products relation would be the set:

{R0× 0× Y, R0× 1× Y }. Note that we model reactants and products with seq instead of

set to support repetition of a species as a reactant or product, as in the above reaction.

After defining the basic structure, we use Alloy facts to add constraints ensuring that

enumerated CRNs are well-formed. A fact paragraph states a constraint that must always

be satisfied, i.e., every solution found (CRN enumerated) must satisfy each fact (and may

satisfy additional constraints as desired). For example, the fact AtLeastOneReactant requires

that every reaction contains at least one reactant. We use universal quantification (all) to

require that the reactants in each reaction form a non-empty sequence. The keyword some in

formula “some E” for expression E constrains it to represent a non-empty set. The operator

‘.’ is relational join; specifically, if r and s are binary relations where the domain of r is the

same as co-domain of s, r.s is relational composition, and if x is a scalar and t is a binary

relation where the type of x is the co-domain of t, x.t is relational image of x under t. Thus,

r.reactants represents a sequence of reactants in a reaction r.

We ensure that there are no two identical reactions in a CRN using the fact UniqueReactions.

For all distinct (disj) reactions we require that predicate ReactionsDifferent holds. A pre-

dicate (pred) paragraph is a named formula that may have parameters. The predicate

ReactionsDifferent uses logical disjunction (or) and invokes SpeciesSeqDifferent to con-

strain its parameters (reactions) r1 and r2 to be different.

The predicate SpeciesSeqDifferent is true if the two sequences of species are different.

It uses existential quantification (some). The operator ‘#’ represents set cardinality. The

Alloy library function indsOf represents the set of indices where the atom argument (e.g.,

s) appears in the sequence argument (e.g., seq1). Intuitively, this predicate compares the

number of appearances of species in two sequences, and returns true if exists a species that

appears a different number of times in the two sequences.

The fact ReactantsDifferentThanProducts requires each reaction to have non-identical

reactants and products. Finally, the fact AllSpeciesUsed states that all species must be a

part of some reaction. Int represents the set of integers.

The predicate ContainsAsReactant is true if a given reaction contains a given species as a

reactant. Similar holds for ContainsAsProduct and reaction products.

Illustrating the General Model. To illustrate using the Alloy analyzer, consider generating

an instance of the constraints modeled. The following Generate command instructs the

analyzer to create an instance with respect to a universe that contains exactly 2 reactions

and 2 species, and 2-bit integers, and conforms to all the facts in the model:

Generate: run {} for exactly 2 Reaction, exactly 2 Species, 2 int

DNA 26
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Listing 2 Elementary reactions.

module elementary
open crn
pred Elementary() { MaxReactantsNum[2] and MaxProductsNum[2] }
pred MaxReactantsNum[num: Int] { all r: Reaction | lte[#r.reactants, num] }
pred MaxProductsNum[num: Int] { all r: Reaction | lte[#r.products, num] }

Listing 3 Catalytic reactions.

module catalytic
open elementary
pred Catalytic[] { all r: Reaction | CatalyticReaction[r] }
pred CatalyticReaction[r: Reaction] { some elems[r.reactants] & elems[r.products] }
run { Catalytic and Elementary } for 2

Executing the command Generate and enumerating the first three instances creates the

following CRNs where S0 and S1 are species, and ∅ are waste species 4:

S1 −−→ S0

S0 −−→ S1

S1 −−→ ∅

S1 −−→ S0

S1 −−→ ∅

S0 −−→ S1

(a) (b) (c)

While quite small, these three instances exhibit interesting properties, CRN in (a) models

a reversible reaction S1 ←→ S0; CRN in (b) is rate-dependent, where amount of S1 in a

limit of time going to infinity is 0, but amount of S0 is dependent on reaction rates; and

CRN in (c) is rate-independent, where concentrations of both S0 and S1 converge to 0.

Elementary reactions. Elementary reactions have at most 2 reactants and at most 2

products. Elementary reactions are arguably the ones commonly occurring in nature, as it is

unlikely that 3 (or more) molecules react or split at the same exact time. Also, reactions

with more than 2 reactants can be represented with elementary reactions; e.g. reaction

A + B + C → D can be constructed with two elementary reactions: A + B → T and

T + C → D. (Similarly for products.)

Listing 2 shows the Alloy model of elementary reactions, which specializes (restricts) the

general CRN model crn. The Alloy model elementary imports (open) the crn model and

defines the predicate Elementary, which uses the conjunction (and) of two helper predicates

MaxReactantsNum and MaxProductsNum to characterize elementary reactions. The predicate

lte is a standard Alloy utility predicate and represents the ≤ comparison.

Catalytic reactions. Next, we model catalytic reactions (Listing 3). The predicate Catalytic

uses the helper predicate CatalyticReaction to require each reaction to be catalytic, i.e.,

have some species that is both a reactant and a product in that reaction. The Alloy utility

function elems represents the set of elements in its argument sequence; the operator ‘&’

represents set intersection. The run command instructs the analyzer to create an instance

4 Alloy shows each instance as a valuation to the sets and relations declared in the model, and also supports
visualizing the instances as graphs. We write the reactions here using their natural representation for
clarity.
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Listing 4 Metabolic reactions.

module metabolic
open catalytic

pred Metabolic[] {
Catalytic[] and
all s: Species | (some r: Reaction | IsCatalyst[s, r]) implies

all x: Reaction | Contains[x, s] implies IsCatalyst[s, x] }

pred IsCatalyst[s: Species, r: Reaction] { s in Int.(r.reactants) & Int.(r.products) }
pred Contains[r: Reaction, s: Species] { ContainsAsReactant[r, s] or ContainsAsProduct[

r, s] }

Listing 5 Strands and gates.

module strandsandgates
open crn

sig Strand, Gate extends Species {}
fact { Strand + Gate = Species } -- strands and gates partition species

pred StrandsAndGates() {
ExactReactantsNum[2] and ExactProductsNum[2] and
all r: Reaction {

some Int.(r.reactants) & Strand and some Int.(r.reactants) & Gate
some Int.(r.products) & Strand and some Int.(r.products) & Gate }}

pred ExactReactantsNum[num: Int] { all r: Reaction | eq[#r.reactants, num] }
pred ExactProductsNum[num: Int] { all r: Reaction | eq[#r.products, num] }

that is both a catalytic and an elementary reaction within a scope of 2, i.e., at most 2 atoms

in each sig. An example instance created by executing the command is:

S0 + S1 → S0 + S0

S0 + S1 → S1 + S1

We also model autocatalytic reactions shown in Appendix C.

