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Abstract—Data augmentation is a common practice to help
generalization in the procedure of deep model training. In
the context of physiological time series classification, previous
research has primarily focused on label-invariant data augmenta-
tion methods. However, another class of augmentation techniques
(i.e., Mixup) that emerged in the computer vision field has
yet to be fully explored in the time series domain. In this
study, we systematically review the mix-based augmentations,
including mixup, cutmix, and manifold mixup, on six physio-
logical datasets, evaluating their performance across different
sensory data and classification tasks. Our results demonstrate
that the three mix-based augmentations can consistently im-
prove the performance on the six datasets. More importantly,
the improvement does not rely on expert knowledge or ex-
tensive parameter tuning. Lastly, we provide an overview of
the unique properties of the mix-based augmentation meth-
ods and highlight the potential benefits of using the mix-
based augmentation in physiological time series data. Our code
and results are available at https:/github.com/comp-well-org/
Mix- Augmentation-for-Physiological-Time-Series- Classification.

Index Terms—Data augmentation, mixup, physiological time
series

I. INTRODUCTION

Data augmentation is a crucial regularization technique
for deep neural network models, as it serves to inform the
network of potential variations in the input data during the
training stage while preserving the integrity of the labels. This
technique has been shown to improve network generalization,
[1] by not only artificially increasing the size of the dataset
but also imparting inductive bias through the encoding of
information related to data invariances.

Traditional data augmentation techniques aim to increase the
statistical support of the training data distribution by utilizing
human knowledge and adding additional virtual samples from
the vicinity distribution of training samples. This approach
has been shown to improve generalization, as demonstrated
in previous literature. Such data augmentations have been
employed actively and effectively in computer vision [1]-[4]
and speech recognition and synthesis [5]-[7]. The selection
of specific augmentation methods remains a challenging task,
as it is often based on heuristics and is highly dependent on
the dataset, task, and even model architecture [8]. However,
unlike in other domains, time series, particularly physiolog-
ical data, do not follow a straightforward rule for label-
invariant transformation. Methods such as jittering, rotation,
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scaling, permutation, magnitude warping, time warping, win-
dow slicing, and window warping have been shown to have
unstable performance across datasets and tasks, or require
human understandings of the data [9]-[11]. Two significant
limitations of traditional transformation-based augmentations
on physiological time series data are that: (1) certain transfor-
mations can be detrimental to the integrity of the physiological
signal, and (2) the majority of traditional augmentations are
data-dependent, lacking generalization and consistency across
different datasets and tasks.

An alternative approach is represented by mixup regulariza-
tion [4], which is based on the assumption that linear interpo-
lations of feature vectors should lead to linear interpolations
of the associated targets. Despite its simplicity, mixup has
been shown to be effective across different domains (computer
vision [4], [12], [13] and speech [14]-[16]) and different
tasks. For time series classification tasks, previous studies
also employed mix-based augmentations to enhance model
representation and generalization [17]-[19]. However, none
of the previous works provide a thorough empirical study of
mix-based augmentations across various types of physiological
times series, regarding both the quantitative gain in the metrics
and the benefits of feature representation.

This study aims to evaluate the efficacy of mix-based
data augmentation in the context of time series classifica-
tion. Our evaluation compares mix-based augmentation against
traditional data augmentation techniques, as classified in a
previous survey, focusing on basic label-invariant time-domain
transformations commonly used in time series classification.
The baseline augmentations evaluated include jittering, rota-
tion, scaling, permutation, magnitude warping, time warping,
window slicing, and window warping. The unique benefits of
mix-based augmentation are evaluated, and the contributions
of this paper can be summarized as follows:

o We present an empirical study of three mixup-based data
augmentation methods (i.e., mixup, cutmix, and mani-
fold mixup) in the context of time series classification.
We provide detailed formulations of these methods and
evaluate their performances on six physiological and
biobehavioral datasets.

e Our experiments reveal two significant distinctions be-
tween mixup-based augmentations and traditional data
transformations. First, mixup-based methods do not re-
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Fig. 1. The overview of mix-based augmentation procedure for physiological time series classification. From left to right: two sequences x;, z; are shown as
raw input signals. For mixup or cutmix, in each training epoch, virtual samples are created from the mini-batches; for manifold mixup, the linear combination
is applied at the feature map level. For any of the three mix-based augmentations, the labels for the virtual samples are also mixed with the corresponding
weights, shown on the right. NORM, MI, and STTC are representative classes of the PTB-XL dataset. See details in Figure 3.

quire human expert priors, making them more practical
in various applications. Second, mixup-based methods
consistently achieve higher or comparable performance
compared to traditional methods.

