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Abstract

In various scenarios from system login to writing emails,
documents, and forms, keyboard inputs carry alluring data
such as passwords, addresses, and IDs. Due to commonly
existing non-alphabetic inputs, punctuation, and typos, users’
natural inputs rarely contain only constrained, purely alpha-
betic keys/words. This work studies how to reveal uncon-
strained keyboard inputs using auditory interfaces.

Audio interfaces are not intended to have the capability
of light sensors such as cameras to identify compactly lo-
cated keys. Our analysis shows that effectively distinguishing
the keys can require a fine localization precision level of
keystroke sounds close to the range of microseconds. This
work (1) explores the limits of audio interfaces to distinguish
keystrokes, (2) proposes a us-level customized signal pro-
cessing and analysis-based keystroke tracking approach that
takes into account the mechanical physics and imperfect mea-
suring of keystroke sounds, (3) develops the first acoustic
side-channel attack study on unconstrained keyboard inputs
that are not purely alphabetic keys/words and do not neces-
sarily follow known sequences in a given dictionary or train-
ing dataset, and (4) reveals the threats of non-line-of-sight
keystroke sound tracking. Our results indicate that, without re-
lying on vision sensors, attacks using limited-resolution audio
interfaces can reveal unconstrained inputs from the keyboard
with a fairly sharp and bendable “auditory eyesight.”

1 Introduction

Devices with auditory interfaces are ubiquitous in various
personal, business, and public scenarios. For instance, smart
devices with voice interfaces are used in home, office, or even
hotel and traveling environments [1-3,9, 12]. Always-on mi-
crophones widely exist in smart speakers, smartphones, smart
TVs, and remote controllers [11,31]. Security-conscious indi-
viduals might be aware of information leakage while typing
in the field of view of surveillance cameras. However, users
may not fully expect the risks of recovering data from their
natural, unconstrained keyboard inputs with audio interfaces.

This work studies how to reveal arbitrary, unconstrained
keyboard inputs using auditory interfaces. By design, auditory
interfaces are not meant to have the “eyesight” to distinguish
keystrokes on compactly spaced keys from a distance. Differ-
ent from light sensors such as cameras that capture lights in
the field of view, microphones receive sound waves from the
entire environment with diffraction and reverberation.

First, we observe the key factors in localizing keystroke
sounds. Contrary to existing perceptions that recording sam-
ple rates are the main factors to determine the precision [39]
and inevitable errors [46], we find that the commonly used
sample rates for general-purpose voice applications do not
necessarily limit keystroke sound localization. The precision
limit is related to how we process the signals by taking into
account the keystroke sound physics and imperfect measuring
(Sec. 2.1). For example, it is necessary to know that keystroke
sounds are not only generated from the center points of the
keys. Strong sound components can be generated by the vi-
brated keyboard base when the key hits it. When trying to lo-
calize the keystrokes, there will be an interfering self-masking
effect due to sound components originated from the entire
vibrated area and the keyboard. The diffraction and reverbera-
tion of sounds further strengthen this masking effect.

We develop a signal processing and analysis-based ap-
proach to understand the internal keystroke sound compo-
nents. Inspired by observations on keystroke physics and
measuring, we analyze the physical properties, measuring and
processing of keystroke sounds that can affect the localization
precision. To deal with the complex keystroke sound com-
ponents, we design a multi-round structure with customized
processing chains to address different scales of localization
errors and to distinguish the keys.

Users’ natural inputs, such as credentials, numbers, dates,
emails, and addresses, are not purely alphabetic. Even when
users input real-world texts, there are still punctuation, num-
ber, backspace, and capital letters. It is challenging to reveal
users’ natural, unconstrained keyboard inputs from a side
channel due to following unaddressed problems.

First, the attack will deal with drastically expanded solution
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space. Without excluding non-alphabetic keys nor assuming
that the inputs follow known sequences in a dictionary or
training dataset, the solution space will expand from alpha-
betic keys or known sequences to arbitrary inputs. Second,
the attack needs to distinguish a large number of compactly
spaced keys from a distance. By including number, symbol,
and editing keys, the main block of a keyboard contains about
50 commonly used keys in a 27.2x7.1 cm area (Fig. 5). Third,
there are interfering sound components generated along with
the keystrokes (e.g., sounds from the entire vibrated keyboard
area and reverberation). In both time and frequency domains,
the sound components of a keystroke are heavily blended,
and the interference cannot be simply eliminated. Finally,
there is a lack of an existing reference study on side-channel
keystroke attacks with users’ natural unconstrained inputs.
Our work solves the above problems by exploring side-
channel signal processing and analysis of keystroke sounds,
and developing an attack study on unconstrained user in-
puts. We explore the keystroke localization precision limits
and show how the attacks can recover privacy and security-
sensitive information without vision sensors. We demonstrate
the attacks to distinguish compactly spaced keys by deriv-
ing the localization information from two microphone pairs
or reducing the solution space with one microphone pair, in
both line-of-sight (LOS) and certain non-LOS scenarios. We
include different contents, different users with their natural
typing speeds/styles in our study to evaluate the threats.

In summary, our paper makes the following contributions:

* We develop the first keystroke side-channel attack
study on natural, unconstrained inputs, including non-
alphabetic keys and sequences that are not necessarily
in a known dictionary or training dataset, such as real-
world text inputs (with typos, punctuation, and capital
letters) and strong passwords.

* We identify key properties related to keystroke localiza-
tion precision that are necessary to analyze keystroke
sounds. Inspired by the physics and measuring of
keystroke sounds, we propose a novel multi-round
keystroke localization approach. The approach is based
on customized signal processing methods to distinguish
keystroke sound signals in the differential range of mi-
croseconds.

* We further reveal the threats of bendable auditory eye-
sight. Our approach can reveal the users’ inputs in sce-
narios when the line-of-sight is blocked and a camera
cannot perceive the typed keys. We show that the attack
can be launched with an adversary’s laptop placed in
non-line-of-sight (NLOS) settings, and our approach can
mitigate excessive errors under non-line-of-sight trans-
mission of keystroke sounds to distinguish keys without
inducing significant overlapping.

2 Keystroke Sound Anatomy

We observe that keystroke sound signals contain different,
complex components. These components are generated and
mixed in a short time during the keystrokes. Existing works fo-
cused on using the entire keystroke sounds to directly extract
information [21, 23, 39, 46, 48]. However, when all compo-
nents of the signals are handled equally in a coarse-grained,
large-scale manner, the detailed information can be lost due
to various interfering and imperfect factors.

In this section, we will analyze and understand the sub-
tle differences among the internal components of keystroke
sound signals. We will reveal a keystroke sound anatomy
model for perceiving and analyzing the detailed information
within keystroke signals.

2.1 Imperfect and complex keystroke sounds

Keystroke sound signals are complex real-world signals
recorded by microphones. Different from a known signal cre-
ated by an electronic sound emitting device (e.g., a speaker),
keystroke sounds are unknown signals affected by various
physical properties such as mechanical properties, friction,
users’ statuses, typing styles, speeds, forces, transmission, and
environmental reverberation.

We find following issues in acoustic side-channel analy-
sis of keystrokes: (1) Complex underlying physics. The
keystroke sound signal is not generated from a single point
such as the center of the keycap. Multiple vibrated com-
ponents (e.g., the key and the keyboard base) can generate
sounds at the same time in the process of a keystroke. As a re-
sult, keystroke sounds are combinations of different kinds of
sounds caused by vibration and friction when applying forces
to the mechanical components of the keyboard. (2) Imperfect
measuring. The recorded signals will not be the same as the
generated sounds because of reverberation and diffraction.
For instance, signals caused by reverberation do not carry cor-
rect localization information since they do not directly come
from the typed key; such signals will inevitably interfere with
the analysis. Additionally, there can be distortion and loss of
resolution while measuring and digitizing keystroke sounds
using microphones. (3) Indistinguishable components in
coarse-grained analysis. The different components and in-
terfering effects are naturally blended in a very short time and
cannot be distinctively observed in coarse-grained analysis
that uniformly processes the entire signals.

