ModelKeeper: Accelerating DNN Training via Automated Training Warmup

Fan Lai, Yinwei Dai, Harsha V. Madhyastha, Mosharaf Chowdhury
University of Michigan

Abstract

With growing deployment of machine learning (ML) models,
ML developers are training or re-training increasingly more
deep neural networks (DNNs). They do so to find the most
suitable model that meets their accuracy requirement while
satisfying the resource and timeliness constraints of the target
environment. In large shared clusters, the growing number
of neural architecture search (NAS) and training jobs often
result in models sharing architectural similarities with others
from the same or a different ML developer. However, existing
solutions do not provide a systematic mechanism to identify
and leverage such similarities.

We present ModelKeeper, the first automated training
warmup system that accelerates DNN training by repurpos-
ing previously-trained models in a shared cluster. Our key
insight is that initializing a training job’s model by transform-
ing an already-trained model’s weights can jump-start it and
reduce the total amount of training needed. However, mod-
els submitted over time can differ in their architectures and
accuracy. Given a new model to train, ModelKeeper scalably
identifies its architectural similarity with previously trained
models, selects a parent model with high similarity and good
model accuracy, and performs structure-aware transformation
of weights to preserve maximal information from the parent
model during the warmup of new model weights. Our eval-
uations across thousands of CV and NLP models show that
ModelKeeper achieves 1.3x—4.3x faster training completion
with little overhead and no reduction in model accuracy.

1 Introduction

Modern machine learning (ML) clusters train thousands of
deep neural networks (DNNs) every day [37,67]. For a spe-
cific ML task, ML developers often start with exploring var-
ious model architectures using Neural Architecture Search
(NAS) to find the one with desired accuracy [77]. In prepa-
ration for model serving, developers may train tens of mod-
els to customize the latency-accuracy trade-off across hard-
ware [21,35], to organize weak and powerful DNNS into dif-
ferent inference stages for fast feature extraction [20], and/or
to dynamically select tens of models and combine their pre-
dictions to maximize ensemble accuracy [26, 30, 65]. Overall,
from inception to deployment, ML development often re-
quires training hundreds of models across developers [62,75].

Naturally, many recent advances in ML training optimiza-
tions have focused on faster DNN execution, e.g., by increas-
ing parallelism [50, 70], improving communication [40, 55],
or increasing GPU utilization [28, 68,69, 73]. However, little
has been done to exploit the natural similarity between mod-
els that are trained as part of the same NAS process, models
targeting the same ML task in different hardware, or models
embedded in different applications. Indeed, our analysis of
three large CV and NLP model zoos shows that more than
60% of widely-used models can find an architecturally similar
counterpart within the same zoo (§2.2).

In this paper, our key insight is that one can reduce the
amount of training needed for model convergence by leverag-
ing a well-trained model’s weights to warm up the training of
a new model. This is because any DNN model is fundamen-
tally a computation graph of tensor weights and operators;
transforming weights of trained models with similar archi-
tectures to a new model can accelerate model convergence
(similar to transfer learning [60, 71] but across architectures).

Despite the potential for large benefits, there exists little
systematic support for automated repurposing of weights. To-
day’s frameworks may provide pre-trained models, but are
limited to a few models and specific datasets, and/or require
domain knowledge to manually search, transfer and contribute
a trained model’s weights [6]. As such, ML developers have
to train models from scratch more often [56]. A few recent
AutoML frameworks (e.g., Retiarii [77]) repurpose trained
models. However, they are limited to individual jobs within a
NAS task because they rely on the lineage of model mutation
to enable the transfer. When models are submitted by various
developers and/or frameworks with distinct architectures and
performance requirements, these solutions do not apply.

We introduce ModelKeeper, a cluster-wide training
warmup system, to reduce the training execution needed for
model convergence via automated model weight transforma-
tion (§3). ModelKeeper adaptively manages a collection of
trained models (i.e., model zoo) from prior training jobs corre-
sponding to different ML tasks. For a new training job, Model-
Keeper selects and transforms a trained model’s weights (i.e.,
parent model) to the training model (i.e., query model) before
training takes place. It can benefit various ML applications, in-
cluding exploratory training (e.g., improving Retiarii [77] fur-
ther) and general training (e.g., using PyTorch [9]) of CV/NLP
models, with few-lines-of-code change.

ModelKeeper addresses two primary challenges toward
selecting a suitable parent model and repurposing its weights.
First, ModelKeeper must determine similarity between two
models (§4.1). Intuitively, we can treat each DNN model as
a directed graph, where nodes represent tensors (layers) and
edges represent data flows, and use heuristics for the classic
NP-hard graph edit distance problem [31] to find the matching
similarity. However, maximizing matching by skipping nodes
can be harmful because the computation of each tensor affects
that of the subsequent ones in a trained parent model. To this
end, we present a structure-aware dynamic programming ap-
proach to capture the similarity (transformable tensor weights)
between two models. To scale to real-world zoos with thou-
sands of models, we then introduce a two-stage hierarchical
search algorithm to identify similar models efficiently.

Second, perfect matching is unlikely as two models are
seldom identical. Therefore, given many candidate parent
models with different similarity scores and each with differ-
ent accuracy, which one to pick and then how to transform
its weights to the query model (§4.2)? A more similar par-
ent model enables transforming more weights, while a more
accurate one implies a better training jump start after the
transformation. When the two are at odds, we adopt a buck-
eting heuristic: potential parent models are put into different
buckets in terms of their similarity to the query model, group-
ing comparable parent models together. We then pick the
most accurate parent from the bucket containing the most
similar parent models. Nevertheless, tensor mappings from
the parent to the query model can be incomplete (e.g., due
to non-identical architectures). To preserve maximal parent
model information, we introduce width and depth operators
to transform parent model weights into the query model with
negligible overhead.

We have integrated ModelKeeper with four popular ML
frameworks (§5): Ray [49], AutoKeras [41], MLFlow [75],
and Microsoft NNI with Retiarii backend [77].! Our evalua-
tions across thousands of DNN training jobs in CV and NLP
applications (§6) show that ModelKeeper can save 23%-77%
total amount of training needed (i.e., 1.3x—4.3x faster train-
ing) than the state-of-the-art without model accuracy drop,
while efficiently serving cluster-scale warmup requests.

Overall, we make the following contributions in this paper:

1. We present ModelKeeper, a system to enable automated
training warmup for faster DNN training in clusters;

2. In order to maximize training speedup, we demonstrate
how to scalably compute similarities between models and
how to transform an already-trained model’s weights to a
yet-to-be trained model with little overhead;

3. We integrate ModelKeeper with multiple advanced ML
frameworks, and evaluate it across thousands of CV and
NLP models to show large improvements.

"ModelKeeper is available at https://github.com/SymbioticLab/
ModelKeeper.

Weights Input Input

| .
» [0al02]0.1] . ' Identical
z | layers
2 |0.7]0.8[0.3] ... , i conv
S 10.3]0.6[0.5] ... FC I
ST 21000, 512> ! conv conv
500 columns FC tensor ! conv cony,
I
! e Identical zgg‘vl
conv3x3 | conv layers
<64, 64,3, 3> ! conv
Convolution tensor : conv
128 /7,7, 4,47 :
X
! FC Identical
conv3x3 ! layers .1
! h FC
Multi-dimensional c<128i 1t2_s, 3{ 1 Output
. onvolution tensor
weights , Output
(Tensor Nodes) ‘ (ResNet18) (ResNet34)

Figure 1: A DNN model is essentially a graph of tensors. Model
outputs are determined by tensor weights and their control flow.

2 Background and Motivation
2.1 DNN Model Training

Modern DNN frameworks represent DNN computations as a
directed computation graph with tens to thousands of nodes
across branches (Figure 1) [9,38]. Each node implies a mathe-
matical tensor operation (e.g., matrix multiplication or convo-
lution) along with its tensor weights and input, where weights
are n-dimensional arrays typically consisting of floats. DNN
training often covers thousands of iterations across mini-
batches of data to minimize the training loss. In each iteration,
the computation graph takes a data mini-batch as the input,
and performs a (1) forward pass, where each node conducts
the tensor operation on the output of parent nodes to get the
training loss regarding the model output and ground truth; and
a (2) backward pass, which updates the weight values, from
the last to front tensors, using the gradients derived by the
training loss with respect to the current weight. Therefore, the
DNN model is essentially a graph of weights orchestrated by
tensor operators, and training searches the best weight values.

2.2 Opportunities for Repurposing Models

In this paper, we focus on reducing the amount of training
needed to train a new model by automatically repurposing
the weights of previously trained models. Our approach of
warming up the weights of a new model before its training
starts is based on the following observations.

Pervasive model similarity. With the rapid increase in the
number of ML training jobs in datacenters [28,37], similarities
between training jobs are increasing too [67]:

e First, for a specific ML task, ML developers often explore
various model architectures using Neural Architecture
Search (NAS) to find the preferred model architecture
(e.g., better capacity-accuracy frontier [77]), or to inves-
tigate the performance consistency of new optimizations
across models (e.g., ML ablation study) [48]. For exam-
ple, Microsoft tuning clusters perform as many as 75 ex-
ploratory training jobs in median for user apps [46].

e Second, in preparation for ML deployment, developers
can train dozens of models to either customize the latency-

https://github.com/SymbioticLab/ModelKeeper
https://github.com/SymbioticLab/ModelKeeper

1.00

<] i) - p] Top-1 |
S S /’] !
S S b 3 0.75F === Top-5)’
= = ~ =
2 £ 050
g g g
43 [Top-1
= X P LS 0.25
) @) === Top-5 O

0.00, 0.00 0.00,

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Model Similarity Model Similarity

(a) NASBench

Model Similarity

(b) Imgclsmob (c) HuggingFace

Figure 2: Pervasive model similarity in today’s model zoos. We
measure the top-1 and top-5 architectural similarities of each
model to other models, and report the distribution across models.
1 indicates identical model architectures.

accuracy tradeoff across hardware (e.g., in video analysis
systems [35,39]), or to dynamically select tens of models
and combine their predictions in order to maximize accu-
racy under changing loads in today’s ensemble-serving
systems [30,65] (e.g., AWS Autogluon [26]).

e Third, the potential for similar models increases with in-
creasing users. For example, over 100K ML models are
submitted to Kaggle competitions each month [3]. Each
competition can have thousands of participants develop-
ing their models independently, and participants are re-
ported to have trained many similar models [22].

