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GEOMETRY OF PLANAR CURVES INTERSECTING MANY

LINES AT A FEW POINTS

D. VARDAKIS AND A. VOLBERG

Abstract. The local Lipschitz property is shown for the graphs avoiding multi-
ple point intersection with lines directed in a given cone. The assumption is much
stronger than those of Marstrand’s well-known theorem, but the conclusion is much
stronger too. Additionally, a continuous curve with a similar property is σ-finite
with respect to Hausdorff length and an estimate on the Hausdorff measure of each

“piece” is found.

§1. The statement of the problem

The problem in question is to better understand the structure of Borel sets in R2 that
have a small intersection with parallel shifts of lines from a whole cone. Here, we work
only with sets that are graphs and continuous curves. So we have strong assumptions.
But the results claim some estimate on the Hausdorff measure (not merely the Hausdorff
dimension).

Initially, we show that a function’s graph intersecting all parallel shifts of lines from a
nondegenerate cone by at most two points is locally Lipschitz and also present a counter-
example showing this fails if more intersection points are allowed.

Next, we prove that any curve that has finitely many intersections with a cone of
lines is σ-finite with respect to Hausdorff length and we find a bound on the Hausdorff
measure of each “piece.”

On the other hand, in [1] it was shown that, given countably many graphs of functions,
there is another function whose graph has only one intersection with all shifts of the given
graphs but whose graph has dimension 2.

This result shows that there is a “thick” graph having only one intersection with all
shifts of countably many other graphs. In our turn, we show that the graph having
finitely many intersection with shifts of the whole cone of linear functions must be in fact
very “thin”.

Proposition 1. Let λ > 0 be a fixed number and consider all the cones of lines with
slopes between λ and −λ (containing the vertical line). If f : (0, 1) → R is a continuous
function such that any line of these cones intersects its graph by at most two points, then
f is locally Lipschitz.

Notice that our hypothesis implies that no three points of the graph of f can lie on
the same line that is a parallel shift of a line from a given cone.

For the proof we will need the following lemmas.

Lemma 2. Every convex (or concave) function on an open interval is locally Lipschitz.
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Figure 1. Each line from any cone intersects the graph by at most two
points.

Lemma 3. If a function g : (0, 1) → R is continuous and has a unique local extremum,
rx, inside (0, 1), then it is strictly monotone in (0, rx] and [rx, 1) with opposite monotonicity
on each interval.

Proof of Lemma 3. Suppose rx is a local minimum for g. We will show that g is strictly
monotone increasing in [rx, 1). Assume the contrary, i.e., consider two points x1 < x2 ∈
[rx, 1) such that g(x1) ≥ g(x2). On the compact interval [x1, x2], the function g has to
attain a minimum and a maximum, which respectively are at x1 and x2; otherwise the
uniqueness of rx is contradicted. If x1 = rx, the point rx is not a local minimum and so
rx < x1. Again, rx and x1 must be the minimum and maximum, respectively, of g in
[rx, x1], which in turn says x1 is a local maximum, contradicting the uniqueness of rx.
Therefore, g(x1) < g(x2) and g is strictly monotone increasing on [rx, 1). Similarly, on
(0, rx] g is (strictly) monotone decreasing and the same arguments work for the case when
rx is a local maximum. �

Proof. Consider the slope function of f , S(x, y) = f(x)−f(y)
x−y , and note that

S(x, y) =
f(x)− f(y)

x− y
= ζ ⇐⇒ f(x)− ζx = f(y)− ζy.

If for any two points x < y ∈ (0, 1) we have |S(x, y)| < λ, then f is Lipschitz (with
Lipschitz constant at most λ).

Now suppose that there exist x0, y0 ∈ (0, 1) for which |S(x0, y0)| ≥ λ and consider the
case where S(x0, y0) = λ′ ≥ λ. Since S(x, y) = S(y, x), we may assume that x0 < y0.
We will denote the line passing through (x0, f(x0)) and (y0, f(y0)) by ελ′ .

If there are numbers x0 < a < b < y0 such that

(S(x0, a)− λ′)(S(x0, b)− λ′) ≤ 0,

then by the continuity of S(x, · ) there has to exist a number c ∈ [a, b] such that
f(x0)−f(c)

x0−c = λ′ = f(x0)−f(y0)
x0−y0

. But this means that (x0, f(x0)), (c, f(c)), and (y0, f(y0))

are collinear, which contradicts our hypothesis and therefore S(x0, y) has to be perma-
nently greater or permanently less than λ′ for x0 < y < y0 (see Figure 2). For the
same reasons S(x0, y) has to be permanently greater or permanently less than λ′ also for
y > y0 and the same holds for S(x, y0) for x < x0.