Metabolic reactions. In metabolic networks catalysts are proteins that act upon substrates

that are small molecules. Thus metabolic reactions are a form of catalytic reactions in which

if a species appears as a catalyst in a reaction, then it has to be a catalyst in all reactions in

which the species occurs. The predicate Metabolic in Listing 4 specifies metabolic reactions.

Strands and gates. We next model synthetic CRNs which use DNA strand displacement

cascades for its implementation. Strand displacement interactions correspond to reactions

between two types of molecules: “gates” and “strands”, where the reacting strand displaces

the strand previously sequestered in the gate complex. We first capture the bipartite nature

of the reactions: Listing 5 declares strands and gates as disjoint subsets (extends) that

partition species. The predicate StrandsAndGates requires that each reaction has exactly 2

reactants and 2 products, and moreover has a strand and a gate as a reactant, and a strand

and a gate as a product.

DNA 26
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Figure 2 DNA strand displacement reaction with the seesaw gate motif. There are two reactants
(a strand and a gate) and two products (a strand and a gate). A gate consists of two strands bound
together. (For simplicity the usual helical structure of DNA is not shown.) Labels show binding
sites (domains); a star indicates Watson-Crick complement such that domain x binds x∗. In order
for the reaction to happen, the complementary domains must match as shown. Such reactions can
be cascaded since the strands < a, t, b > and < b, t, c > can react with other seesaw gates.

Seesaw networks. A simple yet powerful subclass of DNA strand displacement reactions is

the “seesaw” model. Seesaw reactions have been used to create some of the largest synthetic

biochemical reaction networks, including logic circuits and neural networks [13, 49]. The

molecular structure schematic for a seesaw reaction is shown in Figure 2. Listing 6 models

seesaw reactions by specializing the model of strands and gates (Listing 5), capturing the

abstract molecular structure in an Alloy model. The signature Domain models the binding

domains. The signature DNASpecies is a subset (in) of species, and left and right are

binary relations that map DNASpecies to their left and right domains respectively. The

keyword lone constraints the relations to be partial functions. The signatures RightGate

and LeftGate partition gates. The fact UseAll requires all species to be DNA species, and

requires all domains to be a part of some species . The fact UniqueSpecies enforces that

strands and gates are unique, i.e., there cannot be two or more strands (or left/right gates)

with matching left and right domains. The fact OneDomain requires strands and gates to have

exactly one left and exactly one right domain. The predicate CanReactStrandAndLeftGate

is true if inputs (reactants) conform to the interaction rules of a strand and a left gate,

similar holds for the predicate CanReactStrandAndRightGate on strands and right gates. The

predicate CanReact is true if inputs (reactants) satisfy either CanReactStrandAndLeftGate

or CanReactStrandAndRightGate. The predicate ReactStrandAndLeftGate is true if inputs

(reactants and products) conform to the interaction rules of a strand and a left gate,

specifically s and lg interact, i.e., the right domain of s matches the left domain of lg,

and produce s’ and rg’ where the left and right domains of s’ match those of lg, and

left and right domains of rg’ match those of s; likewise, ReactStrandAndRightGate specifies

the interaction of a strand and a right gate. The functions ReactantsSet and ProductsSet

returns a set of reactants (products) in a reaction. The predicate Seesaw specifies: (a) each

reaction to be a seesaw reaction by enforcing the predicate React on every reaction; (b) that

all possible reactions exist, i.e., if two species can interact based on seesaw interaction rules

(predicate CanReact) than a reaction containing those species as reactants (or products) must

exist; (c) that reactions only in one direction exist (to reduce number of solutions we enforce

that only one direction of reaction exist in enumerated CRNs knowing that seesaw reactions

are always reversible); (d) that reactions have a left gate as a reactant (this is to prevent

multiple redundant solutions, since all reactions are reversible we can enforce that left gate

is always on the left hand side).

An instance generated by Alloy running the predicate with command GenSeesaw is

Sab + LGbc → Sbc + RGab, where Sab and Sbc are strands, LGbc left gate, RGab right gate,

while left and right domains {a, b, c} are denoted in subscript. Note that this reaction is

equivalent to the one shown in Figure 2.
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Listing 6 Seesaw model.

open strandsandgates

sig Domain {}
sig DNASpecies in Species { left, right: lone Domain }
sig RightGate, LeftGate extends Gate {}

fact UseAll { DNASpecies = Species and DNASpecies.(left + right) = Domain }
fact UniqueSpecies {

all s1, s2: Strand | s1.left = s2.left and s1.right = s2.right implies s1 = s2
all s1, s2: RightGate | s1.left = s2.left and s1.right = s2.right implies s1 = s2
all s1, s2: LeftGate | s1.left = s2.left and s1.right = s2.right implies s1 = s2 }

fact OneDomain { all s: Strand + LeftGate + RightGate | one s.left and one s.right }

pred CanReactStrandAndLeftGate[s: Strand, lg: LeftGate] {
s in Strand and lg in LeftGate and s.right = lg.left }

pred CanReactStrandAndRightGate[s: Strand, rg: RightGate] {
s in Strand and rg in RightGate and s.left = rg.right }

pred CanReact[r1: DNASpecies, r2: DNASpecies] {
CanReactStrandAndLeftGate[r1, r2] or CanReactStrandAndRightGate[r1, r2] }

pred ReactStrandAndLeftGate[s: Strand, lg: LeftGate, s’:Strand, rg’: RightGate] {
(s in Strand and lg in LeftGate and s’ in Strand and rg’ in RightGate
and CanReactStrandAndLeftGate[s, lg]
and s’.left = lg.left and s’.right = lg.right and rg’.left = s.left and rg’.right = s

.right) }
pred ReactStrandAndRightGate[s: Strand, rg: RightGate, s’: Strand, lg’: LeftGate] {

(s in Strand and rg in RightGate and s’ in Strand and lg’ in LeftGate
and CanReactStrandAndRightGate[s, rg]
and s’.left = rg.left and s’.right = rg.right and lg’.left = s.left and lg’.right = s

.right) }
pred React[r1: Species, r2: Species, p1: Species, p2: Species] {

ReactStrandAndLeftGate[r1, r2, p1, p2] or ReactStrandAndRightGate[r1, r2, p1, p2] }

fun ReactantsSet[r: Reaction]: set Species { Int.(r.reactants) }
fun ProductsSet[r: Reaction]: set Species { Int.(r.products) }

pred Seesaw {
StrandsAndGates[]
all r: Reaction { -- All reactions are seesaw reactions.

let s = 0.(r.reactants), g = 1.(r.reactants), s’ = 0.(r.products), g’ = 1.(r.
products) {

React[s, g, s’, g’] }}
all s1, s2: Species { -- All possible reactions exist.