Indeed, our analysis of three large public model zoos —
Imgclsmob [10] for ImageNet classification (435 models),
HuggingFace [2] for English text generation (2.5K models),
and NASBench [24] for NAS task (16K models) — reinforces
these observations. Figure 2 reports the pairwise architectural
similarity across models in each model zoo. We measure the
similarity of each model to other zoo models? in terms of the
normalized graph edit distance of two directed model com-
putation graphs [27] (€ [0, 1]), where 1 indicates identical
graphs. We observe that more than 60% of the models have at
least one other model (top-1) in the zoo with a similarity over
0.6. Pervasive similarity is prominent in all these model zoos
because modern models often rely on similar architecture de-
signs but with wider/deeper layers or branches. For example,
convolution layers are widely-used in CV models [33, 36],
while NLP models are often stacked by attention layers [63].

Similar models can warm-start training. Recent theoret-
ical [60] and empirical [71] efforts from the transfer learning
community show that inheriting well-trained parent model
weights can speed up the training of a new model, because
this warm start enables an informed weight initialization (e.g.,
training from the basin of loss curvature). Yet, different from
their focus that manually transfers the same model across
datasets for better model generalization accuracy [53, 78], we
notice that transforming a trained model’s weights to a new
model (i.e., across architectures) can accelerate its training.
Consider the training of ResNet101 on CIFAR-10 dataset

2To avoid over-optimistic identification of model similarity, we removed
identical models in each zoo and focus on different model architectures.

[RoR3_to_Resl01 3
& 90 < 30 FEE ResS0.t0 Res10] 28
g g
on
g . £ 20
3 H Res101 Z
> 80 === RoR3_to_Res101 g
7 Res50_toRes10l & 10
= e Res34_to_Res101 o
70 ” - 0
0 50 100 10 80 85 90

Training Epoch Parent Model Accuracy (%)
(a) Warm start accelerates training. (b) Parent model accuracy matters.

Figure 3: Transferring model weights from well-trained models
with similar architectures can accelerate new model training.

10.0 rpm Warm Start
I Scratch

= Warm Start

5 6000

—— Scratch

=
n

£ 4000

2000

N
W

Weight Diff. (L2-Norm)
W
(=)

Gradient Variance (L2-Norm)

g
=}

0)

12345678910 0 50 100
Layer ID Training Epoch

(a) Smaller divergence to the optimal. (b) Smaller gradient variance.

Figure 4: Warm start provides better initial weights search space.
We use RoR3 to warm start ResNet101.

as an example. We copy the tensor weights of a well-trained
parent model (e.g., ResNet50 or RoR3 [76]) to the ResNet101
tensor if two tensors have identical properties (e.g., same op-
erator and weight dimensions), while the rest of the training
proceeds as normal. We notice that (1) warmup training can
reduce the amount of training needed, while obtaining the
same final accuracy to that of training from scratch with ran-
dom weight initialization (Figure 3(a)); and (2) the savings are
more encouraging when inheriting from more similar models
— similarity of ResNet34, ResNet50, and RoR3 to ResNet101
is 0.19, 0.48, and 0.85, respectively — and better performing
models (Figure 3(b)), which respectively determine whether
it is possible and beneficial to transform the weights.

These improvements are because they speed up the search
in the space of weight values. If we consider ResNet101 as
an example, (1) warming it up using RoR3’s weights before
training starts results in a smaller distance to the final weights
achieved when the model converges (Figure 4(a)), and (2) dur-
ing the training, this informed weight initialization enables
smaller gradient variance (i.e., more consistent gradient direc-
tions) towards the basin of loss curvature (Figure 4(b))), thus
requiring fewer iterations to convergence in theory [12,53].

3 ModelKeeper Overview

ModelKeeper is an automated training warmup system for
various ML tasks that accelerates DNN training by warm-
starting models with weights from already-trained models.

Design Space Large training clusters are shared between
users with varying expertise, and they can train a large num-

@ @
e 0
[)
keeper.clientAPI()
° ®eo

@ Job Submission 1 o Lp cese

Zoo Manager

- Meta Model
Matching

@) Weight
[————————————>|
Model Mapper |7, ransformation

i l@ Training Execution

Data

A
+ ® Model
1 registration

Cluster Resource |“~ | Execution Engine
Scheduler ~_ (e.g., Retiarii)

Figure 5: ModelKeeper architecture. It can run as a cluster-wide
service to serve different users and/or frameworks.

ber of jobs with different model architectures. Consequently,
ModelKeeper must minimize the information needed and
overhead incurred for each training model (i.e., query model),
while offering users the flexibility in their request (e.g., using
ImageNet model zoo to warm start models on other image
datasets). In fact, determining which dataset (model zoo) as
the source to transfer is as yet an open problem in the transfer
learning community [45, 71, 78]. ModelKeeper is comple-
mentary to and benefits existing ML efforts as it automates
training warmup (e.g., searching, transforming, and contribut-
ing a trained parent model’s weights) for a given model zoo,
instead of making the developer keep tracking all models
and handcraft which model to repurpose [6]. We empirically
show that ModelKeeper can benefit the model training across
datasets too (§6.4).

For a given model zoo, the effectiveness of transforming
parent model weights relies on two key aspects: (i) Model
similarity: it dictates the similarity of two model architectures,
including the weights shape and operation type of a tensor;
and (ii) Parent model accuracy: it determines the value of
transformation. Having architectural similarity is the prereq-
uisite to transforming more weights information of a parent
model, while better parent model accuracy implies potentially
better warm start after transformation.

As such, ModelKeeper should repurpose a parent model
with large similarity and better accuracy. We provide the
theoretical analysis to support why ModelKeeper can benefit
model convergence following this principle in Appendix A.

System Components ModelKeeper is a complementary
system to existing ML training (Figure 5), and has integra-
tions with various frameworks (e.g., Microsoft NNI [4] and
Ray [49]). It consists of the remote coordinator, which serves
user query models before their training executes, and the client
agent that allows users to submit model warmup requests.
ModelKeeper coordinator employs three key components to
warm up models by transforming a trained model’s weights:

e Model Matcher: to identify architecturally similar models
in the zoo of trained models;

e Model Mapper: to select a zoo model with good archi-
tectural similarity and accuracy as the parent model, and
transforms the parent model weights to the query model;

e Zoo Manager: to adaptively manage zoo models that can
be submitted from users to support transformation at scale.

Figure 6 reports the example interface on the client agent,
where the user benefits from ModelKeeper with a few lines
of code in training (Coordinator interfaces are in Section 5).

from modelkeeper import ModelKeeperClient

1

2

3|/ def training_with_keeper (model, dataset):

1 # Create client session to keeper coordinator
5

keeper_client = ModelKeeperClient (coordinator_ip)
6 warmed_model, meta = keeper_client.query_for_model (
7 model, meta={’data’: 'Flowersl02’,
8 "task’:’classification’, ’'tags’: None})
9
10 acc = train(warmed_model, dataset) # Training starts
11
12 # Register model to ModelKeeper when training ends
13 keeper client.register_model (warmed_model,
14 meta={’data’: 'Flowersl02’, ’accuracy’: acc,
15 "task’: 'classification’, ‘tags’: None})

16 keeper_client.stop ()

Figure 6: Code snippet of ModelKeeper client service APIs.

Training Lifecycle When the developer creates a new train-
ing job, (1) she first initiates a client connection to the remote
ModelKeeper coordinator, and then issues a query with the
specified job meta information. ModelKeeper client agent
will automatically extract the model information needed (e.g.,
model computation graph) and issue a request (mostly size
< 1 MB) to the coordinator. (2) Upon receiving the request,
Matcher consults its metadata store, identifies zoo models that
the user can access and meet the specified tag (e.g., name of
the preferred parent models), and measures their architectural
similarity to the query model. @ Mapper selects a parent
model with large architectural similarity and good accuracy
out of these zoo models. Thereafter, it loads model weights of
this parent model from the data store, and transforms parent
model weights, based on pairwise tensor mapping from the
Matcher, to the query model. Note that this transformation
only updates tensor weight values, while others (e.g., model
architecture) remain the same. (4) The coordinator responds
to the developer with warmup model weights, and the rest
of the training remains as usual. (5) When the training com-
pletes, ModelKeeper can automatically register the trained
model to the Zoo Manager to benefit future jobs.