Graphically, this means that ελ′ separates f in three parts that do not intersect ελ′ ;
one before x0, one over (x0, y0), and one after y0. We proceed to show that the part over
(x0, y0) lies on a different side of ελ′ from the other two.
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Figure 2. S(x0, y0) = λ′ ≥ λ; The part of the graph of f between x0

and y0 cannot lie on different sides of ελ′ .

S(x0, y) > λ′ S(x0, y) < λ′

Figure 3. The two cases when x0 < y < y0.

Let us consider the case when S(x0, y) < λ′ for x0 < y < y0. Then, the function
f(x)−λ′x defined on [x0, y0] attains a maximum at x0 and at y0 (which also implies that
S(x, y0) > λ′ for x0 < x < y0) and let ry ∈ (x0, y0) be the point where f(x)− λ′x attains
a minimum (see Figure 4). Now, suppose additionally that S(x0, y) < λ′ also for y > y0.

Pick a number k with f(x0)−λ′x0 > k > max{f(ry)−λ′
ry, f(y)−λ′y} for some y > y0.

Then, we have simultaneously

f(ry)− λ′
ry < k < f(x0)− λ′x0,

f(ry)− λ′
ry < k < f(y0)− λ′y0,

f(y)− λ′y < k < f(y0)− λ′y0.

The continuity of f and the above inequalities imply that there must exist numbers a, b,
and c in (x0, ry), (ry, y0), and (y0, y) respectively such that

f(a)− λ′a = f(b)− λ′b = f(c)− λ′c = k
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Figure 4. If S(x0, y) < λ′ for every y /∈ (x0, 1) \ {y0}, by moving the
line ελ′ slightly down we get three points of intersection.

which implies that (a, f(a)), (b, f(b)), and (c, f(c)) are collinear, a contradiction, and
therefore S(x0, y) has to be greater than λ′ for y > y0. Working similarly, we see that
S(x, y0) < λ′ for x < x0.

An identical argument gives us that ry is the only point in [x0, y0], and eventually in
[x0, 1), where f(x)− λ′x attains a local minimum (see Figure 5) and from Lemma 3 we
deduce that f(x)− λ′x has to be monotone increasing in [ry, 1). Hence, for any x, y ≥ ry
we have:

x < y ⇐⇒ f(x)− λ′x < f(y)− λ′y
x<y⇐=⇒ S(x, y) > λ′.

Figure 5. If f attains a local minimum at another point ry′ > ry, we
can find a line of slope greater than λ′ intersecting f at three points.
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However, observe that for any x and y for which S(x, y) > λ′, the function S(x, · ) has
to be 1-1 otherwise our hypothesis fails in a similar way as above and, since this function
is continuous, it has to be monotone in (x, 1) for every x ∈ [ry, 1). Therefore, f is either
convex or concave in [ry, 1) and thus locally Lipschitz in (ry, 1) thanks to Lemma 2.

In particular, f has to be convex in [ry, 1). Indeed, assume f is concave and let x be
any number in (ry, y0), see Figure 6. By concavity, the point (ry, f(ry)) has to lie below
the line passing through (y0, f(y0)) with slope ζ = S(x, y0) and, since ζ = S(x, y0) >
S(x0, y0) = λ′ ≥ λ, the point (x0, f(x0)) lies above. Hence, this line will intersect the
graph of f at some point (c, f(c)) with c ∈ (x0, ry) and the points (c, f(c)), (x, f(x)), and
(y0, f(y0)) are collinear, a contradiction.

Figure 6. S(x0, y) has to be strictly monotone increasing in (y0, 1).

If we instead assume that S(x0, y) > λ′ for x0 < y < y0, working similarly we conclude
that there must exist ry ∈ [x0, y0] such that f is concave in (0, ry].

The case when there exist x0, y0 ∈ (0, 1) for which S(x0, y0) = λ′ ≤ −λ is identical
and gives us the reverse implications.

To sum up, we conclude that there are points rx, ry ∈ (0, 1) such that f has some
particular convexity on (0, rx] and on [ry, 1). These intervals cannot overlap, because
otherwise f would be a line segment of slope at least λ (or at most −λ) on [ry, rx], which
contradicts our hypothesis and so rx ≤ ry. Let rx be the maximal point so that f is, for
instance, convex on (0, rx], and ry the minimal point so that f is convex on [ry, 1). When
rx �= ry, for every points x, y ∈ [rx, ry] we have |S(x, y)| ≤ λ and f is Lipschitz in [rx, ry] with
Lipschitz constant λ.

