
AdaEmbed: Adaptive Embedding for Large-Scale Recommendation Models

Fan Lai2*, Wei Zhang1, Rui Liu1, William Tsai1, Xiaohan Wei1, Yuxi Hu1, Sabin Devkota1, Jianyu Huang1,
Jongsoo Park1, Xing Liu1, Zeliang Chen1, Ellie Wen1, Paul Rivera1, Jie You1, Chun-cheng Chen1, Mosharaf Chowdhury2

1Meta 2University of Michigan

Abstract
Deep learning recommendation models (DLRMs) are using
increasingly larger embedding tables to represent categori-
cal sparse features such as video genres. Each embedding
row of the table represents the trainable weight vector for a
specific instance of that feature. While increasing the num-
ber of embedding rows typically improves model accuracy
by considering more feature instances, it can lead to larger
deployment costs and slower model execution.

Unlike existing efforts that primarily focus on optimizing
DLRMs for the given embedding, we present a complemen-
tary system, AdaEmbed, to reduce the size of embeddings
needed for the same DLRM accuracy via in-training embed-
ding pruning. Our key insight is that the access patterns and
weights of different embeddings are heterogeneous across
embedding rows, and dynamically change over the training
process, implying varying embedding importance with respect
to model accuracy. However, identifying important embed-
dings and then enforcing pruning for modern DLRMs with up
to billions of embeddings (terabytes) is challenging. Given
the total embedding size, AdaEmbed considers embeddings
with higher runtime access frequencies and larger training
gradients to be more important, and it dynamically prunes
less important embeddings at scale to automatically deter-
mine per-feature embeddings. Our evaluations in industrial
settings show that AdaEmbed saves 35-60% embedding size
needed in deployment and improves model execution speed
by 11-34%, while achieving noticeable accuracy gains.

1 Introduction
Deep learning recommendation models (DLRMs) are impor-
tant to many online services, including Google advertisement
display [9, 10], Netflix movie recommendations [15, 27], and
Amazon e-commerce [40], and comprise up to 65% of AI
cycles in Meta’s datacenters [13, 18]. Unlike conventional
machine learning (ML) counterparts that train models on con-
tinuous input features (e.g., color values of images), DLRM in-
puts consist of continuous dense features (e.g., timestamp) and
categorical sparse features (e.g., video genres). Each sparse
feature is often associated with an embedding table, where
each instance of that feature is represented by a trainable em-
bedding row (weight vector). In the forward and backward

*Work done while the author was working at Meta.

passes of model execution, the model reads and updates the
embedding weights of accessed rows.

Because the accuracy of a DLRM typically increases with
larger embeddings (e.g., by considering more feature in-
stances), modern DLRM embedding size is ever growing
(up to terabytes and billions of embeddings [13, 50]). This
introduces multiple challenges. First, DLRMs often have strin-
gent throughput and latency requirements for (online) train-
ing and inference [26, 45], but gigantic embeddings make
computation [34], communication [4, 39] and memory op-
timizations [13, 52] challenging. To achieve desired model
throughput, practical deployments often have to use hundreds
of GPUs to hold embeddings [35]. Meanwhile, designing
better embeddings (e.g., number of per-feature embedding
rows and which embedding weights to retain) remains chal-
lenging because the exploration space increases with larger
embeddings and requires intensive manual efforts [32, 49].

Unlike existing DLRM efforts that have primarily focused
on optimizing the model’s execution speed for the given em-
beddings – e.g., by balancing embedding sharding [35, 52],
accelerating embedding retrieval [39, 44], compressing em-
beddings [19, 48], or elastic resource scaling [45, 51] – we
explore a complementary opportunity: Can we fundamentally
reduce the size of embedding needed for the same accuracy,
by dynamically optimizing the per-feature embedding during
model training? Or, equivalently, can we improve model ac-
curacy for the given embedding size? This is because unlike
classic ML models, the DLRM model output (accuracy) is de-
termined by the input data (e.g., accessed instances) and their
embedding weights, and the input data is typically organized
chronologically during training to account for the diverse and
non-stationary user preferences [53]. Therefore, the access
patterns and the weights of embeddings vary across embed-
dings rows and the training process (§2.2). This implies an
opportunity to admit and prune embedding rows based on
their heterogeneous importance to improve model accuracy.

In this paper, we introduce an automated in-training prun-
ing system to Adaptively optimize per-feature Embeddings
(AdaEmbed) for better model accuracy. For the given em-
bedding size, AdaEmbed scalably identifies and retains em-
beddings that have larger importance to model accuracy at
particular times during training. As a result, not only does
it reduce human effort in embedding design, but it also cuts
down the embedding size, thus the computational, network,

1

and memory resources, needed to achieve the same accuracy.
AdaEmbed is complementary to and supports existing DLRM
efforts with a few lines of code changes (§3).

Unfortunately, identifying important embeddings out of
billions is non-trivial. To maximize the overall model accu-
racy, we should retain the embedding rows that affect model
inputs more often (e.g., are frequently accessed) and that af-
fect model outputs the most (e.g., have larger weights) (§4.1).
However, the non-stationary data distribution during training
leads to the spatiotemporal variation in the access frequency
of different embeddings. e.g., new videos are posted and be-
come popular, while some old ones lose popularity. Moreover,
embedding weights change over training iterations and so
does their impact. Once we prune an embedding’s weights
from the GPU memory, we cannot accurately capture their
importance to model accuracy as training moves on. Based
on our analytical insights, embeddings with larger runtime
gradients and higher access frequencies tend to accumulate
larger embedding weights, and AdaEmbed prioritizes them
when deciding which ones to retain. Moreover, we group fea-
tures with similar feature-level characteristics (e.g., vector
dimensions), and then identify important embeddings across
feature groups to optimize the per-feature embedding size and
which embedding to retain (§4.1).

Enforcing in-training pruning after identifying important
embeddings is not straightforward either. Pruning for practi-
cal DLRMs can require reallocating millions of embedding
rows and tens of gigabytes of embedding weights per training
iteration, whereas each iteration takes only a few hundred
milliseconds [4,35]. While frequent pruning allows admitting
important embeddings in a timely manner, thereby improving
model accuracy, it can slow down model training by many
hundred times (§4.2). To achieve a sweet spot between timely
pruning and low overhead, AdaEmbed initiates pruning selec-
tively when perceiving big changes in the importance distribu-
tion of all embeddings, thus reducing the number of pruning
rounds needed while ensuring high accuracy. However, exist-
ing DLRM systems face difficulty in dynamically admitting
and pruning embeddings at scale because they often rely on
static and/or fixed-size embedding storage [1–3, 44]. AdaEm-
bed introduces a shim layer, Virtually Hashed Physically In-
dexed (VHPI) embedding, to support various embedding de-
signs. VHPI decouples the management of embeddings from
their physical weights, whereby it recycles the weight vector
of embeddings to avoid intense memory allocation (§4.3).

We have implemented a system prototype of AdaEmbed
(§5) and evaluated it using five industry models and months
of data across hundreds of GPUs (§6). Our evaluations show
that AdaEmbed can reduce 35-60% embedding size, imply-
ing comparable resource savings, and improve model execu-
tion speed by 11-34% without compromising model accuracy.
Meanwhile, it achieves noticeable accuracy gains under the
same embedding size, thus being able to reducing manual ef-
forts by automatically finding better per-feature embeddings.

Outputs
(e.g., like/do

not like)

Continuous Inputs
(e.g., time)

Categorical Inputs
(e.g., User IDs)

Embedding Table 1

Embedding Table N

Feature Integration
(e.g., concatenate)…

Predictor D
N

N

IDs=[6, 10]
hash(IDs)=[1,3]

[0.12, 0.34, …, …, 0.42]

[0.64, 0.86, …, …, 0.32]
[0.24, 0.61, …, …, 0.23]

Lookup to Emb Table N

Pooled Embedding Weights

Pooling

128 Dims

[0.76, 1.20, …, …, 0.74]

Multi-Layer Perceptron

Figure 1: DLRM models consist of large embedding tables.

Overall, we make the following contributions in this paper:
1. We propose an in-training pruning system, AdaEmbed, to

automatically optimize DLRM embeddings.
2. We introduce embedding importance to capture impor-

tant embeddings and employ VHPI embedding to enforce
scalable pruning, with few changes to existing designs.

3. We evaluate AdaEmbed in various real-world settings to
show its resource savings and accuracy gains.

2 Background and Motivation
We start with a quick primer on DLRMs (§2.1), followed by
the challenges it faces and inefficiencies of the state-of-the-art
based on our analysis of real-world experiments (§2.2). Next,
we highlight the opportunities that motivate our work (§2.3).

2.1 Deep Learning Recommendation Models

As shown in Figure 1, a DLRM consists of a combination
of fully connected multiple-layer perceptrons (MLPs) to cap-
ture continuous dense features (e.g., timestamp), and a set of
embedding tables to map various categorical sparse features
(e.g., user and video IDs) to a dense representation. DLRMs
can contain up to thousands of sparse features: each feature is
typically associated with an embedding table, and each table
can have millions of rows [15, 35, 52]. Each embedding row
is a multi-dimensional weight vector (e.g., 128 floats) corre-
sponding to a specific feature instance (e.g., a specific user
ID of feature "User IDs").

DLRMs differ from traditional computer vision (CV) and
natural language processing (NLP) models in that they require
training on large volumes of data organized chronologically,
to keep up with the latest recommendation trends. Hence, the
distribution of training data changes over the training process.
In the forward pass of model computation, each input sample
includes a set of embedding IDs for each table to extract the
corresponding embedding weights (vectors). To reduce the
computation complexity, embedding weights of a sample will
be pooled per table using the element-wise pooling operator,
which typically takes the sum or maximum along each vector
dimension (Figure 1). The pooled embedding weights of mini-
batch samples are packed together with their intermediate
outputs of dense features, forming a batch input to deeper
layers. In the backward pass, the weights of the accessed
embeddings are updated using the gradient.