2.2 Perceiving the (im)precision

Assuming the keystroke signals recorded by two microphones
are y1[i], y2[i], (i € {0,1,2,3,...}) and the delay measurement
between y [i] and y;[i] is AN. Ideally, when we shift the sig-
nals based on the delay (v} [i] = yi[i +AN], y5[i] = y2[i]), we
should observe the signals y}[i] and y,|i] perfectly matched
and aligned to each other. However, in practice, we observe
that there can often be misalignment. Such imprecision can be
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Figure 1: Top: Keystroke signals recorded by a microphone
pair. Middle: Keystroke signals aligned based on cross-
correlation results. Bottom: Zoom-in view. We observe the
misalignment from a microscopic view. Such errors can be in
the range of several to tens of microseconds.

in the us range and is not obvious with a large, coarse-grained
scale. In order to perceive the imprecision, we need to interpo-
late the recorded signals to scale the sample interval close to
the us range or smaller. We then compute the time-difference-
of-arrival (TDoA) [28,37] using cross-correlation and align
the keystroke signals based on the calculated delay. As shown
in Fig. 1, we record the keystrokes of an Apple magic key-
board using a standard audio sample rate (44.1 kHz) from a
0.5-m distance. We interpolate the signals with a resample
rate of 441 kHz to adjust the sample interval of the digitized
signals to 2.27 us. The zoom-in view shows the misalignment
between the signals.

Causality analysis. By zooming in and observing the signals,
we notice different parts in keystroke signals. We observe that
the parts at the beginning of the signals can be aligned more
closely and consistently than the following parts. As shown in
Fig. 1, the front parts of the signals y}| and y) are quite similar.
However, after the beginning parts, the alignment between

and y) becomes more irregular. These irregular parts tend to
have more noises, including artifacts caused by reverberation
as well as sounds generated from other components such as
the keyboard base. Signals in these irregular parts could pro-
vide coarse-grained information but will mask high-precision
localization data.

Insight 1: There are different parts in recorded keystroke
signals. The signals in the beginning parts are relatively con-
sistent; the following parts are more susceptible to irregular-
ities caused by the interfering effects related to the physics,
transmission, and imperfections of keystroke sound signals.

Keystroke signal decomposition analysis. We then decom-
pose the signals to gain deeper understanding of the inter-
nal components. We use wavelet [44] to decompose the sig-
nals. Compared to FFT [21] or short-time Fourier transform
(STFT), wavelet is particularly suitable to process short, natu-
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Figure 2: Top: Keystroke signals aligned based on cross-
correlation results. Middle: Level-1 wavelet coefficients. Bot-
tom: Level-2 wavelet coefficients. We can perceive the mis-
alignments in the signals especially their transient parts (in
red circles) more clearly from the wavelet decomposed sig-
nals. Even in the same level of coefficient, the other parts
of the recorded signals (y; and y,) differ significantly. These
components will result in the miscalculation of the time delay.

ral signals like keystrokes while providing satisfying temporal
resolution. Further, the wavelet coefficients can easily capture
the transient parts of the keystroke signals.

In the decomposed signals with Symlets 6 (sym6) [22]

wavelets, we can also observe the different parts. Specifically,
we identify the transient parts and noisy parts. For instance,
the transient parts in the beginning of the signals show more
consistent alignment in the wavelet coefficients (Fig. 2). How-
ever, the following noisy parts can differ a lot for the same
level of coefficients. This means that even in the specific band-
width of the decomposed signals, the noisy parts still cause
significant irregularity between the recorded signals (y; and
y2). Compared to the transient parts, these noisy parts have
more distributed energy and noises.
Insight 2: We identify the transient parts and noisy parts
in keystroke sounds by decomposing the signals. When a
keystroke is recorded by two microphones, the alignments
of signals in the transient parts are relatively more regular
compared to the noisy parts.

The decomposed wavelet coefficients also show the mis-
alignment more clearly in the transient parts at the beginning
of the signals. The first transient part is related to the event of
the finger tip landing on the keycap; the second transient part
is related to the finger pushing down the key and activating
the internal switch. These parts usually contain more intense,
relatively high-frequency components than the other parts of
keystroke sounds.

In this subsection, we have observed different parts in
keystroke signals, including the transient parts and the noisy
parts. Signals in the transient parts can be utilized to perceive
the precision by observing their alignments, while signals in
the noisy parts can lead to miscalculation of the time delay
between the recorded keystroke signals (y; and y»).
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Figure 3: We separate the signal components with low/high
pass filters (4 kHz) and use convolution with Hanning win-
dows to observe their differences in the relative temporal
energy distribution. The energy of both high/low-frequency
parts is concentrated in a very short range (e.g., 0.008s), which
is less than 1/10 of the length of the entire keystroke sound
signals (e.g., 0.1s). The high-frequency energy concentrates
in less than 0.005s when the sound initiates.

Insight 3: The (im)precision of the calculated time delay can
be perceived by scaling the unit close to the us range, aligning
the keystroke signals based on the time delay, and observing
the transient parts (Fig. 2) in the beginning of the signals.

2.3 Internal energy distribution

We observe that: 1) while an entire keystroke signal lasts for
0.1s [21,46,48], most of the energy in both the high and low
frequencies is concentrated in a very small time range (e.g.,
0.008s), which can be less than 1/10 of the entire keystroke
signal. 2) the energy distribution is related to the physics of
keystroke sounds. The high-frequency (e.g., >4kHz) energy
is stronger and more focused because it contains more high-
amplitude, short-duration transient energy at the beginning of
the keystroke sound (Fig. 3). The low-frequency (e.g., <4kHz)
energy is weaker and distributed more widely in the time
domain because it contains more harmonics generated by
the vibrated mechanical components after the transient parts.
These longer low-frequency parts can also be contaminated
by other interfering effects, such as echoes that usually comes
later after the keystroke sound initiates.
Insight 4: Both low and high-frequency energy is concen-
trated within a very short time range (e.g., 0.008s). The high-
frequency energy can be focused in an even smaller range
(e.g., 0.003s). Thus, directly using and uniformly processing
all parts of the entire keystroke signal may not be the opti-
mal approach; the long low-signal-to-noise-ratio (SNR) parts
(about 9/10 of the entire keystroke signal) can obfuscate the
details and degrade the analysis effectiveness.

The observations will be helpful in guiding the keystroke
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Figure 4: We dissect the keystroke sound signals into key
parts K1, K2 and noisy parts N1, N2. For different levels of
coefficients, the transient parts reside in the same time range.

signal processing. For instance, we can improve the analysis
by focusing more on the information from the part with higher
keystroke energy, which also indicates a higher SNR. If we
focus our analysis on the low-SNR parts with little keystroke
energy, the information may very likely be extracted from
environmental factors such as noises. If we directly use the
entire keystroke signals and process all parts in the same
manner, the long low-SNR parts (about 9/10 of the entire
keystroke signal) will obfuscate the details and degrade the
effectiveness of the analysis.

Further, the energy distribution of high/low-frequency com-
ponents will help us to find reference points in keystroke
signals for selecting and handling specific parts of the sig-
nals for computation. This can be achieved by changing the
window size or frequency range. In Fig. 3, we process the
keystroke sounds with low/high-pass filters and calculate the
energy distribution using convolution with a Hanning window.
We will explore this more deeply in Sec. 4.4.

