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Abstract—In this paper, we study distributed training by major-
ity vote with the sign stochastic gradient descent (signSGD) along
with over-the-air computation (OAC) under local differential
privacy constraints. In our approach, the users first clip the
local stochastic gradients and inject a certain amount of noise as
a privacy enhancement strategy. Subsequently, they activate the
indices of OFDM subcarriers based on the signs of the perturbed
local stochastic gradients to realize a frequency-shift-keying-based
majority vote computation at the parameter server. We evaluate
the privacy benefits of the proposed approach and characterize
the per-user privacy leakage theoretically. Our results show that
the proposed technique improves the privacy guarantees and
limits the leakage to a scaling factor of O(1/

√
K), where K

is the number of users, thanks to the superposition property of
the wireless channel. With numerical experiments, we show that
the proposed non-coherent aggregation is superior to quadrature-
phase-shift-keying-based coherent aggregation, namely, one-bit
digital aggregation (OBDA), in learning accuracy under time
synchronization errors when the same privacy enhancement
strategy is introduced to both methods.

Index Terms—Federated learning over wireless networks, ma-
jority vote, differential privacy, noise injection, over-the-air com-
putation.

I. INTRODUCTION

Wireless federated learning (FL) is a distributed learning
paradigm where many users communicate with a parameter
server (PS) to train a neural network over a wireless network.
To address the spectrum congestion caused by a large number
of users participating in learning, recent studies, e.g., [1]–
[4], have investigated several over-the-air computation (OAC)
schemes for aggregating local information in the communica-
tion channel. These schemes often require the users’ signals
to be received with similar amplitudes for coherent super-
position. Hence, they rely on precise time synchronization
among users and the availability of accurate channel state
information (CSI) at the users for pre-equalization. Practical
time synchronization mechanisms, such as timing advance in
5G NR [5], can achieve synchronization within a duration, e.g.,
a cyclic prefix (CP) range of an orthogonal frequency division
multiplexing (OFDM) symbol. However, precise sample-level
time synchronization is not trivial to maintain due to the
synchronization impairments at the users and PS. Furthermore,
the phase rotation due to time synchronization errors alter CSI
and distorts the coherent superposition [6].
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Most of the OAC schemes for wireless FL in the literature
adopt pre-equalization techniques to address the impact of mul-
tipath distortion on the transmitted symbols. For instance, Zhu
et al. [1] investigate analog modulation over OFDM for broad-
band analog aggregation (BAA) in which OFDM subcarriers
are modulated with model parameters at the users. The symbols
on the OFDM subcarriers are multiplied by the inverse of the
channel coefficients and faded subcarriers are excluded from
transmission, i.e., truncated-channel inversion (TCI). Similarly,
[7] proposes one-bit broadband digital aggregation (OBDA)
with TCI. In this method, the users utilize quadrature phase-
shift keying (QPSK) symbols over OFDM subcarriers, where
the real and imaginary parts of QPSK symbols are formed by
using the signs of the stochastic gradients. This transmission
scheme can be viewed as QPSK along with majority voting
(namely, QPSK-MV) detected at the PS. To eliminate the need
for CSI at the users, in [2] and [8], blind users are considered,
and an aggregated CSI is used at the PS along with multiple
antennas for computation. Although this approach addresses
the computation problem under fading channels without using
CSI at the users, it requires a large number of antennas to
achieve channel hardening. To eliminate the need for CSI at the
users and PS and phase synchronization, another approach is to
use non-coherent methods. In [9], Goldenbaum and Stanczak
introduce an approach that relies on modulating a sequence
with the continuous-valued parameters and calculating the
energy of the superposed signal at the PS. In [10] and [11], the
authors realize distributed training by the majority vote (MV)
with sign stochastic gradient descent (signSGD) [12] over a
wireless network by calculating the MV based on orthogonal
signaling at the users and a non-coherent detector at the PS,
where the modulations used in these papers are frequency-shift
keying (FSK), pulse-position modulation (PPM), and chirp-
shift keying (CSK). Among these schemes, FSK is shown
to be most spectrally-efficient as it does not require a guard
time to accommodate the time-synchronization errors. It is
also demonstrated that it can work in practice [13]. Due to its
robustness against imperfections, in this work, we adopt FSK-
based MV (FSK-MV) for wireless FL and expand it with a
new privacy amplification method.