2

0 5 10 15
ID Lifespan (Days)

0.0

0.5

1.0

CD
F

ac
ro

ss
 ID

s

(a) Lifespan of instances.

0 5 10 15
Date

0.0

0.5

1.0

No
rm

. #
 o

f I
Ds

(b) Number of instances.

Figure 2: The number of sparse feature instances (IDs) increases
rapidly over time, while the lifespan of instances is heterogeneous.

Due to the enormous number of sparse feature instances,
their embedding weights can occupy more than 99% size of a
commonly used model (up to several terabytes) [21]; so DL-
RMs exhibit much larger memory intensity than conventional
ML models (e.g., ResNet). As such, practical DLRM deploy-
ments use a combination of model parallelism for sparse
feature layers and data parallelism for MLPs. The former allo-
cates different embedding partitions across workers to avoid
replicating them, and the latter enables concurrent processing
of dense feature inputs [13]. Even so, model deployments
often require hundreds of GPUs to achieve the desired model
throughput (a few hundred milliseconds per iteration) [4, 35].

2.2 Challenges in DLRM Deployment

Due to its significant impact on revenue and numerous iter-
ations needed to train a DLRM model, DLRM deployments
follow the “achieve better accuracy and run as fast as pos-
sible” paradigm [35, 45, 52]. The execution speed and accu-
racy of a DLRM model are respectively measured by Query-
Per-Second (QPS) throughput and Normalized Entropy (NE)
loss [22]. Larger QPS and smaller NE indicate better perfor-
mance, and any relative > 0.02% NE gain is considered to be
significant [13, 46]. However, optimizing both aspects leads
to novel tussles and challenges in real-world deployments.

Larger embedding sizes improve NE Embedding size of
modern DLRMs is ever-growing to accommodate more em-
bedding rows for sparse features and their instances [35, 44].
Figure 2 reports the size of the instance set over 15 days’ data
in a real-world DLRM system. We observe that even though a
small portion of the trained instances will seldom be accessed
again in later days (Figure 2(a)), the total number of unique
instances increases by 1.5× every week (Figure 2(b)). As DL-
RMs are often trained on months of data and retrained over
time, the size of the instance set will eventually far exceed the
embedding size. To cap the embedding size, existing designs
often perform hashing on the raw instance IDs, and then use
the hashed IDs to access their embedding rows [3].

Intuitively, using more embedding rows implies more in-
stances are considered, thus enabling better data coverage for
better NE. Figure 3(a) reports the impact of the embedding
size on the NE regression at different times of training. NE re-
gression denotes the accuracy degradation of using a smaller

Training Day

(a) Large embeddings improve NE.

1.7

1.4

1.8

1.5

1

2

0.25X 0.5X

Q
PS

 S
pe

ed
up

 (
X

)

 Training
 Inference

2.8

1.4

2.9

1.6

1

2

3

0.25X 0.5X

Q
PS

 S
pe

ed
up

 (
X

)

 Training
 Inference

1

1.51.4

2.4

0

1

2

3

1X Model 0.5X Model

N
or

m
. Q

PS
 T

hr
ou

gh
pu

t W/o Cache+Prefetch
W/

1

1.51.4

2.4

1.7

2.9

0

1

2

3

W/o Caching W/ Caching

N
or

m
. Q

PS
 T

hr
ou

gh
pu

t 1X Model
0.5X Model
0.25X Model

(b) Large embeddings hurt QPS.

Figure 3: Compared to the full (1×) model, smaller embedding
sizes hurt model NE (i.e., larger NE regression), but improve QPS.
0.25× and 0.5× denote using 25% and 50% of the full model size.

embedding size w.r.t. the full-size model.We notice that (i)
using a smaller embedding size can greatly hurt NE. For ex-
ample, reducing the number of embedding rows by 75% (i.e.,
0.25× model) results in ∼0.02% NE regression on Day 2;
Worse, (ii) this NE regression inflates as the training evolves
over time as more instances are spawned.

Large embedding sizes hurt QPS However, using more
embeddings can slow down model execution and consume
more machine resources in multiple execution phrases: (i)
slower embedding access if we can not retain all embed-
dings in high-bandwidth GPUs; (ii) longer communication
as we may need to transfer more embeddings over the net-
work [4, 50]; and (iii) longer computation as more embed-
dings need to be computed on. Figure 3(b) shows, compared
to the full model, 0.5× model achieves 1.4× QPS speedup in
the same resource setting. Here, we note that state-of-the-art
DLRM optimizations [35, 44], which cache and prefetch the
embeddings to be accessed in future batches, cannot eliminate
the QPS drop (Figure 3(b)). More importantly, they can be
insufficient for online training and model serving as we may
not know the input data in advance.

2.3 Opportunities for In-Training Pruning

For a given DLRM, recent advances have made considerable
progress for efficient communication [4, 19, 39] and/or com-
putation [13, 26, 35]. Instead, we focus on a complementary
opportunity that reduces the embedding size needed with-
out NE regression, by adaptively pruning embeddings during
model training. Our approach is based on the following ob-
servations.

Handcrafted embeddings are suboptimal Designing op-
timal embeddings (e.g., deciding the number of per-feature
embedding rows and which embedding weights to retain) is
as yet an open problem in the ML community [14]. Hence,
DLRM systems often decide the embedding size using human-
defined rules, e.g., by estimating the feature popularity [14]
and/or hyper-parameter tuning by model experts before train-
ing takes place [52]. Not only does this require great human
effort and resources to explore, but it can also be suboptimal
due to limited adaptivity at runtime (e.g., deciding which in-
stance’s embedding to retain if many instances are generated).

3

0 25 50 75 100
Table Utilization (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ac
ro

ss
 T

ab
le

s

1X
0.25X

(a) Utilization of embedding tables.

0 100 200 300
Sampled IDs

0.0

0.5

1.0

No
rm

. A
cc

es
s F

re
q.

Day 1
Day 2
Day 5

(b) Heterogeneous ID access.

Figure 4: Embedding access varies across IDs and over time, lead-
ing to distinct table utilization in existing embedding designs.

Worse, existing DLRM systems often treat per-feature em-
bedding tables individually for ease of management. This can
underutilize or overload individual tables as data distribution
changes over time. Indeed, when we analyze the table utiliza-
tion in a one-day training window (i.e., number of accessed
embeddings over the total number of embeddings on that
day), we notice large heterogeneity (Figure 4(a)). Intuitively,
tables that are fully utilized can degrade NE because many
instances are hashed to the same embedding row, leading to
hash collisions. However, underutilized tables cannot trade
in their space during training because of the suboptimal pre-
determined embedding size and inelastic embedding designs.

Embeddings have heterogeneous characteristics Fig-
ure 4(b) zooms into individual embedding rows, where the
sampled IDs (i.e., x-axis) are ordered based on their access
frequency on Day 1. We notice that the access frequency of
embeddings varies across embedding IDs and over time, since
user preferences change over time. We have similar obser-
vations on embedding weights too (§4.1). Since the model
output (accuracy) is determined by the input instance (e.g.,
which embedding is accessed) and embedding weights, this
implies a potential to identify and retain more important em-
beddings during training to maximize final model accuracy.

3 AdaEmbed Overview
In this paper, we introduce an automated in-training prun-
ing system, AdaEmbed, to adaptively optimize per-feature
embeddings at scale for better model accuracy. Unlike exist-
ing efforts for model pruning, which focus on conventional
models [8,11,20] and/or prune model size when training com-
pletes [32], AdaEmbed automatically identifies and retains
important embeddings for the given embedding size to im-
prove performance while training is ongoing. Our evaluations
in industrial settings show that in addition to saving resource
throughout training, AdaEmbed provides superior model ac-
curacy to its post-training pruning counterparts (§6.4).

AdaEmbed is a complementary system that acts as a shim
layer atop today’s embedding designs (Figure 5). It has a
central coordinator and a set of distributed on-worker agents:

• AdaEmbed Coordinator: It gathers the embedding infor-
mation from agents, determines the global pruning deci-
sion, and orchestrates the agent to enforce the pruning.

AdaEmb Agent

AdaEmb
Coordinator

Worker N

AdaEmb
Agent

1

3a

Training Coordinator

…

]

Memory Manager Emb
Monitor

Lookup Table

Profiler

Metadata

Memory

43b2

Emb weights

Resource
Manager

Engine
Backend

Input data
(e.g., feature N)

Worker 1

AdaEmb
Agent

Engine
Backend

Input data
(e.g., feature 1&2)

Figure 5: AdaEmbed overview and its in-training execution flow.
AdaEmbed components are in red.

• Memory Manager: It is located inside each AdaEmbed
agent and manages the physical memory for today’s em-
bedding designs. At runtime, it receives the pruning deci-
sion from the coordinator and executes pruning on local
embedding weights.

• Embedding Monitor: It resides along with the memory
manager to track embedding importance and reports the
profiling results of the importance to the coordinator.

Figure 6 illustrates the interface of AdaEmbed, which sup-
ports existing DLRM systems in a few lines of code.