This concludes the proof. �

Of course, any continuous function that satisfies the condition of the proposition and
has different convexity on (a, rx] and on [ry, b) has to additionally satisfy

lim
x→a+

y→b−

|S(x, y)| < λ.

Furthermore, notice that the fact that the cone is vertical (or at least that it contains
a vertical line) is essential to get the locally Lipschitz property. Indeed, if C is a cone
avoiding a vertical line, we can restrict the function 3

√
x to a sufficiently small interval
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around 0 so that its graph intersect all the lines of the cone by at most two points. But
3
√
x is clearly not Lipschitz around 0. However, we do have the following corollary.

Figure 7. All the possible ways the graph of f can look like.

Corollary. Let λ1 > 0 > λ2 be some fixed numbers and consider all the cones of lines
with slopes between λ1 and λ2 (containing the vertical line). If f : (0, 1) → R is a
continuous function satisfying the same condition as above, then it is locally Lipschitz.

Proof. The inequalities |S(x, y)| < λ and |S(x, y)| ≥ λ in this case correspond to λ2 <
S(x, y) < λ1 and S(x, y) ≥ λ1 or S(x, y) ≤ λ2, respectively. The proof is the same as
before and on the regions where f is not convex or concave it is Lipschitz with Lipschitz
constant equal to the maximum of λ1 and −λ2. �

Remark. All the above remains true for any interval (a, b). It is not hard to see that the
same proof also works in the case where f is defined on a closed interval, but Lemma 2
cannot be used in this setting. However, if f : [0, 1] → R, its restriction f|(0,1) is locally
Lipschitz.

§2. An example

It is natural then to ask whether our assumption still gives us the locally Lipschitz
property when we allow more points of intersection. It turns out this fails even for at
most 3 points of intersection in the sense that there can be infinitely many points around
which the function cannot be locally Lipschitz. Here, we construct such a function whose
graph intersects a certain cone of lines by at most three points.

Consider the sequence ak = 1
2−

1
2k

for k ≥ 1, and on the each of the intervals [ak, ak+1]
define a continuous function fk with the following properties:

i) f1(0) = 0, f1(
1
4 ) = f2(

1
4 ) =

λ
4 ;

ii) fk+1(ak+1) = fk(ak+1);
iii) fk(ak+1) =

1
2

(
fk(ak) + fk−1(ak−1)

)
;

iv) f2k is monotone decreasing and convex on [a2k, a2k+1] and f2k−1 is monotone
increasing and concave on [a2k−1, a2k];

v) the tangent line to fk at (ak, fk(ak)) is vertical.
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Let f : [0, 1] → R be the function given by

f(x) =

⎧⎪⎨
⎪⎩
fk(x) if x ∈ [ak, ak+1),

fk(1− x) if x ∈ (1− ak+1, 1− ak],
λ
6 if x = 1

2

for all k ≥ 1 (Figure 8), which is clearly continuous in (0, 1)\{ 1
2} because of (ii). Observe

that the sequence (bk) = (fk(ak)) is recursively defined by bk+1 = bk+bk−1

2 (through

property (iii)) and it converges. In particular, we have bk+1−bk
bk−bk−1

= − 1
2 and therefore

(1) bk+1 = bk +
(−1

2

)k−1

(b2 − b1) =⇒ bk+1 = b2 −
1

3

(
1−

(−1

2

)k−1
)
(b2 − b1).

In our case, we have b1 = f1(0) = 0, b2 = f2(
1
4 ) =

λ
4 , and also

fk(ak) =
λ

6

(
1−

(−1

2

)k−1
)
,

hence limk→+∞ fk(ak) = λ
6 . But note that for every x ∈ (0, 12 ) there is an n ≥ 1 for

which x ∈ [an, an+1) and, since each fk is monotone in [ak, ak+1) for every k, we get

min
{
fn(an), fn+1(an+1)

}
≤ f(x) ≤ max

{
fn(an), fn+1(an+1)

}
.

Therefore, we have limx→ 1
2
− f(x) = λ

6 = f( 12 ), and similarly for x ∈ ( 12 , 1), which means

that f is also continuous at 1
2 .

