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Abstract. We present a motion planning algorithm for a class of uncertain
control-affine nonlinear systems which guarantees runtime safety and goal reach-
ability when using high-dimensional sensor measurements (e.g., RGB-D images)
and a learned perception module in the feedback control loop. First, given a
dataset of states and observations, we train a perception system that seeks to
invert a subset of the state from an observation, and estimate an upper bound
on the perception error which is valid with high probability in a trusted domain
near the data. Next, we use contraction theory to design a stabilizing state feed-
back controller and a convergent dynamic state observer which uses the learned
perception system to update its state estimate. We derive a bound on the trajec-
tory tracking error when this controller is subjected to errors in the dynamics
and incorrect state estimates. Finally, we integrate this bound into a sampling-
based motion planner, guiding it to return trajectories that can be safely tracked
at runtime using sensor data. We demonstrate our approach in simulation on a 4D
car, a 6D planar quadrotor, and a 17D manipulation task with RGB(-D) sensor
measurements, demonstrating that our method safely and reliably steers the sys-
tem to the goal, while baselines that fail to consider the trusted domain or state
estimation errors can be unsafe.

Keywords: Motion planning · Machine learning · Perception-based control

1 Introduction

Safely and reliably deploying an autonomous robot requires a systematic analysis of
the uncertainties that it may face across its perception, planning, and feedback con-
trol modules. State-of-the-art methods largely analyze each module separately; e.g., by
first certifying perception [30], finding a safe plan under a nominal dynamics model
[16], and then using a stable tracking controller [23]. However, this ignores how the
errors in each module can propagate. Inaccuracies in the dynamics and perception can
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Fig. 1. For a 4D car, a 6D quadrotor, and a 14D arm, we compute plans that can be safely stabi-
lized to reach goals at runtime using rich sensor observations in the form of RGB(-D) images.

destabilize the downstream feedback controller and lead to failure, revealing a need to
unify perception, planning, and control to guarantee safety for the end-to-end autonomy
pipeline.

To address this gap, we consider one such unified approach: the Output Feedback
Motion Planning problem (OFMP) [22], which jointly plans nominal trajectories and
designs feedback controllers which safely stabilize the system to some goal when using
imperfect state information (i.e., output feedback). A concrete way to solve the OFMP
is to bound the set of states that the system may reach while tracking a plan using output
feedback, that is, a closed-loop output feedback trajectory tracking tube, and ensure it
is collision-free. Practical robots present challenges in solving the OFMP:

1. The tracking tubes should be efficiently computable for arbitrary trajectories so that
they can be used in the planning loop to restrict the set of states that can be safely
visited. However, solving this reachability problem is computationally demanding.

2. Processing rich sensor data (e.g., images, depth maps, etc.) at runtime is often done
via deep learning-based perception modules, which are powerful but error-prone.
Bounding this error and bounding its effect on trajectory tracking error is difficult.

To address the first challenge, we use contraction theory, which is of specific interest
for the OFMP as it enables the (1) design of stabilizing feedback controllers [19] and
convergent state estimators [8] and (2) fast computation of tracking/estimation tubes,
given a bound on the disturbances that the controller and observer are subjected to
[18]. Estimating this bound is central to our solution of the second challenge, where we
use data to (1) estimate a bound on the error of a learned perception module which is
valid with high probability and (2) bound the level to which incorrect state estimates
can destabilize the controller. Combining these solutions provides accurate tubes that
can be used in planning. In summary, we develop a contraction-based output feedback
motion planning algorithm for control-affine systems stabilized from image observa-
tions, which retains guarantees on safety and goal reachability. Our specific contribu-
tions are:

– A learning-based framework for integrating high-dimensional observations into
contraction-based control and estimation that can generalize across environments

– A trajectory tracking error bound for contraction-based feedback controllers in out-
put feedback, subjected to a disturbance that accurately reflects the perception error

– A sampling-based planner which solves the OFMP, returning plans that can be safely
tracked and that reliably reach the goal at runtime using image observations
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– Validation in simulation on a 4D nonholonomic car, a 6D planar quadrotor, and a
17D manipulation task, guaranteeing safety whereas baseline approaches fail.

2 Related Work

First, our work is related to and draws from contraction-based control and estimation.
Contraction-based robust control [5,23,26] can ensure safety for uncertain systems
using perfect state feedback, but the guarantees are lost if using imperfect state esti-
mates. Other work has studied contraction-based convergence guarantees for state esti-
mation without control input, e.g., [3,8,27]; however, solving the OFMP requires jointly
analyzing the controller and observer. Most closely related is [18], which studies output
feedback control via contracting controllers and observers; however, it considers simple
measurement models and does not derive the tracking tubes needed for the OFMP.

Our work also relates to control from rich observations. Differentiable filtering [13]
learns state estimators from images in an end-to-end fashion, which while empirically
successful, do not provide guarantees. Other work focuses on safety: [10] safely con-
trols linear systems using learned observation maps; other methods use Control Barri-
er/Lyapunov Functions (CBF/CLFs) to guarantee safety for nonlinear systems by robus-
tifying the CBF condition to measurement errors [7,11]; however, these methods use
simple sensor models or require that the entire state is invertible from one observa-
tion, precluding their use on states that must be estimated over time, e.g., velocities. In
contrast, our method only seeks to invert a subset of the state, which is then used in
a dynamic observer to estimate the unobserved states. Other work [9] combines CLFs
and CBFs to safely reach goals from observations, but focuses on simpler LiDAR sensor
models.

Finally, our work relates to planning under uncertainty. Funnel-based methods
buffer motion primitives with tracking tubes under perfect [17] and vision-based [28]
feedback control. In contrast, we do not rely on precomputed primitives, and can plan
novel trajectories. Other methods [1,2] consider measurement error in planning but
are either restricted to linear systems or simple sensor models. These methods are
instances of the generally intractable belief-space planning problem; solving this prob-
lem requires simplifying assumptions [25] that may compromise safety. We do not solve
the full belief-space planning problem; instead of tracking belief distributions, our set-
based approach bounds the reachable states and state estimates under the worst-case
error.

3 Preliminaries and Problem Statement

We consider uncertain continuous-time control-affine nonlinear systems (which include
many common mechanical systems of interest [16]) with output observations

ẋ(t) = f(x(t)) + Bu(t) + Bw(t)wx(t) (1a)

y(t) = h(x(t), θ) + Bywy(t) (1b)
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where f : X → X , X ⊆ R
nx , B ∈ R

nx×nu , Bw : [0,∞) → R
nx×nwx , By ∈

R
ny×nwy , U ⊆ R

nu , and wx ∈ R
nwx is a possibly stochastic state disturbance where

‖wx(t)‖ ≤ w̄x, for all t. Without loss of generality, we assume ‖Bw(t)‖ ≤ 1, for all
t. Norms ‖ · ‖ without subscript are the (induced) 2-norm. We obtain high-dimensional
observations y ∈ Y ⊆ R

ny (e.g., N × N -pixel RGB-D images, leading to ny =
4N2), generated by a deterministic, nonlinear function h(x, θ) : X × Θ → Y which is
unknown to the robot; here, θ ∈ R

np are external parameters (e.g., location of obstacles,
map of environment, etc.). The observations may be corrupted by (possibly stochastic)
sensor noise wy(t) ∈ R

nwy , where ‖wy(t)‖ ≤ w̄y , for all t. We note that our results
also apply to time-varying B(t) under some conditions on its null-space.