II. RELATED WORKS
A. Traditional label-invariant time series data augmentation

For physiological time series data, the time domain trans-
forms manipulate the original time series directly, as compared
to more advanced augmentations using generative approaches.
In this paper, we focus the evaluations on the following tradi-
tional augmentations: jittering, rotation, scaling, permutation,
window warping, and window slicing.

Jittering refers to the injection of Gaussian or more sophis-
ticated noise patterns, such as spikes and slope-like trends,
into the raw signals. The schemes are introduced in [20].
Rotation for time series is achieved by multiplying the signal
by a random rotation matrix. As it is not as suitable for
time series data as in the image domain, one commonly used
special case is flipping (changing the sign of the original time
series). Permutation is a transformation that randomly shuffles
segments of a time series. This operation does not preserve
the sequential information of the original data. Window slicing
or cropping, introduced in [21], randomly extracts continuous
slices from the original samples. The window warping method
is uniquely applicable to time series. It randomly selects a time
interval, then upsamples or downsamples the segment, while
keeping the rest of the time ranges unaltered. Window warping
changes the total length of the original signal, therefore it
is usually used along with window cropping. For time series
classification tasks, all the above-mentioned augmentations do
not change the labels of the altered training samples.

The effectiveness of these augmentations has been previ-
ously investigated in the literature. An empirical study about

biobehavioral time series data augmentation [9] concludes that,
while some augmentations are beneficial for biobehavioral
classification tasks, their effectiveness varies across different
datasets and model architectures. This finding agrees with [11],
which also highlights the inconsistency of transformation-
based augmentations across different non-physiological time
series datasets.

Based on the analysis of the literature, we claim that
two significant limitations exist when applying traditional
transformation-based augmentations to physiological time se-
ries data:

« Certain transformations can be detrimental to the integrity
of the physiological signals. For instance, rotation, per-
mutation, and warping can be more harmful to ECG
signals, as ECG beats possess relatively fixed patterns,
such as the order, width, and intensity of the wave
components.

e The majority of traditional augmentations are data-
dependent, meaning that they require expert prior knowl-
edge or multiple trials to select an appropriate transforma-
tion for a specific problem, due to the diverse properties
of biobehavioral time series.

B. Mixup: Vicinal Risk Minimization

Mixup is a data augmentation technique introduced by [4] to
train neural networks by constructing virtual training examples
using convex combinations of pairs of examples and their
labels.

The methodology behind Mixup, as described in this paper,
is rooted in Vicinal Risk Minimization (VRM), which diverges
from the conventional Empirical Risk Minimization (ERM) by
drawing examples from a vicinity distribution of the training
examples. This aims to enlarge the support for the training
distribution. As stated in Section II, prior knowledge has been



traditionally required for the identification of the vicinity or
neighborhood. However, Mixup provides a more practical and
data-agnostic alternative, as it does not necessitate domain
expertise. Despite its simplicity, Mixup presents the following
distinct advantages:

1. Regularization: The linear relationship established by
mixup transformations between data augmentation and
the supervision signal results in a strong regularization
of the model’s state, leading to improved performance.

2. Generalization: The authors of previous studies have
reported improvements in generalization error for state-
of-the-art models trained on ImageNet, CIFAR, speech,
and tabular datasets when using mixup. Theoretical
analysis [13] suggests that the soft targets of mixup
virtual samples aid in model generalization in a manner
similar to label smoothing and knowledge distillation.
Interpolation/extrapolation of nearest neighbors in fea-
ture space can also improve generalization [22].

Since mixup was proposed, many incremental works have
emerged and demonstrated improvements with different fo-
cuses, such as cutmix [23], manifold mixup [12], MixMatch
[24], and AlignMix [25]. In this project, we choose to evaluate
mixup, cutmix, and manifold mixup, as they have not been
investigated in the context of time series classification in
literature.