Figure 8. At most 3 points of intersection with any line inside the cones

However, by construction f is locally Lipschitz on (0, 1)\{ 1
2} except at around ak and

1 − ak, k ≥ 1, and therefore it is not locally Lipschitz around 1
2 either, because ak → 1

2
as k → +∞.

Now we proceed to show that the graph of f has at most 3 intersection points with
any line inside a vertical cone with slopes between λ and −λ.

Each fk is monotone and has certain concavity on [ak, ak+1], hence its graph is
contained inside the triangle Tk with the vertices (ak, f(ak)), (ak+1, fk+1(ak+1)), and
(ak, f(ak+1)) (see Figure 9) and therefore any line intersecting the graph of f (at at
least two points) has to pass through some of these triangles. Notice, however, that if a
line passes through two nonconsecutive triangles, say Tk and Tk+j (j > 1), then it falls
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outside the admissible cone of lines. In particular (because of properties (ii) through
(iv)), each Tk+1 is half the size of Tk and they are placed is such a way that the maximal
and minimal slope a line through them can have are respectively the maximum and the
minimum of the quantities

fk+j(ak+j)− fk(ak)

ak+j − ak
and

fk+j(ak+j+1)− fk(ak+1)

ak+j − ak+1
,

when one of the numbers k and k + j is even and the other is odd, and the maximum
and minimum of the quantities

fk+j(ak+j+1)− fk(ak)

ak+j − ak
and

fk+j(ak+j)− fk(ak+1)

ak+j − ak+1
,

when k and k+ j are both even or both odd. Using (1) we can see that each of the above
is bounded in absolute value by λ whenever j > 1.

Figure 9. The case when k and k + j are both odd.

For the same reasons any admissible line passing through ( 12 ,
λ
6 ) intersects the graph

only at that point, because ∣∣∣∣∣
fk(ak)− λ

6

ak − 1
2

∣∣∣∣∣ =
λ

3
< λ.

Therefore, the admissible lines intersecting the graph necessarily pass through two (or
maybe only one) consecutive triangles and each such line intersects the graph of fk by
at most two points because of (iv). Furthermore, due to the difference in concavity of
fk and fk+1, a line cannot intersect both of their graphs at two points, because then it
would need to have both negative and positive slope, which is absurd.
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An example of a sequence (fk) of functions with the above properties is the following:

fk(x) =
λ

6

(
1−

(−1

2

)k−1
)
+

(−1)k+1λ

2
k+1
2

√
x− ak.

§3. Hausdorff measure

Marstrand in [3, Theorem 6.5.III] proved that if a Borel set on the plane has the
property that

(2)
if the lines in a positive measure of directions intersect this Borel set at a set of
Hausdorff dimension zero, then the Hausdorff dimension of this Borel set is at
most 1.

In particular, this happens if the intersections are at most countable. The Borel assump-
tion is essential.

That said, Marstrand’s theorem does not in general guarantee the Hausdorff measure
of the Borel set is finite. Our next goal will be to deal with the Hausdorff measure of a
continuous curve and also generalise to arbitrarily many points of intersection with our
cones (still finitely many, though). It turns out that the curve has to always be σ-finite
with respect to the H1 measure.

In order to proceed we need set up things more rigorously.

Notation. Let C(φ, 0) = {(x, y) ∈ R2 : |y| ≥ tan(φ) |x|} denote the vertical closed cone
in-between the lines through the point (0, 0) with slopes tan(φ) and − tan(φ) (where
0 < φ < π

2 ). By C+(φ, 0) we will denote the upper half of the cone C(φ, 0), that is

C+(φ, 0) = {(x, y) ∈ R2 : |y| ≥ tan(φ) |x|, y ≥ 0}, and by C−(φ, 0) its lower half. Let
C(φ, ρ) be the cone’s counter-clockwise rotation through the angle ρ, let C(φ, 0, h) =
B0(h) ∩ C(φ, 0), where Bx(r) = B(x, r) is the closed ball centred at x with radius r,
and let CP (φ, 0) be the translation of C(φ, 0) so that its vertex becomes the point P .

Finally, C∗ will denote the dual cone of C, that is C∗(φ, 0) = C(φ, 0)C . We will be
combining different notation in a natural way, for example C+(φ, ρ, h) is the upper half
of the truncated and rotated cone with vertex at 0.

Next, γ : [0, 1] → R2 will be a continuous curve.

3.1. The main hypothesis.

(3)
Fix an integer k ≥ 2. Fix an angle φ ∈ (0, π2 ) and a rotation ρ ∈ [0, 2π). A line

contained inside the cone CP (φ, ρ) for any point P ∈ R2 intersects the curve γ
by at most k points.