CanReact[s1, s2] implies some r: Reaction {
(s1 + s2) = ReactantsSet[r] or (s1 + s2) = ProductsSet[r] }}

all s1, s2: Species | all rxn1, rxn2: Reaction { -- Prevent reverse direction.
((s1+s2) = ReactantsSet[rxn1]) implies ((s1+s2) != ProductsSet[rxn2]) }

all r: Reaction { some LeftGate & ReactantsSet[r] }
}

GenSeesaw: run Seesaw for exactly 1 Reaction, exactly 3 Domain, exactly 4 Species

To reduce the enumeration overhead for seesaw, we updated the Reaction signature by

removing the representation of reactants and products as a sequence (sequence introduces

integers as an overhead), and adding two relations for reactants and products (as seesaw

reactions are restricted to two reactants and two products). The updated Reaction signature

is: abstract sig Reaction { r1, r2, p1, p2: Species }

DNA 26
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Listing 7 Feed-forward, non-competitive CRNs in Alloy.

open elementary

one sig Graph { edges: Reaction -> Reaction }
{ all r1, r2: Reaction | r1->r2 in edges implies some s: Species |

NetProduces[r1, s] and NetConsumes[r2, s]
all s: Species | all r1, r2: Reaction |

NetProduces[r1, s] and NetConsumes[r2, s] implies r1->r2 in edges }

pred DAG[] { all r: Reaction | r !in r.^(Graph.edges) }

pred NonCompetitive[] {
all r1, r2: Reaction | all s : Species {

(ContainsAsReactant[r1, s] and NetConsumes[r2, s]) implies r1 = r2 }}

pred NetProduces[r: Reaction, s: Species] { -- r net produces s
lt[#indsOf[r.reactants,s], #indsOf[r.products,s]] }

pred NetConsumes[r: Reaction, s: Species] { -- r net consumes s
gt[#indsOf[r.reactants,s], #indsOf[r.products,s]] }

pred MustConsume[] {
all r: Reaction | some s: Species | NetConsumes[r, s] }

pred Feedforward[] { Elementary[] and DAG[] and NonCompetitive[] and MustConsume[] }

Feed-forward, non-competitive CRNs. Listing 7 models feed-forward, non-competitive

CRNs. Recall, we define feed-forward as: there exists a total ordering on the reactions such

that no reaction consumes a species produced by a reaction later in the ordering. Also, we

define non-competitive as: every species is consumed by at most one reaction.

To model feed-forward constraints, one approach is to directly enforce a total ordering on

the reactions with respect to the feed-forward property. Observe that there can be multiple

valid total orderings of reactions for the same feed-forward CRN, which means that when

enumerating instances for the resulting model, multiple unique instances are created for the

same CRN. This is useful when finding all total orderings that exist for a CRN. However, our

goal is to search for CRNs exhibiting desired functionality, and thus we aim to enumerate

each CRN once, and as quickly as possible. To tackle this problem we achieve the total

ordering by creating a graph of reaction dependencies, and enforce it to be directed-acyclic.

Our modeling of feed-forward constraints introduces a new singleton (one) sig, termed

Graph, to model a dependency relation, termed edges, between reactions. The constraint

paragraph that immediately follows the signature declaration implicitly introduces a fact that

defines the edges. Specifically, there is an edge from reaction r1 to reaction r2 if and only if

there is some species s such that r1 produces s and r2 consumes s. Total ordering is achieved

by the predicate DAG that requires the graph to be directed-acyclic. The operator ‘ˆ’ is

transitive closure and r.ˆ(Graph.edges) represents the set of all reactions that are reachable

from r. The predicate NonCompetitive enforces that if a species is used as a reactant in

a reaction then it cannot be consumed by any other reaction. The predicate MustConsume

enforces that every reaction consumes some species (boundedness condition). The predicate

Feedforward defines elementary, feed-forward, and non-competitive reactions where each

reaction must consume some species.
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Algorithm 1 Search Algorithm.

Input: Model (model), Generation bounds (scope), Function (f), Inputs (N).
Output: CRN that computes f if found; otherwise, null.

1: procedure ExhaustiveSearch

2: for each instance ∈ Alloy.findAllInstances(model, scope) do

3: crn← translate(instance)
4: if ComputesF (crn, f, N) then return crn
5: end for

6: return null
7: end procedure

3 CRN Enumeration and Search

In this section we describe our algorithm (shown in Algorithm 1) that performs a bounded

exhaustive search enumerating all CRNs in a given class and within a given bounds respecting

properties defined by an Alloy model, to find the CRN implementing desired function.

Inputs to the algorithm are the Alloy model, the size of CRNs (e.g., number of reactions

and species) defined by the scope, desired target function f , and the number of inputs to the

function N . Function findAllInstances accepts the Alloy model definition and scope, and

enumerates all possible instances that satisfy the Alloy model. Each Alloy instance is

translated to CRN (step 3). Then, in step 4 we invoke the Algorithm 2 (Section 4) to check

if CRN computes f . If CRN implementing given function is found then it is returned (step

4). If after checking all instances no satisfying CRN is found then the procedure returns null.

Bounded exhaustive search . To find the smallest CRN computing f we conduct a bounded

exhaustive search. Our goal is to find a smallest (in terms of numbers of species and reactions)

feed-forward, non-competitive CRN that computes f . We use iterative deepening [26, 28,30]

where we start from a small scope and iteratively increase it to a larger scope until a desired

CRN is found, where for each scope we invoke Algorithm 1.

4 CRN Analysis

In this section we describe our algorithm for checking if a CRN computes a function of

interest (f).