4 ModelKeeper Design

In large shared clusters, models are often submitted by vari-
ous developers and/or frameworks with diverse architectures
at different points in time. The large variety in model archi-
tectures and accuracy characteristics lead to novel system
challenges in automating weight transformation from a parent
model with high similarity and better accuracy:

Query @ 6

Model
R O S R OF ©
Parent SKIP_PARENT:
Model do not match
current parent
Q %) 2 SKIP_PARENT model node
T
~~——
MATCH(®),®) is best
SKIP_CHILD transition here that
! é achieves max score

?v\ End-to-end

> similarity
>)

SKIP_CHILD: do not match current query model node
Figure 7: ModelKeeper relies on dynamic programming-like
heuristics to measure graph-level model architectural similarity.

e Having similar model architectures is the prerequisite to
transforming weights across architectures. How to iden-
tify more architecturally similar zoo models (§4.1)?

e As the similarity and accuracy of many potential parent
models can come at odds, which one to pick and then how
to transform its weights to the query model even in the
presence of non-identical architectures (§4.2)?

e New training jobs and trained models can join the cluster
on the fly. How to serve user warmup requests at scale for
high throughput clusters in the wild (§4.3)?

4.1 Matcher: Identify Similar Models

The similarity between two model architectures determines
the number of tensor weights that we can transform. Hence,
we need to identify the graph-level architectural similarity
of each parent and query model pair (Figure 7) and their
pairwise tensor mappings. It is tempting to model it as a
classic NP-hard graph edit distance (GED) problem [15] by
treating tensors as nodes and data flows as edges with the goal
to morph one graph to the other with minimum edits (e.g.,
add/delete a node). However, model matching encounters new
challenges: (i) Prefix Preference: we prefer to match the prefix
over the suffix of model graphs. Because prefix tensors are
more transferable since they capture general input features
(e.g., image color blobs) [53,71]. Moreover, model weights
are trained systematically over tensors, so any edit on prefixes
can result in information loss to subsequent tensors [25]; (ii)
Partial Matching: we can partially transform the weights of
a smaller dimensional tensor to a wider one to match more
tensors, or postpone its matching to preserve its exact weights
information; and (iii) Scalability: as each model can consist of
thousands of nodes across branches, capturing the similarity
to thousands of zoo models is challenging.

ModelKeeper Matcher measures the graph-level similar-
ity of models, in terms of the total number of transformable
weights after mapping tensor pairs from the parent to the
query model. It uses the widely-used ONNX tool [7] to ex-
tract the computation graph. ONNX supports various model
formats (e.g., Tensorflow and PyTorch), which allows us to
perform the cross-framework transformation.

Structure-Aware Pairwise Model Matching We intro-
duce a dynamic programming-based heuristic to mea-
sure the end-to-end similarity (i.e., number of weights to
transform) of two models. It relies on a similarity table
M1, |+1)x (lgg1+1) (i,j) to record the best similarity after
matching the prefixes of the parent and the query model.
Here, |g,| and |g,| respectively denote the number of tensors
of the parent model and the query model. Then, it enumer-
ates plausible matching operations from previous states (e.g.,
M(i— 1, j— 1)), and takes the operation that can acquire the
maximum similarity to enter the next state (i.e., M(i, j)).

Figure 7 shows the execution of our structure-aware match-
ing algorithm. It traverses the similarity table in the topolog-
ical order of graph tensors. This allows us to embed graph-
level information while prioritizing the match of prefixes. To
advance to the current tensor pair (i, j), it enumerates three
plausible operations:

1. MATCH: transform weights of i’s parent to j’s parents.
2. SKIP_PARENT: give up transforming tensor i’s parent;
3. SKIP_CHILD: give up transforming to tensor j’s parent;

Then, it updates the table to obtain the maximum similarity
after each step based on previous states as follows:

M(k:jpurent) +MATCH(k7jparent) (1)
M(k, j) +SKIP_PARENT ®)
M(i, jparent) + SKIP_CHILD 3)

M(i,j) = max
(]) keparent (i)

To get the overall transformable weights, we can reward
each operation based on the number of tensor weights trans-
formed. When tensor i and j belong to the same operator (e.g.,
convolution), the fraction of transformed weights along each
weights dimension in MATCH operation (1) is:

-~ Taim=1 min(dim(i),dim())
MATCH (i, j) = Hjim:: max(dim(i),dim(}))

Otherwise, we assign MATCHY(i, j) to -1, as this transforma-
tion is useless and even loses the weights of that parent model
tensor. Similarly, SKIP_PARENT is set to -1 as it loses the
parent model tensor, and SKIP_CHILD is 0, since it does not
transform the parent model tensor.

Capturing the graph-level similarity is more challenging
when tensor j of the query model is the intersection of multi-
ple upstream branches. Because different upstream branches
to j may follow the same branch of the parent model dur-
ing their matching, leading to repetitive (conflicting) match-
ing. As shown in Figure 7, when we reach (@, (6)), branch
(@—>@) and (@—)@) may both be matched to (9—>6)
that maximizes their own similarity. To avoid conflicting
matching, the similarity to j is the sum of upstream branches
(M7, j) = Lieparent(j) M(i,k)), and we greedily adopt the
matching of a branch to tensor j, whose trajectory achieves
the largest similarity (i.e., match @—>® to @—@), to max-
imize their sum. Meanwhile, we discard the trajectory of other

(elo,1]) @

[0 GED M ModelKeeper
135799

11678
104 iLarger is better
6062 \
2932 145
458 i 409
Ol Ol -0
0 i P/

V-Ensemble NASBench Imgclsmob HuggingFace

Throughput
S

(# of pairwise matching/min)
S

- =
22

Figure 8: Keeper is order-of-magnitude more scalable than exist-
ing GED. V-Ensemble is a model zoo for ensemble training (§6.1).

oR 00 OO° O,
o\
o]

ResNet50

Parent Model

3

T ‘bda'
y &
HR

OO

8

Parent Model Accuracy (%)

8o o o

851 ap o

]

0 ©

oo o Model

o
75 + + + s .
0.0 0.2 04 0.6 0.8 1.0

Similarity to Parent Model
Figure 9: Models vary in accuracy and architecture (Imgclsmob
z00). We measure their similarity w.r.t. ResNet101, and prefer to
transform a parent model with better similarity and accuracy.

branches where conflict exists. As such, branch @—>@ takes
the inferior match (@), where (4) is skipped.

The last entry of the table, i.e., M(|g,|,[g4l), gives the
end-to-end similarity. Note that we can learn the pairwise
tensor mappings by backtracking operations taken to reach
M(|gpl,|gq4]) over the table in linear time. For a specific
model, our heuristic will naturally treat the model itself as the
most similar model, because matching will always take oper-
ation MATCH (i,i) in each step to maximize the similarity.

Figure 8 reports that our pairwise matching can match
thousands of model pairs in a second, and achieves higher
throughput than the state-of-the-art GED solution [57] in this
model matching scenario. More importantly, our empirical re-
sults report that our structure-aware matching achieves better
training warmup than the GED solution (§6.3).

4.2 Mapper: Transform Maximal Parent Information

The effectiveness of weight transformation is determined by
the similarity (transfer more weights) and accuracy (transfer
better weights) of parent models. Unfortunately, it is imprac-
tical to pick the optimal parent model, since the performance
of transformation can only be known after training each de-
rived warmup model to converge. Worse, the variety of model
similarity and performance leads to the tussle in selecting
the parent model. As shown in Figure 9, while some models
(e.g., ResNet34) possess high accuracy, their low similarity to
ResNet101 can cap the number of weights that can transform.
Next, we introduce Mapper to exploit the sweet spot of both
aspects, and then to transform maximal parent model weights
in the presence of partial matching.

As shown in Algorithm 1, Mapper relies on Matcher to

Input: Query model g, Model Zoo M
QOutput: Warmup Model Weights

1 NumOfBuckets B = 10

2 Function GetModelSim (Query g, Models M)
/* Structure-aware matching for model similarity. */
3 topo_query_tensors = SortByTopo(q)

> Model similarity € [0, 1]

4 model_similarity = {}

5 for model m € M do

6 similarity_table = zeros(lg,,|+1, lg,4+1)

7 for tensor i € CachedModelTopo(m) do

8 for tensor j € topo_query_tensors do

/* Enumerate and merge intersection. */

9 similarity_table[7][j] = Equation (1-3)
10 model_similarity[m] = similarity_table[lg,,!][lg,!]
11 return model_similarity

12 Function QueryForModel (Query g, Model Zoo M)
/* Bucket models in terms of similarities. Pick the model in
the top-similar bucket with the best performance. */
13 model_similarity = GetModelSim(g, M)
14 top_similar_bucket =
BucketBySimilarity(model_similarity, B).first

15 for model € top_similar_bucket do
16 if model.perf > best_parent.perf then
17 best_parent = model

/* Perform width and depth weight transformation */
18 warmup_weights = TransWeight(best_parent, q)

19 return warmup_weights

Algorithm 1: Select the parent model to transform.

identify similar models (Line 2). As having a good similarity
is the prerequisite for transformation, we need to first ensure
picking similar models. To this end, Mapper takes the popular
bucketing strategy to allocate models into B buckets in terms
of their similarity (Line 14). Taking Figure 9 as an example,
with B = 10 by default, bucket 10 will accommodate models
with similarities between 0.9 and 1.0, so models in the same
bucket have comparable similarities. Then, Mapper traverses
from the last bucket (bucket 10) to the first until reaching the
first one with nonempty models (bucket 9), from which it se-
lects the model with the best performance as the parent model
(Line 15). As such, the parent model approaches the bound-
ary of better model similarity and accuracy. Later, Mapper
performs structure-aware weight transformation to initialize
the query model weights (Line 18).

Information-Preserving Weight Transformation To
maximize the end-to-end number of weights to transform,
Matcher allows partial matching: it may map a small tensor
of the parent to a wider one of the query model, or skip the

?