1 import AdaEmbed
2
3 def dlrm_model_training():
4 # Wrap existing embedding modules
5 emb_agent = AdaEmbed.create_agent(
6 emb_tables=model.embs , pruning_config=config)
7
8 for _ in range(num_iterations):
9 input_ids = get_next_data_batch()

10
11 # Look up physical embedding address
12 emb_physical_ids = emb_agent.look_up(input_ids)
13 feedback = model.train_step(emb_physical_ids)
14
15 # Update embedding importance with feedback
16 emb_agent.update_importance(input_ids , feedback)

Figure 6: AdaEmb supports existing DLRMs with minor changes.

Training Lifecycle Similar to current DLRM deployments,
1 each worker is in charge of a subset of sparse features,

which is determined by the embedding partition of model
parallelism. The worker processes the input data (i.e., a list of
embedding IDs) of those features. 2 However, the inputs are
first forwarded to AdaEmbed agent to look up the physical ad-
dress of each embedding’s weights (Line 12). 3 The physical
address is then used to fetch the embedding weights for read
and write operations. The rest of model training adheres to ex-
isting designs. 4 After each training iteration, the embedding
monitor updates the embedding importance with the training
feedback (Line 16). Periodically, it samples the importance of
different embedding rows and notifies the coordinator of the
profiling results. The coordinator determines how to prune
embeddings subject to the total embedding size and guides the

4

memory manager to admit and prune embeddings at scale.

4 AdaEmbed Design
Practical DLRMs often contain hundreds of sparse features
and up to billions of embedding rows [13, 50]. They run
across hundreds of GPUs on non-stationary model inputs to
get the desired model execution speed [4, 35]. These lead to
the following challenges toward practical in-training pruning
of embedding rows:

• Heterogeneity: The characteristics of embeddings (e.g.,
data distribution and embedding weights) vary across
instances of the same feature. This, as well as the physical
size of the embedding row, differs across features too.
How to measure which embeddings are important to retain
for better model accuracy (§4.1)?

• Dynamics and Scalability: The importance of individual
embeddings varies over iterations at a sub-second speed.
As such, improving model accuracy requires pruning in
a timely manner to maximize the number of important
embeddings. However, identifying important embeddings
out of billions distributed across hundreds of workers,
and then pruning on terabytes of embedding weights can
lead to large overhead. How to orchestrate pruning un-
der training dynamics (§4.2)? Additionally, how to effi-
ciently enforce pruning on each worker’s memory to avoid
throughout degradation (§4.3)?

• Extensibility: Existing systems are built atop a variety of
embedding designs, such as key-value storage [44, 52] or
highly optimized but fixed-size tensors [2, 3]. How to pro-
vide generic systems support to minimize modifications
to existing DLRM systems (§4.3)?

4.1 Embedding Monitor: Identify Important
Embeddings

Given the embedding size, we aim to trade the less important
embedding rows for the more important ones. This requires us
to consider the importance of each embedding row in terms of
the contribution of its embedding weights to model accuracy,
as well as its physical size. However, determining the opti-
mal pruning strategy during training is challenging. First, the
model output (accuracy) is affected by the complex interplay
between input feature instances (e.g., which item IDs appear)
and their embedding weights. Even with full model informa-
tion after training completes, pruning is still a fundamental
open problem in the ML literature [11, 32]. Second, during
model training, this interplay becomes more intractable be-
cause of the large spatiotemporal variations in the distribution
of model inputs and embedding weights (Figure 7(a)). Worse,
once we prune an embedding’s weight vector, it is difficult
to assess its impact on model accuracy as training moves on.
These challenges are amplified by the need to account for
feature-level heterogeneity too (e.g., different weight vector
sizes across features).

AdaEmbed employs the embedding monitor to capture the

0 25 50
Sampled Embedding ID

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 V
al

ue Weight Norm
Gradient Norm
Access Freq.

(a) Heterogeneous emb. characteristics.0.
01

4 0.
01

8

0.
00

5

0.
02

9

0.
02

6

0.
01
1

0.
02

5 0.
03

2

0.
01

9

0

0.01

0.02

0.03

Model-XS Model-M Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) EmbStore ES w/o Norm ES w/o Group Pruning

Breakdown

0.12
0.18

0.43

0

0.25

0.5

Freq. G-NormPe
ar

so
n

C
or

re
la

tio
n

to
 W

ei
gh

t N
or

m

Freq. x G

Higher is
better

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Target Model Size

0.
02

4

0.
01

60.
01

9

0.
01

5

0.
02

2

0.
01

3

0.
01

4

0.
00

4

0

0.01

0.02

0.03

Model-XS Model-XL

N
E

R
eg

re
ss

io
n

(%
)

w/o reset weight restore
original init zero init initialization

Smaller is
better

AdaEmb AE AE

(b) Pearson analysis.

Figure 7: (a) Embedding gradient and access frequency are hetero-
geneous, (b) while their combination reports a larger correlation
to the embedding weights. A correlation value > 0.4 indicates a
positive and medium to strong association.

embedding importance of individual rows within the feature,
and then extends it to identify important rows across features.

Intra-Feature Embedding Importance For embeddings
of the same feature, we introduce a data- and model-aware
importance metric EI(i) to capture the importance of each
row i to model accuracy. Instead of relying on the embedding
weights that become stale after being pruned, EI(i) is the
runtime combination of access frequency and gradient, i.e.,
EI(i) = f reqt(i)×∥∇gt(i)∥. ∥∇gt(i)∥ is the L2-norm of i’s
gradient in iteration t, and f reqt(i) is the access frequency.
So the embedding with a higher access frequency and a larger
gradient norm is deemed more important. Here, collecting
EI(i) introduces negligible overhead, because the embedding
gradient is already generated during back-propagation of train-
ing regardless of AdaEmbed. Since the gradient is generated
and shared by mini-batch samples [35], the importance of
pruned-but-accessed embeddings will continue to be updated.

Our importance design is motivated by multiple factors:
• Intuitively, the output of sparse feature layers (i.e., pooled

embedding weights) is often derived by taking the sum
or maximum of input embedding weights (§2.1); so we
should retain the embeddings that affect many model in-
puts (i.e., frequently accessed) and that affect model out-
puts more (i.e., larger weights). While we do not have
information about future weights after pruning an em-
bedding, we observe a strong correlation between our
frequency-gradient combined metric and the final embed-
ding weights when training converges (Figure 7). This
is because frequent weight updates with large gradients
typically result in larger weights.

• Theoretically, embedding rows are designed for training
different bins of data instances: each bin holds only one
type of category instance (i.e., a specific ID), and bins can
have different data volumes (i.e., different access frequen-
cies of IDs). Now, we want to select and retain certain
bins (embeddings). This, in concept, is similar to the im-
portance sampling problem in the ML literature [17, 25]:
To improve model convergence by selecting the right bins
to train the model, the optimal solution is to select bin i
with a probability proportional to the aggregate gradients

5

100 103 106

Avg. Freq./ID

0.0

0.5

1.0

CD
F

ac
ro

ss
 F

ea
tu

re
s

(a) Heter. frequency.

0 101 103

Avg. G-Norm/ID

0.0

0.5

1.0

CD
F

ac
ro

ss
 F

ea
tu

re
s

(b) Heter. grad. norms.

0 32 64 96 128
Embedding Dim.

0.0

0.5

1.0

CD
F

ac
ro

ss
 F

ea
tu

re
s

(c) Heter. dimensions.

Figure 8: Magnitudes of embedding access frequencies and gradi-
ents vary across features, making it hard to compare EI(i).

of training all that bin’s data. In our formulation, the train-
ing samples within the same bin are identical, because
they correspond to the same specific ID. Therefore, the
aggregate gradients herein is equivalent to the product of
the number of training samples and the gradient of the
individual sample (i.e., EI(i) = f reqt(i)×∥∇gt(i)∥).

Empirically, our fleet-wide evaluations show that our impor-
tance design outperforms its alternatives (§6.4).

Since the gradient and access frequency can fluctuate
during training (e.g., due to the randomness in sampling
mini-batches), we need to account for these uncertainties
in EI(i). Here, the embedding monitor considers EI(i)t =
f reqt(i)×∥∇gt(i)∥+EI(i)t−1, whereby we reduce uncertain-
ties in individual iterations and only need to update the impor-
tance of accessed embeddings. This is because the importance
of not accessed embeddings remains unchanged as f reqt(i)
= 0. In reality, only a subset of embeddings are accessed, so
we can reduce the overhead significantly (§4.2). Moreover, to
account for the temporal variation, we use a moving average
that decays EI(i) by a factor of 0.8 every T iterations.

Inter-Feature Group Pruning Retaining important em-
beddings subject to the total size naturally leads to a global
pruning design, in which we hope to allocate different em-
bedding sizes to individual features. However, the values of
embedding importance can vary across features by orders of
magnitude. This can be due to features with fewer instances
often having larger average access frequencies per embedding,
and/or different initialization mechanisms of the embedding
weights leading to gradients of different magnitudes (Fig-
ure 8). As such, directly using the intra-feature importance
for comparison across features can result in a large bias, as
embeddings with greater importance values are not necessar-
ily more important than those of other features. Moreover,
as the dimension of embedding vectors of different features
can vary (Figure 8(c)), deciding which embeddings are more
valuable to retain becomes intricate when large embedding
importance and vector size are in conflict.