Conservation Equations. We first construct a set of conservation equations for the CRN
which describe concentrations of species in terms of their initial concentrations and reaction
fluxes. A reaction flux is equal to the total “flow of material” through the reaction. We
associate a flux variable to the each reaction, where fluxi represents the flux of the reaction
i. Then the concentration of a species S can be expressed in terms of its initial concentration
S0 and reaction fluxes:

s = s0 +

N
∑

i=1

netGain(rxni, S) · flux
i

(1)

where netGain(rxni, S) is the net stoichiometric gain of species S in the reaction i (negative
in the case of loss), and N is the number of reactions in the CRN. For example, the CRN
from Figure 1 generates the equations shown in 2. The variables on the left side of equations
represent concentrations of species, variables with suffixes 0 represent initial concentrations of
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species (e.g., z10 is initial concentration of species Z1), and finally fluxi variables represent
fluxes of reactions.

a = a0 − flux1 b = b0 − flux2

z1 = z10 + flux1 − flux3 z2 = z20 + flux2 − flux3

k = k0 + flux3 − flux4 y = y0 + flux1 + flux2 − flux4

(2)

Equilibrium Condition. We next use the above conservation equations to find equilibria.

Since we focus on rate-independent computation, we search for static equilibria only (none

of the reactions is occurring).5 A static equilibrium corresponds to every reaction having at

least one reactant in zero concentration. Thus, we create multiple systems of equations from

the conservation equations, where each system corresponds to setting concentrations of a set

of species to zero, where the set contains a reactant from each reaction. The solution of each

such constructed system of equations represents concentrations of species at an equilibrium.

Different equilibria will be reached from different initial conditions.
As an example, consider again the CRN shown in Figure 1. All combinations of species

containing a reactant from each reaction are: (A, B, Z1, Y ), (A, B, Z2, Y ), (A, B, Z1, K),
(A, B, Z2, K). For each combination we set its species concentrations to zero and solve the
system 2. This results in 4 solutions shown in 3 (we do not show solutions for flux variables
due to the space limits).

a b k y z1 z2

0 0 −b0 + k0 − y0 + z10 0 0 −a0 + b0 − z10 + z20

0 0 −a0 + k0 − y0 + z20 0 a0 − b0 + z10 − z20 0

0 0 0 b0 − k0 + y0 − z10 0 −a0 + b0 − z10 + z20

0 0 0 a0 − k0 + y0 − z20 a0 − b0 + z10 − z20 0

(3)

Although there are 4 solutions, for any particular initial concentrations of the species only

one of the solutions is non-negative (concentrations of species must be non-negative), and

thus feasible.

Check whether CRN computes f . We then check if the equilibrium solutions are equivalent

to f . In general, we do not know which species correspond to the input and which to the

output, and thus we need to check for all possible combinations of the input and the output

species. First, we construct all input n-tuples without repeating elements from a set of

species (where n is the number of the inputs to f)6. Second, for all species that are not

in the input tuple we set initial concentrations to zero. Third, for the output species we

try any of the remaining species. Fourth, for a given set of input and output species, we

construct a piecewise function, where each solution is valid if concentrations of species are

non-negative. Finally, we use Mathematica’s constraint solving procedure FindInstance to

check if the constructed piecewise function differs from function f .

5 In chemical kinetics, static equilibrium refers to an equilibrium where none of the reactions occur. In
contrast, in dynamic equilibria, concentrations don’t change over time because the effects of the different
reactions cancel out. Note that dynamic equilibria are not rate-independent since changing a reaction
rate affects the equilibrium concentrations of the species involved in that reaction.

6 An input tuple (a,b) will be separately considered from (b,a). However, if the sought function is known
to be commutative than the order of species can be ignored.
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Algorithm 2 ComputesF.

Input: CRN crn, Function f , Number of inputs N .
Output: True if crn computes f ; false otherwise.

1: procedure ComputesF

2: conservationEquations← constructConservationEquations(crn)
3: equilibriumSolutions← ∅
4: for each speciesSet ∈ getAllReactantCombinations(crn) do

5: equilibriumEquations← setConcT oZero(conservationEquations, speciesSet)
6: solution← solve(equilibriumEquations)
7: equilibriumSolutions.add(solution)
8: end for

9: for each {x1, x2, ..., xN , y} ∈ getInputOutputSpecies(crn, N) do

10: nonInputSpecies← getOtherSpecies(crn, {x1, x2, ..., xn})
11: newSols← setInitialConcT oZero(equilibriumSolutions, nonInputSpecies)
12: pwF ← constructP iecewise(newSols, y)
13: counterExample← F indInstance(pwF 6= f(x1, x2, ..., xN ))
14: if counterExample = null then return true
15: end for

16: return false
17: end procedure

To illustrate on our example, consider setting input species to A and B, and output to Y .
The system of equations 3 reduces to the system 4.

a b k y z1 z2

0 0 −b0 0 0 −a0 + b0

0 0 −a0 0 a0 − b0 0

0 0 0 b0 0 −a0 + b0

0 0 0 a0 a0 − b0 0

(4)

The first two solutions are infeasible since they result in species k having negative con-
centration, −b0 and −a0. More precisely they are feasible only in the trivial case where
a0 = 0 ∧ b0 = 0. The third solution is feasible when b0 ≥ a0, in which case y = b0; while
fourth solution is feasible when a0 ≥ b0, in which case y = a0. Thus, we can construct the
piecewise function unifying multiple equilibrium solutions into a single function:

y =

{

b0 b0 ≥ a0

a0 a0 ≥ b0

Next, once we constructed the equilibrium piecewise function (y(a0, b0)) we invoke the

Mathematica’s constraint solving procedure FindInstance to find an assignment of inputs

(a0, b0) for which y differs from f , with additional condition that initial concentrations are

non-negative (a0 ≥ 0 ∧ b0 ≥ 0). If no counterexample is found, then the CRN computes f

and we have finished our search. On the other hand, if a counterexample is found, then

we repeat the procedure for the next combination of input and output species. When the

list of input and output combinations is exhausted we can conclude that the CRN does not

compute f .

Algorithm. We implement this functionality in Mathematica by defining ComputesF func-

tion described in Algorithm 2. In step 2, conservation equations are constructed, while in

step 3 we initialize a set of equilibrium solutions equilibriumSolutions to an empty set. In

steps 4–8, we iterate over all existing sets of species containing at least one reactant from each

reaction. Specifically, function getAllReactantCombinations computes Cartesian product over

sets of reactants from different reactions; and removes elements with the same sets of species.