Parent Model
Figure 10: Width and depth operator to transform parent model.

Wider Model Deeper Model — Query Model

mapping of some tensors in the parent or the query model.
Here, the straw-man solution (e.g., in Retiarii [77]), which
transfers the weights of parent model tensors if and only if
two tensors are identical, can be suboptimal (§6.3), since
losing the parent model tensor can make the transfer of its
subsequent tensors useless.

To preserve maximal parent model information under par-
tial mappings, Mapper employs a width operator and a depth
operator, which extend the well-known ML technique for
function-preserving model transformation (e.g., Net2Net [17]
and Network Morphism [66]). But unlike existing model trans-
formation techniques [41], which are limited to expand the
depth and width of a pre-determined model, or complicated
transfer learning (e.g., knowledge distillation [34]) that re-
quires additional computation (e.g., pre-training) and/or in-
trusive implementation, our operators transform the parent
model weights into the query model with little overhead.

Our graph-level transformation proceeds in the topological
order of tensors. Mapper handles the expanding case similar
to today’s function-preserving transformation (Figure 10): (i)
to transform a parent model tensor to a wider query model
tensor, the width operator copies the parent model weights
to its mapping tensor of the query model, and pads the rest
of the columns via weighted replication from other columns;
and (ii) when the mapping requires inserting a new tensor into
the parent model (i.e., SKIP_CHILD), the depth operator will
initialize the weights of this mapping tensor to be an identity
tensor. i.e., this tensor will directly pass the output of its parent
tensors to the child tensors, in order to keep the same parent
model’s output. Readers can refer to Net2Net [17] for more
details. We note that both expanding operations, in theory,
can preserve the parent model information (i.e., with the same
tensor output) for many tensor operators (e.g., the wide-used
full connection and convolution layers).

The pruning case, however, cannot preserve full parent
model information, because we lose some tensor weights of
the parent model in transformation. Our solution is inspired
by today’s ML model pruning criteria [32]. Specifically, when
we need to fit wider tensor weights (i.e., with larger array di-
mensions) to a smaller dimensional tensor of the query model,
the width operator will progressively pick and copy the largest
weight values of the parent model tensor to the mapping tensor
of the query model. This is because, intuitively and empiri-
cally, larger magnitude values often have more impact on the
model output [14]. From the depth perspective, when we skip

transforming (i.e., SKIP_PARENT) a parent model tensor,
the depth operator will add noise to the weight values of that
tensor’s neighbors. It disturbs the affinity of trained parent
model weights so that neighboring tensors can still keep most
information while being able to learn new weights [51].

Our transformation can be applied to various models for
informed weight initialization. Thereafter, training proceeds
as normal, and the warmup model will gradually converge the
weight values that fit its architecture the best. As a generic
system, ModelKeeper can accommodate other transforma-
tion techniques too as they become available. We provide a
theoretical analysis of our transformation in Appendix A.2,
and empirically show performance improvements using our
transformation over its counterparts (§6.3).

4.3 Zoo Manager: Transform Effectively At Scale

In reality, cluster users register their trained models to the
model zoo on the fly, leading to scalability and performance
challenges. First, while gathering more models increases the
opportunity to transform better parents, the ever-growing num-
ber of models (e.g., > 70K models in the HuggingFace model
hub of all tasks [2]) and model size (e.g., NLP models can be
tens of GBs [16]) can lead to large matching overhead and
storage cost. Moreover, models registering to the zoo may
have low accuracy (e.g., due to insufficient training), which
can harm the effectiveness of weight transformation. As such,
ModelKeeper employs a Zoo Manager to support effective
transformation at scale under dynamics.

Two-Stage Hierarchical Model Matching Despite being
able to match thousands of lightweight CV models every
minute (Figure 8), our pairwise matching heuristic can still
be insufficient for model zoos with tens of thousands of mod-
els or complicated model architectures (e.g., NLP models).
For example, to serve a query model using the HuggingFace
model zoo for English text generation (2.5K models), per-
forming pairwise matching on these zoo models can take
~17 minutes, namely, 2.5K models over the throughput (145
matching/minute). This long search time is further exacer-
bated in today’s large cluster with sub-minute job arrivals [37],
eventually hurting the user experience.

To ensure an interactive service, Zoo Manager adaptively
clusters zoo models into a well-defined number of groups,
whereby Matcher can perform two-stage matching to reduce
the number of matching pairs needed to identify more similar
models. Intuitively, models with similar architectures would
have comparable model similarity to the same query model,
so we may be able to cluster zoo models into multiple groups,
and then perform pairwise matching on the group members of
top similar model groups. However, it is non-trivial to decide
what features to use for clustering models, and how many
groups are needed. Clustering too few groups does not scale
down the problem enough, while too many can lead to a large
overhead in identifying which group to prioritize.

We deploy K-medoids clustering [52] to combine pair-

Query Model) [4entify similar medoid
ﬂ @ Match group members
D7~
1

P %
,?\Q ?.,;.O

K-Mediod Groups Group Members

(a) When query model arrives

Register Model (3) Identify similar medoid
@ Append to similar group
(® Update group periodically

)]
58— %o

K-Medoid Groups

ol

Updated Groups

(b) When new zoo model joins

of Clusters (K)
O1 [Oosk* M k* M 2k* M 5K*

(=N}
(=}

[3o3 &
[=} (=]

(=}

Percent. of Zoo Models
Matched for Optimal (%)

V-Ensemble NASBench Imgclsmob HuggingFace

Figure 12: ModelKeeper can find the optimal number
of clusters K* in hierarchical matching, and can iden-

Figure 11: Matcher clusters models into groups to reduce the search space,

and then performs model matching within groups.

2100 5 100

g 75 Long-tail distribution § 75 Long-tail distribution
g 8 54.4

S 50 S 50

e £ 202

=25 25 .

ki s B 8o 30
£ 0 g0

g 0 1 2 3 4 >5 3 0 1 2 3 4>=5
[-% Ay

Model Repurposing Frequency
(b) NASBench model zoo.

Model Repurposing Frequency

(a) Imgclsmob model zoo.

Figure 13: A few zoo models are more frequently repurposed as
the parent by Keeper. Numbers are from our evaluations (§6.2).

wise model matching and clustering to find a sweet spot. K-
medoids can directly take the distance of two points as input
to minimize the distance between data points and their cluster
center. Here, models can be taken as different points, and
the distance is the reciprocal of their similarity. Compared to
other clustering methods (e.g., K-means), K-medoids circum-
vents the need for embedding complicated model graphs, and
it is more compatible with pairwise model matching.

As shown in Figure 11, when a query model arrives,
Matcher identifies its similarity to each group medoid, and
then conducts pairwise matching on the members of top simi-
lar groups. Similarly, when a new model registers, Matcher
measures its similarity to group medoids, and assigns this new
model to the group whose medoid is the most similar. This en-
ables interactive queries to the latest models. Later, Matcher
periodically triggers K-medoids to update the clustering.

To select the most similar models for each query model,
Matcher identifies the best group medoid i by performing K
pairwise matching, followed by K; runs to match the mem-
bers of group i. Assuming a zoo of M models (M =):ﬁ-‘K,-),
to minimize the average matching runs on each group (i.e.,
min ((K +K;)/K)), we can get the optimal number of groups
K* = +/M. Figure 12 reports that, compared to the non-
clustering design (i.e., K = 1), this two-stage design requires
matching only 5%-16% of all zoo models to identify the most
similar models, thus reducing the query hang time (§6.3).

Capping Zoo Size Hosting all zoo models can consume no-
ticeable storage space. For example, the HuggingFace model
zoo takes tens of TBs of storage [2]. In fact and understand-
ably, we notice that a small portion of zoo models are more

tify the most similar models with fewer zoo models (e.g.,
5% in NASBench) needed to explore.

frequently repurposed than others (Figure 13). This is because
certain models contain more similar blocks to other models
(e.g., ResNet50 is more likely to be used to warm up other
large ResNet models than ResNet18).

To harvest more warmup opportunities subject to the zoo
capacity limit, we can formulate it as a knapsack packing
problem, where each item (model) is associated with a weight
(model size) and a value (repurposing frequency as the parent
model), and our goal is to maximize the total value achieved.
Namely, warm up as many jobs as possible (aka maximum
total repurposing frequency). As such, solving this packing
problem enables us to identify which item (model) to keep
in the knapsack (model zoo). But on the other hand, models
that are popular to train can change over time. For example,
users incline to train more recent and/or advanced models.
To account for the temporal variation in the repurposing fre-
quency of each zoo model, we take the moving average of
model values (e.g., decaying their repurposing frequency by
0.9 every day), and trigger the packing solver upon reaching
the storage limit. We show that ModelKeeper can perform
well even under severe storage limit (§6.4).

Avoiding Low-Accuracy Models Low accuracy models
registering to the zoo (e.g., due to user error) not only wastes
storage but can harm the transformation, so we need to en-
sure the zoo uses models with decent accuracy. To this end,
other than selecting the model with better accuracy as the
parent using the bucketing design at the query time, Zoo Man-
ager evicts zoo models with outlier accuracy at runtime. By
default, we take the popular Z-score criteria (i.e., model accu-
racy below the mean by more than two standard deviations) to
identify outliers [58]. Moreover, for the same model architec-
ture, it only keeps the model with the best accuracy. We show
that ModelKeeper can accelerate training even in the presence
of low accuracy models in unfavorable environments (§6.4).