Because we rely on the relative ranking of importance
to determine pruning (e.g., prune the tail 40% less impor-
tant embeddings), we can tackle the comparison bias across
features using the popular normalization philosophy [16];
i.e., by normalizing each embedding’s importance by that

0

50

100

150

0

20

40

60

10K 100K 1M 10M All

O
ve

rh
ea

d
(m

s)

Er
ro

r(
%

)

Sample Size

Error (%)
Overhead

66
.1
2

7.64
0.24 0.08 0

0

2

4

6

8192 16384 32768 65536
O

pe
ra

tio
n

La
te

nc
y

(m
s)

Batch Size

Address Lookup
Importance Update

0

0.2

0.4

0.6

0.8

0 150 300 450

#_
In

pu
t_

ID
s(

bi
lli

on
)

Training iteration
0

21.1s

0

0.2

1 10 20 30 40 50

#_
In

pu
t_

ID
s(

bi
lli

on
)

Pruning Interval0 0

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Model SizeAv

g.
 E

m
b.

 to
 P

ru
ne

/In
te

rv
al

 (G
B)

85.9
171.8

343.8

679.2

0

200

400

600

800

8192 16384 32768 65536
Batch Size

Av
g.

 #
_I

np
ut

_I
D

s(
m

ill
io

n)
/it

er

(a) Number of accessed IDs.

27
.6

40
.3 45

.8

0

5

10

15

20

0

20

40

60

0.7X 0.5X 0.3X

R
eallocation O

verhead (s)

Target Model Size

Pruning Size
Overhead

9.1

13.6
15.2

Av
g.

 E
m

b.
 to

 P
ru

ne
/It

er
(G

B)

(b) Size of weights to prune.

Figure 9: (a) Each iteration accesses millions of embeddings. (b)
Pruning needs to reallocate a large amount of embedding weights.

feature’s distribution of all embeddings’ importance. This
way, the embedding importance of different features takes
on similar ranges of values, and the more important embed-
dings of each feature are still prioritized because of having
larger relative importance values after normalization. The
embedding monitor normalizes the embedding importance
of each feature by the 95th percentile of its distribution (i.e.,
EI(i)/EI95th(f eature(i))) to avoid outliers.

Next, to account for different weight vector sizes across fea-
tures, AdaEmbed groups features with the same embedding
dimension and then performs global pruning within the fea-
ture group. In reality, DLRMs are configured with only a hand-
ful of distinct embedding dimensions (Figure 8(c)) to reduce
hyper-parameter tuning and/or to achieve better parallelism
(e.g., balancing embedding sharding [35, 52]). This implies a
big opportunity to group many features, which already forms
a large shared embedding size for inter-feature group pruning.
By default, AdaEmbed initializes the per-group embedding
size based on the number of in-group features and the to-
tal embedding size (i.e., num_group_ f eatures×group_ f eature_dim

num_ f eatures×avg_ f eature_dim ×
total_size) to uniformly allocate the space to each dimension.
Note that unused embedding storage will be picked up by
other groups (§4.3). When developers have more advanced
information about features (e.g., feature importance), AdaEm-
bed provides APIs for customizing feature groups and sizes
(§5).

Our evaluations show that with importance normalization
and group pruning, AdaEmbed achieves better resource sav-
ings and model accuracy (§6.3).

4.2 AdaEmbed Coordinator: Prune at Right Time

In real-world DLRM systems, each training iteration involves
updating the importance of millions of embedding rows in
terabyte-sized models (Figure 9(a)). At that scale, orchestrat-
ing hundreds of workers to prune leads to a trade-off between
the pruning overhead and quality. Frequent pruning allows
for better decision quality, i.e., maximizing the number of im-
portant embeddings all the time for potentially better model
accuracy. Yet, pruning can require cleaning up and creating
tens of gigabytes of embedding weights, which can take many
seconds and significantly slow down the sub-second train-
ing iterations (Figure 9(b)). This trade-off becomes more

6

Algorithm 1: Pseudo-code of AdaEmbed runtime
1: weight_table← EmbWeights() ▷ Physical weight tables
2: emb_meta← Init(weight_table) ▷ VHPI metadata
3: pruning_start← false ▷ Enforce pruning or not

4: Function UpdateEmbs(input_ids, feedback):
/* Monitor: Update embedding importance

asynchronously to model training. */
5: UpdateImport(input_ids, feedback)
6: if pruning_start == true then
7: EnforcePruning() ▷ Stall training
8: pruning_start← false

9: Function MonitorImportance(ProfilingInterval ∆):
/* Coordinator: asynchronously inspect big changes on

the importance distribution via profiling across
workers. */

10: last_dist← null
11: while training == true do
12: if mod(current_time, ∆) == 0 then
13: cur_dist← ProfileImportance()
14: pruning_start←Diff(last_dist, cur_dist) > p
15: last_dist← cur_dist

16: Function EnforcePruning():
/* Memory manager: Identify embedding rows to admit

and prune subject to the given embedding size. */
17: admit_emb, evict_emb← IdentifyRecycleEmbs(
18: emb_meta, weight_table.size)

/* Redistribute the lookup mapping from the embedding
ID to the weight vector, whereby admitted embedding
rows can recycle the weight vector of pruned ones. */

19: RedistLookup(emb_meta, admit_emb, evict_emb)

/* Reset embedding weights for admitted embeddings. */
20: weight_table.ResetEmbs(admit_emb)

intractable as a result of training dynamics; e.g., stochastic
gradient descent can introduce large noise to embedding gra-
dients, thus the embedding importance. As such, pruning too
frequently can also be suboptimal (§6.4).

To find the sweet spot between pruning overhead and qual-
ity, AdaEmbed Coordinator decides the right time to prune to
reduce the number of pruning rounds needed, and instructs
the memory manager to minimize the overhead in each prun-
ing round when pruning embedding weights (§4.3). Algo-
rithm 1 outlines how AdaEmbed Coordinator orchestrates
efficient embedding pruning. The embedding monitor updates
the importance of accessed embeddings after each training
iteration (Line 4), and periodically profiles embedding impor-
tance (Line 9). The results of the profiling will be sent to the
coordinator. In the event of big changes in the importance
distribution, the coordinator initiates a new pruning round and
notifies the memory manager of the pruning decision (Line 9).
The memory manager on each worker then executes pruning
and admits new embedding weights at scale (Line 16).

0

50

100

150

0

20

40

60

10K 100K 1M 10M All

O
verhead (m

s)Er
ro

r
(%

)

Sample Size

Error (%)
Overhead

0.08 0

21.1s

66
.1
2

118 ms

Figure 10: Profiling can get accurate results with little overhead.

Intuitively, pruning cares about the importance ranking
of individual embeddings instead of their dynamic impor-
tance. Therefore, AdaEmbed coordinator relies on the im-
portance distribution of all embeddings again, and initiates
pruning if the importance distribution has changed greatly
since the last pruning round. To effectively gather the im-
portance distribution across hundreds of machines, each lo-
cal agent samples a small portion, P, of embedding impor-
tance values on that agent. The coordinator then can esti-
mate how many embeddings have crossed the pruning bound-
ary, i.e., the number of embedding rows whose importance
ranking has fallen below or risen above the Xth percentile
of the distribution since the last pruning round. Xth is the
cut-off importance boundary determined by the size limit
(i.e., ∑emb∈top_Xth size(emb)< total_size), and the agent will
prune the weight vector of the embeddings whose importance
value is smaller than the cut-off importance.

As shown in Figure 10, while more samples, P, allow for
a more precise estimate of Xth importance, this will also in-
crease the coordination overhead, such as in collecting im-
portance distributed across hundreds of machines and then
computing distribution changes. In fact, we can use the con-
centration theorem in the probability sampling [47] to decide
the right number of samples.1 This gives us∼ 5M embedding
rows out of billions to sample on each machine, in order to
ensure a deviation from the global ground truth of less than
1%. In addition to having a smaller computation overhead,
this results in negligible network traffic, 5M× 4bytes ∼ 20
megabytes as EI(i) is a 4-byte float, over tens of Gbps network
to the coordinator. As suggested by today’s data validation
systems [7, 33], we consider a big change to have occurred
and initiate pruning when more than c =5% of the total em-
beddings cross the boundary (i.e., we need to prune and admit
more than c% embeddings), and issue this lightweight pro-
filing per minute. This avoids the large overhead caused by
pruning in each training iteration, while ensuring that the cur-
rent embedding allocation is at most c% worse than what we
can achieve through pruning in each iteration. We show that
profiling achieves a small deviation and little overhead (i.e.,
the 5M sample size in Figure 10).

Convergence Analysis As described in §4.1, our design of
embedding importance draws inspiration from importance

1The minimum number of samples P needed to ensure Pr[|X̄−E[X̄]|<
ε]> δ is P = (Xmax−Xmin)

2 ln(2/δ)

2ε2 for the distribution of variable X . E[X̄], Xmax
and Xmin are the expectation, maximum and minimum of X , respectively.

7

Lookup Table
(has more entries
than weight table)

physical address
(e.g., 0x08)

Emb IDs
to prune

0x08
Emb IDs
to admit

Address Stack
(recycles weigh

physical address)

…

Retained Emb Pruned Emb Dummy Weights

emb importance
(e.g., 0.12)

Shared Weight Table
(same as existing embs)

1 Address lookup Reclaim Address2

Link Address 3

Figure 11: VHPI employs lookup table to link each embedding to
the weight vector, and recycles the vector of pruned embeddings
without intense memory allocation.

sampling, which has been shown in ML theory [17, 25, 31]
for its ability to reduce gradient variance and accelerate train-
ing convergence. Empirically, our extensive evaluations us-
ing months of real-world data and models demonstrate that
AdaEmbed consistently improves model accuracy by prun-
ing at the right time, as opposed to pruning too frequently or
infrequently (§6.4).

4.3 Memory Manager: Prune Weights at Scale

As the reallocation of embedding weights is hundreds of times
slower than each training iteration (Figure 9(b)), reducing the
number of pruning rounds needed is still far from achieving
negligible overhead in practice (§6.2). To avoid intense mem-
ory reallocation, the memory manager of AdaEmbed employs
a Virtually Hashed Physically Indexed (VHPI) design to de-
couple the management of embeddings from their physical
weight vectors, whereby AdaEmbed can recycle the weight
vectors of different embeddings to enable efficient pruning
for a variety of existing embedding designs.