We assume that (1a) is locally incrementally exponentially stabilizable (IES) in
domain Dc ⊆ X , that is, there exists an α, λ > 0, and some feedback controller such
that for any nominal trajectory x∗(t) ⊆ Dc, ‖x∗(t) − x(t)‖ ≤ αe−λt‖x∗(0) − x(0)‖
for all t. While stronger than asymptotic stability, many underactuated systems are IES
[20]. We also assume that (1) is locally universally detectable [18], which ensures that
any two trajectories x1(t) and x2(t) in a domain De ⊆ X that yield identical observa-
tions y1(t) and y2(t) for all t converge to each other as t → ∞, i.e., x1(t) → x2(t).
Similar assumptions are common in the estimation literature [21] to ensure estimator
convergence, and do not require the full state to be observable instantaneously, e.g., as
in [11].

Definitions: We assume X is partitioned into (un)safe (Xunsafe) Xsafe sets (e.g., obsta-
cles). Let (S>0

n ) Sn be the set of (positive definite) symmetric n × n matrices. For Q ∈
Sn, denote λ̄(Q) (λ(Q)) as its maximum (minimum) eigenvalue. If Q(x) is a matrix-
valued function over a domain D, we denote λ̄D(Q) .= supx∈D λ̄(Q(x)) and λD(Q) .=
infx∈D λ(Q(x)). Denote the Lie derivative of a matrix-valued function Q(x) ∈ R

n×n

along a vector y ∈ R
n as ∂yQ(x) .=

∑n
i=1 yi ∂Q

∂xi , where xi is the ith element of vector
x. For a smooth manifold X , a Riemannian metric tensor M : X → S

>0
nx

provides the
tangent space TxX with an inner product δ�

x M(x)δx, where δx ∈ TxX . The length l(c)
of a curve c : [0, 1] → X between c(0), c(1) is l(c) .=

∫ 1

0

√
V (c(s), cs(s))ds, where

V (c(s), cs(s))
.= cs(s)�M(c(s))cs(s), and cs(s)

.= ∂c(s)/∂s. The Riemannian dis-
tance between p, q ∈ X is d(p, q) .= infc∈C(p,q) l(c), where C(p, q) contains all smooth
curves between p and q; a curve γ(p, q) achieving the argmin is called a geodesic.

3.1 Problem Statement

We formally state the output feedback motion planning problem (OFMP) as follows:

OFMP: Given start xI , external parameter θ ∈ Dθ, goal region G ⊆ Dx (Dθ, Dx are
defined in the next paragraph), and safe set Xsafe, we want to plan a state-control tra-
jectory x∗ : [0, T ] → X , u∗ : [0, T ] → U , x∗(0) = xI , under the nominal dynamics
ẋ(t) = f(x(t)) + Bu(t) such that in execution on the true system (1a), x(t) ∈ Xsafe

for all t ∈ [0, T ] and x(T ) ∈ G. At runtime, we do not observe x(t); we are only given
observations y(t) generated by (1b), and must track x∗ using a (dynamic) output feed-
back controller that we must also design. We assume f , B, Bw, and By are known; h
is unknown; wx, wy are not measurable but w̄x and w̄y are known. If nr ≤ nx of the
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states can be inferred directly from y, we denote these indices as the reduced observa-
tion yr = Crx ∈ R

nr , where Cr ∈ {0, 1}nr×nx is a boolean matrix that selects the
observable dimensions of x. We assume that we are given Cr. Let x(t) be the executed
trajectory of (1a), and let x̂(t) be the trajectory of the state estimate. We are given upper
bounds d̄c(0), d̄e(0)on the Riemannian distance between the true and estimated initial
state de(x(0), x̂(0)) and between the true/planned initial state dc(x∗(0), x(0)); de(·, ·)
and de(·, ·) are defined with respect to (w.r.t.) metrics Mc and Me, defined in Sect. 3.2.

To help solve the OFMP, we are given two datasets. The first is S =
{h(xi, θi), xi, θi}Ndata

i=1 , a dataset of noiseless (cf. Sect. 6 for discussion on how to
relax this assumption) observation-state-parameter triplets, where xi ∈ Dp ⊆ X ,
θi ∈ Dθ ⊆ Θ are collected by any means (sampling, demonstrations, etc.). We assume
Dp and Dθ (the domains where S is drawn from) are known, though this can be
relaxed by estimating these sets as in [5,14]. We are also given a validation dataset
V = {h(xi, θi), xi, θi}Nval

i=1 collected i.i.d. in Dp × Dθ. In the context of (1b), h(x, θ)
may be a simulated image, and Bywy(t) is the sensor noise at runtime. We also define
a “trusted domain” for planning, D = Dx ×Dθ ⊆ X ×Θ, where Dx = Dr ∩Dc ∩De

and Dr is defined as follows: for ease, suppose Cr selects the first nr indices of x, then
Dr = (CrDp) × R

nx−nr . Dr is defined similarly if Cr selects other indices (cf. Fig. 9
of [6]). Ultimately, Dx is a set where a stabilizing controller (in Dc) and observer (in
De) exist, and where the perception is valid (in Dr).

3.2 Control/Observer Contraction Metrics (CCMs/OCMs)

As our approach builds on contraction theory, we provide an overview here. Control
contraction theory [19] studies incremental stabilizability by measuring the distances
between trajectories w.r.t. a Riemannian metric Mc : X → S

>0
nx

. For (1a) if wx ≡ 0, a
sufficient condition [23] for Mc to be called a control contraction metric (CCM) is:

B�
⊥

(
− ∂fWc(x) + A(x)Wc(x) + Wc(x)A(x)� + 2λcWc(x)

)
B⊥ 
 0 (2a)

B�
⊥

(
∂BjWc(x)

)
B⊥ = 0, j = 1...nu, (2b)

for all x ∈ Dc, where Wc(x) .= M−1
c (x), A(x) = ∂f(x)

∂x , and B⊥ is a basis for the null-
space of B. The CCM also defines a controller u : X × X × U → U , which takes the
current state x(t) and a state/control x∗(t), u∗(t) on the nominal state/control trajectory
being tracked x∗ : [0, T ] → X , u∗ : [0, T ] → U , and returns a u that contracts x towards
x∗ at rate λc > 0. The controller u(x, x∗, u∗) can be computed directly via Wc(x) (cf.
Sect. 4.2). If wx ≡ 0, for any nominal x∗(t), applying u(x, x∗, u∗) renders the system
closed-loop IES, i.e., ‖x(t)−x∗(t)‖ ≤ αc‖x(0)−x∗(0)‖e−λct for αc > 0. For bounded
wx, (1a) remains in a tube around x∗(t); we exploit this in Sect. 4.2. Contraction also
analyzes state observer convergence [8,18], i.e., if a state estimate x̂(t) approaches the
true state x(t). Consider the nominal closed-loop system ẋ = f(x) + Bu(x̂, x∗, u∗)
with noiseless observations y = h(x, θ) and a nominal observer

˙̂x = f(x̂) + Bu(x̂, x∗, u∗) + 1
2ρ(x̂)Me(x̂)C(x̂)�(y − h(x̂, θ)) (3)
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for the nominal system, where C(x) = ∂h(x,θ)
∂x , ρ(x) ≥ 0 is a multiplier term, and