Complexity Analysis The complexity of pairwise model
matching is O(|gp| x |g4|),* and that of model clustering is
O(M??) for the zoo with M models. Mapper takes linear time
to select and transform the parent model. The magnitude of
these factors is mostly within O(1K) (§6.1). Our evaluations

3We omit the complexity in enumerating tensor parents (i.e., k €
parent(i)), since the node degree is orders of magnitude smaller than [g,,|.

show that ModelKeeper incurs negligible overhead (§6.3).
5 Implementation

‘We have implemented a system prototype of ModelKeeper,
with around 2K lines of Python code as the frontend library
and 1K lines of C++ code as the backend. Our implementa-
tion provides user-friendly APIs and supports many popular
ML frameworks, such as Microsoft NNI [4], AutoKeras [41],
Ray [49], and MLflow [5], with few-lines-of-code plugins.

ModelKeeper Components ModelKeeper coordinator
supports distributed deployment across machines. Each
coordinator controller processes a single scheduling thread to
poll client requests from its queue, and reserves a thread pool
for Matcher. Matcher performs pairwise model matching in
parallel for each query model, and then Mapper creates a
worker thread to transform parent model weights using numpy
format. Zoo Manager updates the model clustering every
5 minutes, and uses ortools library to solve the knapsack
problem. The client agent communicates with the coordinator
via TCP connections.

Fault Tolerance ModelKeeper uses Redis in the coordina-
tor to store the metadata and model weights in a fault-tolerant
manner, and this metadata is cached in the memory with small
footprints. Changes to the model zoo (e.g., registering new
models) follow the write-ahead transaction to the storage. At
runtime, the coordinator runs a daemon process to monitor
the liveness of the service, which will create a new service
process if the existing one crashes. The new process then
fetches the latest checkpoint from Redis to catch up.

Interfaces We pack interfaces into a Python library. The
cluster manager can initiate the coordinator in three lines:

from modelkeeper import ModelKeeperCoordinator
keeper_service = ModelKeeperCoordinator (config)
keeper_service.start ()

Users can initiate the client agent in a few lines (Figure 6).

6 Evaluation

We evaluate the effectiveness of ModelKeeper on three main-
stream frameworks for exploratory and general DNN training,
using five large-scale CV and NLP model zoos across thou-
sands of models. We summarize the results as follows:

e ModelKeeper saves 23%-77% total amount of training
execution needed (i.e., 1.3 x-4.3 x faster training) than the
state-of-the-art without accuracy drop of models (§6.2).

o ModelKeeper outperforms its counterparts by exploiting
the parent model with high similarity and better accuracy
using different design components (§6.3).

e ModelKeeper improves performance over a wide range of
parameters and practical cluster setups in the wild (§6.4).

6.1 Methodology

Cluster setup. We evaluate ModelKeeper on an 80-node
cluster (40 GPU nodes and 40 CPU nodes). Each GPU node

has a Tesla P100 GPU with 16 GB GPU memory and 16-core
CPUs. Since most HuggingFace NLP models exceed our GPU
memory capacity, we resort to CPU nodes. Each node has 32-
core CPUs and 384 GB of memory. ModelKeeper coordinator
runs on a 32-CPU server with 10 Gbps bandwidth.

Workloads. We evaluate ModelKeeper using five widely-
used CV/NLP model zoos and realistic workloads (Table 1):

e NASBench [24]: an image classification model zoo with
thousands of lightweight models for NAS task.

e AutoKeras Zoo [41]: a CNN model zoo generated by
AutoKeras during the bayesian NAS searching.

o Imgclsmob [10]: a popular zoo of state-of-the-art CV mod-
els (e.g., DenseNet [36]). Most models are heavyweight.

e V-Ensemble [65]: a benchmarking workload for ensemble
training, which has hundreds of variants of VGG models.

e HuggingFace [2]: a collection of advanced HuggingFace
NLP models (e.g., Bert [23]) for next word prediction.

We train Imgclsmob-Small models on CIFAR dataset and Im-
ageNet32 dataset for 32x32 small image inputs, Imgclsmob
models on Flowers102 dataset for 224 x224 large images,
and HuggingFace models on the large WikiText dataset. Im-
ageNet32 is a downsampled 120-category ImageNet dataset
(e.g., smaller input size) for efficient computation.

To emulate practical cluster setups, NAS models are gener-
ated by the searching algorithm on the fly, and training jobs are
submitted following the arrival of Microsoft Trace [37]. The
same workload does not contain identical model architectures.
ModelKeeper model zoo starts empty for each workload, and
jobs contribute (upload) their trained models to the zoo as
they complete over time.

Parameters. We follow the default setting specified in each
model zoo: (1) CV models: the SGD optimizer with minibatch
size 64 and initial learning rate 0.01; and (2) NLP models: the
AdamW optimizer with minibatch size 32 and initial learning
rate 8e-5. We use the ReduceLROnPlateau scheduler to decay
the learning rate by 0.5 once the training loss stagnates.

Baselines. We compare ModelKeeper to the following:

e Retiarii [77]: Microsoft’s training framework that relies
on the lineage of graph mutation to warm up NAS models.

e AutoKeras [41]: An advanced AutoML system based on
Keras that applies lineage-based warmup for NAS models.

e MotherNet [65]: An ad-hoc ensemble training algorithm
that trains a model subnet, which introduces intrusive
overhead and implementation, to warm start models.

Existing efforts limit to individual NAS/ensemble jobs, while
ModelKeeper can support various tasks across jobs and users.

Metrics. We care about the fraining execution time needed
to train to converge and the model convergence accuracy.

We run with five realistic Microsoft Traces [56], and report
the average over 5 runs.

Avg. Ti Avg. Acc.
Category Task Workload # of Models Dataset Ve e V8 A6
Improvement Difference
Grid Search NAS 2.9 0.39%
Exploratory f1d deare NASBench [24] 1,000 X ?
Training Evolution NAS CIFAR-100 2.4% 0.38%
AK-Bayesian NAS [41] AutoKeras Zoo [41] 500 4.3%x 0.31%
Imgclsmob [10] 389 Flowers102 [54] 2.8x 0.23%
Image Classification CIFAR-10 2N 0.02%
General Imgclsmob-Small 179 CIFAR-100 1.6x 0.18%
Training ImageNet32 [19] 1.3x 0.03%
Ensemble Training V-Ensemble [65] 104 CIFAR-100 1.7x 0.08%
Language Modeling HuggingFace [2] 69 WikiText-103 [47] 1.8x -0.13 perplexity

Table 1: Summary of improvements. ModelKeeper improves training execution time without accuracy drop, by reducing the amount of
training needed (i.e., GPU Saving). Accuracy difference is defined by Acc.(Keeper) - Acc.(Baseline), and smaller perplexity is better.

1.00 p—— Retiarii + Keeper 1.00 r—— Retiarii + Keeper

2 — Retiarii 2 — Retiarii

2 0.75 S 075}

=3 =)

E 0.50 § 0.50

o3 3

a 0.25 a 025t

O O
0.00 ———r —— 0.00 b Tt

10? 103 107 103
Training Execution Time (s) Training Execution Time (s)

(a) Grid Search NASBench (b) Evolution NASBench
1.00 p—— AK + =i 1.00

o — AK 2

§ 0.75 20751

g 050} £ 050t

3} <

5 9

59 F F ——

5 0.25 8 0.25 Ray + Keeper
&) —— MotherNet
0.00 . ! 0.00 +

102 10 102 103

Training Execution Time (s) Training Execution Time (s)

(c) Bayesian Optim. (AutoKeras) (d) Ensemble training

Figure 14: ModelKeeper outperforms existing warmup training.
6.2 End-to-End Performance

In this section, we evaluate how ModelKeeper (Keeper) is
complementary to and benefits today’s ML frameworks. Here,
we run the NAS task using Microsoft NNI (with Retiarii
backend [77]) and AutoKeras, and other training tasks on
Ray [49]. Table 1 summarizes the average improvement on
each training workload after applying ModelKeeper.

ModelKeeper outperforms existing warmup solutions.
ModelKeeper outperforms existing training warmup solu-
tions in Retiarii, AutoKeras, and MotherNet by 1.7 x-4.3x
(Figure 14), by saving 43.1%-76.7% total amount of training
needed. Their inefficiency is due to two primary reasons:

(1) Suboptimal parent model selection: Retiarii and AutoK-
eras track the lineage of graph mutation and treat the base
model in evolution as the parent model. However, as multi-
ple layers can be modified on the base model in searching

1.00 p— Ray + Keeper 1.00 p— Ray + Keeper
2 2 Ray
3 075 S 0.75
- -
g 0.50 § 0.50
I o3
a 0.25 a 0.25
@) O
0.00 . i 0.00 = ————rt
10 103 10* 103 10*

Training Execution Time (s) Training Execution Time (s)

(a) CIFAR-100 (Imgclsmob-Small) (b) ImageNet (Imgclsmob-Small)

1.00 [— Ray + Keeper 1.00 p— Ray + Keeper
@ @ Ray
3 0.75 2 0.75
- -
5 0.50 5 050
< <
|59} 59}
a 0.25 a 0.25
Q @]
0.00 0.00

10* 103
Training Execution Time (s)

102 10 10*
Training Execution Time (s)

(c) Flowers (Imgclsmob) (d) NLP (HuggingFace)

Figure 15: ModelKeeper improves general training tasks.

new models, such rigid parent selection can miss better parent
models out of other explored NAS models. Similarly, Mother-
Net not only requires additional training of the model subnet,
but can not repurpose better-trained models on the fly.