In step 5 we update the conservation equations by setting speciesSet concentrations to zero,
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Table 1 Number of enumerated feed-forward, non-competitive CRNs and wall-clock times
(hh:mm:ss) for the enumeration procedure.

1 Reaction 2 Reactions 3 Reactions 4 Reactions

1 Species 3 00:00:00 0 00:00:00 0 00:00:00 0 00:00:00

2 Species 10 00:00:00 22 00:00:00 0 00:00:00 0 00:00:00

3 Species 6 00:00:00 199 00:00:00 287 00:00:00 0 00:00:00

4 Species 1 00:00:00 391 00:00:00 4,666 00:00:05 5,643 00:00:07

5 Species 0 00:00:00 291 00:00:00 17,509 00:00:19 140,064 00:03:57

6 Species 0 00:00:00 100 00:00:00 27,257 00:00:32 817,742 00:30:35

and save the linear system in equilibriumEquations. In steps 6–7 we solve the system of

linear equations and add it to the list of equilibrium solutions (note that since we are focused

on feed-forward non-competitive reactions, a unique solution will always exist). Next, we

iterate over all combinations of input and output species {x1, x2, ..., xN , y}, where x1, x2,

..., xN represent input species, and y output species. In step 10 we get all the species that

are not in the input species set. In step 11 we modify the equilibrium solutions by setting

initial concentrations of nonInputSpecies to zero, and we save the result in newSols. In

step 12 we construct a piecewise function pwF out of newSols. Finally, in step 13 we invoke

the FindInstance method to find input values for which pwF is different then f . If such

solution is not found then counterExample is null, and constructed pwF is implementing

f ; in which case procedure returns true. If counterexample is found then the same steps

are repeated for different set of input and output species. Finally, if all combinations are

exhausted procedure returns false.

5 New Results

In this section we present new discoveries made using the proposed techniques. We focus on

the class of feed-forward, non-competitive CRNs since they are always rate-independent.

Smallest max CRN. We perform bounded exhaustive search for 1 to 4 reactions, and 1–6

species, starting with smaller number of species and reactions, and iteratively increasing the

scope until the max is found. Table 1 shows the number of enumerated CRNs and Alloy

enumeration time for different scope sizes. We perform (not perfect) isomorphic breaking

in Alloy by requiring lexicographic ordering on reactions among other things (details of

symmetry breaking are shown in Appendix F). Note that while we perform some isomorphic

breaking7, not all isomorphic cases are pruned, and thus number of non-isomorphic instances

may be less then numbers reported in Table 1. In spite of this, our approach is still exhaustive,

meaning that all possible CRNs will be enumerated, but some may be enumerated multiple

times. The first occurrence of max is found in the scope of 4 reactions and 6 species, and

it was the 124, 118th instance Alloy enumerated in that scope. The CRN discovered is

equivalent to the one shown in Figure 1, modulo reaction and species ordering.

7 Alloy can generate isomorphic instances, i.e., two instances that are distinct but there exists a permutation
on atoms, which maps one instance to the other
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X+ −−→M + Y +

M + X− −−→ Y −

X+ −−→ Y + + C

X− −−→ Y + + E

C + E −−→ 2 Y −

X+
1 −−→M1 + Y +

max

X−

1 −−→M2 + Y −

min

X+
2 −−→M2 + Y +

max

X−

2 −−→M1 + Y −

min

M1 + M2 −−→ Y −

max
+ Y +

min

Figure 3 Minimal ReLU (left), abs (middle) and minmax (right) CRNs. (left) The ReLU

CRN produces x+(0) amount of M and Y + by the first reaction. The second reaction produces
min(x+(0), x−(0)) amount of Y −. Thus, the amount of output produced is: y = y+ − y− =

x+(0)−min(x+(0), x−(0)) which can be shown to be equal to ReLU(x+(0)− x+(0)) = ReLU(x).
(middle) The abs CRN produces x+(0) amount of C and E by the first and second reactions,
respectively, x+(0) + x−(0) amount of Y +, and 2min(x+(0), x−(0)) amount of Y −. Thus, y =

x+(0) + x−(0)− 2min(x+(0), x−(0)) = abs(x+(0), x−(0)) = abs(x).

Dual-rail convention. Concentrations of species are always non-negative, making it im-

possible to represent negative values directly. However, there is a natural way to extend

computation semantics to negative values. Instead of using a single species to represent a

value, in dual-rail convention a value is represented by a difference between a two species

(e.g., the output value is equal to the concentration of species Y + minus that of Y −).

An additional requirement for CRN modules is to be composable, in the sense that the

output of one can be input to another. Note, for example, that the max system (Figure 1) is

not composable because the downstream module might consume some amount of Y before it

is consumed in its interaction with K (last reaction). Composability can be ensured if the

output species are never consumed [9,14,52]. Note that consuming Y + is logically equivalent

to producing Y − (and vise versa for Y −), and thus we restrict dual-rail computation in this

way without losing expressibility.

Smallest ReLU CRN. Using the above described procedure we run experiments for finding

the smallest CRN computing ReLU (rectified linear unit) function. We confirm that the

CRN introduced in [58], which is shown in Figure 3, is indeed the smallest. Note that CRNs

were already enumerated when searching for max, and that was no need to re-enumerate

them as they were saved on disk.

Our analysis shows that the ReLU CRN is the smallest in the sense that there is no other

CRN computing this function with fewer than 2 reactions or 5 species. In Appendix D we

argue that our enumeration in Table 1 is sufficient to ensure that 5 species are necessary no

matter how many reactions are allowed.

Smallest abs CRN. We conducted a similar experiment for finding the smallest CRN

computing the absolute value function, finding CRN shown in Figure 3.

Smallest minmax CRN. Minmax CRN accepts two inputs and has two outputs, where one

output computes max, and other output computes min of the inputs. Since species are in

dual-rail form, there is 4 input and 4 output species. Thus, for minmax search we enumerated

CRNs that have at least 8 species, where at least 4 species only appear as products (output

species candidates), and at least 4 species which do not appear only as products (input

species candidates). We have further restricted the CRNs to have a total of at most 16

reactants and products over all reactions. Enumeration results with those constraints are

shown in Table 2 (isomorphic breaking is imperfect in this case as well). We discovered the
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Table 2 Number of enumerated feed-forward, non-competitive CRNs with at least two dual-rail
inputs (4 actual species) and two outputs (4 actual species). Star (∗) denotes that the scope has
been partially enumerated.