VHPI primarily consists of two parts (Figure 11):
• Lookup table: It stores the metadata information of each

embedding instance, including the embedding importance
(a float32), and the physical address (a int64) to that
embedding’s weight vector. Compared to the weight vec-
tor, often a vector of 128 float, this payload information
introduces a negligible memory footprint (3

128 ∼ 2%).
• Weight table: It is a monolithic physical table for embed-

ding weight vectors. It remains the same as the embedding
table of today’s DLRM systems, but it is shared across
features under the orchestration of the memory manager.

Weights vectors of the pruned embeddings are not retained,
while the metadata of all embeddings is always maintained in
the lookup table. So the lookup table can include more entries
(i.e., embedding IDs) than the weight table. This allows us
to adaptively determine the link between embeddings and
weight vectors to recycle weight vectors. Moreover, this can
improve model accuracy by reducing hash collision (§6.4),
as we can make the lookup table very large to accommodate

0.12
0.18

0.43

0

0.25

0.5

Freq. G-NormPe
ar

so
n

C
or

re
la

tio
n

to
 W

ei
gh

t N
or

m

Freq. x G

Higher is
better

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Target Model Size

0.
02

4

0.
01

6

0.
01

9

0.
01

50.
02

2

0.
01

3

0.
01

4

0.
00

4

0

0.01

0.02

0.03

Model-XS Model-XL

N
E

R
eg

re
ss

io
n

(%
)

W/o Reset

Weight Restore

Original Init

Zero Init

initialization

Smaller is better

Figure 12: Zero initialization performs better (0.5× model).

many embedding entries without expanding the weight table.
The memory manager performs two primitive operations

for weight pruning at runtime (Figure 11):
• Address lookup: It looks up the physical weight address

for each embedding ID to access its embedding weights.
1 If that embedding row is pruned, to avoid breaking

existing designs (e.g., missing weights due to pruning),
lookup returns a shared physical address that points to a
weights vector containing constant zeros. Access to this
dummy vector will be folded on the execution backend
due to the same entry, reducing redundant execution.

• Weight allocation: It executes the pruning decision to
prune and admit embeddings. 2 To prune an embed-
ding row, VHPI first de-links and reclaims the current
physical address of that embedding’s weight. It then sets
the address of the pruned embedding’s lookup entry to
the address of the shared dummy vector, redirecting the
future access. 3 To admit an embedding, VHPI pops
an available physical address and links this address with
the lookup entry, thereby recycling the physical memory.
Meanwhile, the memory manager resets the weight vector
values to clean up the previously pruned weight state.

However, it is not straightforward to reset (i.e., reinitialize)
the weight values for admitted embeddings, because the model
herein is partially trained and the values of embedding weights
already differ by orders of magnitude (Figure 7(a)). Improper
initialization (e.g., random initialization) can introduce a large
amount of noise to the retained embeddings. Eventually, this
will hurt model accuracy, especially considering the noise
from millions of admitted embeddings in each pruning round.

Here, we investigated four popular strategies to reset weight
vectors (Figure 12): (1) w/o reset: inherit the weights of
pruned embeddings without resetting them; (2) weight re-
store: evict previously pruned weights to extra storage (e.g.,
disk) and reinstate the weights when that embedding is re-
claimed; (3) original initialization: randomly initialize em-
bedding weights as at the start of training; and (4) zero ini-
tialization: reset embedding weights to zeros. Intuitively, the
restored weights will become too stale since they were pruned
(often thousands of iterations ago). Original initialization and
w/o reset can introduce large noise, as the weights have al-
ready been of differing magnitudes. Here, we advocate reset-
ting the weight vector values to zeros, as this can avoid large
noise while allowing the admitted embedding to learn from
scratch. Indeed, our real-world evaluations report that zero
initialization outperforms its alternatives (Figure 12).

8

0

50

100

150

0

20

40

60

10K 100K 1M 10M All

O
verhead (m

s)

Er
ro

r(
%

)

Sample Size

Error (%)
Overhead

66
.1
2

7.64
0.24 0.08 0

0

2

4

6

8192 16384 32768 65536

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Batch Size

Address Lookup
Importance Update

0

0.2

0.4

0.6

0.8

0 150 300 450

#_
In

pu
t_

ID
s(

bi
lli

on
)

Training iteration
0

21.1s

0 0

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Target Model SizeAv

g.
 E

m
b.

 to
 P

ru
ne

/In
te

rv
al

 (G
B)

85.9
171.8

343.8

679.2

0

200

400

600

800

8192 16384 32768 65536
Batch Size

Av
g.

 #
_I

np
ut

_I
D

s(
m

ill
io

n)
/it

er
117

162
175

0

50

100

150

200

0.7X 0.5X 0.3X
Target Model Size

O
ve

rh
ea

d
of

 P
ru

ni
ng

 O
pt

(m
s)

(a) Control-plane overhead.

0

50

100

150

0

20

40

60

10K 100K 1M 10M All

O
ve

rh
ea

d
(m

s)

Er
ro

r(
%

)

Sample Size

Error (%)
Overhead

66
.1
2

7.64
0.24 0.08 0

0

2

4

6

8192 16384 32768 65536

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Batch Size

Address Lookup
Importance Update

0

0.2

0.4

0.6

0.8

0 150 300 450

#_
In

pu
t_

ID
s(

bi
lli

on
)

Training iteration
0

21.1s

0 0

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Target Model SizeAv

g.
 E

m
b.

 to
 P

ru
ne

/In
te

rv
al

 (G
B)

85.9
171.8

343.8

679.2

0

200

400

600

800

8192 16384 32768 65536
Batch Size

Av
g.

 #
_I

np
ut

_I
D

s(
m

ill
io

n)
/it

er

117

162
175

0

50

100

150

200

0.7X 0.5X 0.3X
Target Model Size

O
ve

rh
ea

d
of

 P
ru

ni
ng

 O
pt

(m
s)

(b) Data-plane overhead.

Figure 13: VHPI operations introduce little overhead.

Overhead Analysis Among all the operations involved in
VHPI, address lookup and importance update to the lookup ta-
ble take place every iteration and consume a few milliseconds
(Figure 13(a)). Weight pruning to the weight table consumes
a few hundred milliseconds (Figure 13(b)), but it occurs every
hundreds of iterations. Overall, these operations lead to little
end-to-end overhead in large-scale deployments (§6.2).

5 Implementation
We implemented a system prototype of AdaEmbed to support
distributed DLRM deployment across GPUs. Our implemen-
tation requires minor changes to existing DLRM systems.

AdaEmbed Backend AdaEmbed backend is implemented
as GPU operators for fast execution. The VHPI metadata (e.g.,
embedding importance and weight address) are hosted on
GPUs to process embeddings in parallel. The address lookup
and importance update operations require no change to exist-
ing DLRM systems. As we need to reset the weight vector,
the weight allocation operation requires existing frameworks
to expose an API to access their weight table, but this requires
a few lines of code change. The local agent interacts with the
coordinator via TCP connections.

Fault Tolerance As a shim layer, AdaEmbed can be inte-
grated into existing DLRM checkpoints by adding its state
information to the model state. This not only minimizes the
modification to existing designs, but also ensures that the
saved AdaEmbed state conforms to the embedding weights
at that time. When training is resumed, the model reloads
the checkpoint, which restores the AdaEmbed state too. At
runtime, AdaEmbed runs a lightweight daemon to back up
VHPI metadata after each pruning round, and to resume its
components if the current instances crash.

Interfaces AdaEmbed exposes Python APIs as the frontend
(Figure 6), and it can also take json as input (Figure 14).

6 Evaluation
We evaluate AdaEmbed in real-world DLRM systems across
hundreds of GPUs. Our evaluation results on different indus-
trial models and months of data are summarized as follows:

• AdaEmbed can reduce 35-60% embedding size and im-
prove model execution speed by 11-34% without compro-
mising model accuracy (§6.2).

1 "adaembed_configs": {
2 "total_emb_size": "1 TB",// Total embedding size
3 "feature_configs": {
4 "default_group": {...},
5 "group_1": { // Features to use group pruning
6 "features": ["feature1", ...],
7 "total_emb_size": "200 GB",
8 } ... // Other feature groups
9 }

10 }

Figure 14: Example embedding configuration in AdaEmbed.

• AdaEmbed can reduce manual efforts by automatically
finding better per-feature embeddings, achieving notice-
able accuracy improvements (§6.2-§6.3);

• AdaEmbed improves performance over a wide range of
settings and outperforms its design counterparts (§6.4);

6.1 Methodology

Experimental setup We use models and data from industry
DLRM systems in the evaluation. Table 1 depicts high-level
statistics of the model. They span different scales and rec-
ommendation tasks, including click-through rate prediction
and ranking. We train each model on 14 days’ data to obtain
the model lifetime NE, which indicates the cumulative model
accuracy throughout training, and then test the model on the
15th day’s data to get the evaluation NE. Each day has many
terabytes of data input.

The training batch size of each model is 65536, requiring
tens of GPU nodes for the desired QPS. Each GPU node has
8 A100 GPUs with 40 GB of GPU memory. The GPUs are
interconnected using 200 Gbps RoCE NICs.