(ii) Insufficient weight transformation: Their design, which
simply copies the weights from the parent model when two
tensors are identical, is lossier than ModelKeeper. For exam-
ple, inserting randomly initialized prefix tensors can make the
copy of subsequent tensors useless.

Meanwhile, they are limited to specific NAS or ensemble
training tasks and cannot serve various DNN training jobs on
the fly in the cluster wide.

ModelKeeper accelerates ML training for various tasks.
Figure 15 and Table 2 report the performance of individual
jobs. Compared to training from scratch, we observe that:
(i) ModelKeeper achieves 1.3x-4.3x faster training, saving
23%-T77% training execution, across a wide range of work-

Time Improvement Acc.(Keeper) - Acc.(Baseline)

Workload

25th ~ 50th 75th 25th 50th 75th
NAS-Grid 1.5x 20x 3.1x | 001% 0.25% 0.42%
NAS-Evol 12x 1.6x 3.0x | 0.03% 0.19% 0.48%
Flowers102 | 12x 2.1x 33x | 0.0% 0.16% 0.37%
CIFAR-100 | 1.1x 1.5x 2.0x | -0.04% 0.08% 0.32%
ImageNet32 | 1.0x 12x 1.6x | -0.07% 0.0% 0.11%
V-Ensemble | 1.1x 1.5x 19x [0.02% 0.07% 0.65%

HuggingFace | 1.2x 14x 2.1x | 0.2ppl -1.3ppl -3.87ppl

Table 2: Keeper saves training execution time of individual jobs
without accuracy drop. Smaller perplexity (ppl) is better.

loads. This improvement is more pronounced in a larger zoo
because of having more trained models to repurpose. (ii) Im-
provements on different workloads report a positive correla-
tion with the prevalence of model similarity in that model zoo.
Here, ModelKeeper achieves larger improvement on NAS-
Bench, which is consistent with the fact that this model zoo
owns higher inter-model similarities (Figure 2). (iii) Although
ModelKeeper starts from an empty zoo and jobs arrive on
the fly, we can still save the training execution for 70%-95%
individual jobs (Table 2). We note that the 25th percentile
improvement of small-scale model zoos (e.g., Imgclsmob) is
inferior to others. This is because not all training models are
warmed up due to the cold start of this online setting, and the
fact that ModelKeeper will not warm start the model that does
not have a similar parent (similarity > 0).

ModelKeeper speeds up training without accuracy drop.
Table 1 and Table 2 report that, on average, ModelKeeper can
achieve similar (or even slightly better) final model accuracy.
Intuitively, ModelKeeper should perform no worse than base-
line accuracy, since the rest of the training (e.g., data) remains
the same. However, we note that this slightly better model per-
formance is consistent with the observations in ML network
morphism [66], which interprets it as the internal regulariza-
tion ability. Specifically, by transferring from well-trained
models, model weights have been placed in a good position in
the space, resulting in a more regularized network to reach a
better basin of the loss curvature [25,66]. In contrast, training
from scratch can get stuck in local minima.

6.3 Performance Breakdown

In the rest of the evaluations, we refer to the improvement on
V-Ensemble as that over training from scratch for brevity.

Breakdown of Components We break down ModelKeeper
by disabling Matcher and Mapper respectively: (1) Keeper
w/o Matcher: remove our Matcher design, and instead resort
to a state-of-the-art graph matching strategy [57] to select a
parent model with the most pairwise tensor mappings; and
(2) Keeper w/o Mapper: disable our Mapper design, so only
transform the parent model weight if and only if two tensors
are identical. Figure 16 reports the improvement of these

[Keeper w/o Matcher [l Keeper w/o Mapper [l Keeper

30 2.91 2.86 281
5 2.14
§ 2.06 1.95 -
g 2.0 72 158 157
£ 123 118 127
T 1.0
g
2
= 0.0 H i
NAS-Grid V-Ensemble Flowers102 CIFAR-100

Figure 16: Breakdown of Keeper components.

Parent model similarity

0 <0.7 O [0.7,0.8]
40 @ [038,0.9]

Flowers102
W [09,1.0] NAS-Grid

NAS-Evol
V-Ensemble
CIFAR-100
ImageNet32

HuggingFace

Factor of Improvement

0 0.5 1 15

NAS-Grid V-Ensemble Flowers102 Overhead/Training Execution Time (%)

Figure 17: Faster training with F igure 18: Keeper introduces
higher model similarity. negligible overhead.

variants. We notice: (i) the classic GED solution, in Keeper
w/o Matcher, achieves suboptimal performance, since model
matching prefers to match prefixes, and partial matching al-
lows better overall similarity. (ii) transforming weights only
for identical tensors, in Keeper w/o Mapper, is inferior to
Keeper information-preserving transformation. (iii) Matcher
and Mapper contribute comparable improvements.

Breakdown of Improvement Characteristics Figure 17
reports the average improvement after categorizing training
models by their similarity to the parent model. We note that:
(1) Keeper tends to achieve better execution saving for mod-
els with a higher parent model similarity. This again supports
our parent model selection criteria that prioritize models with
higher architectural similarity. (2) Improvements of different
similarity regimes (e.g., [0.7, 0.8] vs. [0.8, 0.9]) are often dis-
tinct, and this becomes vague as similarity over 0.8. Because
most layers have been largely warmed up, and deeper layers
are too specific to the parent model to be transferable [71].

Overhead Analysis Figure 18 reports Keeper’s overhead,
i.e., the time taken between initiating the query and starting to
train, over the training execution time. We report the average
of all jobs, and notice that Keeper introduces less than 1.5%
overhead (< 43 s) across all workloads.

6.4 Sensitivity and Ablation Studies

Impact of Low-Accuracy Models As a cluster-wide ser-
vice, ModelKeeper should be robust to unfavorable settings
where the accuracy of user-registered zoo models can be low
(e.g., due to insufficient training). We follow the popular early-
stop design in ML [44] to simulate unfavorable setups, where
model registration takes place when jobs run to at most X
minutes. Figure 19 reports the improvement of execution time
across different degrees of unfavorable settings. Here, the
x-axis value 40% indicates X is set to be the 60th percentile

g 4.0 [0 w/o Bucketing 4.0
. -
£ A w/ Bucketing =
230 £
23 £ 30
s 2
E 20 220
= E
§ 1.0 = 1.0
154 1
£ 00 £ 00
40 50 60 70 =

NAS-Grid Flowers102
Figure 20: Keeper improves
training execution time across
the different numbers of buck-

Percent. of Low-Accuracy Models (%)
Figure 19: Keeper is robust in
the presence of poor perfor-
mance models (NAS-Grid).

ets.

4.0 Zoo Capacity (%) 1.00 p— Keeper w/ ImageNet
s Os O1w |20 2 —— Scratch
g W 40 @ 100 c 0.75

=
2 P
1= 1]
& £ 0.50
] 3
= 59
= a 0.25
e @]
]
= 0.00

10 103 10*
NAS-Grid V-Ensemble Flowers102

. Training Execution Time (s)
Figure 21: Impact of zoo ca- gigure 22: Keeper accelerates
pacity on execution time. Error 1.1 training on CIFAR-100
bars report standard deviation. using ImageNet32 model zoo.

value in execution time distributions, so only 40% zoo mod-
els are trained to converge. We observe that: (i) improvement
decreases as more zoo models have low accuracy. (ii) Keeper
is more robust with our bucketing design as it exploits the
similarity-accuracy sweet spot.

Impact of Bucketing Figure 20 reports that ModelKeeper
delivers consistent improvement across a wide range of num-
ber of buckets B. Meanwhile, we notice that using the most
accurate parent model (i.e., ~ B=2) or the most architecturally
similar parent (i.e., ~ B=20) achieves suboptimal improve-
ment, since it respectively undervalues the model similarity
and accuracy in selecting the parent model.

Impact of Zoo Capacity Figure 21 reports the average im-
provement under different zoo capacities. The total size (i.e.,
100%) of model zoos in NAS-Grid, V-Ensemble, and Flow-
ers102 are 1.6GB, 17GB, and 31 GB, respectively. We observe
that: (i) as expected, the improvement is more pronounced
as we allocate more storage to ModelKeeper’s model zoo,
but (ii) we can still achieve ~2x improvement under severe
capacity limits (e.g., 5% capacity aka < 2GB storage), since
Keeper adaptively evicts suboptimal zoo models.

Cross-Dataset Training Warmup Figure 22 reports that
ModelKeeper can benefit DNN training across datasets. Here,
we warm start the training of Imgclsmob-small models on
CIFAR-100 using zoo models from the ImageNet32 work-
load, and notice 2.5 x faster training on average. This is be-
cause front DNN layers capture general input features (e.g.,
color blobs of images), which are transferable to similar
datasets [71]. While picking which dataset as the source for
warmup is still an open ML problem [45, 78], ModelKeeper

provides systems support for automated warmup transforma-
tion across ML tasks and datasets using the given model zoo.

7 Discussion and Future Work

Support for Hyperparameter Tuning ModelKeeper by
default automatically searches and transforms the parent
model for various training tasks. Meanwhile, the developer
can specify which parent model to repurpose using the tag
configuration in their request too (Figure 6), while enjoying
the automated weights transformation. For example, we may
want the same parent model for hyperparameter tuning jobs to
eliminate the comparison bias and/or to ensure reproducibility.
Moreover, as the training of the query model will be jump-
started, it would be interesting to investigate how to adapt
to better job configurations (e.g., scaling the learning rate in
terms of the number of transformed layers [56, 66]) to further
improve the training convergence.