C. Mixup for physiological time series data

In the domain of physiological time series classification,
mixup has been employed to enhance generalization during
training as demonstrated in prior studies. [17], [18] employ
mixup for better generalization in ECG classification task,
in the training batches of CNN models. [19] states that
mixup improves the generalization performance of the ECG
classification model regardless of leads and evaluation metrics.
However, these studies lack a thorough examination of mixup’s
mechanism and reasons for performance improvement, and
none of them have conducted ablation studies about mixup.
Furthermore, although the 1D variant of vanilla Mixup [4]
has been utilized in previous studies, the empirical results for
cutmix [23] and manifold mixup [12] are currently lacking. In
[26], the performance of mixup and cutmix were evaluated on
the UEAMTSC dataset [27] using InceptionTime [28] as the
baseline model. However, the subsets of UEAMTSC in that
study were of small scale and not strictly comprised of time
series data (e.g.image contours). This paper, on the other hand,
aims to investigate the effectiveness of the mix-based methods
on various physiological time series datasets, utilizing a higher
capacity residual network structure.

III. AUGMENTATION METHODS

In this section, we provide a formal introduction and im-
plementation of mix-based augmentations. Figure 1 shows
the overall paradigm of how the mix-based augmentation is
applied during the training process. The intrinsic difference
between mix-based and traditional augmentations will be

Original signal Jittering Scaling

Permutation Rotation (flip) Magnitude Warping

Fig. 2. Illustrations of traditional time series data augmentations. Orange:
original signal. Green: augmented signals.

discussed in section V. The technical details for the imple-
mentation of the augmentations can be found in section IV-B.

A. Cutout

In this study, the Cutout augmentation serves as a bench-
mark for comparison against mix-based data augmentation
methods. Cutout, originally introduced in the computer vision
field to address occlusion issues, involves the removal of
contiguous sections of data. To evaluate its effectiveness in
the context of time series classification, a single-item trans-
formation, similar to traditional label-invariant regularizations,
is applied. Specifically, a random contiguous section of a
time series is replaced with zeros, which can be considered a
dropout (zero-masking) operation at the input layer. The size
of the random time segment is fixed, while the starting index
of the interval is randomly drawn from a uniform distribution,
and applied to all channels of a single data point.

B. Mixup

The time series mix-based augmentations in this study
leverage multiple data samples from one training minibatch
to generate virtual data points. We examine three commonly
utilized configurations of mix-based augmentations from the
computer vision domain for time series classification prob-
lems, namely mixup [4], cutmix [23], and manifold mixup
(layer mixup, [12]).

The mixup augmentation blends random pairs of time series
from the training data. Let (z,y) denote a time series data
instance, where x € RE*C, with L representing the length
of the sequence and C' denoting the number of channels, and
y € RX being the class label with K classes. The mixing
ratio randomly drawn from a Beta distribution is denoted
as A. Given two samples (x;,y;) and (z;,y;), the mixup
augmentation generates virtual training examples through the
following formulation:

T=xr; +(1—Nz; (D
7=y + (1 =Ny, 2



Mixup extends the training distribution by incorporating the
the assumption that linear interpolations of feature vectors
should lead to linear interpolations of the associated targets [4].
Based on the formulation, the label for a mixup virtual sample
is also a mixture of two original one-hot labels weighted by
A. The potential effect and benefit of the soft target will also
be discussed in section V-B.

The mixing ratio, A, in the mix-based data augmentation
approach is sampled from a Beta distribution. The value of A
close to 0 or 1 results in the created virtual time series being
more similar to one of the raw data points, whereas a value
of A close to 0.5 results in a more blended representation of
the raw data points. For physiological time series data, it is
desirable to have virtual time series that are similar to one of
the raw data points, as these signals contain delicate features,
such as the intensity of R peaks in ECG signals, which could
be easily destroyed with random mixing.

Despite its simplicity, in the computer vision domain, mixup
has allowed consistently superior performance in the CIFAR-
10, CIFAR-100, and ImageNet image classification datasets
[4]. As we will show in the results section, mixup can also
improve classification metrics in time series classification
problems, along with other desirable features.