2.4 Keystroke sound anatomy model

Prior works [21,23,39,46,48] universally processed the en-
tire keystroke sounds to extract information. However, these
analyses did not reveal the (im)precision and alignment is-
sues of different parts within the keystroke signals (Sec. 2.2).
Further, without understanding the internal components and
the complex physics of keystroke sounds, it can be difficult
to process the signals for more effective and targeted analysis.
For instance, the long low-SNR parts in keystroke sounds can
obfuscate the analysis (Sec. 2.3).

To enable more detailed and targeted analysis within
keystroke signals, we dissect a keystroke sound signal into
key parts (K1 and K2) and noisy parts (N1 and N2). As shown
in Fig. 4, we align the signals with an accurate time delay. We
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Figure 5: Left: The difference in the ideal time delay (TDoA)
measurement of adjacent keys. Right: The minimum preci-
sion required to distinguish the keys in ideal situations with
a perfect signal source. In practice, because users’ typing
sounds are not generated from the exact centers of keycaps,
the average standard deviation has to be very low to avoid
significant overlapping.

can then observe that K1 and K2 include the short burst of
energy at the start of the keystroke sound (transients). In these
parts, the signals and the corresponding wavelet coefficients
are aligned much better compared to Fig. 2. We identify K1
and K2 as key areas for localization and measuring precision.
Compared to K1 and K2, the parts N1 and N2 include “tails”
after the transient parts and are more susceptible to noises.

3 Threat Analysis

3.1 Precision Analysis

Target. While the concept of localizing a signal source with
time-difference-of-arrival (TDOA) has been explored in many
scenarios [24,28,37], localizing keystrokes in an acoustic side
channel can be different because the goal is no longer tracking
a single entire source. Ideally, keystroke sounds could gen-
erate from the exact center points of the keycaps. However,
due to the size of human fingers and the accuracy of move-
ments, the finger’s landing position usually deviates from the
center point. Moreover, the vibration and friction of keyboard
components contribute to the complex sounds. When trying
to distinguish more than 50 commonly used keys compactly
spaced in a small area (e.g., 27.2x7.1cm for an Apple Magic
keyboard), the localized sound sources can significantly over-
lap because of the physics and imperfect measuring. Thus, it
requires processing keystroke sounds and analyzing the in-
ternal components to track specific keys instead of the entire
keyboard area that emits sounds,

Precision. In localization, the standard deviation (o) is of-
ten used to assess the precision [24, 35]. In order to dis-
tinguish a large number of closely spaced keys, the dis-
tribution of the localized keystrokes from the same key
should be as concentrated as possible. Assuming the ideal

time delay measurement is AT, with a standard deviation
of 6, 68% of the localization measurements will be within
[AT — o, AT + o], and 80%, 90% of the measurements will be
within [AT — 1.280,AT + 1.280], [AT — 1.6506,AT + 1.650]
respectively. Fig. 5 shows the maximum standard deviation
for identifying keys. In order to make distributions of adjacent
keys distinguishable, to achieve a 68% confidence interval
within 47, the max & will be 0.5AT. In other words, 32%
of the measurements will still have large errors and fall into
the confidence intervals of other keys. Note that this analysis
is based on ideal cases assuming the signals are generated
from the center points of the keycaps. In practice, the standard
deviation G has to be lower due to the imperfect sound source.

Existing approaches for typical indoor sound localization
have relatively large error tolerance such as 0.5m with dis-
tributed microphone networks [25, 34]. More accurate local-
ization in the submeter range could be achieved with known
signals (e.g., ultrasonic chirp) from mobile devices [32,37].
Researchers [39, 46] also utilized the general localization
method [24,28,37] to identify a small subset of keys at close
distances (e.g., 10cm). These approaches are intended for lo-
calizing an entire, general sound source in a relatively coarse-
grained manner (Fig. 25), but it requires much finer precision
(Fig. 5) to practically localize and identify keystrokes.

3.2 Adversary Model

Unconstrained user inputs. User inputs can include numbers,
passwords, user names, addresses, real-world texts with punc-
tuation and capital letters, etc. Further, since it can be chal-
lenging for an adversary to trick victims to type consistently
with a specific or fixed typing speed/style, we consider users
that type with their natural typing styles. The users are free to
make/correct typos and adjust their typing styles/speeds.
The adversary may not always limit the solution space to
specific known sequences. Because users’ natural input se-
quences are not completely included and previously specified
by a given dictionary, the adversary deals with an arbitrary so-
lution space instead of constrained inputs from a single-case
alphabetic dictionary or training dataset.
Attack Scenarios. The adversary may deploy devices such as
smart speakers and microphones in public, office, or other ac-
cessible environments. The devices may appear to the victim
as only intended for voice applications that are common in
various scenarios [1-3,9, 12]. An adversary may also gift/sell
hacked/modified microphone array-based devices which act
as voice assistants in a smart home or office scenario but allow
the adversary to surreptitiously track the victim’s inputs. Ad-
ditionally, considering the growing number of manufacturers
and variety of hardware (e.g., [4,8, 10, 18, 19]) of voice-based
devices, adversaries may exploit vulnerabilities [5, 13, 14, 17]
or potential backdoor of existing products. Finally, attackers
may analyze the audio in live streaming and online learn-
ing/meeting to localize the victim’s keystrokes unintention-
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ally recorded by laptop microphones. Adversaries may also
deploy devices in NLOS scenarios (Section 0).

Users can anticipate privacy leakage in speech [36] but
may not expect the leakage of accounts, IDs, SSH credentials,
emails, and other highly sensitive information that is typically
not communicated via speech. By revealing the users’ natural,
unconstrained inputs, the attack can result in compromised
computer systems and leakages of accounts, real-world texts,
confidential addresses/dates, and other secret data.

4 Methodology

4.1 Overview

We propose a multi-round structure for tracking keystrokes.
This methodology is inspired by observations on different
scales of errors in localizing keystrokes and the fact that the
keys reside in a compact keyboard area. Since the keys are
close to each other and the imperfect keystroke sound compo-
nents (Sec. 2.1) can obfuscate the localization measurements,
our multi-round approach aims to improve the localization
capability in more detailed ranges in each round for tracking
the typed keys.

Uniformly processing the entire keystroke signal or directly

truncating the signal to a filtered small part in a single round
can lead to information loss; due to the short duration of
transient parts in keystroke sounds (Fig. 4), the result will
not be accurate or stable. The multi-round is designed to
distinguish compactly spaced keys robustly without causing
stability issues.
Multi-round keystroke tracking approach. In the initial
round (I-Round), our approach tracks the positions of the
keystrokes in the entire space. However, when applying cross-
correlation-based methods [37] to localize unknown and short
signals like keystroke sounds, it is easy to generate large errors
by matching the wrong parts of the signals.

After identifying these large errors (outliers in Fig. 6), we
are able to estimate the keyboard range and shift the signals
based on the center point for second-round (B-Round) cal-
culation. In B-Round, we calculate the time delays of the
shifted signals in the bounded range to avoid large-range
errors caused by matching the wrong parts of the signals.
However, in this round, there can still be significant overlap-
ping between different keys. Such overlapping is induced by
the complex physics and imperfect measuring of keystroke
sounds. The errors causing the overlapping are usually in the
range of microseconds or tens of microseconds (Fig. 6).