Me : X → S
>0
nx

is called an observer contraction metric (OCM), which should satisfy

∂f+BuWe(x̂) + We(x̂)A(x̂) + A(x̂)�We(x̂) − ρ(x̂)C(x̂)�C(x̂) ≤ −2λeWe(x̂) (4)

for all x̂ ∈ De ⊆ X , u ∈ U . Here, We(x̂) = M−1
e (x̂). To show that the estimated and

true trajectories x̂(t) and x(t) converge, we can analyze a nominal “meta-level” virtual
system with state q [27], which recovers the nominal x(t) and x̂(t) when integrated
from initial conditions q(0) = x(0) and q(0) = x̂(0):

q̇ = f(q) + Bu(x̂, x∗, u∗) + 1
2ρ(x̂)Me(x̂)C(x̂)�(y − h(q, θ)). (5)

By setting q = x̂, we recover the estimator dynamics (3); if we set q = x, we recover
ẋ = f(x) + Bu(x̂, x∗, u∗). We can then analyze the convergence of x̂ to x via (5), and
[27] shows that if (4) holds, then x̂(t) contracts at some rate γ ∈ (0, λe] towards x(t).
If Me(x) and C(x) are constant, one can show that this holds for γ = λe. In particular,
‖x(t) − x̂(t)‖ ≤ αe‖x(0) − x̂(0)‖e−λet for αe > 0, and x̂(t) remains in a tube around
x(t) if (3) is perturbed. For polynomial systems of moderate dimension (nx � 12)
with polynomial observation maps, CCMs and OCMs can be found via convex Sum
of Squares (SoS) programs [23]. CCMs/OCMs can also be found for high-dimensional
non-polynomial systems via learning-based methods (e.g., [5,24]).

4 Method

u(x̂, x∗, u∗) ẋ = f(x) + Bu(x̂, x∗, u∗) + Bwwx

ĥ−1(y, θ)

θ

y

ŷrx̂

System dynamicsCCM-based controller

OCM-based observer
˙̂x = f(x̂) + Bu(x̂, x∗, u∗) +

) + 1
2ρMeCr (ŷr − Crx̂)

(x∗, u∗)
Plan:

Compute tubes
2 4 6 8 10 12 14

-3

-2

-1

0

1

2

3

OFFLINE ONLINE

Ωc,Ωe

(e.g. obstacle map)

Fig. 2. Our method. Offline: After learning a perception system ĥ−1 (Sect. 4.1), we bound its
error to derive tracking tubes under imperfect perception (Sect. 4.2). We use these tubes to find
safely-trackable plans (Sect. 4.4). Online: We design a CCM/OCM-based controller/observer
(Sect. 4.3) to track the plan/perform state estimation at runtime, using ĥ−1 to process rich obser-
vations y.

We describe our solution to the OFMP (cf. Fig. 2). Using dataset S, we first train a per-
ception system that returns a reduced-order observation that simplifies the search for the
contraction metrics (Sect. 4.1). Second, we bound the error of the learned perception
module, and propagate this perception error bound through the system to derive bounds
on the tracking and estimation error when using a CCM-/OCM-based controller/esti-
mator (Sect. 4.2). Third, we obtain a CCM and OCM which optimizes this bound via
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SoS programming (Sect. 4.3). Finally, we use these bounds to constrain a planner to
return trajectories that enable safe runtime tracking and robust goal reachability from
observations (Sect. 4.4). For space, all proofs for the theory are in App. C of [6].

4.1 Learning a Perception Module for Contraction-Based Estimation

Let us reconsider the observer (3), which updates its estimate directly using y −h(x̂, θ)
in the rich observation space. To implement (3), one can use S to train a deep approxi-

mation of h, denoted ĥ, design an OCM satisfying (4) for C(x̂) = ∂ĥ(x̂,θ)
∂x , and plug ĥ

and the OCM into (3). This naı̈ve solution is flawed: 1) as ny is large, learning an accu-
rate ĥ can be difficult; 2) the C(x̂) in (4) becomes the Jacobian of a (non-polynomial)
deep network, complicating OCM synthesis by precluding the use of SoS programming.

We can take a more structured approach if we know which states can be directly
inferred from y; this is reasonable if the states have semantic meaning (e.g., poses,
velocities). Recall Cr (Sect. 3.1) defines this reduced observation as yr = Crx ∈ R

nr .
We can then learn an approximate inverse ĥ−1(y, θ) : R

ny × R
np → R

nr which
maps a y and θ to the reduced observation. Note that if each unique y corresponds
to a unique yr, this inverse is well-defined and does not require the full state to be
invertible from a single y. Concretely, consider a car with position, orientation, and
velocity states [px, py, φ, v] and RGB-D data from an onboard camera (Fig. 1A) driving
in several obstacle fields. In this case, yr = [px, py, φ]� and θ could be the obstacle
locations. We model ĥ−1 as a neural network and train it via the mean squared error
between ĥ−1(yi, θi) and Crxi for all i ∈ 1, . . . , Ndata. Note that as the nominal reduced
observations are roughly linear, i.e., ĥ−1(h(x, θ), θ) ≈ Crx, this simplifies the nominal
observer (3) to ˙̂x = f(x̂)+Bu(x̂, x∗, u∗)+ 1

2ρ(x̂)Me(x̂)C�
r Cr(x− x̂), and simplifies

OCM synthesis: as C�
r Cr is constant, (4) is SoS-representable, despite ĥ−1 being non-

polynomial. Compared to the nominal reduced observer, the true observer we use,

˙̂x = f(x̂) + Bu(x̂, x∗, u∗) + 1
2ρ(x̂)Me(x̂)C�

r (ĥ−1(h(x, θ) + Bywy, θ) − Crx̂), (6)

experiences disturbance frommodel errorBwwx, sensor noiseBywy , and learning error
‖ĥ−1(h(x, θ), θ) − Crx‖. Quantifying these errors for our vision-based observer (6) is
one of our core contributions and is key in deriving tracking bounds useful for planning.

4.2 Bounding Tracking Error and State Estimation Error for Planning

To begin, assume we have a CCM Mc and an OCM Me that are valid in Dc ⊆ X and
De ⊆ X and which contract at rate λc and λe, respectively. We discuss CCM/OCM
synthesis in Sect. 4.3. Define the nominal closed-loop state and virtual dynamics as:

ẋ(t) = f(x(t)) + Bu(x(t), x∗(t), u∗(t)) (7a)

q̇(t) = f(q(t)) + Bu(x̂(t), x∗(t), u∗(t)) + 1
2ρ(q(t))Me(q(t))C�

r Cr(x(t) − q(t))
(7b)



356 G. Chou et al.

Factor the CCM/dual OCM as Mc(x) = Rc(x)�Rc(x) and We(x) = Re(x)�Re(x).
Let γt

c(s), s ∈ [0, 1] be the geodesic between x∗(t) and x(t) w.r.t. Mc, and γt
e(s), s ∈

[0, 1] be the geodesic between x̂(t) and x(t) w.r.t. We. [18] shows if γt
c(s) ⊆ Dc for all

t, s and (7a) is perturbed by wc(t), i.e., ẋ = f(x)+Bu(x, x∗, u∗)+wc, the Riemannian
distance w.r.t.Mc between the true and nominal state, dc(t) = dc(x∗(t), x(t)), satisfies:

ḋc(t) ≤ −λcdc(t) +
∫ 1

0
‖Rc(γt

c(s))wc(t)‖ds. (8)

If γt
e(s) ⊆ De for all t, s and (7b) is perturbed by additive wq(t) [27], the Riemannian

distance w.r.t. We between the true and estimated state, de(t) = de(x(t), x̂(t)), satisfies

ḋe(t) ≤ −λede(t) +
∫ 1

0
‖Re(γt

e(s))wq(t)‖ds. (9)

We will use (8) and (9) to obtain upper bounds on the tracking/estimation Riemannian
distances, denoted as d̄c(t) and d̄e(t), respectively. These upper bounds define tracking
and state estimation tubes, i.e., a bound on where x and x̂ can be, which we denote
as Ωc(t) = {x | dc(x∗(t), x) ≤ d̄c(t)} and Ωe(t) = {x̂ | de(x(t), x̂) ≤ d̄e(t)},
respectively. These tubes are crucial in informing where the planner can safely visit,
since tracking any Ωc-buffered candidate trajectory within Dx which remains in Xsafe

is guaranteed to remain safe. However, for these tubes to be usable in a planner, we
need explicit bounds on the integral terms in (8) and (9). In this section, we first present
the final derived bounds on the integrals (Lemmas 1 and 2), describe the ideas behind
the derivations, and postpone the full mathematical details to App. B of [6].

Lemma 1 ( ḋc(t)). The integral term in (8) can be bounded as

∫ 1

0
‖Rc(γt

c(s))wc(t)‖ds ≤
√

λ̄Dc
(Mc)w̄x + LΔkde. (10)

In the second term, LΔk is the Lipschitz constant of the controller error (to be described
later) which, together with state estimate error de, bounds the destabilizing effect of
using incorrect state estimates in feedback control. This term, which can be explic-
itly estimated and thus concretely informs tube size in planning, is the key novelty of
Lemma 1. Overall, (10) states that tracking degrades with larger dynamics and estima-
tion error.

Lemma 2 (ḋe(t)). Let σ̄(By) denote the maximum singular value of By . For constant
ρ and Me, the integral in (9) simplifies to ‖Rewq(t)‖ and can be bounded as:

‖Rewq(t)‖ ≤
√

λ̄(We)w̄x + 1
2ρλ̄(Me)1/2

(
Lĥ−1

√
σ̄(By)w̄y + ε̄{1,2,3}(x∗, θ)

)
(11)

We write Lemma 2 for constant ρ and Me, as this is the representation used in Sect.
5. Here, Lĥ−1 is the local Lipschitz constant of ĥ−1, and ε̄{1,2,3}(x∗, θ) are (spatially-
varying) bounds on its error ‖ĥ−1(h(x, θ), θ) − Crx‖, each with different strength-
s/weaknesses (cf. Fig. 4 for a visual overview). Relative to prior work, Lemma 2 is
novel as it bounds high-dimensional measurement error and learned perception module
error. Overall, (11) states that estimation accuracy degrades with larger dynamics error,
measurement error, and learned perception module error.
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Bounding Tracking Error: We explain more details behind Lemma 1. As Lemma 1
relies on a bound for wc(t), we first break down the components that make up wc(t).
Relative to the nominal closed-loop dynamics (7a), our true closed-loop system

ẋ(t) = f(x(t)) + Bu(x̂(t), x∗(t), u∗(t)) + Bw(t)wx(t) (12)

Fig. 3. uclosest can be much closer
to u(x̂, x∗, u∗) than u(x, x∗, u∗):
we show this for two different state
estimates x̂1 and x̂2.

is subject to two disturbances. The first is the
dynamics error Bw(t)wx(t). The second is imper-
fect state feedback: we apply u(x̂, x∗, u∗) instead
of u(x, x∗, u∗), which unlike the latter, may not
stabilize (7a) at rate λc. Naı̈vely, one can bound
this error by rewriting (12) as ẋ = f(x) +
Bu(x̂, x∗, u∗) − Bu(x, x∗, u∗) + Bu(x, x∗, u∗) +
Bwwx, where the difference between output/perfect
state feedback is in red. While ‖Bu(x̂, x∗, u∗) −
Bu(x, x∗, u∗)‖ is a valid disturbance bound, we can
obtain a tighter bound by exploiting the structure of
u(x, x∗, u∗). In general, many ufb ∈ U can make
ẋ = f(x) + B(u∗ + ufb) contract at rate λc towards
x∗, w.r.t. Mc. Define ẋ∗ = f(x∗) + Bu∗; then, the
contracting ufb [23] are defined by a linear inequality
constraint,

Ufeas(x, x∗, u∗) = {ufb | γ�
c,s(1)Mc(x)ẋ−γ�

c,s(0)Mc(x∗)ẋ∗ ≤ −λcdc(x∗, x)2}, (13)

where γc,s(·) = ∂γc(·)
∂s . As in [23], we select the minimum-norm feasible control to

be u(x̂, x∗, u∗), i.e., u(x̂, x∗, u∗) = arg minu∈Ufeas(x̂,x∗,u∗) ‖u‖. Then, using Ufeas, we
can rewrite (12) as ẋ = f(x) + B(u(x̂, x∗, u∗) − uclosest + uclosest) + Bwwx, where
uclosest(x̂, x, x∗, u∗) .= arg minu∈Ufeas(x,x∗,u∗) ‖u − u(x̂, x∗, u∗)‖ is the closest con-
trol input to u(x̂, x∗, u∗) that contracts the nominal dynamics at x. Bounding the
imperfect state feedback as ‖Bu(x̂, x∗, u∗) − Buclosest‖ instead of ‖Bu(x̂, x∗, u∗) −
Bu(x, x∗, u∗)‖ can be far tighter, as u(x̂, x∗, u∗) may still contract the system at rate λc

(Fig. 3: x̂2 case), or there can be a contracting u closer to u(x̂, x∗, u∗) than u(x, x∗, u∗)
(Fig. 3: x̂1 case). Combining with the dynamics error, we can write wc:

wc(t)
.= Bu(x̂(t), x∗(t), u∗(t)) − Buclosest(t) + Bw(t)wx(t) (14)

As (14) still depends on x and x̂, which are unknown at planning time, extra steps must
be taken to obtain a useful bound that is independent of x and x̂; we achieve this by
bounding the first two terms of (14) via a Lipschitz constant. Define Δk(x̂, x, x∗, u∗) =
maxs∈[0,1] ‖Rc(γt

c(s))B(u(x̂, x∗, u∗) − uclosest)‖, and LΔk as its local Lipschitz con-
stant in the first argument, i.e., for all x∗ ∈ D, u∗ ∈ U , {x | dc(x∗, x) ≤ c̄}, and
{x̂ | de(x, x̂) ≤ ē} for predetermined c̄, ē > 0 (adjustable based on the expected error),

|Δk(x̂1, x, x∗, u∗) − Δk(x̂2, x, x∗, u∗))| ≤ LΔkde(x̂1, x̂2). (15)
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See Remark 1 for details on estimating LΔk. In estimating LΔk, we measure input
distances w.r.t. We; this reduces conservativeness due to the form of our estimation
error bound. Combining (14)-(15) yields Lemma 1; see App. C of [6] for the detailed
proof.