Baselines To the best of our knowledge, AdaEmbed is the
first system to support in-training embedding pruning, and is
complementary to existing DLRM efforts. Our evaluations
cover two primary baselines: (i) w/o AdaEmbed: an industry
DLRM system without AdaEmbed support. Based on the ac-
cess frequency of embedding rows in previous days, rows that
are less frequently accessed are removed before training starts.
This generates a pruned model derived from the full model;
and (ii) different variants of AdaEmbed with changes in the
pruning algorithm (§6.4). Here, we focus on the performance
improvement of the w/ AdaEmbed setup, i.e., the setup using
AdaEmbed.

Metrics We care about the (i) memory saving to achieve
the same model accuracy as with the full model (i.e., without
NE regression)2, because we want to minimize the embed-
ding size for better model throughput and resource savings in
deployment; (ii) NE gain that we can achieve using the same
embedding size, since it not only minimizes manual efforts
in configuring DLRM embeddings, but also implies higher
revenues; and (iii) overhead that AdaEmbed introduces in
model execution speed (i.e., QPS).

2A smaller Normalized Entropy (NE) loss indicates better model accuracy.

9

Model
of Sparse Features Raw Emb Size

of GPUs
w/ Same Model NE w/ Same Emb Size

(Approximate Value) (Approximate Value) Memory Saving QPS Speedup Avg. NE Gain (%) QPS Overhead

Model-XS 1000 200 GB 32 ≈ 35% 1.1× 0.015 0.4%

Model-S 600 350 GB 32 ≈ 45% 1.2× 0.018 0.2%

Model-M 1000 1 TB 64 ≈ 40% 1.2× 0.028 1.6%

Model-L 1000 1.1 TB 64 ≈ 55% 1.3× 0.021 1.3%

Model-XL 800 1.5 TB 128 ≈ 60% 1.3× 0.026 1.1%

Table 1: Summary of improvements. AdaEmbed reduces the embedding size needed for the same model accuracy (NE), while improving
NE using the same embedding size. We report the approximate memory saving, since evaluating all memory settings is unaffordable.

6.2 End-to-End Performance

Table 1 summarizes the key memory saving, NE gain, and
overhead of five models at different scales. Meanwhile, Fig-
ure 16 zooms into three representative models and reports
their performance under different target embedding sizes. In
our evaluations, NE regression measures the accuracy loss
w.r.t. the full model (i.e., 1× model), and any > 0.02% NE
gap is considered to be significant [13, 30, 52].

AdaEmbed cuts resource needs and improves QPS We
first evaluate how many embedding sizes we can reduce with-
out sacrificing model NE. Yet, evaluating all embedding sizes
to get accurate memory saving is unaffordable because train-
ing with each setup takes thousands of GPU hours. So, we
enumerate 0.7× (i.e., cut the embedding size by 30%), 0.6×,
0.5×, 0.4×, and 0.3× of the full model size to approximate
this embedding saving with no accuracy drop. Table 1 re-
ports that (i) AdaEmbed reduces the model embedding size
by 35-60% with no reduction in model accuracy. This implies
that we can reduce the machine usage by nearly the same
amount (e.g., using 50% fewer GPUs); (ii) the resource sav-
ings are more encouraging for large models (e.g., Model-XL
vs. Model-XS). One reason behind this is that large models
provide gigantic GPU memory for AdaEmbed to reallocate
embeddings via inter-feature group pruning (§6.3); and (iii)
alternatively, reducing the fundamental embedding size pro-
vides 1.1-1.3× faster model execution speed (i.e., QPS) when
running the model on the same machines.

AdaEmbed achieves better NE under the same size Fig-
ure 16 illustrates that with AdaEmbed, models can achieve
0.011-0.077% better NE using the same embedding size. We
notice that (i) AdaEmbed achieves consistently better NE
across models and under different target embedding sizes
than the baseline; (ii) we can achieve NE gains with smaller
embedding sizes (e.g., 0.7× models) even when compared to
the full model. This is because AdaEmbed can automatically
learn better per-feature embeddings, like the size and which
embeddings to retain. Meanwhile, pruning less important em-
beddings can reduce model overfitting, thereby improving
model generalization (accuracy) [6]; and (iii) the lifetime NE

0.
00

3

0.
01

6 0.
04

8

0.
03

6

0.
07

4

0.
13

1

0

0.04

0.08

0.12

0.7X 0.5X 0.3X

Li
fe

tim
e

N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

-0
.0
05 0.
01

4

0.
04

7

0.
02

8

0.
05

9

-0.02

0.01

0.04

0.07

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

0.
00

6

SNN-model

Lower is better Lower is better

AdaEmbed
AdaEmbed

AdaEmbed
AdaEmbed

(a) Model-XS (Lifetime NE).
0.
00

3

0.
01

6 0.
04

8

0.
03

6

0.
07

4

0.
13

1

0

0.04

0.08

0.12

0.7X 0.5X 0.3X
Li

fe
tim

e
N

E
R

eg
re

ss
io

n
(%

)

Target Model Size

w/ EmbStore
w/o EmbStore

-0
.0
05 0.
01

4

0.
04

7

0.
02

8

0.
05

9

-0.02

0.01

0.04

0.07

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

0.
00

6

SNN-model

Lower is better Lower is better

AdaEmbed
AdaEmbed

AdaEmbed
AdaEmbed

(b) Model-XS (Eval NE).MTML

-0
.0
13

0.
00

2 0.
03

1

0.
03

2

0.
06

6

0.
10

8
-0.02

0.02

0.06

0.1

0.7X 0.5X 0.3X

Li
fe

tim
e

N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

-0
.0
11

0.
01

8

0.
05

1

0.
02

6

0.
06

7

0.
11

9

-0.02

0.02

0.06

0.1

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

AdaEmbed
AdaEmbed

AdaEmbed
AdaEmbed

(c) Model-M (Lifetime NE).

MTML
-0
.0
13

0.
00

2 0.
03

1

0.
03

2

0.
06

6

0.
10

8

-0.02

0.02

0.06

0.1

0.7X 0.5X 0.3X

Li
fe

tim
e

N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

-0
.0
11

0.
01

8

0.
05

1

0.
02

6

0.
06

7

0.
11

9

-0.02

0.02

0.06

0.1

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

AdaEmbed
AdaEmbed

AdaEmbed
AdaEmbed

(d) Model-M (Eval NE).

0.
00

1

0.
00

9 0.
01

7

0.
01

3

0.
02

7

0.
04

2

0

0.02

0.04

0.7X 0.5X 0.3X

Tr
ai

n
N

E
R

eg
re

ss
io

n
(%

)

Target Model Size

EmbStore
Baseline

-0
.0
14 0.
00

5 0.
01

80.
03

1

0.
04

9

-0.02

0.01

0.04

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

EmbStore
Baseline

0.
02

3

CTR

w/ AdaEmbed
w/o AdaEmbed w/ AdaEmbed

w/o AdaEmbed

(e) Model-XL (Lifetime NE).

0.
00

1

0.
00

9 0.
01

7

0.
01

3

0.
02

7

0.
04

2

0

0.02

0.04

0.7X 0.5X 0.3X

Tr
ai

n
N

E
R

eg
re

ss
io

n
(%

)

Target Model Size

EmbStore
Baseline

-0
.0
14 0.
00

5 0.
01

80.
03

1

0.
04

9
-0.02

0.01

0.04

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

EmbStore
Baseline

0.
02

3

CTR

w/ AdaEmbed
w/o AdaEmbed w/ AdaEmbed

w/o AdaEmbed

(f) Model-XL (Eval NE).

Figure 16: AdaEmbed achieves better lifetime NE and evaluation
NE. Better lifetime NE implies potentially better model accuracy
for online learning deployment, while better evaluation NE indi-
cates better accuracy after offline training (i.e., prior to launching
online training). Both NEs are important metrics.

gain is more prominent than that of the evaluation NE, because
the former is closer to the online deployment (i.e., retraining
on real-time data), where AdaEmbed is able to adapt to the
latest data distribution.

AdaEmbed introduces negligible overhead As shown in
Table 1, compared to the same-size model in the baseline,

10

AE
AE AE

AE

(a) Model-XS

AE
AE

AE
AE

(b) Model-M

AE
AE

AE
AE

(c) Model-XL

Figure 15: Models with AdaEmbed achieve consistently better NE over time. Troughs are due to data distribution shifting over days.

AE

(a) Model-XS (norm. value)

AE

(b) Model-XL (norm. value)

Figure 17: For the same NE w.r.t. 1× model, AdaEmbed learns
better per-feature embedding configuration using smaller size.

AdaEmbed introduces negligible (< 2%) QPS overhead across
scales of the deployment (e.g., from 32 to 128 GPUs and 200
GB to 1.5 TB models), because (i) AdaEmbed largely paral-
lelizes operations (e.g., asynchronous importance update and
multi-threading); (ii) coordinator selectively initiates pruning
rounds; and (iii) the memory manager introduces VHPI to
avoid intense reallocation of the physical weight. Note that
the memory overhead is ∼2% as AdaEmbed introduces only
two small buffers (i.e., the lookup address and embedding
importance) in VHPI lookup table (§4.3).

6.3 Performance Breakdown

We next break down AdaEmbed performance by time, the
characteristics of sparse features, and design components.

Breakdown by Time Figure 15 breaks down model NE
by time, with each data point on the line representing the
moving average of the NE over hourly data (i.e., window NE
regression). The training encompasses 14 days of data. We
observe that with AdaEmbed, we can achieve consistently
small NE regression than the baseline over time.