C. Cutmix

The image augmentation technique Cutmix, proposed in
[23], shares similarities with the technique Mixup. The authors
claim a key advantage of Cutmix is its ability to prevent
the occurrence of ambiguous components in the generated
samples caused by mixing, such as blurred image regions
[23]. For time series cutmix, we select a random time segment
from a pair of multivariate time series, then the values of the
pair of time series within the segment are exchanged across
all channels. The length of the segment is also determined
randomly through the mixing ratio A drawn from a Beta
distribution.

D. Manifold Mixup

Manifold Mixup, presented in [12], demonstrates consis-
tently superior performance across various computer vision
tasks when compared to the original input-data-mixup ap-
proach. Unlike the original mixup, manifold mixup trains neu-
ral networks on linear combinations of hidden representations
of training samples. The literature suggests that higher-level
representations obtained from intermediate layers of the neu-
ral network feature extractor are low-dimensional, therefore,
linear interpolations of hidden representations should cover
meaningful regions of the feature space. In this paper, we
implement Layer Mixup on layer 4 of the ResNet, prior to
pooling and the classification head. The labels are also mixed
in the same way as mixup and cutmix.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on six biomedical time series
datasets, encompassing diverse data types and varying sizes.

The datasets include two ECG datasets, PTB-XL for cardiac
condition classification and Apnea-ECG for sleep apnea detec-
tion, two EEG datasets, Sleep-EDF for sleep stage recognition
and MMIDB for sleep movement detection, and two IMU
datasets, PAMAP2 and UCI-HAR for human activity recogni-
tion. Table I provides a summary of the datasets. Note that in
column “Periodic”, the IMU datasets are tagged as “motion”,
because IMU data may contain periodic patterns when the
recorded activity contains periodic motion (e.g.walking).

1) PTB-XL: The PTB-XL dataset [29] is an ECG database
of 12-lead recordings, containing 44 diagnostic statements
grouped into 5 superclasses (normal, conduction disturbance,
myocardial infarction, hypertrophy, and ST-T change). In this
study, we formulate a five-class cardiac abnormality classifi-
cation problem. The data is divided into 10 balanced folds,
with the first 8 used for training, the 9th for validation, and
the 10th for testing. The data we use is sampled at 100Hz.
The same stratification process is applied to the other datasets
if no validation/test set is provided.

The dataset is highly class-imbalanced as shown in Figure
3, with over half of the samples labeled normal and the least-
represented class (HYP, hypertrophy in left ventricle) only
constituting 3.3% of the data. This challenge is addressed
in Section V through in-batch resampling and mix-based
augmentations.

2) Apnea-ECG: The Apnea-ECG dataset examines the con-
nection between sleep apnea symptoms and heart activity in
humans [30], as monitored through ECG. This dataset has 70
records, sampled at 100 Hz, with 35 records designated for
training and the remaining 35 for testing. Each record is 7-10
hours in length and includes a continuous ECG signal along
with per-minute apnea annotations indicating the presence or
absence of sleep apnea. We segmented the ECG recordings
into 60-second frames at 100 Hz, resulting in 17233 samples
for the training set and 17010 samples for the test set.

3) Sleep-EDFE: The Sleep-EDFE dataset is sourced from
the publicly accessible Sleep European Data Format (EDF)
database [31] on Physionet [32]. This database contains full-
night PSG sleep records that include two-channel EEG (Fpz-
Cz and Pz-Oz), a horizontal EOG, and EMG signal records,
along with corresponding hypnograms (sleep stage annota-
tions). The EEG signals have a sampling frequency of 100 Hz,
and they are divided into 30-second epochs and normalized to
have zero mean and unit standard deviation.

4) MMIDB-EEG: The EEGMMIDB (EEG Motor Move-
ment/Imagery Database) from PhysioNet is collected using
the BCI200 EEG system4 [33]. It records 64 channels of
brain signals at a sampling rate of 160 Hz, totaling over 1500
recordings of 1-2 minutes each. Subjects are instructed to
wear the EEG device and sit in front of a computer screen,
performing specific typing tasks in response to on-screen
prompts.