Any such line will be called admissible. A cone consisting of only admissible lines will
also be called admissible.

3.2. γ is σ-finite. For simplicity and without loss of generality we will assume that the
curve γ : [0, 1] → R2 is bounded inside the unit square and that (0, 0), (1, 1) ∈ γ. We
additionally assume that the cones of our hypothesis are vertical, i.e., that ρ = 0.

Theorem 4. γ can be split into countably many sets γn with finite H1 measure. In
particular, γ is 1-rectifiable.

The following lemma plays a key role in the proof of this theorem, but we will postpone
its proof until later.

Lemma 5. For every point P ∈ γ there exists an admissible cone CP (θ, ρ, h) that avoids
the curve γ except at P , that is, CP (θ, ρ, h) ∩ γ = {P}.
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In view of Lemma 5 — by slightly tilting ρ, enlarging θ and reducing h — we may
assume that the triplet (θ, ρ, h) consists of rational numbers. If {(θn, ρn, hn)} is an
enumeration of all rational triples that still lie within our admissible set, then we can
decompose γ into the countably many sets

γn =
{
P ∈ γ : CP (θn, ρn, hn) ∩ γ = {P}

}
(see Figure 10). Note that the γn are not necessarily disjoint for different values of n.

We proceed to prove that each one of them has finite H1 measure. Note that this
is not new knowledge and the claim can be found, for example, in [2, Lemma 3.3.5] or
[7, Lemma 15.13] in a more general setup. Nevertheless, we present the proof here for
completeness.

For the rest of this section n will be fixed.

Figure 10. The curve γ and its part γn for θn, ρn = 0, and hn.

Lemma 6. H1(γn) <
2k

cos(θn)
.

Proof. Without loss of generality we may assume that the cone CP (θn, ρn, hn) is vertical,
i.e., that ρn = 0. Let us now split the unit square into N vertical strips, Sj (j =
1, 2, . . . , N), of base length 1

N with N sufficiently large so that 1
N < cos(θn)hn. Let J

be the set of indices j for which
Sj ∩ γn �= ∅

and for any point P ∈γ denote the connected component of γ inside Sj through P ∈Sj∩γ
by Γ∗

P (j).
Fix a j ∈ J and consider a point P ∈ Sj ∩ γn. Since 1

N < cos(θn)hn, the sides of Sj

necessarily intersect both sides of the cone CP (θn, 0, hn) creating thus two triangles both
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contained inside the ball BP

(
1

N cos(θn)

)
(see Figure 11). For any point P ′ ∈ Sj ∩γn other

than P there are two cases: either |P − P ′| ≤ hn or |P − P ′| > hn. In the first case,
the sets Γ∗

P (j) and Γ∗
P ′(j) are both contained inside the two triangles C∗

P (θn, 0) ∩ Sj .
In the second, they are necessarily disjoint, because CP (θn, 0, hn) is free from points of
γ (other than P ). These additionally imply that there can be at most 1

sin(θn)hn
such

distinct paths inside Sj . In particular,

P ∈ Γ∗
P (j) ⊂ Sj ∩ γ ∩BP (hn) ⊂ C∗

P (θn, 0, hn) ∩ Sj ⊂ BP

(
1

N cos(θn)

)
.

Figure 11. Each cone intersects a strip of length 1
N < cos(θn)hn.

Now, let Pj be a maximal set of points in Sj ∩ γn such that the sets Γ∗
P (j) for P ∈ Pj

are all disjoint and observe that Sj∩γn is covered by the balls BP

(
1

N cos(θn)

)
with P ∈ Pj .

Indeed, if P0 ∈ Sj ∩γn is not inside the set
⋃

P∈Pj
BP

(
1

N cos(θn)

)
, then by construction it

is also outside
⋃

P∈Pj
BP (hn) and therefore Γ∗

P0
(j) and Γ∗

P (j) are disjoint for all P ∈ Pj ,

which contradicts the maximality of Pj . Moreover, since γ is connected, the set {P} has
to be path-connected with (0, 0) and (1, 1) and therefore each Γ∗

P (j) has to intersect at
least one side of the strip Sj . Hence, because of (3), there can be at most 2k of these



12 D. VARDAKIS AND A. VOLBERG

paths, i.e., #(Pj) ≤ min
{
2k, 1

sin(θn)hn

}
≤ 2k for every j ∈ J . Therefore,

γn ∩ Sj ⊂
⋃

P∈Pj

BP

(
1

N cos(θn)

)
=⇒ γn ⊂

⋃
j∈J

⋃
P∈Pj

BP

(
1

N cos(θn)

)

and the total sum of the radii of these balls is at most

2k
1

N cos(θn)
#(J) ≤ 2k

cos(θn)
.