Recently, much attention has been given to developing
differentially private FL methods, and differential privacy (DP),
as introduced by Dwork et al. [14], has emerged as the
standard approach to private data analysis and aggregation. In
the context of FL, local differential privacy (LDP) is more



suitable since it enables users to locally perturb and disclose
data to an untrusted data curator or aggregator [15]. Several
studies design FL algorithms that satisfy LDP [16], [17], which
typically requires considerable perturbation noise to ensure
privacy guarantees. Differential privacy in wireless FL has been
studied in several works [4], [18]–[20]. In particular, Seif et
al. [18] showed that the superposition nature of the wireless
channel provides boosts levels of LDP guarantees due to noise
amplification that the users add. It is worth highlighting that
CSI is assumed to be perfect in that work, which is crucial
to align the users’ gradients at the PS and amplify the net
received noise seen at the PS. In this paper, we are interested
in answering the following two fundamental questions: (1) Can
we achieve provable convergence and local differential privacy
guarantees for wireless federated learning by just sending the
signs of the local gradients without relying on the CSI of
the users? If yes, (2) can we still achieve the same privacy
guarantees compared to the case with perfect CSI scenario?

Main contributions: We answer the above two questions
in the affirmative by presenting a novel differentially private
non-coherent transmission scheme for distributed signSGD that
utilizes OFDM subcarriers with FSK modulation. Furthermore,
we derive the convergence rate to a stationary point for general
non-convex loss functions. In addition, we formally character-
ize the privacy guarantees as a function of the wireless channel
parameters. Interestingly, we show that the privacy leakage
still scales as O(1/

√
K), i.e., the same privacy guarantees in

the perfect CSI case as shown in [18]. To the best of our
knowledge, this is the first result on wireless FL under non-
coherent transmission and LDP constraints.

II. PROBLEM STATEMENT & SYSTEM MODEL

A. Wireless channel model

We consider a single-antenna wireless FL system with K
users and a central PS, as shown in Fig. 1. The users are
connected to the PS through a wireless fading multiple-access
channel (MAC). We assume that the users access the channel
with OFDM symbols and the averaged received signal powers
of the users are identical at the PS’s location. Assuming that
the CP duration is larger than the sum of the maximum-
excess delay of the multi-path channel and the maximum time
synchronization error, the input-output relationship at the tth
communication round can be expressed as

y(t)s =
K∑

k=1

h
(t)
k,sx

(t)
k,s +m(t)

s , ∀s ∈ {1, 2, · · · , S}, (1)

where x
(t)
k,s is the sth transmitted symbol of user k at the tth

communication round, y(t)s is the received symbol at the PS,
h
(t)
k,s ∈ C is the normalized Rayleigh fading channel coefficient

between the user k and the PS, m(t)
s ∈ C is the receiver noise

with a zero-mean symmetric complex Gaussian distribution
with variance σ2

m, and S is the total number of complex
dimensions used for the transmissions.
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Fig. 1. Illustration of the distributed training based on signSGD
framework with noise injection. The users collaborate with the PS
to jointly train a machine learning model over a fading MAC. The
interaction between users and the PS must satisfy local differential
privacy.

B. Federated learning model

Each user k has a private local dataset Dk with Dk data
points, denoted as Dk = {(u(k)

i , v
(k)
i )}Dk

i=1, where u
(k)
i is the

ith data point and v
(k)
i is the corresponding label at the kth

user. The local loss function at the kth user is given by

fk(w) =
1

Dk

Dk∑
i=1

f(w; (u
(k)
i , v

(k)
i )),

where w ∈ Rd is the parameter vector to be optimized. Users
communicate with the PS through the fading MAC as described
above to train a model by minimizing the loss function F (w),
i.e.,

w∗ = argmin
w

F (w) ≜
1∑K

k=1 Dk

K∑
k=1

Dkfk(w).

The minimization of F (w) is carried out iteratively through
distributed training by MV with the signSGD algorithm. In
particular, for the tth training iteration, the PS broadcasts the
global parameter vector w(t) to all users. The user k computes
its local gradient using stochastic mini batch Bk ⊆ Dk, with
size nb (i.e., |Bk| = nb) as

g
(t)
k =

1

nb

∑
i∈Bk

∇fk(w
(t); (u

(k)
i , v

(k)
i )) ,

where g
(t)
k is the stochastic gradient vector of the user k.

Instead of sending the actual values of the local gradients, the
users then send the signs of their stochastic gradients to the
PS. To this end, user k extracts the sign of each element of
the computed stochastic gradient g(t)

k , i.e., g̃(t)k,i ≜ sign(g
(t)
k,i).

The PS obtains the MV for the ith gradient as follows
ṽ
(t)
i ≜ sign

(∑K
k=1 g̃

(t)
k,i

)
. In this study, we define sign(·) as an

operator that results in 1, −1, or ±1 at random for a positive,
a negative, or a zero-valued argument, respectively.

Subsequently, the global parameter w(t) is updated using
the sign vector ṽ(t) = (ṽ

(t)
1 , ṽ

(t)
2 , · · · , ṽ(t)d )T according to

w(t+1) = w(t) − ηṽ(t), where η is the learning rate of the
distributed training. The iteration process continues until a
specified number of training iterations/communications rounds.