To address such microsecond-scale errors, we need to un-
derstand the internal components of keystroke sounds. Our
analysis shows that while an entire keystroke sound can last
0.1s, the transient parts are very short (Sec. 2.2). Further anal-
ysis on the internal energy distribution (Sec. 2.3) shows that
the high-SNR parts are concentrated in a short time range,
such as around 0.001s, corresponding to the K1, N1, and K2
parts of keystroke sounds (Sec. 2.4). Therefore, in the third
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Figure 6: Top: I-Round localization results usually include
large-scale errors (outliers). Middle: B-round results still have
errors and significant overlapping between keys. Bottom: T-
Round reduces the us-scale errors and the overlapping.

round (T-Round), we will align the signals based on the re-
sults from B-Round, and start focusing on the transient parts
of keystroke sounds to derive more precise localization mea-
surements.

Results in Fig. 6 provide a more intuitive illustration to
understand the multi-round process. The main principle is
to process and compute short keystroke signals in different
rounds to gradually deal with different scales of errors in
distinguishing the keystrokes. To validate the multi-round
approach, we design a customized signal processing chain
in each round. Here we discuss the essential mechanism to
construct a multi-round structure in keystroke tracking.
Align and Recalc. Sec. 2.2 discussed how to perceive the
(im)precision by aligning the keystroke signals based on the
time delay measurements. The aligning of signals is necessary
because keystroke signals are very short, and we want to
search the localization results in a more detailed range after
each round. The align and recalculate (recalc) mechanism
connects a previous round that derives the information for pre-
alignment to the recalculation round. By aligning the signals
prior to recalculation, we can also mitigate the asymmetry at
the front and end parts of the two signals. When the signals are
short, such asymmetry can also interfere with the calculation.

In a previous round, assuming the pre-aligned keystroke
signals from two microphones are y}[i] and y[i]. We have
Vil = yili+AN] and y,[i] = y2[i] (i € {0,1,2,3,...,L}, Lis
the signal length). For the initial round, the pre-align offset
AN; is 0. The cross-correlation between signals of the two
microphones at a lag of k; (unit: FLS; Fg is the sample rate)
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Figure 7: I-round localization statistics of 598 keystrokes
on an Apple keyboard. We use two pairs of microphones to
derive time delay measurements AT} and AT, (Sec. 4.6)

will be calculated as follows,

CCialk] = Lo Y [ily5[i — 4] (1)
and
ki = CCralk
1 argkllnax 12[ 1] (2)

The window size W depends on the specific round. For
instance, in the initial round, W is equal to L, which means
that we search for the result in the entire signal length L.
Subsequent rounds find the localization results in a finer range
(W < L). In the cross-correlation calculation, samples with
negative indexes or indexes larger than L will be padded zeros.

In the recalc round, we align the keystroke signal based on
the pre-align offset AN,, derived from the results (k; and ANy)
from the previous round. AN; is derived from the estimated
keyboard center reference point if the previous round is the
initial round. For each keystroke in other rounds, we have
AN, = ki 4+ AN;. ¥1i] and ¥, [i] are the pre-aligned keystroke
signals in the recalc round. We have yi[i] = yi[i + AN],
W2li] = y2[i], and the cross-correlation between the signals
at a lag of k» calculated as:

CCralk] = X o ililyali — K] (3)
and
k2 = arg maxC/‘E’]z[kz] (4)
ka

The aligning process allows matching the signals based on
the previous result and searching for the localization results in
a more detailed range after each round. The window size of the
recalc round W is close to or smaller than W. In each round,
we align keystroke signals based on the information from the
last round. The computation will then be conducted on the
pre-aligned signals to derive finer localization measurements.
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Figure 8: B-round localization statistics. The average 6(AT})
is 2.5428 us. The average 6(ATy) is 2.4495 us.

The accumulated time delay measurement after the recalc
round will be AN3 = AN, + k>, which is the localization mea-
surement in the recalc round and can also be used in the pre-
aligning of a subsequent round. The above analysis mainly
focuses on the mechanism that connects two rounds and omits
the detailed signal processing. We describe the procedure and
the detailed processing in the following subsections.

4.2 1-Round: Initializing and Preprocessing

In the initial round (I-Round), we 1) filter the signals; 2)
interpolate the keystroke signals to scale the time unit to sub-
microsecond; 3) calculate the time delay measurements and
detect large-scale errors (outliers); 4) estimate the range of
time delay measurements of the keystroke signals.

Initial Processing. We filter the keystroke signals with a high-
pass filter; we use a zero-phase Butterworth filter (1kHz) to
mitigate noises without affecting the localization information
in keystroke signals. The unit of the calculated time delay (ko)
result is not the continuous time since the recorded keystroke
signals are digital. To perceive and subsequently mitigate the
imprecision in us-scale ranges, we will process the digital
signals to scale the unit to smaller than 1 us. For example,
the unit of standard-resolution (44.1 kHz) audio recording
devices is as large as 0.0227 s. We interpolate the signals
with a 40-times resample rate of 1,761 kHz to scale the unit
to 0.5686 us.

Outlier Identification. I-Round results usually contain large-
scale localization errors (Fig. 6). As shown in Fig. 7, the
standard deviations ¢ of AT for certain keystrokes are very
large. Because all keys reside within a small physical area and
these measurements are far away from others, we can identify
these errors by outlier detection'.

1For all statistics figures in this paper, x-axis indexes 1 to 14 stand for
keys from ‘ to backspace in the 1st row of the main keyboard block; Indexes
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Figure 9: Extracting the transient parts of keystroke signals.
(a) The peak indexes become more stable as the window
size increases and reaches around 5,000 samples. (b) Energy
calculated based on convolution with a window size of 5,000.
(c) The range of signal containing transient parts can be found
with the energy peak indexes.

We identify far-away outliers by detecting measurements
that are more than three scaled median absolute deviations
(MAD [38]) from the median of all measurements. We then
identify remaining outliers based on percentile ranges [s%,
(100-5)%]. This range can be adjusted with s (typically, s €
[2,10]), depending on the number of outliers.

After temporarily removing the outliers from the measure-
ments, we can estimate the center reference point P and range
R for the keyboard. P is the mean of all non-outlier measure-
ments. R is half of the difference between the maximum and
minimum non-outlier measurements. Keystrokes correspond-
ing to the outliers will not be discarded; the measurements
for all keystroke signals will be recalculated in the following
rounds.

4.3 B-Round: Bounding the Range

In the second round (B-Round), we align all keystroke signals
based on the center reference point P. We then calculate the
time delays of the pre-aligned signals with W = Ra, (Eq. 3).
By default, o is set to 1(1)%3'3 to compensate for the removed
outliers in outlier detection and range estimation in I-Round.
We adjust the value of a (around [1.0,1.5]) to avoid outliers
observed in I-Round (Fig. 6). As shown in Fig. 8, the large
errors are reduced, but there are still overlapping and errors in
the range of microseconds and tens of microseconds (Fig. 6).
The means of AT in different rows still overlap (Fig. 8, Top-
right), and the standard deviations for some keys are relatively

large.

15 to 28 stand for keys Tab to Backslash in the 2nd row; Indexes 29 to 41
stand for keys Capslock to Enter in the 3rd row. Indexes 42 to 53 stand for
LeftShift to RightShift in the 4th row. Index 54 stands for key Space.

2 6 1014182226 3034 3842465054
Key

2 6 101418222630343842465054
Key

Figure 10: T-round localization results’ statistics. The average
G(ATy) is 2.1278 us. The average 6(AT3) is 2.0469 us.

4.4 T-Round: Focusing on Transients

We observe that the transient parts at the beginning of
keystroke sounds (including K1, N1, K2) are very short
(within one or a few milliseconds) but can provide more
precise localization measurements. A challenge in utilizing
specific parts of keystroke signals is that all keystrokes are
unique, and the ranges of transient parts vary for different
keystrokes.