Moreover, we notice that this NE regression exhibits di-
urnal variation (e.g., in Model-XS and Model-M). This is
because the data distribution (e.g., user preference) of recom-
mendation tasks can change drastically over days. As such,
at the beginning of training on a new day’s data, the smaller
model (e.g., 0.3× model) will experience a larger NE regres-
sion as it has less space to accommodate new embedding IDs.
However, as the model gradually adapts to the new distribu-
tion, this regression tones down. We note that AdaEmbed
experiences less NE fluctuation due to its ability to identify

AE

(a) AE learns per-feature config.

Emb-breakdown

Pe
r-F

ea
tu

re
 A

vg
. E

m
b

Im
po

rt.

(b) AE gathers larger importance.

Figure 18: For the same size (0.5× model), AdaEmbed retains
more important embeddings to achieve better NE (Model-XS).

0.
01

4 0.
01

8

0.
00

5

0.
02

9

0.
02

6

0.
01
1

0.
02

5 0.
03

2

0.
01

9

0

0.01

0.02

0.03

Model-XS Model-M Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) EmbStore ES w/o Norm ES w/o Group Pruning

Breakdown

AdaEmb AE AE

Figure 19: Performance breakdown of AdaEmbed (AE) design.

and retain important embeddings on the fly.

Breakdown by Embedding Features We next investigate
whether AdaEmbed can reduce manual efforts by learning to
use better embedding configurations. First, in achieving the
same NE as the 1× model, AdaEmbed learns to use smaller
embeddings for many features (Figure 17). Moreover, using
the same embedding size w.r.t. the 0.5× model, AdaEmbed
gathers larger average embedding importance on each feature
than the handcrafted setup (Figure 18), implying that more
important embeddings are retained under the same total size.
More importantly, we notice that (i) our group pruning shares
similar preferences to the handcrafted configuration. Specifi-
cally, AdaEmbed tends to allocate more embeddings to those
features that the model expert also values highly. However, (ii)
some features are allocated fewer embeddings but AdaEmbed
eventually achieves better NE, indicating that AdaEmbed can
automatically find better embedding configurations.

Breakdown by Components We break down our design
into two variants (i) (AdaEmbed w/o Norm): disable impor-
tance normalization in group pruning; and (ii) (AdaEmbed

11

Different pruning interval
0.
02

3

0.
01

1

0.
03

7

0.
01

7

0.
01

4

0.
00

5

0

0.01

0.02

0.03

0.04

Model-XS Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) One-minute data

One-day data
ES probingAdaEmbed Profiling

(a) Impact of pruning interval.

Different pruning interval

0.
02

3

0.
01

1

0.
03

7

0.
01

7

0.
01

4

0.
00

5

0

0.01

0.02

0.03

0.04

Model-XS Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) One-minute data

One-day data
ES probingAdaEmbed Profiling

Pruning performance (Training NE)

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

-0.03

0

0.03

0.06

0.7X 0.5X 0.3X

07/01-07/10
07/14-07/24
07/30-08/08

0.
04

1

0.
03

3

0.
03

7

0.
00

2

-0
.0

05

0.
00

8

-0
.0

14

-0
.0

19

-0
.0

21

Target Model Size

(b) Impact of dataset.

Figure 20: AdaEmbed achieves improvement across settings.

Different emb importance

0.
02

8

0.
01

4

0.
03

8

0.
01

9

0.
01

4

0.
00

5

0

0.01

0.02

0.03

0.04

Model-XS Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Frequency

Gradient

EmbStoreAdaEmbed

Figure 21: AdaEmbed outper-
forms importance alternatives.

-0.016

0.008

0.036

-0.019

-0.005

0.033

-0.014

0.002

0.041

-0.03

-0.01

0.01

0.03

0.05

30% 50% 70%

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) 07/01-07/10

07/14-07/24

-0.02

-0.01

0

0.01

0.02

0.7X 0.6X 0.5X 0.4X
Model Size

EmbStore
PTP

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Model-S Model-L
Zero out Reload Collision

AdaEmb

Figure 22: AE outperforms
post-training pruning (PTP).

w/o Group): completely disable group pruning, so the per-
feature embedding size is resized to X% of the full model. We
notice that both normalization and group pruning contribute
to better NE (Figure 19). This is because (i) group pruning
allows greater flexibility to resize the per-feature embedding
using the shared gigantic weight table; and (ii) importance
normalization helps to reduce the inter-feature heterogeneity
by prioritizing important embeddings of each feature when
comparing embedding importance globally.

6.4 Sensitivity and Ablation Studies

Impact of pruning frequency AdaEmbed Coordinator ini-
tiates a pruning round when the importance distribution rad-
ically changes. Next, we evaluate the impact of pruning fre-
quency by deterministically enforcing pruning after training
every-minute (∼ 50 training iterations) and every-day data (∼
70K training iterations). Figure 20(a) reports that pruning too
frequently and infrequently (i.e., pruning every one-minute
and one-day data) both lead to suboptimal NE. The former is
due to large training noise affecting instantaneous embedding
importance, while the latter is due to AdaEmbed missing to
admit important embeddings in a timely manner. Instead, the
selective pruning of AdaEmbed achieves better performance
by relying on the overall importance distribution at runtime.

Impact of different data Figure 20(b) reports the NE per-
formance of model-S on three distinct datasets. Each training
spans 10 days’ training data, and we report the evaluation NE
on the data of day 11. While the NE gain varies slightly as the
data distribution varies across dates, AdaEmbed consistently
achieves 50% memory savings with no NE regression.

Alternatives of embedding importance We next experi-
ment with different embedding importance designs in training
10 days’ data. Here, we consider using the frequency, gra-
dient, and their combination (i.e., AdaEmbed design) as the
embedding importance. We notice our frequency-gradient
combination outperforms the alternatives. We note that this
is consistent with the results of our Pearson analysis too, i.e.,
their combination has a stronger correlation to final embed-
ding weights (Figure 8(b)). Instead, the access frequency and
gradient only consider the data distribution and model char-
acteristics, respectively, while DLRM accuracy depends on
both aspects.

In-training vs. post-training pruning We compare
AdaEmbed to its post-training pruning (PTP) counterpart
like [20]. After model training is complete, PTP reduces the
embedding size by pruning less important embeddings, as
measured by our importance design. In fact, deploying PTP
in real is often impractical (e.g., due to the need for online
learning), and cannot achieve memory savings and/or QPS
improvement during model training. Moreover, Figure 22 re-
ports that AdaEmbed (i.e., in-training embedding pruning)
can achieve better NE than PTP under the same embedding
size, as the in-training design can adapt to the model perfor-
mance at runtime and continuously optimize embeddings.

7 Related Work
Deep Learning Recommendation Systems Existing sys-
tems primarily focus on accelerating DLRM execution.
NEO [18] co-optimizes embedding sharding and data par-
allelism. AIBox [52] and HierPS [51] overlap training execu-
tion on CPUs (using solid-state drives) and GPUs. Ekko [39]
accelerates DLRM training over wide-area networks. TT-
Rec [48] replaces embedding tables with matrix products
to reduce memory footprints. Check-N-Run [13] reduces the
bandwidth consumption for model checkpoints. Fleche [44]
and Kraken [45] share the idea of sharing the weight table
across features, but they focus on caching frequently accessed
embeddings. AdaEmbed goes one step further by identifying
the heterogeneous embedding importance to improve model
accuracy during model training.

Optimizations for Deep Learning Recent ML advances
have proposed various innovations for deep learning.
TASO [23] and PET [41] perform tensor optimizations
to improve model computation. Superneurons [42] and
PipeSwitch [5] optimize instantaneous GPU memory by
prefetching model layers based on their computation or-
der. Similarly, ByteScheduler [37] and BytePS [24] accel-
erate the communication of distributed DNN training. Model-
Keeper [28] warms up model training to reduce the amount
of training execution needed. Egeria [43] adaptively freezes
the training of model layers and bypasses their computation.
These existing works focus primarily on conventional models,
whereas DLRM models are often bottlenecked by memory-

12

intensive embeddings. Moreover, AdaEmbed is complemen-
tary to these efforts as AdaEmbed can further improve their
optimized DLRM models.

Model Pruning Model pruning has been extensively stud-
ied to reduce model computation during training [11, 32], or
to generate smaller models after training completes [8, 38].
Importance sampling [17,29] performs weighted sampling on
training data to achieve faster training convergence. Existing
pruning systems and theories primarily focus on conventional
CV and/or NLP counterparts by pruning only the dense lay-
ers [12, 20, 36]. However, in DLRMs, the gigantic embedding
tables have become the bottleneck. This difference introduces
novel challenges since the dense layers and embedding ta-
bles are distinct components with unique characteristics. For
instance, dense layers are shared and accessed by all input
samples, whereas each embedding row corresponds to a spe-
cific feature instance and is only accessed by it, leading to the
heterogeneous importance of embeddings. Therefore, existing
solutions are ill-suited for DLRMs.

8 Conclusion
This paper introduces AdaEmbed, an in-training embedding
pruning system for better DLRM accuracy. AdaEmbed identi-
fies embedding rows with larger importance to model accu-
racy, and then adaptively prunes less important embeddings to
cap the total embedding size at scale. Our evaluations demon-
strate that AdaEmbed can reduce manual efforts by automati-
cally learning to use better per-feature embeddings, whereby
it saves 35-60% embedding size needed in deployment, and
achieves noticeable improvements on model accuracy and
model execution speed.

Acknowledgments
We thank our shepherd, Deepak Narayanan, and the anony-
mous reviewers for their insightful feedback that significantly
improved the final paper. This work was supported in part by
NSF grants CNS-1909067, CNS-1900665, and CNS-2106184.

References
[1] HugeCTR: a high efficiency GPU framework designed

for Click-Through-Rate (CTR) estimating training.
https://developer.nvidia.com/nvidia-merlin/
hugectr.