Model Sharing in the Wild ModelKeeper repurposes a
zoo of trained models to warm start the new training job.
These zoo models can be maintained by the cluster provider,
and/or contributed by users. For example, AWS SageMaker
offers hundreds of pre-trained models for tasks like object
detection and natural language processing [8]; HuggingFace
Model Hub has gathered ~70K models shared by the commu-
nity [2]. The former is more managed but expensive to include
extensive models and tasks, while the latter has good extensi-
bility but can exhibit great uncertainties (e.g., low-accuracy
models). To the best of our knowledge, ModelKeeper moves
the first step to automatically warm start the cluster-wide
model training. However, further investigations on how to
democratize it in the wild, such as for privacy and security
concerns, are needed. To this end, one possible approach is to
develop differential privacy-like solutions [11] (e.g., adding
noise to the weights of the contributed models), which natu-
rally leads to an interesting trade-off between privacy and the
model quality.

8 Related Work

Deep Learning Frameworks Recent ML efforts have
made considerable progress toward efficient inter-job schedul-
ing [28,49, 56, 74], intra-job computation placement [43, 50],
communication optimization [40, 55], specialized execution
backend [9, 18,42], and timely inference [29]. However, they
are mostly in-execution optimizations, and/or the total amount
of training remains the same. Different from transforming ten-
sors for faster computation (e.g., TASO [38] and PET [64]),
ModelKeeper operates on model weights, and acts as a com-
plementary service to accelerate cluster-wide DNN training.

AutoML Systems Retiarii [77] and AutoKeras [41] rely on
the lineage of graph mutation to repurpose trained models,
whereas they are limited to NAS tasks within individual jobs.
Experiment Graph [22] identifies the reusable ML scripts
and artifacts in platforms to speed up repeated executions,

so it focuses on the same job execution. As recent AutoML
platforms, such as AzureML [59], Amazon SageMaker [1]
and MLflow [75], provide a collaborative environment to
simplify ML deployments, reusing artifacts can greatly speed
up repeated executions (e.g., reuse scripts [22]). ModelKeeper
is the first automated training warmup system to accelerate
cluster-wide DNN training jobs across users, and improves
Retiarii and AutoKeras further (§6.2).

Transfer Learning Transfer learning today mostly trans-
fers the weight of the same model [71], from one source
task to another target to alleviate the need for large training
data. For a given parent model, network morphism [17,66]
introduces function-preserving transformation to construct
child models while preserving the parent information. Moth-
erNet [65] further applies the network morphism to warm
start model training, but is limited to ensemble training tasks.
ModelKeeper tackles a more challenging scenario for various
tasks in the wild, and achieves better performance (§6.2).

Graph Matching Graph matching is one of the NP-hard
fundamental problems in graph analysis [61]. To speed up
the matching, DAF [31] decomposes the graph into forests.
Similarly, AED [57] divides global matching into local match-
ing, and then aggregates the local matching decisions. How-
ever, they are insufficient due to the novel properties of DNN
graphs, where pairwise matching prefers ordered alignment
and allows partial weights transformation. ModelKeeper out-
performs them in training speedup and throughput (§6.3).

9 Conclusion

In this paper, we introduce ModelKeeper to enable automated
warmup of DNN training jobs at the cluster scale. Model-
Keeper manages a collection of already-trained models from
different developers and/or frameworks. Before training a
model, it selects a high-quality trained parent model and per-
forms structure-aware transformation of parent model weights
to warm up the weights of new training models. Our evalua-
tions across thousands of CV/NLP models show that Model-
Keeper achieves 1.3x-4.3x faster training completion.

Acknowledgments

Special thanks go to the entire CloudLab team for making
ModelKeeper experiments possible. We would also like to
thank the anonymous reviewers, our shepherd, Neeraja J. Yad-
wadkar, and SymbioticLab members for their insightful feed-
back. This work was supported in part by NSF grants CNS-
1909067, CNS-1900665, and CNS-2106184.

References

[1] Amazon SageMaker.
sagemaker/.

https://aws.amazon.com/

[2] HuggingFace Model Hub. https://huggingface.
co/models?sort=downloads.

[3] Kaggle Competition.

docs/competitions.

https://www.kaggle.com/

[4] Microsoft NNI. https://github.com/microsoft/
nni.

[5] MLflow. https://mlflow.org/.

[6] Model Zoo: Discover open source deep learning code
and pretrained models. https://modelzoo.co/.

[7] Open Neural Network Exchange (ONNX). https://
github.com/onnx/onnx.

[8] Pre-trained machine learning models available in
AWS Marketplace. https://aws.amazon.com/
marketplace/solutions/machine-learning/
pre-trained-models/.

[9] PyTorch. https://pytorch.org/.

[10] Sandbox for training deep learning networks. https:
//github.com/osmr/imgclsmob.

[11] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In CCS, 2016.

[12] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction
for faster non-convex optimization. In /ICML, 2016.

[13] Jordan Ash and Ryan P Adams. On warm-starting neural
network training. NeurlIPS, 33, 2020.

[14] Brian R. Bartoldson, Ari S. Morcos, Adrian Barbu, and
Gordon Erlebacher. The generalization-stability tradeoff
in neural network pruning. In NeurIPS, 2020.

[15] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wen-
jie Zhang. Efficient subgraph matching by postponing
cartesian products. In SIGMOD, 2016.

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers. abs/2005.14165, 2020.

[17] Tianqgi Chen, Ian J. Goodfellow, and Jonathon Shlens.
Net2net: Accelerating learning via knowledge transfer.
ICLR, 2016.

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://huggingface.co/models?sort=downloads
https://huggingface.co/models?sort=downloads
https://www.kaggle.com/docs/competitions
https://www.kaggle.com/docs/competitions
https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://mlflow.org/
https://modelzoo.co/
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models/
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models/
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models/
https://pytorch.org/
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In OSDI,
2018.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter.
A downsampled variant of imagenet as an alternative to
the CIFAR datasets. CoRR, abs/1707.08819, 2017.

Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-
manov. Inferline: Latency-aware provisioning and scal-
ing for prediction serving pipelines. In SoCC, 2020.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A Low-Latency online prediction serving system. In
NSDI, 2017.

Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Zi-
awasch Abedjan, Tilmann Rabl, and Volker Markl. Op-
timizing machine learning workloads in collaborative
environments. In SIGMOD, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
NAACL, 2019.

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending
the scope of reproducible neural architecture search. In
ICLR, 2020.

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Ben-
gio, Samy Bengio, and Pascal Vincent. The difficulty
of training deep architectures and the effect of unsuper-
vised pre-training. In AISTAAS, 2009.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang
Zhang, Pedro Larroy, Mu Li, and Alexander J. Smola.
Autogluon-tabular: Robust and accurate automl for struc-
tured data. CoRR, abs/2003.06505, 2020.

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li.
A survey of graph edit distance. Pattern Analysis and
Applications, 13, 113-129 (2010), 2010.

Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo
Zhu, Myeongjae Jeon, Junjie Qian, Honggiang Liu, and
Chuanxiong Guo. Tiresias: A GPU cluster manager for
distributed deep learning. In NSDI, 2019.

Arpan Gujarati, Reza Karimi, Safya Alzayat, Antoine
Kaufmann, Ymir Vigfusson, and Jonathan Mace. Serv-
ing dnns like clockwork: Performance predictability
from the bottom up. In OSDI, 2020.

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

Jashwant Raj Gunasekaran, Cyan Subhra Mishra,
Prashanth Thinakaran, Bikash Sharma, Mahmut Taylan
Kandemir, and Chita R. Das. Cocktail: A multidimen-
sional optimization for model serving in cloud. In NSDI,
2022.

Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo
Park, and Wook-Shin Han. Efficient subgraph matching:
Harmonizing dynamic programming, adaptive matching
order, and failing set together. In SIGMOD, 2019.

Song Han, Jeff Pool, John Tran, and William J. Dally.
Learning both weights and connections for efficient neu-
ral networks. NIPS’15, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Dis-
tilling the knowledge in a neural network. In NIPS Deep
Learning and Representation Learning Workshop, 2015.

Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B. Gibbons, and Onur Mutlu. Focus: Query-
ing large video datasets with low latency and low cost.
In OSDI, 2018.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. Densely connected convolutional
networks. In CVPR, 2017.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In ATC, 2019.

Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Optimiz-
ing deep learning computation with automatic genera-
tion of graph substitutions. In SOSP, 2019.

Angela H. Jiang, Daniel L.-K. Wong, Christopher Canel,
Lilia Tang, Ishan Misra, Michael Kaminsky, Michael A.
Kozuch, Padmanabhan Pillai, David G. Andersen, and
Gregory R. Ganger. Mainstream: Dynamic Stem-
Sharing for Multi-Tenant video processing. In ATC,
2018.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
gpu/cpu clusters. In OSDI, 2020.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras:
An efficient neural architecture search system. In
SIGKDD, 2019.

[42] Fan Lai, Jie You, Xiangfeng Zhu, Harsha V. Madhyastha,
and Mosharaf Chowdhury. Sol: Fast distributed compu-
tation over slow networks. In NSDI, 2020.

[43] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and
Mosharaf Chowdhury. Oort: Efficient federated learning
via guided participant selection. In OSDI, 2021.

[44] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization.
JMLR, 2018.

[45] Mingsheng Long, Han Zhu, Jianmin Wang, and
Michael I. Jordan. Deep transfer learning with joint
adaptation networks. In ICML, 2017.

[46] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and
efficient GPU cluster scheduling. In NSDI, 2020.

[47] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. CoRR,
abs/1609.07843, 2016.