In the third round (T-Round), we align all keystroke sig-
nals based on each of their time delays derived in B-Round.
Because the transient parts of keystrokes are short, aligning
based on B-Round measurements not only helps to limit the
cross-correlation window but also reduces the asymmetry on
the front and end parts of two truncated signals.

Signal Dissection. To reliably and automatically select the
transient parts, we conduct convolution computation based
on specific windows and band-pass filters.

We first delay-and-sum the keystroke signals based on the
B-Round time delay results. This operation beamforms the
keystroke sound and can improve the signal-to-noise ratio.
We then compute the convolution based on Hanning windows
using band-pass filtered high and low-frequency signal parts.

We observe that the peak indexes of the filtered signals
usually become more stable when the Hanning window size
reaches 5,000 for the interpolated keystroke signals (Fig. 9,
a). We observe that this window size (5,000) works well
for different keystroke instances. The noisy tails can contain
more interference and have low SNR. We also observe that
the distribution of low (<4 kHz) and high-frequency (> 4kHz)
energy can be different for different keystrokes. Using the
minimum value of the low-frequency and high-frequency
peak indexes (Fig. 9, ¢), we can reliably select the signal with
transient parts of the keystroke and remove the noisy tail after
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i Keyboars

Figure 11: Left: Settings. Right: Zoom-in view of the mi-
crophone array on the auditory device. The vertical distance
between the microphones and the keyboards is about 0.5m.

the transient part K2.

After aligning the keystroke signals based on B-Round re-
sults, we calculate the time delays by cross-correlation on the
transient parts. By recalculating using the selected signal con-
sisting of transient parts, the us-scale errors can be mitigated.
As shown in Fig. 10, the standard deviations become very
low. This means that the localization measurements for each
key become highly concentrated. We observe that this same
process can be applied to different keyboards, such as the
Razor keyboard to extract the transient parts of the keystroke
signals.

4.5 Calibration Rounds (C-Rounds)

C-Rounds are additional, extendable rounds following similar
ideas to further select keystroke signals and deal with smaller
ranges of errors. We implement C-Rounds to address small
quantization errors in computing digitized keystroke sounds.
We first select a closer range of transient signals, such as a
point with (1/10) peak energy in front of the peak. Since the
signal is very short, we can interpolate the signals with a high
sample rate, such as 88,200 kHz. These steps will make the
localized measurements more continuous. They may slightly
concentrate the measurements, but such changes will not be
significant in statistics because the quantization error is small.

4.6 Evaluation

We evaluate the attack on an Apple Magic keyboard and a
Razor Blackwidow mechanical keyboard. We illustrate the
settings and microphone indexes (1 to 6) in Fig. 1 1. We collect
more than 11 keystrokes for each key in the main input block
of the keyboard. There are 54 commonly used keys for in-
putting information, including the four rows of the main input
block and space keys. These keys include alphabetic, numeric,
editing, punctuation, and symbols in all QWERTY keyboards.
In total, we collect 598 keystrokes and 595 keystrokes on the
Apple and Razor keyboard, respectively. The adversary au-
ditory device is a ReSpeaker circular microphone array [15]
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Figure 12: We apply the same approach to keystrokes on a
Razor mechanical keyboard. Top: I-round localization results
include large-scale errors. Middle: B-round results reduce
the very large errors but still show overlapping between keys.
Bottom: T-round results show that our approach significantly
reduced the errors and overlapping.

Table 1: nth-attempt accuracy of 598 keystrokes on an Apple

keyboard and 595 keystrokes on a Razor keyboard

Keyboard 1st 2nd 3rd 4th
Apple 90.80% 98.16% 99.50%  100.00%
Razor 96.47%  99.16% 99.50%  99.83%

connected to a Raspberry Pi. We use two pairs of microphones
to derive time delay measurements (A7 and AT3). The de-
vice supports a standard recording sample rate of 44.1 kHz.
Devices with similar hardware are common in various voice
applications [4, 10, 16].

As shown in Fig. 12, we observe that in the I-Round results
on the Razor keyboard, there are large-scale errors. The B-
round addresses the large-scale errors but still shows us-scale
errors causing overlapping between keys. The final results
show that our approach also significantly reduces the errors
on keystrokes from the Razor keyboard. We calculate the
recovered keys based on the Euclidean distance between the
sample and the mean value of measurements of a key. The
Ist-attempt is the key closest to the sample localization result.
The nth-attempt is the key nth-closest to the result. The attack
achieves high accuracy on both keyboards (Tab. 1). The aver-
age standard deviation of the localization reaches around 1 or
2 us utilizing the microphone pairs (specified in Tab. 2). The
localization results in each round are illustrated in Appendix.

Our approach is based on analyzing the physical properties
and measuring of keystroke sounds. There is no need to train
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Table 2: Average standard deviation (unit: us), indexes of the
utilized microphones to derive localization measurements,
and the separation distance D, between the two microphones

Apple AT} Apple AT, Razer ATy Razer AT,
c 2.1292 2.0333 1.6274 1.3890
Mic Indexes 4-2 6-3 5-2 1-3
Dy 8.1 cm 9.3 cm 9.3 cm 8.1 cm

Figure 13: Experiment settings. The users type with their
natural typing styles (touch typing). They can make typos
and are free to adjust typing styles/speeds based on the typed
contents or their own willingness, statuses, and habits.

or learn features for a specific keystroke or keyboard. We
apply the same approach to both keyboards.

5 Recovering Unconstrained Information

We collect keystrokes from different users (Fig. 13). The ver-
tical distance between the auditory device and the keyboard
is about 50 cm. The users do not need to type with a spe-
cific, fixed style or speed. The typed information covers dates,
IDs, addresses, GPS coordinates, real-world texts that include
punctuation and capital letters, usernames, passwords, and
SSH credentials.

We observe that users’ touch typing usually generates more
noises in keystroke sounds. The movements of different users
are also different to reach for the keys. For the same user,
his/her typing speed and style vary based on the typed con-
tent. For example, their typing speeds are relatively low when
inputting numbers and complex passwords. When inputting
texts, their typing speeds can reach higher. The users watch
the screen most of the time while typing. Further, the users
press the Shift keys frequently when typing capital letters
in texts or symbols in strong passwords. When reaching out
for the Shift keys, the typing movements are very different
from typing other keys. Different users or scenarios may use
Shift keys on different sides. In the experiments, the users are
free to make or correct typos. They are free to adjust typing
styles/speeds based on the typed contents or their own sta-
tuses, feelings (such as the heaviness of hands), and typing
habits. The three users include 1 male and 2 female users.
Their ages are distributed across three ranges: 20-30, 40-50,

Shift:1 Space:
20011999 NJuly 4J 11Sept. 11$, 2012.J 2/ 28/ 1983 1/ 21/ 1967 4/ 1
200141999/ 1July 4 J 11Sept. 1$, 20124 2/ 28/ 1983J 1/ 21/ 1967 4/ 1
4/1985.J 8/ 11/ 1989 J 440-20-7171.J 418-66-8410 J 156-64 J4025-38
4/1985.4 8/ 11/ 19894 440-20-7171J 418-66-84104 156-64-6905. 026-38
5077 J 608-60-1482 J 064-14-19104 561-57-0202. 690-09-9318. 019-01
-5077 J 608-60-1482 J 064-14-1910' 561-57-02024J 690-09-93184 019-01-
0509.J 165-38-6060.] 2021 \Duke 1Lane, \Wayne, |NJ«<1J < 074774 2
0509. 165-38-60604 2021 1Duke 11Lane, \Wayne, 1NJ«J 1« 074774 2
847 )\ Wexford n\Way, WRock nHill, 11Sc«<C, 297304 3781 1Rainy 1Day
847 1\ Wexford nWay, WRoc%mHill,x 1Sc« Cx297304d 3781 \Rainy 1Day
«1Drive, 11Boston, \M1A, "02109. 4978 1 Qarence 1 Court, 1Los 11Ang
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eles, NC1A, 90017 J 2077 | Berkeley 1Street,/ 1Fort 1 Washington,c1P1A

Backspace:« Enter.d

Figure 14: A snippet of the typed and recovered dates, social
security numbers, addresses, and GPS coordinates. Characters
in gray are the ground truth. Characters in black, blue are cor-
rectly identified results in first, second attempts, respectively.
Characters in red are errors.
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Figure 15: A snippet of recovered unconstrained text inputs.

and 50-60. Each of these users speaks a different first lan-
guage and originates from a different country.