[2] TensorFlow. https://www.tensorflow.org/.

[3] TorchRec. https://github.com/pytorch/
torchrec.

[4] Saurabh Agarwal, Ziyi Zhang, and Shivaram Venkatara-
man. Bagpipe: Accelerating deep recommendation
model training. arXiv preprint arXiv:2202.12429, 2022.

[5] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.
Pipeswitch: Fast pipelined context switching for deep

learning applications. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 499–514. USENIX Association, November
2020.

[6] Brian R. Bartoldson, Ari S. Morcos, Adrian Barbu, and
Gordon Erlebacher. The generalization-stability tradeoff
in neural network pruning. In NeurIPS, 2020.

[7] Eric Breck, Marty Zinkevich, Neoklis Polyzotis, Steven
Whang, and Sudip Roy. Data validation for machine
learning. In SysML, 2019.

[8] Shih–Kang Chao, Zhanyu Wang, Yue Xing, and Guang
Cheng. Directional pruning of deep neural networks. In
NeurIPS, 2020.

[9] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,
Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu,
and Hemal Shah. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems, DLRS 2016,
page 7–10, New York, NY, USA, 2016. Association for
Computing Machinery.

[10] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Rec-
Sys, 2016.

[11] Xiaocong Du, Bhargav Bhushanam, Jiecao Yu, Dhruv
Choudhary, Tianxiang Gao, Sherman Wong, Louis Feng,
Jongsoo Park, Yu Cao, and Arun Kejariwal. Alternate
model growth and pruning for efficient training of rec-
ommendation systems. In arxiv.org/abs/2105.01064,
2021.

[12] Xiaocong Du, Bhargav Bhushanam, Jiecao Yu, Dhruv
Choudhary, Tianxiang Gao, Sherman Wong, Louis Feng,
Jongsoo Park, Yu Cao, and Arun Kejariwal. Alternate
model growth and pruning for efficient training of rec-
ommendation systems. In 2021 20th IEEE Interna-
tional Conference on Machine Learning and Applica-
tions (ICMLA), 2021.

[13] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram,
Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Kr-
ishnakumar Nair, Misha Smelyanskiy, and Murali An-
navaram. Check-n-run: a checkpointing system for train-
ing deep learning recommendation models. In NSDI,
2022.

[14] A.A. Ginart, Maxim Naumov, Dheevatsa Mudigere,
Jiyan Yang, and James Zou. Mixed dimension embed-
dings with application to memory-efficient recommen-
dation systems. In ISIT, 2021.

13

https://developer.nvidia.com/nvidia-merlin/hugectr
https://developer.nvidia.com/nvidia-merlin/hugectr
https://www.tensorflow.org/
https://github.com/pytorch/torchrec
https://github.com/pytorch/torchrec

[15] Carlos A. Gomez-Uribe and Neil Hunt. The netflix
recommender system: Algorithms, business value, and
innovation. ACM Trans. Manage. Inf. Syst., 6(4), De-
cember 2016.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. 2016.

[17] Siddharth Gopal. Adaptive sampling for sgd by exploit-
ing side information. In ICML, 2016.

[18] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, and et al. The architectural implications of
facebook’s dnn-based personalized recommendation. In
HPCA, 2020.

[19] Vipul Gupta, Dhruv Choudhary, Peter Tang, Xiaohan
Wei, Xing Wang, Yuzhen Huang, Arun Kejariwal, Kan-
nan Ramchandran, and Michael W. Mahoney. Train-
ing recommender systems at scale: Communication-
efficient model and data parallelism. KDD, 2021.

[20] Song Han, Jeff Pool, John Tran, and William J. Dally.
Learning both weights and connections for efficient neu-
ral networks. In NIPS, 2015.

[21] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, and et al. Applied machine learning at face-
book: A datacenter infrastructure perspective. In HPCA,
2018.

[22] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu,
Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich,
Stuart Bowers, and Joaquin Quiñonero Candela. Prac-
tical lessons from predicting clicks on ads at facebook.
In Proceedings of the Eighth International Workshop
on Data Mining for Online Advertising, ADKDD’14.
Association for Computing Machinery, 2014.

[23] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Optimiz-
ing deep learning computation with automatic genera-
tion of graph substitutions. In SOSP, 2019.

[24] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
gpu/cpu clusters. In OSDI, 2020.

[25] Angelos Katharopoulos and François Fleuret. Not all
samples are created equal: Deep learning with impor-
tance sampling. In ICML, 2018.

[26] Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Young-
jae Cho, Mark Hempstead, Brandon Reagen, Xuan
Zhang, David Brooks, Vikas Chandra, Utku Diril, Amin
Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S.
Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim

Naumov, Martin Schatz, Mikhail Smelyanskiy, and Xi-
aodong Wang. Recnmp: Accelerating personalized rec-
ommendation with near-memory processing. In ISCA,
2020.

[27] Yehuda Koren, Robert Bell, and Chris Volinsky. Ma-
trix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[28] Fan Lai, Yinwei Dai, Harsha V. Madhyastha, and
Mosharaf Chowdhury. ModelKeeper: Accelerating dnn
training via automated training warmup. In NSDI, 2023.

[29] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and
Mosharaf Chowdhury. Oort: Efficient federated learning
via guided participant selection. In OSDI, 2021.

[30] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong
Wang, Yongjun He, Honghuan Wu, Lei Sun, Haodong
Lyu, Chengjun Liu, Xing Dong, et al. Persia: a
hybrid system scaling deep learning based recom-
menders up to 100 trillion parameters. arXiv preprint
arXiv:2111.05897, 2021.

[31] Rui Liu, Tianyi Wu, and Barzan Mozafari. Adam with
bandit sampling for deep learning. In NeurIPS, 2020.

[32] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong
Li. Learnable embedding sizes for recommender sys-
tems. In ICLR, 2021.

[33] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri
Joshi. Matchmaker: Data drift mitigation in machine
learning for large-scale systems. MLSys, 2022.

[34] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, and
et al. Software-hardware co-design for fast and scalable
training of deep learning recommendation models. In
KDD, 2021.

[35] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti
Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xi-
aodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,
Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng,
Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,
Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Ki-
ran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,
Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,
Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-
tacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews,
Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay Rao.
Software-hardware co-design for fast and scalable train-
ing of deep learning recommendation models. ISCA,
2022.

14

[36] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xue-
hai Qian, Xue Lin, Yanzhi Wang, and Bin Ren. Patdnn:
Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning. In ASPLOS, 2020.

[37] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In SOSP, 2019.

[38] Victor Sanh, Thomas Wolf, and Alexander M. Rush.
Movement pruning: Adaptive sparsity by fine-tuning. In
NeurIPS, 2020.

[39] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong,
Feng Lin, Junyu Wu, Yongsheng Li, Haidong Rong,
Pierre-Louis Aublin, and Luo Mai. Ekko: A Large-Scale
deep learning recommender system with Low-Latency
model update. In OSDI, 2022.

[40] Brent Smith and Greg Linden. Two decades of rec-
ommender systems at amazon.com. In IEEE Internet
Computing, 2017.

[41] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In OSDI, 2021.

[42] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang
Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska.
Superneurons: Dynamic gpu memory management for
training deep neural networks. In PPoPP, 2018.

[43] Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and
Mosharaf Chowdhury. Egeria: Efficient dnn training
with knowledge-guided layer freezing. In EuroSys,
2023.

[44] Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian
Gao, Kai Ren, and Jiwu Shu. Fleche: An efficient gpu
embedding cache for personalized recommendations.
EuroSys, 2022.

[45] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang,
Qingxing Xu, Bihai Wu, Jiazhen Lin, Hongbo Ao, Wan-
hong Xu, and Jiwu Shu. Kraken: Memory-efficient
continual learning for large-scale real-time recommen-
dations. In SC, 2020.

[46] Li Yan, Choudhary Dhruv, Wei Xiaohan, Yuan Baichuan,
Bhushanam Bhargav, Zhao Tuo, and Lan Guanghui.
Frequency-aware sgd for efficient embedding learning
with provable benefits. ICLR, 2022.

[47] Ying Yan, Liang Jeff Chen, and Zheng Zhang. Error-
bounded sampling for analytics on big sparse data. 2014.

[48] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing
Liu. TT-Rec: Tensor train compression for deep learning
recommendation models. In MLSys, 2021.

[49] Zi Yin and Yuanyuan Shen. On the dimensionality of
word embedding. NIPS’18, 2018.

[50] Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong
Han, Yuhang Jiang, Ding Tang, Zilong Wang, Kai Chen,
and Chuanxiong Guo. FAERY: An FPGA-accelerated
embedding-based retrieval system. In OSDI.

[51] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Rui-
quan Ding, Mingming Sun, and Ping Li. Distributed
hierarchical gpu parameter server for massive scale deep
learning ads systems. MLSys, 2020.

[52] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian,
Ronglai Jia, and Ping Li. AIBox: CTR prediction model
training on a single node. CIKM, 2019.

[53] Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and
Kun Gai. Deep interest network for click-through rate
prediction. In KDD, 2018.

15

	Introduction
	Background and Motivation
	Deep Learning Recommendation Models
	Challenges in DLRM Deployment
	Opportunities for In-Training Pruning

	AdaEmbed Overview
	AdaEmbed Design
	Embedding Monitor: Identify Important Embeddings
	AdaEmbed Coordinator: Prune at Right Time
	Memory Manager: Prune Weights at Scale

	Implementation
	Evaluation
	Methodology
	End-to-End Performance
	Performance Breakdown
	Sensitivity and Ablation Studies

	Related Work
	Conclusion