Finally, if rγn = {P ∈ γ : CP (θn, 0, hn/2) ∩ γ = {P}}, then γn ⊂ rγn. Repeating
the above construction with 1

N < cos(θn)
hn

2 , we get a cover of rγn — and thus of γn —

consisting of balls with a total sum of radii at most 2k
cos(θn)

. The result follows. �

Remark. In the above construction we are in fact able to cover the whole part of γ inside⋃
j∈J Sj with the same balls, and not merely γn.

Eventually, the curve γ has to be σ-finite.

3.3. Cones free of γ. Here we prove Lemma 5.

Fix P ∈ γ. Since γ is bounded, there must exist an rh > 0 such that CP (φ, 0) ∩ γ =

CP (φ, 0,rh) ∩ γ. If

CP (φ
′, 0) ∩ γ = {P} or CP (φ

′, 0, h) ∩ γ = {P}
for some φ′ ∈ [φ, π

2 ) and some h > 0, then we are done.
Suppose this does not happen. Then, for all φ′ ∈ [φ, π2 ) and for all sufficiently small

h > 0 we have

(4) CP (φ
′, 0, h) ∩ γ \ {P} �= ∅.

Lemma 7. For any P ∈ γ the set CP (φ, 0) ∩ γ has finitely many (closed) connected
components.

Proof. Since γ is connected, every point of CP (φ, 0)∩γ has to be path-connected with the
point P through some part of the curve γ. There are two possibilities: either that path
is entirely contained inside CP (φ, 0) or it has to pass through its sides. If a path does not
intersect the sides, then it necessarily has to pass through P : otherwise γ would not be
connected. This yields precisely one connected component — the one containing P —
and all the rest (if any) have to intersect the sides of the cone. If these components are
infinitely many, there have to exist also infinitely many points of intersection on the sides
of the cone; at least one for each connected component. But this contradicts (3). �

Remark. The connected components of Lemma 7 total at most 2k and P need not be a
point of the curve. This lemma is still valid regardless of the cone we are working with
as soon as it is in our admissible family of cones.

Let ΓP (φ, 0) be the connected component of CP (φ, 0) ∩ γ that contains the point P ,
which because of (4) cannot be precisely the singleton {P}. Because of Lemma 7, the set
CP (φ, 0)∩γ\ΓP (φ, 0) is compact and thus there exists h0 > 0 such that CP (φ, 0, h0)∩γ ⊂
ΓP (φ, 0). Observe that CP (φ, 0) ∩ γ \ ΓP (φ, 0) could be empty in general in which case

h0 = ∞, however, we may always assume that h0 ≤ rh.
Next, we bisect our cone into two new identical cones sharing one common side

CP (φ, 0) = CP (φ1, ρ1) ∪ CP (φ1,−ρ1),

where φ1 = π
4 + φ

2 and ρ1 = π
4 − φ

2 , and repeat the above arguments for each new cone:
If

CP (φ
′, ρ1) ∩ γ = {P} or CP (φ

′, ρ1, h) ∩ γ = {P}
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for some φ′ ∈ [φ1,
π
2 ) and some h > 0, then we are done. Similarly for −ρ1 in place of ρ1.

Suppose none of these happen. Then, for all φ′ ∈ [φ1,
π
2 ) and for all sufficiently small h

and h′ we have

(5) CP (φ
′, ρ1, h) ∩ γ \ {P} �= ∅ and CP (φ

′,−ρ1, h
′) ∩ γ \ {P} �= ∅.

We denote by ΓP (φ1, ρ1) and ΓP (φ1,−ρ1) the connected component of

CP (φ1, ρ1) ∩ γ and CP (φ1,−ρ1) ∩ γ

containing P , respectively. Then, the sets CP (φ1, ρ1)∩ γ \ΓP (φ1, ρ1) and CP (φ1,−ρ1)∩
γ \ΓP (φ1,−ρ1) are compact (thanks to Lemma 7) and thus there exist h1,0, h1,1 ∈ (0,rh]
such that CP (φ1, ρ1, h1,0) ∩ γ ⊂ ΓP (φ1, ρ1) and CP (φ1,−ρ1, h1,1) ∩ γ ⊂ ΓP (φ1,−ρ1).