5) PAMAP2: The PAMAP?2 dataset [34] comprises record-
ings from 9 participants who were asked to perform 12 daily
activities, including household tasks and various exercises
(e.g., Nordic walking, playing soccer). Data from accelerom-



TABLE I
DATASET SUMMARY

DATASET CATEGORY # CHANNELS # CLASSES SAMPLE LENGTH PERIODIC # SAMPLES
PTB-XL ECG 2 5 1000 YES 17962
APNEA-ECG ECG 1 2 6000 YES 34243
SLEEP-EDFE EEG 1 5 3000 No 42308
MMIDB-EEG EEG 64 2 640 No 4635
PAMAP2 IMU 52 12 1000 (MOTION) 5452
UCI-HAR IMU 9 6 128 (MOTION) 10299
TABLE II

Diagnositic Superclass Distribution

NORM 43.7%

MI 25.1%

STTC 24.0%

HYP 12.2%
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Fig. 3. PTB-XL dataset overview. Top: The five-superclass distribution of
PTB-XL (NORM, MI, STTC, CD, HYP). In this paper, we only train with
single-label samples. Bottom: Example waveforms of PTB-XL classes (lead
IV), the x-axis denotes time in ms, and the y-axis is the normalized voltage.

eters, gyroscopes, magnetometers, temperature sensors, and
heart rate monitors are recorded from inertial measurement
units placed on the hand, chest, and ankle over 10 hours,
resulting in a 52-dimensional dataset.

6) UCI-HAR: The UCI-HAR dataset [35] was collected
from 30 volunteers aged 19 to 48 years. Participants were in-

STRUCTURE OF THE RESNET-18 BACKBONE. B: BATCH SIZE; L: LENGTH
OF SEQUENCE; C': NUMBER OF CHANNELS.

Layer Name Input Shape Output Shape Parameter

Reshape Convld B,L,C] [B,C, L] —
Layerl [C,L] [B,64, L] 1x3, 64, max pool
Layer2 [B,64, L/2] [B,64, L/2] [[1x3, 64], [1x3, 64]]x2
Layer3 [B,128, L/4]  [B,128, L/4]  [[1x3,128], [1x3, 128]]x2
Layer4 [B,256, L/8]  [B,512, L/16]  [[1x3,512], [1x3, 256]|x2
Average pool [B, 512, L/16] [B,512,1] —
FC [B,512] [B, Classes | [512, Classes ]

structed to engage in six basic activities, which included three
static postures (standing, sitting, lying) and three dynamic
activities (walking, walking downstairs, walking upstairs). 3-
axial accelerometer and gyroscope signals were recorded at
a constant rate of 50 Hz. The data was collected using
smartphones carried by the participants.

B. Experimental Setup

1) Network architecture: In all experiments, we use a 1D-
CNN-based ResNet-18 [36] as the backbone. This model has
convolutions with a kernel size of 3, and stride 2. The blocks in
the ResNet architecture have convolutional layers with 32, 64,
128, and 256 channels respectively. The output after the final
block is average pooled in the temporal dimension, and then a
linear layer is applied to predict the probability of the positive
class. Details of the ResNet-18 structure are summarized in
Table.IL.

For the manifold mixup experiments, we take the output of
layer 4 of ResNet18 as the input for mixing. We also perform
t-SNE visualization on the features extracted from Layer 4 as
validation for the quality of class representation.

2) Augmentation Implementation: Following the previous
empirical studies for mix-based regularization: mixup [4] and
MixMatch [24], we use @« = 0.4 and a = 0.75 for mix-
related hyperparameters in our experiments. For cutmix, the
ratio of the random segment length to the signal length is
set to 0.2, following [23]. For the baseline augmentations, the
hyperparameters, such as the intensity of scaling and jittering,
are manually chosen following [9].

Following [4], the implementation of the training step is
based on the mini-batches sampled by a data loader. For
each minibatch, random shuffling is applied, and the mixing
operations can all be performed in a vectorized manner, incur-
ring minimal computation overhead. In our PTB-XL profiling
experiments, the mean increase in the processing time of each



mini-batch of size 128 is less than 0.001 second. We also
report results for baselines (denoted as vanilla) that does not
use any data augmentation.