2 Reactions 3 Reactions 4 Reactions 5 Reactions

8 Species 1 00:00:00 1,176 00:00:03 67,323 00:03:09 0 00:00:00

9 Species 0 00:00:00 1,073 00:00:03 223,775 00:12:48 2,439,310 13:31:19

10 Species 0 00:00:00 385 00:00:02 328,397 00:19:30 4,669,000∗ 47:39:39

Table 3 Number of enumerated seesaw reactions with different number of domains and reactions,
and up to 20 distinct species.

1 Reaction 2 Reactions 3 Reactions 4 Reactions 5 Reactions

1 Domain 1 00:00:00 0 00:00:00 0 00:00:00 0 00:00:00 0 00:00:00

2 Domains 1 00:00:00 4 00:00:00 0 00:00:00 2 00:00:01 1 00:00:03

3 Domains 1 00:00:00 5 00:00:00 15 00:00:01 13 00:00:05 14 00:00:17

4 Domains 0 00:00:00 9 00:00:01 33 00:00:02 92 00:00:18 121 00:01:58

5 Domains 0 00:00:00 4 00:00:00 55 00:00:04 243 00:00:48 705 00:10:16

6 Domains 0 00:00:00 1 00:00:00 43 00:00:10 436 00:06:40 2027 03:01:06

minimal minmax CRN, which is shown in Figure 3. We performed several optimizations to

speed up the analysis phase which are described in Appendix E.

Seesaw enumeration. We enumerated all nonisomorphic seesaw CRNs up to specified

bounds on the number of domains and reactions. Table 3 shows the number of enumerated

CRNs restricted to 1-5 reactions, 1-6 domains, and up to 20 species. Since 5 seesaw reactions

can have at most 20 distinct species this includes all possible seesaw CRNs in the scope of 1-5

reactions. For seesaw networks, we define isomorphic CRNs as those that can be obtained

by: (a) swapping domain names, (b) changing order of reactants or products, (c) changing

order of reactions, (d) swapping reactants with products (follows from the reversibility of

seesaw reactions).

In order to check for isomorphisms while enumerating seesaw CRNs, we maintain a set

of previously enumerated CRNs and all their isomorphisms. If a newly enumerated CRN

is not found in the current set, we create the isomorphic class of the CRN by making all

permutations of the CRN, and adding them to the set. Permutations are done only with

respect to domains. Permuting the order of reactants and products, as well as swapping

reactants and products, is not needed as we follow the convention of enumerating CRNs

in a form S?? + LG?? ↔ S?? + RG??. Permuting the order of reactions is not needed, as

the set of CRNs is preserved as a hash table where a custom-made hash function is used

for CRNs (a same hash value is returned for a CRN irrespective of the order of reactions).

The isomorphic breaking is implemented as a post-processing step in Java. The run-times

reported in Table 3 include both generation and isomorphic breaking times.

Note that we require that the CRN corresponding to a seesaw system contain all reactions

that can occur. For illustration, we analyze seesaw CRNs with 2 domains and 1 reaction.

Due to the reversibility of seesaw reactions we can limit our analysis to CRNs that have a

left gate on the left hand side; thus our CRN will be of the form S?? + LG?? ↔ S?? + RG??,

where ? represent domains to be filled in. We denote two available domains with a and b,
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and we enforce that both domains are used in a CRN. The possible combinations for the

domains of the first strand are {aa, ab, ba, bb}, where we can remove cases starting with b as

they are symmetrical. Choosing Saa as a first strand, the only option for left gate is LGab as

we have to use two domains and left domain of LG must match right domain of S. This leads

to a CRN: Saa + LGab ↔ Sab + RGaa. Note that this CRN is not a valid one, as in this case

Saa and RGaa can also interact creating additional reaction. Another option for the strand

is Sab, in which case there are two options for left gate LGbb and LGba. In a case of LGbb

reaction is following: Sab + LGbb ↔ Sbb + RGab. This is also not a valid CRN since Sbb and

LGbb can interact creating additional reaction. The final option is Sab + LGba ↔ Sba + RGab,

which is only valid seesaw CRN in a case of 2 domains and 1 reaction; thus Table 3 shows

count 1 for seesaw CRNs with 2 domains and 1 reaction.

Similarly, note that there are 0 CRNs with 2 domains and 3 reactions, but there are

2 with 2 domains and 4 reactions. This is due to the fact that all 3 reaction CRNs with

2 domains have some other species that can also interact producing additional (spurious)

reaction. A curious reader can check that removing any reaction from 4 reaction 2 domain

seesaw CRNs (Table 4) will leave some species that can interact creating the fourth reaction.

Table 4 Seesaw CRNs with 2 domains and 4 reactions.

Saa + LGaa ←−→ Saa + RGaa

Sba + LGaa ←−→ Saa + RGba

Sbb + LGba ←−→ Sba + RGbb

Sbb + LGbb ←−→ Sbb + RGbb

Sab + LGba ←−→ Sba + RGab

Sbb + LGba ←−→ Sba + RGbb

Sab + LGbb ←−→ Sbb + RGab

Sbb + LGbb ←−→ Sbb + RGbb

6 Related Work

CRN Enumeration. Deckard et al. [18] developed an online library of reaction networks,

which was extended [3] to catalog reactions of several classes. These approaches generate non-

isomorphic bipartite graphs (two types of vertices for species and reactions) with undirected

edges relying on Nauty library [45]. Each such constructed graph is then reified as multiple

CRN instances. Recent generalization of this work gives the first complete count of all

2-species bimolecular CRNs, and counts for other classes of CRNs such as mass-conserving

and reversible [56]. Rather than focusing on removing all isomorphisms and generating exact

counts of non-isomorphic CRNs in each class, our work allows the user to flexibly specify

and analyze structural properties of CRNs of interest (enabling direct generation of CRNs

following the structure). For example, it is not clear how to encode molecular structure (such

as we do for seesaw networks) using graph-based models.

Minimal Systems with Desired Behavior. Complementary to CRN enumeration, previous

work also tackled the problem of finding minimal CRNs respecting some desired properties

or exhibiting certain behavior. Wilhelm [62] discovers the smallest elementary CRN with

bistability. Wilhelm and Heinrich [63] similarly detect the smallest CRN with Hopf bifurcation.

In comparison with this line of work, our paper presents a more general framework that allows

specifying structure and properties, including different functions, of CRNs to be explored.