Bounding Estimation Error: Now, we provide more details behind Lemma 2. To
bound

∫ 1

0
‖Re(γt

e(s))wq(t)‖ds, we first note that ‖wq‖ is bounded by the sum of the
disturbance magnitudes when q = x and when q = x̂ [27]. If q = x, (7b) becomes
ẋ = f(x) + Bu(x̂, x∗, u∗); relative to the true closed-loop dynamics (12), the distur-
bance is Bw(t)wx(t). If instead q = x̂, (7b) becomes ˙̂x = f(x̂) + Bu(x̂, x∗, u∗) +
1
2ρ(x̂)Me(x̂)C�

r Cr(x − x̂); relative to the true observer (6), the disturbance is

we(t)
.= 1

2ρ(x̂(t))Me(x̂(t))C�
r (ĥ−1

(
h(x(t), θ) + Bywy(t), θ

)
− Crx(t)). (16)

Two errors drive we(t): the perception error ĥ−1(h(x, θ), θ) − Crx, and the run-
time observation noise Bywy . Combining with the dynamics error gives wq(t)

.=
Bw(t)wx(t) + we(t). Bw(t)wx(t) can be bounded as in Lemma 1, but we(t) is harder
to bound. Let yp = h(x, θ) and y = h(x, θ) + Bywy . We rewrite the norm of the red
term in (16) as:

‖ĥ−1
(
y, θ

)
− Crx‖ = ‖ĥ−1

(
y, θ

)
− ĥ−1

(
yp, θ

)
+ ĥ−1

(
yp, θ

)
− Crx‖

≤ Lĥ−1‖Bywy‖
︸ ︷︷ ︸

from measurement noise

+ ‖ĥ−1
(
yp, θ

)
− Crx‖

︸ ︷︷ ︸
from learning error

.
=ε(x,θ)

. (17)

Here, Lĥ−1 is the local Lipschitz constant of the learned inverse function in y, i.e.,

‖ĥ−1(ỹ, θ) − ĥ−1(y̌, θ)‖ ≤ Lĥ−1‖ỹ − y̌‖, ∀ỹ, y̌ ∈ Dy ⊕ Yd, ∀θ ∈ Dθ, (18)

where Dy = h(Dr,Dθ) is the image of the training data domains, ⊕ is the Minkowski
sum, andYd = {Bywy | ‖wy‖ ≤ w̄y} is the set of feasible measurement noise. The first
braced term in (17) bounds the effect of measurement error on the reduced observation
and is valid for all (x, θ) ∈ Dr × Dθ and observation noise satisfying ‖wy‖ ≤ w̄y .

Fig. 4.Our perception error bounds. A ε̄1 is simple but conservative. B ε̄2(x
∗) is tighter, as it only

seeks to be valid over the tube Ωc. However, it scales linearly with the size of Ωc. C ε̄3(x
∗) can

be tighter for larger Ωc by adding a Lipschitz-based buffer to the largest training error in Ωc.

Now, consider the second braced term in (17). How can we bound the learned per-
ception module error ε(x, θ) .= ‖ĥ−1

(
h(x, θ), θ

)
− Crx‖ over Dr × Dθ? We describe

three options (Fig. 4) at a high level, highlight their strengths/drawbacks, and provide
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the details in App. B of [6]. The first bound, denoted ε̄1, is a constant bound on ε(x, θ)
globally over Dr × Dθ (Fig. 4A). This works well if the error is consistent, but is loose
if there are any error spikes. The second bound (Fig. 4B), denoted ε̄2(x∗, θ), bounds the
error only in the tube Ωc around a nominal x∗, using the Lipschitz constant of ε(x, θ)
(denoted Lp). Due to its locality, ε̄2(x∗, θ) can be tighter than ε̄1; however, it scales
linearly with the size of Ωc, even if ε(x, θ) remains constant. The third bound, ε̄3(x∗, θ)
(Fig. 4C), also bounds the error in the tube but avoids the linear scaling by taking the
worst training error in Ωc and buffering it with a constant value, which depends on Lp

and the dataset dispersion R. Each of these bounds ε̄{1,2,3} on ε(x, θ) can be plugged
into Lemma 2 to upper bound ε(x, θ); see App. B of [6] for details.

Integrating the Differential Inequalities: Now that we can bound the RHSs of the
differential inequalities (8) and (9) via Lemmas 1 and 2, we show how these bounds on
ḋc and ḋe bound the values of dc and de, thereby providing the desired tubes. By group-
ing terms in (8)-(9), we have the following affine vector-valued differential inequality,

[
ḋc

ḋe

]
≤

[−λc LΔk

(∗) −λe

] [
dc

de

]
+

[ √
λ̄Dc (Mc)w̄x√

λ̄(We)w̄x + ρ
2
λ̄(Me)1/2

(
Lĥ−1 w̄y + ε̄{1,2̃,3}(x

∗, θ)
)
]

, (19)

where we regroup the terms for ε̄2(x∗, θ) as ε̄2̃(x
∗, θ) .= ε̄2(x∗, θ)−Lpdc/

√
λDc

(Mc),

and (∗) = 0.5Lpρ
√

λ̄(Me)/λDc
(Mc) if using ε̄2 and 0 else. Then, we have this result:

Theorem 1 (From derivative to value). Let RHS denote the right hand side of (19).
Given bounds on the Riemannian distances at t = 0: dc(0) ≤ d̄c(0) and de(0) ≤ d̄e(0),
upper bounds d̄c(t) ≥ dc(t) and d̄e(t) ≥ de(t) for all t ∈ [0, T ] can be written as

[
dc(t)
de(t)

]

≤
∫ t

τ=0

RHS
(
τ,

[
dc

de

] )
dτ

.=
[
d̄c(t)
d̄e(t)

]

, dc(0) = d̄c(0), de(0) = d̄e(0).

(20)

Evaluating the integral in (20) is efficient as RHS is affine, so d̄c and d̄e can be readily
used in planning (cf. Sect. 4.4). However, note that these tubes are only locally valid,
e.g., evaluating the tubes outside of Dx will give incorrect values. We detail a set of
validity conditions in Sect. 4.4, prove their sufficiency in Theorem 2, use them in our
planner, and show in Sect. 5 that a baseline that ignores these conditions is unsafe.
Finally, we close with a remark on how we estimate the constants in the bounds.

Remark 1 (Estimating constants from data). The derived bounds depend on several
constants that are unknown a priori, such as LΔk and Lĥ−1 , and if ε̄1, ε̄2, or ε̄3 is being
used, ε̄1, Lp, and {Lp,R} also need to be estimated, respectively. As overapproximat-
ing each constant also yields valid (and looser) bounds, we use the i.i.d. validation set
V to overestimate each constant via a sampling-based approach based on extreme value
theory [5]. This returns a value which overestimates the true constant with a user-desired
probability δ, where δ holds in the limit of infinite samples. See [5,14,29] for details.
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4.3 Optimizing CCMs and OCMs for Output Feedback

We briefly discuss how we obtain the CCM/OCM that define the controller/observer;
for space, we detail our method in App. D of [6]. We write two SoS programs to inde-
pendently synthesize the CCM/OCM, which are approximately optimized to minimize
their tube sizes. We search over polynomial CCMs and constant OCMs. For polyno-
mial dual CCMs Wc(x), we also find a constant metric W̄c � Wc(x), for all x, in order
to simplify constraint checking in Sect. 4.4. For linear systems, these SoS programs
simplify to a standard semidefinite program (SDP), which scale to higher-dimensional
systems.