3) Optimization: We use the AdamW optimizer with learn-
ing rate 0.001 for all datasets. For the profiling experiments
on PTB-XL dataset, we also tested with Adam optimizer
and 0.005 learning rate. We use a step decay learning rate
scheduler with step size 5, and a decay rate of 0.9 across all
experiments. Training takes 50 epochs, which was observed
to be sufficient for convergence in all datasets.

4) Computing resource: : All model training was performed
on a single NVIDIA GTX 2080Ti GPU.

V. RESULTS AND DISCUSSION
A. Quantitative performance of mix-base augmentations

Experiments were conducted on six datasets of diverse
categories with a ResNet18-1D backbone. The performance
of vanilla (no augmentation), cutout, and three mix-based
augmentations are presented in Table III. We summarize our
results as follows.

I).The mix-based data augmentations can achieve supe-
rior accuracy in comparison to traditional augmentation
methods. All three mix-based augmentation techniques were
found to outperform the baseline (no augmentation) in 16 out
of 18 experimental trials, with only two exceptions (mixup
for Apnea-ECG and cutmix for MMIDB-EEG). Furthermore,
among the six datasets examined, the majority of the highest
accuracy results were achieved through the use of cutmix and
layer mixup.

Overall, the mix-based augmentations outperform the base-
lines, but the performance of augmentation methods varies
across different datasets. This is likely due to the unique
characteristics of each dataset and the strengths of each aug-
mentation method. For instance, datasets containing complex
temporal patterns or high levels of noise may benefit from
the use of certain mix-based augmentation methods that are
particularly effective at enhancing classification accuracy. The
results in Table III also show that more comprehensive mixup
schemes (cutmix, manifold mixup) help yield better accuracy.

1I).The mix-based augmentations deliver robust perfor-
mance, and the accuracy gain is steady. In addition to
the quantitative performance advantages, these techniques are
notable for their low dependency on expert knowledge and
parameter tuning. Across all 18 mix-based experimental trials
(excluding cutout), no significant reduction in accuracy was
observed in comparison to the baseline. In contrast, traditional
data transformation techniques can often result in a drastic
decrease in accuracy if not implemented appropriately. For
example, applying scaling in Apnea-ECG resulted in a 7.5%
reduction in accuracy, permutation in MMIDB-EEG resulted
in a 9.0% reduction, and jittering in UCI-HAR resulted in
a 4.8% reduction. This finding implies that traditional trans-
formations can undermine crucial features in physiological
signals, such as wave intensity in ECG data and temporal
correlations in EEG data. As a result, these augmentations
can generate virtual samples that deviate from the actual

data distribution, potentially compromising the generalization
performance of the model.

Note that in the experiments, we compared the mix-based
augmentations against some individual traditional augmenta-
tions. However, to fully harness the potential of data augmen-
tation, it is compatible to apply mix-based augmentations in
conjunction with one or more traditional augmentations.

B. Profiling mix-based augmentations on PTB-XL

The PTB-XL dataset [29] is a well-studied ECG dataset
for cardiac condition classification, with the current SOTA
accuracy of recognizing five classes being less than 80% [9].
To evaluate the effectiveness of mix-based data augmentation
methods, extensive profiling experiments were conducted on
the PTB-XL dataset, using over 80 combinations of settings
and hyperparameters (Section IV-B3). The scatter plot of the
best validation accuracy vs the best F1 score is shown in Figure
4(a). Identical combinations of learning rates, optimizers, etc.
were used for each of the four augmentation setups (vanilla,
input mixup, cutmix, layer mixup). The scatter plot illustrates
that mix-based augmentations produce the best results, with all
top-performing results (Ist to 28th) obtained from mix-based
augmentations, supporting the conclusions drawn in Section
V-A.