In addition, the signSGD algorithm must satisfy LDP con-
straints for each user, as defined next.

Definition 1. ((ϵ, δ)-LDP [14]) For a user k, a randomized
mechanism Mk : Dk → Rd is (ϵ, δ) LDP if for any x, x′ ∈ Dk,
and any measurable subset S ⊆ Range(Mk), we have

Pr(Mk(x) ∈ S) ≤ eϵ Pr(Mk(x
′) ∈ S) + δ. (2)

The setting when δ = 0 is referred as pure ϵ-LDP.

III. MAIN RESULTS & DISCUSSIONS

In this section, we first present the proposed scheme. We
then derive the local privacy level where each user perturbs
its local gradient vector via Gaussian artificial noise and then
extracts the signs of the perturbed gradient for transmission.
Finally, we present the convergence rate of the private wireless
federated signSGD algorithm. Due to space limitations, we
omit the proofs in this paper.

A. Proposed scheme: FSK-based MV with perturbation
We consider OFDM-based OAC discussed as follows:

(1) Local perturbation noise for privacy. At the tth training
iteration, each user k computes a noisy version of its local
gradient update as

g̃
(t)
k = g

(t)
k + n

(t)
k ,

where n(t)
k ∼ N (0, σ

(t)
k Id) is the artificial noise for privacy. We

further assume that the norms of gradient vectors are bounded
by some constant C ≥ 0, and normalize the gradient vector to
C, i.e., g(t)

k := min
(
1, C/∥g(t)

k ∥2
)
· g(t)

k .
(2) One-bit quantization and signal modulation. Conse-
quently, each user performs one-bit quantization by computing
the sign of each element of the local stochastic gradient g̃(t)

k .
Further, we allocate two orthogonal resources based on the
sign of the gradient. Specifically, the sign of each element g̃k,i
is modulated with FSK as [10]

x
(t)
k,2i−1 =

{√
Es, sign(g̃k,i) = 1

0, otherwise
,

and

x
(t)
k,2i =

{√
Es, sign(g̃k,i) = −1

0, otherwise
,

where x
(t)
k,2i−1 and x

(t)
k,2i denote the symbols modulating two

adjacent OFDM subcarriers at the user k for the ith gradient
at the tth communication round and Es = 2 is an energy nor-
malization factor for FSK. Hence, with the proposed scheme,
the number of utilized wireless resources S is equal to 2d.
(3) Energy detection at the PS. The received signal at the
PS at the two adjacent sub-carriers of the OFDM symbol for
the ith coordinate can be written as:

y
(t)
2i−1 =

∑
∀k:

sign(g̃k,i)=1

h
(t)
k,2i−1x

(t)
k,2i−1 +m

(t)
2i−1,

y
(t)
2i =

∑
∀k:

sign(g̃k,i)=−1

h
(t)
k,2ix

(t)
k,2i +m

(t)
2i .

The PS subsequently calculates the operation given by

∆
(t)
i = |y(t)2i−1|2 − |y(t)2i |2, ∀i ∈ {1, 2, · · · , d} ,

followed by sign(·) operation for each coordinate i, i.e., ṽ(t)i =

sign(∆
(t)
i ), to obtain the MVs. The PS then updates the global

model w(t) according to w(t+1) = w(t) − ηṽ(t).

B. Local differential privacy analysis

We analyze the privacy level achieved by our proposed
scheme that adds artificial noise perturbations to privatize its
local data. We focus on analyzing the privacy leakage under
an additive noise mechanism that is drawn from a Gaussian
distribution. This well-known perturbation technique is called
the Gaussian mechanism, and it provides rigorous privacy
guarantees, defined as follows:

Definition 2. (Gaussian mechanism [14]) Suppose a node
wants to release a function f(X) of an input X subject to
(ϵ, δ)-LDP. The Gaussian release mechanism is defined as

M(X) ≜ f(X) +N (0, σ2Id).

If the sensitivity of the function is bounded by ∆f , i.e., ∥f(x)−
f(x′)∥2 ≤ ∆f , ∀x, x′, then for any δ ∈ (0, 1], the Gaussian
mechanism satisfies (ϵ, δ)-LDP, where

ϵ =
∆f

σ

√
2 log

1.25

δ
. (3)

Privacy Model: We assume the PS is honest but curious. It is
honest in the sense that it follows the procedure accordingly,
but it might learn sensitive information about users’ data.
Therefore, the proposed wireless FL algorithm should satisfy
LDP constraints for each user. Even though the PS follows the
non-coherent communication scheme, we consider the worst-
case privacy model where the PS can have perfect global CSI
and reconstruct the full received signal at each communication
round. Our privacy model is considered as robust to any side
information that an adversary (i.e., the PS) can have. The
privacy guarantee of the proposed algorithm is presented in
the following theorem.