Figure 12. Finding a cone free from points of γ. The parameters r, d,
and h determine the radius.

We iterate this construction indefinitely (Figure 12). If at any step we get

(6) CP (φ
′, ρ, h) ∩ γ = {P}

for some φ′, ρ, and h, then we have found our desired cone and we stop. Otherwise, we
get an infinite sequence of smaller and smaller cones satisfying the following:

{P} � CP (φn, ρn,i, hn,i) ∩ γ ⊂ ΓP (φn, ρn,i) ⊂ CP (φn, ρn,i)
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for all i = 0, 1, . . . , 2n − 1, for all n ≥ 0 where

φ0 = φ φ1 =
π

4
+

φ

2
φn =

π

4
+

φn−1

2

ρ0,0 = 0 ρ1,0 = ρ1 =
π

4
− φ

2
ρ1,1 = −ρ1 ρn,i = (φn − φ)− i

2(φn − φ)

2n − 1

h0,0 = h0 0 < hn,i ≤ rh.

Note that at the nth iteration we have exactly 2n truncated closed cones separated by
the lines

ln,i = P +
{
(x, y) : y = tan(π − φn + ρn,i) x

}
through P . The sets ΓP (φn, ρn,i) might intersect these lines, but this can happen at no
more than k points due to (3). Let rn,i be the smallest distance between these points of
intersection (if any) and P , that is,

rn,i = dist
(
P, ln,i ∩ ΓP (φn, ρn,i) \ {P}

)
(again we can arbitrarily fix some 0 < rn,i ≤ rh if ln,i ∩ ΓP (φn, ρn,i) \ {P} = ∅) and let

dn,i = min
{
sup{d(P,ΓP+(t) \ P ) : t ∈ (0, 1]}, sup{d(P,ΓP−(t) \ P ) : t ∈ (0, 1]}

}
where ΓP+(t) and ΓP−(t) are parametrizations of

ΓP (φn, ρn,i) ∩ CP+(φn, ρn,i) and ΓP (φn, ρn,i) ∩ CP−(φn, ρn,i),

respectively (which in general may happen to be precisely the singleton {P}) with
ΓP+(0) = ΓP−(0) = P . Finally, we put

hn = min{rn,i, dn,i, hn,i : i = 0, 1, . . . , 2n − 1}.
Since the above set is finite, hn > 0. From this construction for every n ≥ 0 we get a
collection of truncated cones CP (φn, ρn,i, hn) for i = 0, 1, . . . , 2n − 1 (see Figure 12) that
have the following property.

(7)

There is a path (part of γ) lying inside the cone that connects the point P
with at least one of the two arcs of length (π − 2φn)hn which bound the cone
CP (φn, ρn,i, hn). Moreover, these paths avoid any other intersections with that
cone’s boundary aside P and the (closed) arc(s).

Now, fix n sufficiently large so that 2n ≥ 2k + 3. Then, we can find at least k + 2
of the cones CP (φn, ρn,i, hn) that contain some path of those mentioned at (7) all lie on
the same half-cone, say on CP+(φ, 0, hn). Consider one of the sides of our initial cone
CP (φ, 0), say l = P + {(x, y) : y = tan(φ) x}, fix 0 < ε < hn sin(π− 2φn) and translate l
vertically by ε: lε = l+(0, ε). Then, lε necessarily intersects all the 2n different sectors of
the ball BP (hn) inside CP+(φ, 0, hn), but only the right-most one, CP+(φn, ρn,2n−1, hn),
at its arc-like part of the boundary. In particular, lε has to intersect the sides of at least
k + 1 sectors that contain the paths described in (7) and therefore also intersects these
paths. Hence, lε is one of our admissible lines that has at least k + 1 intersections with
γ, a contradiction.

Lemma 5 is proved. �

Remarks. i) In the definition of hn, three different parameters occur, rn,i, dn,i, and
hn,i. Without hn,i, (6) automatically fails; dn,i is to ensure that ΓP (φn, ρn,i)
always intersects the boundary of the corresponding cone and rn,i forces this
intersection to avoid the sides.

ii) In the above construction we bisected the initial cone into 2, 4, 8 etc. smaller
cones every time. However, any possible way to cut the cones would still work
as soon as it eventually yields an infinite sequence.
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iii) The same proof can be applied to any cone within our admissible set of directions.

§4. Higher dimensions

Mattila in [6, Lemma 6.4] generalized Marstrand’s results from [3] and showed the
following.