Research Ethics. The studies involving human participants
were reviewed and approved by our institution (IRB). We
obtained informed consent from the participants before the
data collection.

5.1 Data Recovering

ID numbers, dates, addresses, GPS coordinates. Fig. 14
shows the typed and recovered information. We can observe
that a real-world user often types backspace keys to correct
typos, and types Shift keys to input capital letters. There are
hyphens, commas, and period keys when typing ID numbers
(e.g., social security) and GPS coordinates. Most ID numbers
are identified correctly with the first and second-attempt re-
sults. The dates are correctly identified from the recovered
information. There can be one or two errors in the characters
of each address, but all addresses can be recognized. Most of
the digits in the GPS coordinates are correctly identified.

Real-world Texts. Real-world texts are not purely alphabetic.
They include punctuation, capital letters, numbers, and many
other keys. Further, the input sequences may not be fixed due
to the use of the Shift and Backspace keys. The user may
correct a typo and may frequently type the left/right Shift
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Figure 16: Recovering usernames and 7/8-more-digit pass-
words. We can observe that a real-world user may make typos
and corrections when inputting passwords.
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Figure 17: Recovering strong passwords and SSH credential
inputs, which include a lot of symbols, capital letters, numbers,
and punctuation.

keys to input capital letters.

Because most enter, backspace, and shift keys are correctly
identified, the structure of the text is clear in the recovered
data (Fig. 15). Sentences in the recovered results are readable.
Details such as the numbers and abbreviation codes are mostly
correct. There can be more errors in the characters when
recovering real-world texts compared to other inputs because
the users are typing fastly. In this scenario, a keystroke signal
is more frequently affected by the tail of the previous signal.
We also observe a lower accuracy on user B, who types faster
than users A and C.

User names and passwords. We randomly select usernames
and 7/8-more-passwords [6]. The 7-more-passwords con-
sist of passwords with 7 characters or more. The 8-more-
passwords contain more than 8 characters and exclude all-
numeric passwords, consecutive (3 or more) characters, all-
lowercase passwords, and strings without both a capital letter
and a number [6]. Most of the usernames and passwords are
completely recovered within two attempts (Fig. 16). The in-
puts, including capital letters, shift keys, underlines, and num-
bers, are correctly identified. Most of the enter keys indicating
the end or submission of the passwords are also recovered.

Strong passwords and SSH credentials. We then recover
randomly generated strong passwords that contain lowercase
and uppercase letters, numbers, and special characters simul-

Table 3: nth-attempt accuracy, correctly identified keystrokes
and the total number of keystrokes of user inputs.

Ist Attempt 2nd Attempt Total
Accuracy Correct | Accuracy Correct | Keystrokes
A 90.6% 2,635 95.3% 2,773 2,909
B 83.8% 2,018 92.5% 2,228 2,408
C 89.3% 2,145 93.8% 2,253 2,402

User

taneously. To demonstrate the threats, we recover SSH cre-
dentials that include numbers, special characters, etc. Most
of the characters in strong passwords and credentials can be
recovered within two attempts (Fig. 17). Most Shift keys and
special characters (such as @) are correctly identified in the
first attempt.

We collect and evaluate a total number of 7,719 keystrokes
from users typing unconstrained information (Tab. 3). We
calculate the recovered keys based on the Euclidean distance
between the sample and the reference mean value of measure-
ments of a key. We derive the reference mean value of the
measured samples of a key excluding outliers that are more
than three scaled median absolute deviations (MAD [38])
from the median of all measurements of the key and out-
liers outside the percentile range of [10%, 90%] of remain-
ing measurements. We calculate the accuracy by comparing
the recovered keys and the actual typed keys (ground truth);
we run a Python program on the computer connected to the
keyboard to capture the key press and release events. We
record the actual typed sequences that include typos and Shift
keys. This setting allows us to better understand and study the
threats. A real-world attacker can always carefully examine,
filter, slice [21], and listen to the recorded sounds to identify
signals containing the keystrokes, and make use of the recov-
ered keystroke localization information to gain a substantial
advantage in revealing the unconstrained input contents.

6 Exploring Bendable Eyesight

While cameras are usually considered as more invasive sen-
sors compared to microphones, auditory devices can pose less
noticeable threats to approach the users. Moreover, we find
that in certain scenarios, even when the line-of-sight view is
blocked, our attacks can still reveal the typed keys.

6.1 Attack Scenario 1: Covert Typing

Security-aware individuals may try to cover the typed keys to
avoid surveillance. A camera’s view in such non-line-of-sight
(NLOS) scenarios will be blocked (Fig. 18). Since sounds
do not travel in straight lines, the refracted sound waves can
still be measured and analyzed with Auditory Eyesight. We
find that the localization information is not completely lost in
the refracted keystroke sounds after multi-path transmission
in NLOS settings. For instance, we recover the inputs from
two users type individual keys, GPS numbers, user names,
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Auditory
Device

Figure 18: Non-line-of-sight (NLOS) attacks on covert typists
who block the keys while typing.
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Figure 19: Recovering unconstrained inputs in NLOS covert
typist scenario. Gray: actual inputs; Black: 1st-attempt results;
Blue: 2nd-attempt results; Green: 3rd-attempt results.

Table 4: nth-attempt accuracy, correctly identified keys, and
total number of keystrokes of covert user inputs.

1st Attempt | 2nd Attempt | 3rd Attempt Total
Accu. Corr.| Accu. Corr.| Accu. Corr. | Keystrokes
N1 [74.3% 378 |88.4% 450 |93.5% 476 509
N2 [56.8% 269 |75.3% 357 |84.4% 400 474

User

and passwords while using another hand to cover the typed
area. Our results (Fig. 19) show that the typed information
can still be recovered. With accuracy lower than line-of-sight
scenarios, the attack can still correctly identify most of the
keys in less than 3 attempts (Table 4).

6.2 Attack Scenario 2: Laptop Attack

We find that adversaries can recover the victim’s inputs with-
out pointing any sensors toward the victim. Specifically, ad-
versaries can inconspicuously conduct the attack by putting
a laptop on the table next to the victim. As shown in Fig. 20,
the microphones are on the screen side of the adversary’s
laptop. The horizontal distance from the adversary’s laptop
to the upper edge of the victim keyboard is about 40 cm. The
laptop uses a standard recording sample rate of 44.1 kHz.
The microphone separation distance D; is 9.6 cm. In a com-
mon and inconspicuous scenario, the adversary won’t see the
victim’s inputs because the devices have blocked the direct
line-of-sight (Fig. 20) while the victim is typing. This setting
is common in libraries, meeting rooms, or office scenarios.
Usually, it can be hard for the victim to notice the threats
because there is no camera or other sensors on the back of the

Victim
Kevhoard
Keyboarg

View

Figure 20: NLOS attack settings with a laptop. The adversary
uses a laptop to collect and analyze the keystrokes without
pointing any camera or other sensors to the victim’s keyboard.
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Figure 21: Results of NLOS laptop-based attacks. Our multi-
round approach can effectively reduce the excessive errors
caused by NLOS keystroke sound transmissions.

adversary’s laptop.