Recent work due to Murphy et al [47] is close to ours in spirit, but focuses on discrete-state

stochastic systems (integer molecular counts of the species), rate-dependent reactions, and

does not guarantee that discovered CRNs are minimal. Cardelli et al [8] take a program

synthesis approach to generate CRNs that follow properties provided by a certain “sketch”

language (i.e., a template) using SMT solvers on the back end [4, 17].
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Computational power of CRNs. Much ongoing work has explored computational power of

CRNs [31,43,51,59]. It is shown how to map complex computation to CRNs, such as mapping

polynomials to chemical reactions, mapping discrete algorithms, and even defining a high-level

imperative languages that map to CRNs. We believe that by exploring CRNs bottom up, we

may found answers of what the appropriate (more efficient) high-level primitives are to be

used for implementing such high-level functionality.

7 Conclusion

We introduced the use of Alloy, a framework for modeling and analyzing structural constraints

and behavior in software systems, to enumerate CRNs with declaratively specified properties.

We showed how this framework can enumerate CRNs with a variety of structural constraints

including biologically motivated catalytic networks and metabolic networks, and seesaw

networks motivated by DNA nanotechnology. We also used the framework to explore analog

function computation in rate-independent CRNs. We applied our approach in a case-study

to find the smallest CRNs computing the max, minmax, abs and ReLU functions in a natural

subclass of rate-independent CRNs where rate-independence follows from structural network

properties.

There remain a number of open questions that motivate future research directions. An

important area of optimization is improving the run-time of the Alloy enumeration. Can

we optimize the isomorphic breaking process to eliminate all isomorphisms? For improved

efficiency and ease of use, do we need to rely on a separate tool like Mathematica to determine

whether a given CRN computes the desired function, or can the necessary functionality be

performed in Alloy alone? Finally, it remains to be seen how easily the techniques developed

in this paper could be applied to rate-dependent computation.
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A Proof of Rate Independence

In this section we develop an argument that the class of feed-forward, non-competitive CRNs

as defined in the main text is rate-independent. For simplicity, we base our argument on

the discrete CRN model, in which concentrations are integer molecular counts, reactions

are discrete events (firings), and rate-independence corresponds to behaving correctly no

matter what order the reactions occur in [10]. The continuous model is usually taken as an

approximation of the discrete model.

Note that when we say that a species S is consumed by a reaction, we mean that it

appears with negative net stoichiometry in the reaction. So we would not say that a catalyst

is consumed. We define produced similarly. We say configuration d is reachable from c if

there is a sequence of reactions that can fire to get from c to d.

In the main text, we define non-competitive as follows: if a species is consumed in a

reaction then it cannot appear as a reactant somewhere else. Feed-forward is defined as

follows: there exists a total ordering on the reactions such that no reaction consumes a species

produced by a reaction later in the ordering. We also require that all reactions consume

some species (boundedness condition).

Here we show that the feed-forward condition combined with boundedness implies that

the CRN will always reach a static equilibrium. (A static equilibrium is one where no reaction

can fire.) We then show that adding the non-competitive condition implies that the CRN

always reaches the same static equilibrium independent of the order in which the reactions

happen to occur.

The CRN always reaches some static equilibrium: If not then there is a set of reactions

that can fire infinitely often. Choose the earliest (according to the ordering) reaction in

this set. It must consume some S by boundedness. But by feed-forwardness, S can only be

produced earlier in the ordering. Which means that the reactions that net produce S can

only fire finite many times (they are not in this set). This is a contradiction.
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The CRN always reaches the same static equilibrium: Toward a contradiction, suppose

two different static equilibria c and d are reachable. Let p be the path to c and q be the path

to d. Without loss of generality there are reactions that fire fewer times in p than in q. Let

R be the reaction among these that comes earliest in the ordering. So compared to q, p has

at least as many firings of reactions earlier in the ordering than R. By non-competitiveness,

no other reaction consumes the reactants of R. Let S be a reactant of R. Consider two cases:

(1) S is consumed in R. By feed-forwardness, S must be produced in a reaction earlier in

the ordering than R. This means that the reactions producing S fire at least as much in p

as in q. Since R fired fewer times in p than in q, there are some of S left in c. (2) S is not

consumed in R (it acts as a catalyst). By the argument below, since R fires in q at least

once, R fires in p at least once. Thus S is present in c. Combining (1) and (2), we have that

R can fire in c, which contradicts the assumption that c is a static equilibrium.

There are no reactions that can fire on the path toward one static equilibrium but not

fire on the path to another : Toward a contradiction, suppose two different static equilibria

c and d are reachable. Let p be the path to c and q be the path to d. Let Ω be the set of

reactions that fire in q but not in p. Let R be the reaction in Ω that occurs first (in time) in

q. Its reactants must be either inputs or produced outside of Ω since R is the first reaction

in Ω that fired in q. By non-competitiveness, the reactants of R cannot be consumed in any

reaction other than R. So it must be possible to fire R at the end of p, which contradicts the

assumption that p is a static equilibrium.

B Background: Alloy

The Alloy modeling language is a first-order logic with transitive closure [33]. The Alloy

analyzer is a fully automatic tool for scope-bounded analysis of properties of Alloy models [35].

Given an Alloy model and a scope, i.e., a bound on the universe of discourse, the analyzer

translates the Alloy model to a propositional satisfiability (SAT) formula and invokes an

off-the-shelf SAT solver [20] to analyze the model.

An Alloy model consists of a set of paragraphs where each paragraph declares some typed

sets or relations, defines some logical constraints, or defines a command that informs the

analyzer of the analysis to perform. Each command defines a constraint solving problem. and

each solution to the problem defines an Alloy instance, i.e., a valuation of the sets and relations

declared in the model such that the constraints with respect to the command are satisfied. The

analyzer supports instance enumeration using incremental SAT solvers [20,46]. In addition,

the analyzer supports symmetry breaking and adds symmetry breaking predicates [54] to

the original formula, which allows the backend SAT solvers to more effectively prune their

search, and when enumerating solutions, create fewer solutions [39]. The analyzer’s default

symmetry breaking does not guarantee removal of all isomorphisms but is quite effective in

practice.