The PTB-XL dataset presents an imbalanced class dis-
tribution for the single-label data samples. To mitigate the
high false negative rate for the minority class, a batch class-
balanced data sampler was utilized in the data loader during
the training process. The effect of the class-balanced sampler
on the model’s performance is shown in Figure 4 (c) and (d),
by comparing the confusion matrices with and without the
balanced sampling. As observed in the bottom row of Figure
4, which corresponds to the data samples of the minority class
hypertrophy (HYP), the model without the balanced sampler
was prone to producing the most false negative (NORM) pre-
dictions for the HYP cases. However, by incorporating both the
class-balanced sampler and cutmix, virtual samples containing
the information of the minority class were generated during
the training, reducing the false negative rate. Additionally, the
recall of the other three cardiac condition classes also received
similar improvement as shown in the plot.

C. Feature representations

The advantages of mix-based augmentations, or vicinal risk
minimization, include the provision of more distinguishable
representations for different classes. We present the results
of t-SNE dimensional reduction of two models trained with
cutmix and a baseline, on the training and test sets of the PTB-
XL dataset. The feature vectors were calculated using layer 4
of ResNetl8. The visualizations of the training set (Figure
5(a) and (c)) indicate that, compared to the baseline, cutmix
gives more discriminative representations between classes. The
projections of the test set (Figure 5(b) and (d)) demonstrate
that the classes are more distinguishable with mix-based
augmentation and balanced sampling.



TABLE III
CLASSIFICATION ACCURACIES FOR MIX-BASED AUGMENTATION METHODS AND THREE TRADITIONAL AUGMENTATIONS ARE REPORTED ON SIX
DATASETS. THE WARP COLUMN REFERS TO WINDOW WARPING. BOLD NUMBERS INDICATE THE BEST PERFORMANCE.

DATASET BASELINE MIxXup CUTMIX LAYER MIXUP CuTtouTt JITTER SCALE PERMUTE WARP
PTB-XL 77.94 78.91 79.64 78.97 77.61 77.60 78.03 76.57 75.67
APNEA-ECG 78.10 74.73 78.30 79.69 78.27 76.44 70.64 77.26 76.34
SLEEP-EDFE 83.40 84.27 84.40 84.48 83.84 81.55 83.40 85.01 83.98
MMIDB-EEG 78.64 79.83 77.99 80.58 80.04 79.07 80.15 69.58 77.99
PAMAP2 93.62 95.31 95.83 93.88 86.98 86.85 88.18 85.82 87.59
UCI-HAR 92.77 93.62 94.26 93.11 93.58 87.95 88.63 91.89 92.94
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Fig. 4. (a): The PTB-XL validation accuracy computed after each training

epoch, with baseline and variations of mixup. (b): The scatter plot of validation
accuracy again F1 score for all 80 profiling experiments on PTB-XL dataset,
different colors annotate different augmentations. (c) and (d): The confusion
matrix of cutmix training, with or without a balanced sampler, respectively.
The y-axis represents the true labels, and the x-axis is the predicted labels.

VI. CONCLUSION AND FUTURE WORK

Inspired by the success of mixup in other domains, we
investigate mixup and its variants, cutmix and manifold mixup
for physiological for the time series classification task. This
paper empirically shows that mix-based data augmentation
techniques can achieve superior accuracy in comparison to
traditional augmentation methods in the context of time series
classification. In the experiments, the majority of the highest
accuracy results were achieved through the use of cutmix and

(a) Cutmix, train set (b) Cutmix, test set

suwneo

(c) vanilla, train set (d) vanilla, test set

Fig. 5. The t-SNE visualizations of cutmix and vanilla settings after training
on PTB-XL. In both experiments, a balanced data sampler is used during
training to increase the performance of minority classes.

layer mixup, and these augmentations were found to deliver
robust performance with a steady accuracy gain across various
physiological and biobehavioral datasets. The low dependency
on expert knowledge and parameter tuning, in addition to
the quantitative performance advantages, makes mix-based
augmentations more practical and effective in various appli-
cations. These findings highlight the effectiveness of mix-
based, dataset-agnostic augmentations and the importance of
appropriately choosing traditional data transformations, as they
can compromise the generalization performance of the model.

We plan to explore the combination of mix-based aug-
mentation and traditional time series augmentations, as the
effectiveness of well-composited transformations has been
shown in previous studies [11]. Furthermore, we aim to extend
the applicability of mix-based augmentation to the frequency
domain, following the success of such an approach in acoustic
data classification tasks [37].
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