Although the localization errors are much larger because of
the NLOS transmission of keystroke sounds, they can be mit-
igated with our multi-round keystroke localization approach
(Fig. 21). We collect 601 keystrokes (more than 11 keystrokes
for each key) in the NLOS setting. In the I-round results, there
are large-scale errors (outliers). In the B-Round, after con-
ducting the computation in the bounded range, there are still
significant overlapping and errors. The causality of these er-
rors is that when the line-of-path transmission is blocked, the
keystroke sounds have to diffract around the objects to reach
the microphones. This induces significant multi-path effects,
resulting in more noises and artifacts in the recorded signals.
By multi-round customized signal processing and focusing
on the transient parts of keystroke signals, we show that our
approach reduces the errors caused by NLOS transmissions
(Fig. 21). There will be significant overlapping between keys
with conventional methods [28,39,46] (Fig. 32). Attacks us-
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Table 5: nth-attempt accuracy (in percentage) on 601
keystrokes in the laptop-based NLOS attack.

Ist | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th
21.9642.10|54.91|68.05|75.54|82.3685.19(89.35|91.18
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Figure 22: Localization statistics on an Apple Magic keyboard
at 1 and 2-m attack distances.

ing only one microphone pair are less effective than attacks
with two pairs consisting of at least 3 microphones (Tab. 6).
However, it can still effectively reduce the solution space (Tab.
5) and can be combined with other side channel information
in future work.

7 Discussion

Distance. We evaluate the localization at 1m and 2m distances
from the keyboard. We measure the horizontal distance be-
tween the laptop microphones and the keyboard’s edge. The
horizontal distance between the microphone center to the
keyboard center is about 106.6 cm, 206.5 cm, respectively.
We collect over 594 keystrokes (at least 11 keystrokes from
each key) in each scenario. The average standard deviations
are 1.3325 us at Im, and 1.0356 us at 2m (Fig. 22). Fig. 23
illustrates the localization results in different rounds at 2m.

Angle. We evaluate the attack at different angles (Fig. 24).
Test cases 4 and 5 use three microphones to form the two mi-
crophone pairs. The separation distance Dy of the microphone
pairs m5-1 (microphones 5 and 1, Fig. 11) and m1-3 is 8.1cm.
D of m6-3 is 9.3cm. Dy of m6-1 and m6-5 is 4.8cm. The
microphone indexes are labeled in Fig. 11. The setting is sim-
ilar to Sec. 4.6 except that the device is positioned differently.
We categorize the accuracy using the T-round localization
results. Our experimental results (Tab. 6) show that the attack
is effective with different angles and microphone separation

I-Round

3 Outliers
10r (] 8
0 a® a® _ae’ a8
E T aas O as
- or 1 aw 8" aa® )
4 af 8 asB® ge
L ] - 0% e a
10+ s L] a s~ B
as s es H
R a e
ai -8 N ]
oo BT v B B
B-Round
overiapping T I
10 i) ) Z&| deviated g o
& is /deviated means; g3 1
2 oL 28%% /means z2%° & &
= |l a® FEE bk 2a® =
- aE .l' 3-:‘ =8F
4 ] 8 T evi s
L ® i~ deviated ;%
0 (e8® U 689 “means @°¢
& a ) H .
® overlappin s
T-Round
10F L] a® ] e
8* a® _a? al
™ g N L] a®
2 ot a a% s a
= .. ﬁ. -= .%'
- 8 a
410 2. s® a® ;.
Ty e s M ]
i ol ae .
po@® i i BT 8 i B
NXO>acgE -

© CNOTOONEOO Il BT O S 33T 0 @O oI T

Keytal
Kéy.shift [«

Key.enter -
Key.shift
Key.space I~

Key.backspac
Key.caps‘o

Figure 23: Top: I-Round localization results on an Apple
Magic keyboard at 2-m attack distance. Middle: B-round
results show significant deviated means and overlapping be-
tween keys. Bottom: T-Round reduces the us-scale errors and
the overlapping. The range of the time delay has become quite
small ([—19,11] us) at 2-m attack distance.

Table 6: nth-attempt accuracy, correctly identified keys, and
the total number of keystrokes with different attack angles.
Ist Attempt [2nd Attempt|3rd Attempt| Total
Accu. Corr.| Accu. Corr.|Accu. Corr.|Keystr.
1 (m5-1, m6-3)(94.1% 560 [99.0% 589 [99.8% 594 | 595
2 (m5-1, m6-3)(69.4% 412 |86.4% 513 [92.1% 547 | 594
3 (m5-1, m6-3)(89.2% 530 |97.1% 577 [98.7% 586 | 594
4 (m6-1, m1-3)({86.5% 514 (96.1% 571 |99.2% 589 | 594
5 (m6-2, m6-5)(85.7% 509 |98.2% 583 [99.3% 590 | 594

Test Case

distances.

Noise. We have conducted our experiments in an ordinary
office (42-44 dBA) adjacent to the entrance of a large building.
We then evaluate the attack performance under different noise
levels. We place two full-range speakers at a distance of 0.5
m from the keyboard and play noises. The noises are audios
consisting of noisy human conversation and activities from
publicly available high-quality recordings [7]. We play the
audio repetitively while recording the keystroke sounds. The
noise sound level is measured with a sound level meter at 10
cm in front of the speakers. We categorize the accuracy using
T-round localization results. Results (Tab. 7) show that the
attack is robust under low-to-moderate noises (e.g., 55 dBA).

Keyboard Displacement. When the user momentarily ceases
typing to adjust the keyboard’s position, there is usually a
break in the typing sounds. This adjusting movement can
cause the keyboard to produce sounds of friction against the
desk. The friction sounds are distinguishable from keystroke
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Figure 24: Test cases 1 to 5 (left to right) to evaluate the attack with different angles. D, and D, are the vertical and horizontal
distances between the microphone array center to the keyboard center.

Table 7: nth-attempt accuracy, correctly identified keys, and
the total number of keystrokes under environmental noises.
Keyboard | 1st Attempt [2nd Attempt| 3rd Attempt | Total
(Noise Level) | Accu. Corr.| Accu. Corr.| Accu. Corr.|Keystr.
Apple (55dBA)[95.5% 579 [97.8% 593 | 98.0% 594 | 606
Apple (65dBA)|58.2% 351 |69.7% 420 | 74.8% 451 | 603
Razor (55dBA)|95.3% 570 |99.5% 595 {100.0% 598 | 598
Razor (65dBA)|94.7% 571 (99.3% 599 | 99.8% 602 | 603

sounds. By listening to the recorded audio and examining
the spectrogram, an attacker could discern these moments of
adjustment. Assuming the user does not frequently move the
keyboard while typing, the adversary may divide the recorded
keystrokes into segments after the keyboard’s displacement
and recover the results separately. Additionally, if the user
slightly adjusts the keyboard, the attack will still work; how-
ever, it may localize an adjacent key due to the displace-
ment. In the future, it might be possible to combine other
side-channel information to improve the robustness of the
attack when the keyboard moves.

8 Related Work

Typing on a keyboard is a physical process that can emit
and perturb physical signals in the environment. Such side-
channel [42] signals could allow adversaries to recover the
victim’s input information without connecting to or visually
monitoring (e.g., via cameras, shoulder surfing) the keyboard.
Acoustic-based keylogging attacks. Prior works utilized
Fast Fourier Transform (FFT) and Mel-frequency cepstral
coefficients (MFCC) features of keystrokes to classify the
typed keys with supervised learning [21,27]. Recent papers
leveraged deep learning to improve the effectiveness of the
attacks [30,43]. Training-based methods require collecting a
substantial amount of labeled data from the victim. Moreover,
it can be challenging to ensure that the victim types with
consistent or fixed style/pattern for stable classification per-
formance. Giallanza et al. observed that the recurrent network
takes advantage of common phrases and letter sequences, but
such sequences are lacking in strong passwords [30]. Further,
users’ actual typing sequences in unconstrained settings can
be different when typing capital letters, symbols, punctuation,
and making/correcting typos; it can be hard for an adversary
to predict and include the sequences in a training dataset.