4.4 Solving the OFMP

Algorithm 1: Contraction-based Output feedback RRT (CORRT)

Input: xI , G, θ, S, training error {ei}
Ndata
i=1 , estimated constants, d̄c(0), d̄e(0), c̄, ē

1 T ← {(xI , d̄c(0), d̄e(0), 0)} // node: state, CCM/OCM Riem. dist. bound, time
2 P ← {(∅, ∅)} // parent: previous control/dwell time
3 while True do
4 (xn, d̄n

c , d̄n
e , tn) ← SampleNode(T ) // sample node from tree

5 (up, tp) ← SampleProposedControl () // sample ctrl/dwell time
6 (x∗

p (t), u∗
p (t)), t ∈ [tn, tn + tp) ← IntegrateDyn (xn, up, tp) // get extension

7 (d̄n
c (t), d̄n

e (t)), t ∈ [tn, tn + tp) ← ErrBnd (d̄n
c , d̄

n
e , x

∗
p (t), u∗

p (t), S, {ei}, θ) // new tube

8 (bcL, beL) ← (d̄n
c (t) ≤ c̄, d̄n

e (t) ≤ ē), ∀t ∈ [tn, tn + tp) // check upper bound
9 bc ← Ωn

c (t) ⊆ (Dc ∩ Dr ∩ Xsafe), ∀t ∈ [tn, tn + tp) // check tracking tube
10 be ← Ωn

c (t) ⊕ (Ωn
e (t) � {x(t)}) ⊆ (De ∩ Dc), ∀t ∈ [tn, tn + tp) // chk. estimator tube

11 if bcL ∧ beL ∧ bc ∧ be then T ← T ∪ {(x∗
c(tn + tp), d̄n

c (tn + tp), d̄n
e (tn + tp), tp)};

P ← P ∪ {(up, tn + tp)}
12 else continue // add extension if all checks pass
13 if ∃t, Ωn

c (t) ⊆ G then break; return plan // return if in G

Given the CCM, OCM, and the ability to compute tracking tubes, we can now solve
the OFMP. Our solution builds upon a kinodynamic RRT [16], though we note that the
tubes derived in Sect. 4.2 are planner-agnostic. We grow a search tree T by integrating
sampled controls held for sampled dwell-times until G is reached. To ensure we stay
in Xsafe at runtime, we impose extra constraints on each candidate transition, which are
informed by the tubes; this translates to a restriction on where T can grow (cf. Fig. 5).

To use the Riemannian distance bounds d̄c(t) and d̄e(t) from (20) in planning, recall
that these bounds define sets centered around x∗(t) and x(t), Ωc(t) and Ωe(t), which x
and x̂ are guaranteed to remain within. We can use these sets for collision and constraint
checking. If the metric defining Ω(t) is constant, each Ω(t) defines an ellipsoid, i.e.,
Ωc(t) = {x(t) | (x(t) − x∗(t))�Mc(x(t) − x∗(t)) ≤ d̄c(t)2} and Ωe(t) = {x̂(t) |
(x̂(t)−x(t))�We(x̂(t)−x(t)) ≤ d̄e(t)2}. If the metric is state-dependent (as is the case
for some CCMs we use), we can use W̄c (see Sect. 4.3) to obtain an ellipsoidal outer
approximation of Ωc(t): Ωc(t) ⊆ {x(t) | (x(t) − x∗(t))�(W̄c)−1(x(t) − x∗(t)) ≤
d̄c(t)2} .= Ω̃c(t) that can ease constraint checking. Thus, we can guarantee at planning
time that in execution, x(t) ∈ Ω̃c(t), and x̂(t) ∈ Ω̃c(t) ⊕ (Ωe(t) � {x(t)}), where
A�B

.= {x−y | x ∈ A, y ∈ B}. As (20) defines Ω for any nominal trajectory, we can
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quickly compute tubes along all edges in T . For instance, suppose we wish to extend
from some node in T , x∗

n(tn), which satisfies dn
c (tn) ≤ d̄n

c (tn) and dn
e (tn) ≤ d̄n

e (tn),
to a candidate state x∗

n(tn + tp) by applying control u over [tn, tn + tp). Then, using
(20), we can obtain d̄n

c (t) and d̄n
e (t), for all t ∈ [tn, tn + tp), and to remain collision-

free in execution, we require the induced Ω̃c(t) ⊆ Xsafe; we check this in line 9 of
our planner, Algorithm 1. Here, we assume obstacles are inflated to account for robot
geometry.

Fig. 5. Visualization of Algorithm 1.

To remain collision-free at runtime, we must
add extra constraints on T to ensure the tubes are
valid, as discussed in Sect. 4.2. We describe these
constraints now, and prove they are sufficient in
Theorem 2. At a high level, the estimated con-
stants, CCM, and OCM must be valid for any x
and x̂ that can be reached at runtime. Thus, in line
8, we ensure dc(t) and de(t) remain less than c̄
and ē for all time, so that LΔk (15) is valid. In
line 9, we ensure that Ωc(t) ⊆ Dc ∩ Dr, i.e., the
system remains where the controller can contract
x towards x∗, and ε̄i is valid. In line 10, we ensure x̂ remains in De ∩ Dc; this ensures
that (6) contracts towards the true state x via (2), and that a feasible feedback control
exists in (13); ensuring this at planning time (when we only know x∗(t)) requires a
Minkowski sum of Ωc and Ωe � {x(t)}. Constraint-satisfying candidate extensions are
added to T (line 11); else, they are rejected (line 12). This continues until the goal is
reached (line 13). We visualize our planner (Fig. 5), Contraction-based Output feed-
back RRT (CORRT), detailed in Algorithm 1. Finally, Theorem 2 shows our method
ensures safety and goal reachability if all estimated constants are valid; as our estimates
are probabilistically-valid, the overall guarantees are probabilistic (cf. Rem. 2 of [6]):

Theorem 2 (CORRT correctness). Assume that LΔk, Lĥ−1 , and the estimated con-
stants in ε̄{1,2,3} are valid over their computed domains. Then Algorithm 1 returns a
trajectory (x∗(t), u∗(t)), which when tracked on the true system (1a) using u(x̂, x∗, u∗)
with state estimates x̂ generated by (6), reaches G while satisfying x(t) ∈ Xsafe, for all
t ∈ [0, T ].

5 Results

We evaluate CORRT on a 4D car with RGB-D observations, a 6D quadrotor with RGB
observations, and a 14D acceleration-controlled 7DOF arm with RGB observations. All
observations are rendered in PyBullet. We compare with three baselines; two are shared
across experiments, so we overview them here. To show the need to plan where the
CCM/OCM are valid and the error bounds are accurate, Baseline 1 (B1) plans using
the tracking tubes from (20) inside Algorithm 1 but is not constrained to stay within D,
i.e., the checks in line 8–10 of Algorithm 1 are relaxed. To show the need to consider
estimation error in planning, Baseline 2 (B2) assumes perfect state knowledge in com-
puting its tubes, i.e., de(t) ≡ 0. All baselines execute with the same CCM/OCM as our
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method. See Table 1 for error statistics and the video http://tinyurl.com/wafr22corrt for
visualizations.