C Autocatalytic Reactions

Similarly to catalytic reactions we model autocatalytic (Listing 8). Autocatalytic reactions

add a requirement that in addition to existence of a catalyst species, the catalyst converts

the other species into itself, for example: X + Y → Y + Y .
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Listing 8 Autocatalytic reactions.

module autocatalytic
open elementary
pred Autocatalytic[] { Elementary[] and all r: Reaction | AutocatalyticReaction[r] }
pred AutocatalyticReaction[r: Reaction] {

some elems[r.reactants] & elems[r.products]
eq[#r.products, 2] and eq[#elems[r.products], 1] }

D ReLU Minimality

In this section we argue that our enumeration in Table 1 is sufficient to ensure that 5 species

are necessary for computing ReLU no matter how many reactions are allowed.

Because with 4 species there are at most 2 different reactions possible (which we enu-

merate). Consider the ReLU CRN with 4 species. This CRN must consist of 2 input

species (X+ and X−) and 2 output species (Y + and Y −), which we require to be distinct.

Further, the output species have to appear only as products. Thus, only species X+ and

X− can appear as reactants. Due to the requirement that every reaction has to net consume

some species (Listing 7), and that different reactions have to consume different species

(non-competitiveness), it follows that the CRN can have at maximum 2 reactions, one net

consuming X+, and other X+ species. Considering that our technique did not discover any

ReLU CRN with 2 reactions and 4 species, we conclude that there is no ReLU computing

CRN with 4 species.

E Optimizing Analysis

In this section we explain how we optimize the analysis phase of search for minmax CRN.

The optimization is done by including tests. Instead of invoking FindInstance SMT solver

for every combination of inputs and outputs, we construct a set of concrete test cases. If

a test case fails we immediately discard that combination and move to the next one. This

optimization improved analysis from 75s to 7.3s measured on the discovered minmax CRN.

Furthermore from equality |max(a, b)|+ |min(a, b)| = min(|a|, |b|) + max(|a|, |b|), we first

checked for CRNs that sattisfy this condition (using tests and FindInstance), and only run

the check whether output species compute min and max on those. Checking for the above

equality speeded up analysis becase the equality does not depend on the order of output

species y1 and y2, thus reducing number of input output combinations that need to be

tried. After implementing this additional optimization step analysis time went down to 0.75s

measured on the discovered minmax CRN. The optimizations made it feasible to discover

the minmax CRN.

F Symmetry breaking

This section shows our Alloy model for symmetry breaking of CRNs (Listing 9).

The Alloy analyzer during its translation from Alloy to propositional formulas automat-

ically adds to the propositional formulas symmetry breaking predicates, which reduce the

number of isomorphic solutions [54]. However, this automatic support is not practical for

breaking all isomorphisms since there is a delicate trade-off between the complexity of the

predicates that are added and the time it takes for the back-end solvers to handle them.

We follow a more effective approach where additional constraints in Alloy are mechanically

added directly to the Alloy model [39]. The key idea is to define a linear order on the atoms

and require that any solution when scanned in a pre-defined manner contains the atoms in
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conformance with the linear order. The approach breaks all symmetries for rooted, edge-

labeled graphs. However, CRNs represent a more complex structure and the approach does

not guarantee breaking all symmetries. Nonetheless, it removes many isomorphic solutions

and provides us a practical tool for exploring CRNs.

Note that the symmetry breaking is focused on a case of elementary CRNs as those CRNs

are our focus group (all of our inherited CRN models are subclass of elementary).

Listing 9 Alloy modeling of CRN symmetry breaking.

module symmetry

open elementary

open util/ordering[Species] as Sordering
open util/ordering[Reaction] as Rordering

pred CheckFirstReaction {
let first = Rordering/first,

r1 = 0.(first.reactants), r2 = 1.(first.reactants),
p1 = 0.(first.products), p2 = 1.(first.products)

{
r1 = Sordering/first
r2 in r1 + r1.next
p1 in r1 + r2 + (r1 + r2).next
p2 in r1 + r2 + p1 + (r1 + r2 + p1).next

}
}

pred CheckNonFirstReaction() {
all r: Reaction - Rordering/first {

let prevRxns = Rordering/prevs[r],
prevSpecies = Int.(prevRxns.reactants + prevRxns.products),
r1 = 0.(r.reactants), r2 = 1.(r.reactants),
p1 = 0.(r.products), p2 = 1.(r.products)

{
r1 in prevSpecies + prevSpecies.next
r2 in prevSpecies + r1 + (prevSpecies + r1).next
p1 in prevSpecies + r1 + r2 + (prevSpecies + r1 + r2).next
p2 in prevSpecies + r1 + r2 + p1 + (prevSpecies + r1 + r2 + p1).next

}
}

}

pred OrderReactionsBySize() {
all disj r1, r2 : Reaction {

Rordering/lt[r1, r2] implies {
lt[#r1.reactants, #r2.reactants]
or (eq[#r1.reactants, #r2.reactants]

and lte[#r1.products, #r2.products])
}

}
}

pred ReactionsSameSize[r1, r2: Reaction] {
eq[#r1.reactants, #r2.reactants]

and eq[#r1.products, #r2.products]
}

pred CheckLexicographic() {
all r: Reaction - Rordering/first {

let p = r.prev,
rr1 = 0.(r.reactants), rr2 = 1.(r.reactants), rp1 = 0.(r.products), rp2 = 1.(r.products),
pr1 = 0.(p.reactants), pr2 = 1.(p.reactants), pp1 = 0.(p.products), pp2 = 1.(p.products)
{

ReactionsSameSize[r, p] implies {
// DO only if sizes are the same assuming the size constraing.
rr1 in pr1.*next
rr1 = pr1 implies (no pr2 or rr2 in pr2.*next)
(rr1 = pr1 and rr2 = pr2) implies (rp1 in pp1.*next)
(rr1 = pr1 and rr2 = pr2 and rp1 = pp1) implies (no pp2 or rp2 in pp2.*next)

}
}

}



M. Vasic, D. Soloveichik, and S. Khurshid 4:25

all r: Reaction {
let r1 = 0.(r.reactants), r2 = 1.(r.reactants), p1 = 0.(r.products), p2 = 1.(r.products)
{

some r1 and some r2 implies Sordering/lte[r1, r2]
some p1 and some p2 implies Sordering/lte[p1, p2]

}
}

}

pred SymmetryBreaking {
Elementary
CheckFirstReaction
CheckNonFirstReaction
OrderReactionsBySize
CheckLexicographic

}
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