Lemma 8 (Mattila). Let E be an Hs-measurable subset of Rn with 0 < Hs(E) < ∞.
Then,

dim(E ∩ (V + x)) ≥ s+m− n

for almost all (x, V ) ∈ E ×G(n,m).

In particular, for a Borel set in, say, R2 we have:

if any 2-dimensional plane in a positive measure of directions intersects
this Borel set at a set of Hausdorff dimension at most 1, then the Haus-
dorff dimension of this Borel set is at most 2.

Furthermore, if every line in the direction of some 2-dimensional cone intersects a Borel
set (not merely the graph of some continuous function) by at most countably many
points, then any 2-dimensional plane in a positive measure of directions intersects this
Borel set by a set of Hausdorff dimension at most 1 (Marstrand) and then the Hausdorff
dimension of this Borel set is at most 2 (Mattila).

Of course, the same is also true in Rn, that is, if a Borel set has countable intersection
with a certain cone of lines, then its dimension does not exceed n−1.

Now, we restrict our attention to what happens with only 2 points of intersection in
higher dimensions and we would like to generalize Proposition 1 to Rn.

Suppose we have a continuous function z = f(x, y), say, on a square in R2, satisfying
the property that

(8)
any line in the direction of a certain open cone with axis along a vector v ∈ R3

intersects the graph by at most two points.

Then, we would want f to obey the same rule. Namely we ask the following:

Question. Is a continuous function on (−1, 1)2 having property (8) locally Lipschitz?

§5. Relationships with perturbation theory

The problem we consider in this note grew from a question in perturbation theory of
selfadjoint operators (see [5]). The question was to better understand the structure of
Borel sets in Rn that have a small intersection with a whole cone of lines. Marstrand’s
and Mattila’s theorems in [3] and [6], respectively, give a lot of information about the
exceptional set of finite-rank perturbations of a given selfadjoint operator. The exception
happens when singular parts of unperturbed and perturbed operators are not mutually
singular. It is known that this is a rare event in the sense that its measure is zero among
all finite-rank perturbations. The paper [5] proves a stronger claim: the dimension of a
bad set of perturbations actually drops.

Let us explain what was the thrust from [5] and why that paper naturally gives rise
to the questions considered above: what is the structure of Borel sets in Rn that have a
small intersection with all the lines filling a whole cone and their parallel shifts?

In [5], a family of finite rank (selfadjoint) perturbations, Aα, of a selfadjoint (suppose
bounded for simplicity) operator A in a Hilbert space H was considered:

Aα := A+BαB∗

parametrized by selfadjoint operators α : Cd → Cd (i.e., Hermitian matrices). The oper-
ator B : Cd → H is a fixed injective and bounded operator. It is also assumed that the
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range of B is cyclic with respect to A. In the case when d = 1 (rank-one perturbations),
the Aronszajn–Donoghue theorem states that the singular parts of the spectral measures
of A and Aα are always mutually singular. However, it is known that for d > 1 the
singular parts of the spectral measures of unperturbed and perturbed operators are not
always mutually singular.

Notice that the space of perturbations, that is the space H(d) of Hermitian (d × d)
matrices, has dimension d2. In [4], it was proved that, given a singular measure ν, the
scalar spectral measure μα of the perturbation Aα is not singular with respect to ν for
the set of α’s having zero Lebesgue measure in H(d). Such α’s are called exceptional,
and this result shows that even though the set of exceptional α’s can be nonempty (for
d > 1), it is a thin set. But is it maybe thinner?

In fact, the following result was proved in [4]. Fix α0, α1 ∈ H(d) where α1 is in the
cone of positive Hermitian matrices and consider α(t) = α0 + tα1. Then, for any such
α0, α1 there are at most countably many t ∈ R such that the α(t) is exceptional. This
extra information allowed the authors in [5] to prove that the Hausdorff dimension of
exceptional perturbations is actually at most d2 − 1.

The reader might have noticed an underlying geometric measure theory fact: a Borel
set in Rn (here n = d2) that has an at most countable intersection with a whole cone of
lines and their parallel shifts is, in fact, of dimension n− 1.

Thus the dimension drop detected in Marstrand’s and Mattila’s theorems was instru-
mental for the drop in dimension for exceptional perturbations.

It seems enticing to understand the structure of the sets that have even less than
countable intersection with all parallel shifts of all lines from a fixed cone. Suppose
the Borel set under investigation intersects only by at most two, or at most k < ∞,
points with these lines. What additional knowledge one can obtain about this set? This
question motivated the work presented in the previous sections.
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