Table 1. Statistics on the tracking/estimation error reduction across all experimental results. “Trk.
err.”= ‖x∗(T )−x(T )‖/‖x∗(0)−x(0)‖. “Est. err.”= ‖x̂(T )−x(T )‖/‖x̂(0)−x(0)‖. In each
cell: average error ± standard deviation over all trials.

CORRT trk. err. CORRT est. err. B1 trk. err. B1 est. err. B2 trk. err. B2 est. err. B3 trk. err. B3 est. err.

Car 0.175 ± 0.117 0.032 ± 0.022 17.49 ± 79.86 143.4 ± 1202 1.520 ± 6.306 3.597 ± 19.90 — —

Quad 0.151 ± 0.187 0.029 ± 0.028 39.30 ± 142.1 52.64 ± 185.9 40.56 ± 302.1 63.53 ± 424.1 — —

Arm 2.0e-4 ± 1.3e-5 0.053 ± 0.039 2.0e-4 ± 1.4e-5 0.145 ± 0.239 — — 0.000 ± 0.000 0.316 ± 0.249

Fig. 6. 4D car. Planned, executed, and estimated trajectories, overlaid with corresponding tracking
and estimation tubes Ωc(t) and Ωe(t). For eight timesteps corresponding to the black dots on the
Ωe plot, we also show RGB component of the observations seen at runtime (bottom). A and B
two examples of CORRT, which safely reach the goal. C and D B1 and B2: both crash.

4DNonholonomic Car We consider a ground vehicle in an obstacle field (Fig. 1A); see
(E.15) of [6] for the dynamics. The observations are given by 48× 48 RGB-D images
taken from a front-facing onboard camera (Fig. 1A, inset); this makes y ∈ R

9216. Three
states can be directly inferred from a single image: px, py , and φ. For this example,
θ ∈ R

5 parameterizes the py-translation of each of the five obstacles. We are given
Ndata = 250000 datapoints to train the perception system ĥ−1, sampled uniformly from
CrDp = [0, 13.5] × [−2.5,−2.5] × [−π/3, π/3] and Dθ = [0.5, 1.5] × [−1.5,−0.5] ×
[0.5, 1.5]×[−1, 0]×[0, 1]. We model ĥ−1 as a fully-connected neural network, with five
hidden layers of width 1024 and softplus activations. We use the method of Sect. 4.3
to obtain a constant CCM Mc with λ̄(Mc) = 1, λ(Mc) = 0.07, and λc = 2.5, and a
constant OCM Me with λ̄(We) = 5.44, λ(We) = 0.05, and λo = 0.6, where Dc =
(−∞,∞)2 × [−π/3, π/3] × [2, 5] = De. To compute our tubes in CORRT, we use
ε̄3(x∗, θ), since for this example Ωc may be large. The constants are estimated to be
LΔk = 3.28, Lĥ−1 = 0.05, Lp = 0.024, and R = 0.69. In computing our tubes, we
assume ‖wx‖ ≤ 0.05, d̄c(0) = 0.2, d̄e(0) = 0.1, and wy ∈ R

ny satisfies ‖wy‖ ≤ 0.25.

http://tinyurl.com/wafr22corrt
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To simulate noisy depth images, By is set to be a diagonal ny × ny matrix, with 0
diagonal entries for RGB indices and 1 for the depth indices.

We plan for 150 start/goals in D; our unoptimized implementation takes 2.5min on
average. This is done offline; the tracking controller is computed at real-time rates fol-
lowing Sect. 4.2 and [23]. For each trial, the obstacle map θ is selected uniformly within
Dθ. See Table 1 for error statistics. Over all trials, our method ensures x(t) and x∗(t)
always remain within the CORRT-computedΩc(t) andΩe(t), respectively, and reduces
the initial tracking/estimation error by a factor of > 5 and 30, respectively. In contrast,
B1 violates itsΩc(t) andΩe(t) in 90/150 and 101/150 trials, respectively, fails to reduce
tracking/estimation error, and can crash. For instance, in Fig. 6C, the plan leaves Dr,
causing observation error to increase (here, ĥ is inaccurate, since it is not trained out-
side of Dr), destabilizing x̂ (Fig. 6C, right), in turn destabilizing x, leading to the crash.
Similarly, B2 violates its computed Ωc in 60/150 trials (no Ωe(t) is computed for B2, as
it assumes perfect state information), fails to shrink tracking/estimation errors, leading
to crashes (see Fig. 6). As in B1, this crash also arises from observation error. Overall,
this experiment suggests that CORRT ensures safe goal-reaching for nonholonomic sys-
tems using RGB-D data, and that it generalizes to different environments (i.e., obstacle
layouts), while baselines are unsafe.
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Fig. 7. 6D quadrotor. Planned, executed, and estimated trajectories, overlaid with Ωc(t) and
Ωe(t). Snapshots of the runtime observations are shown (bottom). A and B two examples of
CORRT, which safely reach the goal. C and D B1 and B2: both crash.

6D Quadrotor We consider a planar quadrotor in an obstacle field (Fig. 1B); see (E.16)
of [6] for the dynamics. The observations are given by 48× 48 RGB images taken from
a front-facing onboard camera (Fig. 1B, inset); this makes y ∈ R

6912. Three states can
be directly inferred from an image: px, pz , and φ. Here, we consider a single set of
map configurations, i.e., θ is a singleton. We are given Ndata = 140000 datapoints to
train ĥ−1, sampled uniformly from CrDp = [−4.5, 4.5]× [0.5, 4.5]× [−π/4, π/4]. We
model ĥ−1 as a fully-connected neural network, with five hidden layers of width 1024
and ReLU activations. Using the method of Sect. 4.3, we obtain a polynomial CCM
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Mc with λ̄Dc
(Mc) = 6.55, λDc

(Mc) = 0.22, and λc = 0.8, and a constant OCM
Me with λ̄(We) = 8.13, λ(We) = 0.1, and λe = 0.7, where Dc = (−∞,∞)2 ×
[−π/3, π/3] × [−4.5, 4.5] × [−1, 1] × [−2, 2] and De = (−∞,∞)2 × [−π/4, π/4] ×
[−5, 5]× [−2.5, 2.5]× [−2.5, 2.5]. To update our tracking tubes in CORRT, we found it
sufficient to use the first error bound ε̄1, which we estimate to be 0.008, and LΔk = 3.6.
In computing our tubes, we assume ‖wx‖ ≤ 0.0125, d̄c(0) = 0.15, d̄e(0) = 0.1, and
noiseless images ‖wy‖ = 0.

We plan for 150 start/goals in D, taking 6min on average (see Table 1 for statistics).
Across all trials, CORRT ensures x(t) and x̂(t) stay inside the CORRT-computed tubes
Ωc(t) and Ωe(t), respectively, and reduces the initial tracking/estimation error by a
factor of > 6 and 34. In contrast, B1 violates its computed Ωc(t) and Ωe(t) in 61/150
and 76/150 trials, respectively, fails to reduce error, and can be unsafe (see Fig. 7).
Similarly, B2 violates its Ωc in 142/150 trials. We show concrete examples of this in
Fig. 7C–D; the plans in both cases exit Dr, moving to px and pz values outside of
the [−4.5, 4.5] × [0.5, 4.5] training range, leading to high ĥ−1 error. The plans also
take overly-aggressive turns that bring the velocities outside of De and Dc; this further
destabilizes the system, causing crashes in both cases. Overall, this experiment suggests
the need to ensure that ĥ−1, the CCM, and the OCM are correct, and that CORRT
ensures this to guarantee safety for underactuated systems via RGB observations.