Dictionary-based approaches [23,47,48] associate acoustic
features to the keys with clustering. However, the attacks
assume that the inputs are texts (lower-case words separated
by spaces) only and should not contain other keys or any
sequence that is not included in the dictionary.

Zhu et al. leveraged smartphones close to the keyboard
(10 cm) to recover texts containing lower-case alphabetic
words and backspaces [46]. Liu ef al. [39] studied close-
proximity attacks to classify the 26 alphabetic keys. These
approaches [39,46] are based on general techniques [24, 28,
37] to localize an entire, larger-scale target. Directly applying
general sound localization techniques on keystroke sounds
can lead to undesired distinguishability (Fig. 25).

Prior acoustic keylogging attacks [21,27,30,39,43,46—48]

focused on constrained settings and inputs such as alpha-
betic keys/words [21,27,39,46-48] and known sequences
[27,30,43,48] in a given dictionary or training dataset. The
FFT/MFCC features were universally extracted from the
keystroke sound signals [21,27,30,30,39,43,47,48] (Tab. 8).
Similarly, the time delay information was based on one-round
cross-correlation (CC) calculation [24,28,37] directly using
the entire recorded keystroke sounds [23,39,46].
Wireless signal perturbation, vibration, and heat-based
keylogging attacks. Many studies utilized supervised learn-
ing [20,26] and dictionary-based [29] methods to classify
single-letter-case alphabetic keys/words via wireless signals.
Researchers explored vibration and motion sensors to recover
alphabetic keys/words [40,41,45]. Recently, Kaczmarek et al.
showed that thermal residues measured with a thermal camera
can hold keystroke information for 0.5 to 1 minute [33].

In summary, prior works studied mapping side-channel sig-
nals to constrained keyboard inputs (e.g., single-letter-case
alphabetic keys/words) [20,21,27,29,39,45-48] and known
sequences [27, 29, 30, 43, 48]. However, these methods 1)
exclude most real-world text inputs or passwords that may
not strictly follow previously specified sequences in a dictio-
nary or training dataset, 2) require substantial labeled training
data or assume single-letter-case alphabetic keys/words, and
3) may require constrained/fixed user-specific typing style.
We develop the first keystroke side-channel attack study on
unconstrained inputs, including non-alphabetic keys and se-
quences that are not necessarily in a known dictionary or train-
ing dataset, such as real-world text inputs (with punctuation,
typos, numbers, and capital letters) and strong passwords.

Further, prior works [21,23, 39, 46—48] focused on pro-
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Table 8: Comparisons of our paper to prior keyboard acoustic side-channel attack studies.

Methodology

Signal handling
process’

Focused inputs
and recovered info*

Specific analysis domain(s)
and target level

Supervised learning [21,27]

Universal processing

FFT, MFCC Keys/words (Alph. Sing.)

Deep learning [30,43]

Universal processing

FFT, MECC Texts

Clustering [23,47,48]

Universal processing

FFT, MFCC, CC (entire keystroke) Words (Alph. Sing.)

General localization [39,46]

Universal processing

CC (entire keystroke) Keys/words (Alph. Sing.)

AuditoryEyesight: Customized signal processing
chain inspired by imperfect measuring and
keystroke sound physics analysis

Internal sound com-
ponent and multi-
round processing

Temporal analysis and frequency-energy analysis |Unconstrained (with
(on internal transient and noisy parts), interp., align|unknown sequences
and recalc.(within keystrokes to us-range) and non-Alph. keys)

+ Universal processing handles all components of the signals equally in a relatively coarse-grained, large-scale manner, which tends to bury
the detailed and accurate information due to imperfect physics and measuring of keystroke sounds.
I Alph.: Alphabetic. Sing.: single-letter-case. Unconstrained inputs: inputs that include non-alphabetic keys and sequences that are not

necessarily in a known dictionary or training dataset, such as real-world text inputs and passwords.

cessing keystroke sounds without distinguishing the internal
sound components, using the entire keystroke sounds to ex-
tract information. We discover that the sound components and
the underlying physics study allows the attacker to extract
more targeted and accurate information.

9 Conclusion

Keyboard inputs contain highly sensitive data including SSH
confidentials, social security numbers, and real-world texts
such as emails. The confidentiality of such information is
critical to privacy and also to the security of systems authenti-
cated with keyboard inputs. This work explored the leakage
from such unconstrained keyboard inputs via increasingly
ubiquitous voice sensing devices. We also observed that al-
though diffraction of sounds waves was usually considered
as an undesired property for high-precision localization mea-
surement, it brings unintended benefits over light sensors to
allow attacks on keystrokes in certain NLOS scenarios.
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Appendix

Implementation, Benchmark, and Dataset. We use
a computer with two Xeon E5-2683(v3) CPUs and
32-GB RAM. We use Matlab parallel pools to run
multiple threads for offline computation. We have
made our dataset, benchmark results, and code available
(https://github.com/auditoryeye/auditoryeyesight).
Supplementary Figures. Fig. 25 shows the direct conven-
tional localization results of 598 keystrokes on the Apple
Magic keyboard from 0.5 m without our signal processing
and multi-round approach. Fig. 28 shows the 2D final-round
localization results of experiments on the Apple Magic key-
board (Sec. 4). Fig. 26 and Fig. 27 illustrate the first and
second-round results. Fig. 31 shows the 2D final-round lo-
calization results of experiments on the Razor Blackwidow
Mechanical keyboard (Sec. 4). Fig. 29 and Fig. 30 illustrate
the first and second-round results. Fig. 32 shows outlier errors
(up to 20 ms) and significant entire-keyboard-scale overlap-
ping in the time delay measurements of NLOS laptop-based
attacks using conventional methods [28,39,46].
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Figure 25: Direct localization results of 598 keystrokes

on the

Apple Magic keyboard from 0.5 m. The typed keys are not

distinguishable using conventional methods.

200 T g = o8 9
H
100 - 4
g N
E o
=0 TRE——— 1
<
-100 4
. . . . . . .
-300 -200 -100 0 100 200 300
AT, (us)
100 -
80 5 4
60 - e A
0
S, 40 4
e 1 6 Foge L i
4 20 .A\ , 4 3 -
A - Q‘V u
200 Il Il Il 1
-120 100 20 20 0 20 40
AT (us)

Figure 26: Our initial-Round localization results of 598

keystrokes on the Apple Magic keyboard from 0.5 m.
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Figure 27: Our second-round localization results of 598

keystrokes on the Apple Magic keyboard from 0.5 m.

Figure 28: Our final-round localization results of 598

keystrokes on the Apple Magic keyboard from 0.5 m.
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Figure 29: Initial-Round localization results of 595 keystrokes
on the Razer Blackwidow mechanical keyboard.
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Figure 30: Second-round localization results of 595
keystrokes on the Razer Blackwidow mechanical keyboard.
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Figure 31: Final-round localization results of 595 keystrokes
on the Razer Blackwidow mechanical keyboard.
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Figure 32: Results of our NLOS laptop-based attacks with
conventional methods [28, 39, 46]. The results show outlier
errors (up to 10 to 20 milliseconds) and significant entire-
keyboard-scale overlapping.
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