[48] Richard Meyes, Melanie Lu, Constantin Waubert
de Puiseau, and Tobias Meisen. Ablation studies in
artificial neural networks. CoRR, abs/1901.08644, 2019.

[49] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing Al applications. In OSDI, 2018.

[50] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In SOSP,
2019.

[51] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha,
and Dmitry Vetrov. Structured bayesian pruning via
log-normal multiplicative noise. In NeurIPS, 2017.

[52] James Newling and Francois Fleuret. K-medoids for
k-means seeding. In NeurIPS, 2017.

[53] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
What is being transferred in transfer learning? NeurIPS,
2020.

[54] M-E. Nilsback and A. Zisserman. Automated flower
classification over a large number of classes. In Pro-
ceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing, 2008.

[55] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In SOSP, 2019.

[56] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gre-
gory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learning.
In OSDI, 2021.

[57] Kaspar Riesen and Horst Bunke. Approximate graph
edit distance computation by means of bipartite graph
matching. Image and Vision Computing, 27(7):950—
959, 2009. 7th IAPR-TC15 Workshop on Graph-based
Representations (GbR 2007).

[58] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The
odds are odd: A statistical test for detecting adversarial
examples. In ICML, 2019.

[59] AzureML Team. Azureml: Anatomy of a machine learn-
ing service. In PAPIs, 2015.

[60] Nilesh Tripuraneni, Michael 1. Jordan, and Chi Jin. On
the theory of transfer learning: The importance of task
diversity. In Hugo Larochelle, Marc’ Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, NeurIPS, 2020.

[61] J. R. Ullmann. An algorithm for subgraph isomorphism.
J. ACM, 23(1):31-42, January 1976.

[62] Manasi Vartak, Harihar Subramanyam, Wei-En Lee,
Srinidhi Viswanathan, Saadiyah Husnoo, Samuel Mad-
den, and Matei Zaharia. Modeldb: A system for ma-
chine learning model management. In Proceedings of
the Workshop on Human-In-the-Loop Data Analytics,
HILDA ’16, New York, NY, USA, 2016. Association
for Computing Machinery.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS,
2017.

[64] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In OSDI, 2021.

[65] Abdul Wasay, Brian Hentschel, Yuze Liao, Sanyuan
Chen, and Stratos Idreos. Mothernets: Rapid deep en-
semble learning. In I. Dhillon, D. Papailiopoulos, and
V. Sze, editors, MLSys, 2020.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Tao Wei, Changhu Wang, Yong Rui, and Chang Wen
Chen. Network morphism. In /ICML, 2016.

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis and
scheduling in Large-Scale heterogeneous GPU clusters.
In NSDI, 2022.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In OSDI, 2018.

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. AntMan: Dynamic scaling on GPU clus-
ters for deep learning. In OSDI, 2020.

Bowen Yang, Jian Zhang, Jonathan Li, Christopher Re,
Christopher Aberger, and Christopher De Sa. Pipemare:
Asynchronous pipeline parallel dnn training. In MLSys,
2021.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. How transferable are features in deep neural
networks? ArXiv, abs/1411.1792, 2014.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted
sgd with faster convergence and less communication:
Demystifying why model averaging works for deep
learning. In AAAI 2019.

Peifeng Yu and Mosharaf Chowdhury. Fine-grained gpu
sharing primitives for deep learning applications. In
MLSys, 2020.

Peifeng Yu, Jiachen Liu, and Mosharaf Chowdhury.
Fluid: Resource-aware hyperparameter tuning engine.
In MLSys, 2021.

Matei Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. Accelerating the machine learning lifecycle with
mlflow. IEEE Data Eng. Bull., 41(4):39-45, 2018.

Ke Zhang, Miao Sun, Tony X. Han, Xingfang Yuan,
Liru Guo, and Tao Liu. Residual networks of residual
networks: Multilevel residual networks. IEEE Trans-
actions on Circuits and Systems for Video Technology,
28(6):1303-1314, Jun 2018.

Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang,
Zhe Liu, Mao Yang, and Lidong Zhou. Retiarii: A
deep learning exploratory-training framework. In OSDI,
2020.

[78] Han Zhao, Remi Tachet des Combes, Kun Zhang, and

Geoffrey J. Gordon. On learning invariant representa-
tion for domain adaptation. ICML, 2019.

A ModelKeeper Analysis
A.1 Design Criteria

At its core, ModelKeeper performs informed weight initializa-
tion for DNN models by repurposing a well-trained model’s
weights. Intuitively, we note that

e This can be viewed as an instance of existing transfer
learning (TL), where we transform the weight of a model
on one dataset to train on ‘“another” dataset (i.e., the
warmup model has not viewed that dataset before its train-
ing takes place) [13]. More subtly, it is a simplified and
complementary TL scenario under homogeneous data
distribution and features, so existing TL theories can be
applied to validate our effectiveness too.

e ModelKeeper transformation is an informed weight ini-
tialization, thus a special case of random initialization. As
the rest of the training remains the same, the model should
be able to reach similar final accuracy when the model
converges.

Why ModelKeeper Can Help Convergence? We next
present the theoretical analysis of model convergence to show
why ModelKeeper can achieve faster convergence.

Corollary A.1. (Theorem 1 in [72]). Under widely-used DL
assumptions (1) Smoothness: loss function f(w) is L-Lipschitz
smooth; (2) Bounded gradient variances: with constants G >
0, 6 > 0, we assume E[|Vf(w)||?] < G* and E[||VF (w)|> —
Vf(w)||?] < 62 and (3) Unbiased estimation: on mini-batch
& we have E,, [V f(w)] = VF (w).

1
With learning rate Yto 0 < Y < I then for iteration T, the

model training convergence rate is:

Y BV < (508~)+ 4PPGL + y0
A v N

Where N is the number of workers in synchronized data-
parallel training, f* is the optimal training loss.

From Corollary A.1, we can notice that, for the same model,
training achieves faster convergence with a smaller initial loss
value f(w") in theory (similar to [53,71]). Indeed, existing
gradient variance reduction techniques in the ML community
report a similar theory analysis [12]. Here, we empirically
show that the initial training loss of the warmup query model,
f (wo), will start from some basin of loss curvature (e.g., bet-
ter accuracy in Figure 3 and smaller gradient variance in
Figure 4), and theoretically analyze why this enables starting
from the loss basin in Appendix A.2.

Admittedly, weight transformation can be lossy (e.g., due
to incomplete matching), which breaks the parent model infor-
mation. We note that capturing the exact convergence compar-
ison herein is extremely challenging, which indeed is a funda-

~|—

mental open problem even in today’s transfer learning [25].
Nevertheless, many empirical analyses have reported consis-
tently encouraging improvement [71], and transfer learning
is widely-used. Intuitively, for front tensors that enjoy full
information-preserving transformation, we can consider them
as a prefix subnet, and this subnet holds the same output
as the corresponding parent subnet. Therefore, these tensors
can still potentially achieve faster convergence according to
Corollary A.1.

How to Select Parent Models? In selecting the parent
model, ModelKeeper prioritizes the model with (1) better
model accuracy: this is because parent models with better
accuracy enable smaller initial loss f(w?), thus allowing bet-
ter convergence speed (Corollary A.1); and (2) larger archi-
tectural similarity and prefix preference: If we dive to the
fundamental of model training, the output activations of a spe-
cific model tensor i is y' = f;(y~"Tw; +b;). Here, assuming
the front / — 1 tensor are warmup, while w; is randomly ini-
tialized. The front subnet still enjoys better convergence, so
we prefer a model with architectural similarity to maximize
this potential. In the forward training propagation, w; leads
to cascading information loss to subsequent tensors, SO we
prioritize the match of prefixes to minimize this loss. On the
other hand, training front tensors is more difficult but more
transferable, because gradient information becomes less in-
formative as it is backpropagated through more subsequent
tensors [25], which requires us to match subsequent tensors as
many as possible to curb this divergence to the front tensors
in backward propagation.

A.2 Information-Preserving Transformation

ModelKeeper employs width and depth operators to per-
form structure-aware weight transformation, wherein expand-
ing the parent model performs the same to Net2Net [17].
Net2Net theoretically grounds that expanding transforma-
tion (e.g., more convolution channels or new convolution
tensors) can preserve the parent model information for a
wide range of tensors. Specifically, the depth operator tries
to deepen a tensor yi = ﬁ(y(i_l)Twi + bi) using two tensors
y = ﬁ(U(i)Tfi (y(i’l)Twi + bi)) , where f;, w;, b; are the acti-
vation function, tensor weights, and bias vectors, respectively.
When matrix U is initialized to an identity matrix, adding U
preserves the same output of its input tensor if f; is chosen
such that f;(Uf;(v)) = f;(v) for all vectors v. This property,
fi» holds for widely-used rectified linear activation in today’s
DNN models. For example, to insert a new convolution tensor,
we should set the convolution kernels to be identity filters.
Readers can refer to Net2Net [17] for the theoretical analy-
sis for the width operator. As such, in expanding the parent
model, we may preserve the full parent model information.

	Introduction
	Background and Motivation
	DNN Model Training
	Opportunities for Repurposing Models

	ModelKeeper Overview
	ModelKeeper Design
	Matcher: Identify Similar Models
	Mapper: Transform Maximal Parent Information
	Zoo Manager: Transform Effectively At Scale

	Implementation
	Evaluation
	Methodology
	End-to-End Performance
	Performance Breakdown
	Sensitivity and Ablation Studies

	Discussion and Future Work
	Related Work
	Conclusion
	ModelKeeper Analysis
	Design Criteria
	Information-Preserving Transformation