Fig. 8. 7DOF arm. State estimate error, overlaid with Ωe(t) (in gray). Runtime observations are
shown (bottom). A when using CORRT, the state estimate error remains in Ωe(t) and achieves
|φ̂i(T ) − φi(T )| ≤ 0.1. B3 fails to meet this requirement. B B1 also fails the 0.1 requirement.

17D Manipulation Task We consider an acceleration-controlled 7DOF Kuka arm,
where each joint follows double integrator dynamics (see (E.18) of [6]), which is grasp-
ing an object (a rubber duck) with an unknown orientation relative to the end effector.
We assume slight noise in the dynamics (see (E.18) of [6]), w̄x = 0.0125, due to the
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weight of the object. Our goal is to estimate the unknown orientation, represented as
three Euler angles {φi}3

i=1, using our observer (6), given 80× 80 RGB images (Fig. 1C)
of the arm and grasped object (see Fig. 1C, inset); this makes y ∈ R

19200. We may also
plan motions for the arm to improve the quality of the observations/state estimates,
though in doing so, we also need to counteract the dynamics error. Our overall goal is
to guarantee our final estimate of the relative orientation satisfies |φi(T )−φ̂i(T )| ≤ 0.1,
i = 1, 2, 3.

We assume that the joint angles and velocities can be perfectly estimated (i.e.,
directly measured), given the accuracy of the Kuka joint encoders, focusing instead
on estimating the unknown {φi}3

i=1 and controlling j and j̇ (the joint angles and
velocities) using our method. We assume the object is rigidly attached to the grip-
per, such that its relative orientation is constant over time. Combining {φi}3

i=1 and
the 14D model, the full state of the system is 17D (see (E.17) of [6]), i.e., x =
[φ1, φ2, φ3, j1, . . . , j7, j̇1, . . . j̇7]�. To train ĥ−1, we note that {φi}3

i=1 can all be esti-
mated from the image. For this example, since j is known and affects the generated
y, we design ĥ−1 to take as input y ∈ R

19200 and j ∈ R
7 (i.e., j plays the role of

θ) and to output {φi}3
i=1. We are given Ndata = 62500 datapoints to train ĥ−1, where

{φi}3
i=1 are sampled uniformly from [−π/3, π/3]3 and j is sampled uniformly from

[−0.05, 0] × [0, 0.05] × [0.15, 0.32] × [−1.83,−1.69] × [−0.05, 0.05]2 × [−π/3, π/3].
We model ĥ−1 as a fully-connected neural network, with five hidden layers of width
1024 and softplus activations. We compute a constant CCM for the 14D subsystem:
CCM synthesis for the full 17D system fails, as the {φi}3

i=1 are not controllable due
to the rigid attachment. Since the arm dynamics are linear, the CCM optimization sim-
plifies to a standard semidefinite program that can be quickly solved. We compute a
constant OCM for the full 17D system, to enable estimation of {φi}3

i=1. Using the
method of Sect. 4.3, we obtain a CCM Mc with λ̄(Mc) = 100, λ(Mc) = 2.81, and
λc = 2.89, and a constant OCM Me with λ̄(We) = λ(We) = 0.1, and λe = 9.5. As
the dynamics are linear, a constant CCM/OCM holds globally, i.e., De = Dc = X .
To update the tubes in CORRT, we use ε̄2(x∗, j), where we estimate Lp = 2.45. Since
j and j̇ are known, no error arises from incorrect state estimates; thus, LΔk does not
need to be estimated. We assume d̄c(0) = 10−3, d̄e(0) = 0.32, and noiseless images
‖wy‖ = 0.

We plan 100 trajectories in D from various initial j, j̇, and orientation estimates,
taking 45 s on average. We summarize the error statistics in Table 1. Across all trials,
when planning with CORRT, x and x̂ always remain within the computed tubes Ωc(t)
and Ωe(t); the CCM keeps the tracking error very small, and the OCM shrinks the error
by a factor of > 18. Crucially, if a plan is found where Ωe(T ) satisfies the estimation
accuracy threshold, we can ensure our true state estimate satisfies |φi(T ) − φ̂i(T )| ≤
0.1, i = 1, 2, 3. We are able to find plans that achieve this threshold for 100/100 trials.
We compare with two baselines in this example: B1 (as described before), and B3,
which keeps the arm stationary and runs (6) for the same duration as the plan computed
using CORRT. The purpose of B3 is to show that the actions taken by the CORRT plan
help to reduce estimation error. In contrast to CORRT, B1 violates its computed Ωe(t)
in 44/100 trials and can fail to achieve the required estimation accuracy, only satisfying
the 0.1 threshold in 79/100 trials (see Fig. 8). One failure example is shown in Fig. 8B:
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the arm moves too close to the camera (outside of Dr), causing the duck to fall out
of frame. This causes a sharp increase in ĥ−1 error, since φi cannot be observed; this
destabilizes (6), leading to a failure to satisfy the 0.1 threshold. Note that B1 does not
violate Ωc; this is because the controller is not a function of the incorrect φi estimates.
Similarly, B3 often fails to satisfy the 0.1-estimation accuracy threshold, only satisfying
it in 7/100 trials (see Fig. 8A for a failure example). This shows that passively estimating
φi without moving the arm cannot achieve the needed estimation accuracy; instead,
the arm must be moved towards regions with smaller perception error. Overall, this
experiment suggests the applicability of our approach on high-dimensional systems,
that it can design actions that improve state estimates, and that our approach can plan
paths that guarantee a desired level of state estimation accuracy.

6 Discussion and Conclusion

We present a motion planning algorithm for control-affine systems that enables safe
tracking at runtime using an output feedback controller with image observations as
input. To achieve this, we learn a perception system and use it in an OCM and CCM-
based output feedback control loop. We derive tracking tubes for the closed-loop system
and use themwithin an RRT-based planner to compute plans that theoretically guarantee
safe goal-reaching at runtime. Our results empirically validate this safety guarantee,
and show that ignoring the effects of state estimation error and the local validity of the
perception system/estimator/controller can lead to unsafe behavior.

Our method has some weaknesses which reveal directions for future work. While
the large dataset S used to train ĥ−1 is easy to gather in simulation, sim-to-real is then
needed for ĥ−1 to transfer to the real world. Thus, in future work, we will combine
synthetic, domain-randomized perception data with a small real-world labeled dataset
to train generalizable perception modules that have calibrated estimates of the sim-to-
real error. Our method also assumes noiseless training data, to ensure Lp is finite; in
the future, we wish to relax this by investigating Lipschitz constant estimation methods
robust to input noise [4]. Another drawback is the conservativeness of using worst-
case disturbances; to mitigate this, we will integrate stochastic contraction [12] into
our method. Finally, we require θ to be known; in future work, we will aim to jointly
estimate θ and x with similar convergence guarantees.
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