Theorem 1. (The worst-case privacy guarantee) For a user
k, the proposed transmission scheme achieves (ϵk, δ)-LDP per
iteration, where

ϵk =
2γk|hk,max|

√
EsC ×

√
2 log 1.25/δ√

Es

(∑K
j=1 |hj,min|2(γ2

j σ
2
j + σ2

d)
)
+ σ2

m

, (4)

where |hk,max| ≜ maxi∈[2d] |hk,i| and |hk,min| is defined
similarly, γk =

√
2/πσ2

k is the Bussgang’s coefficient for one-
bit quantization, and σ2

d is the variance of distortion noise due
to quantization.

Remark 1. From the above result, we can observe the syn-
ergistic benefits of wireless aggregation for amplifying the
privacy levels for each user. Specifically, the privacy leakage
per user, ϵk behaves as O(1/

√
K). Besides the wireless

channel noise, we also notice that the privacy guarantee can



be further improved when considering the one-bit quantization
distortion. Harnessing and modeling the intrinsic randomness
(i.e., the distribution of distortion) of quantization for providing
rigorous privacy levels is of independent interest and left as a
future work.

Proof Sketch: The key challenge in the privacy analysis is
that the sign operation performed at each user before wireless
transmission of the gradients is non-linear. Therefore, it is
not straightforward to (i) observe the impact of the wireless
aggregation, and (ii) directly apply the existing results of the
Gaussian mechanism [14]. To analyze the privacy levels that
our proposed scheme achieves, we first need to approximate the
non-linear sign operation as a linear relation using Bussgang’s
decomposition method [21] for one-bit quantization. Note
that the quantization operation is performed on a Gaussian
vector with mean g

(t)
k and covariance σ2I. Following standard

analysis for the Gaussian mechanism, we can show that each
coordinate of the estimated gradient at the PS is perturbed
with different amount of noise σ2

i due to the impact of the
frequency-selective fading channels. We then account for the
worst case privacy per coordinate which corresponds to the
minimum amount of perturbation noise. For more technical
details about the proof, we refer the readers to [14].

In order to further show synergistic benefits of the wireless
aggregation, we upper bound the achievable ϵk from Theorem
1 as follows.

Corollary 1. (Privacy scaling) For a user k, the proposed
transmission scheme achieves (ϵk, δ)-LDP per iteration, where

ϵk ≤ |hk,max|√∑K
j=1 |hj,min|2

· 2C
σk

√
2 log

1.25

δ
. (5)

Interestingly, we can observe that the privacy parameter ϵk
behaves as O(1/

√
K) (see Fig. 2), which scales similarly

as the perfect CSI scenario in [18]. We next analyze the
convergence rate of our proposed wireless Federated signSGD
for general non-convex loss function under the following
assumptions as in [10], [12].

C. Federated learning convergence

Assumption 1. (Smoothness) Let g(w) denote the true gra-
dient of the global loss function F (w) evaluated at w. Then
for any w and w′, the loss function F (w) is L-smooth if

|F (w)− F (w′)− g(w)T (w −w′)| ≤ 1

2

d∑
i=1

Li(w
′
i −wi),

holds for a non-negative constant vector L =
(L1, L2, · · · , Ld)

T .

Assumption 2. (Bounded variance) The local stochastic gra-
dient estimate of user k has a coordinate bounded variance,
i.e., E

[
(g

(t)
k,i − g

(t)
i )2

]
≤ σ2

i /nb, that holds for a non-negative
constant vector σ = (σ1, σ2, · · · , σd)

T .

Assumption 3. (Unimodal symmetry) Given any model w(t),
each coordinate of the stochastic gradient estimate g̃k,i, ∀k, i
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Fig. 2. Privacy Scaling: Comparison for local privacy leakage per user
presented in eqn. (5) as a function of K for different values of local
perturbation noises σ’s, where Es = 2, C = 0.1 and δ = 10−5.

has a unimodal distribution that is also symmetric around its
mean.

We are now ready to present our convergence result as a
function of the wireless channel, local perturbation noises and
transmit powers in the following theorem.

Theorem 2. (Utility guarantee) Suppose the global loss func-
tion F (w) satisfies the above assumptions. Then, for some
constant c > 0, a number of iterations T , a batch size
nb = T/c, and a learning rate η = 1/

√
∥L∥1nb, the

convergence rate of the private wireless FL algorithm is

1

T

T−1∑
t=0

E
[
∥g(t)∥1

]
≤√

∥L∥1
Tc

(
1 +

2

K · SNR

)
(R+ c/2) +

√
8c

3
√
T
∥σ∥1, (6)

where R ≜ F (w(0)) − F (w∗), SNR ≜ Es/σ
2
m, and σ is the

vector containing the variances of the effective perturbation
per coordinate due to data subsampling and local perturbation
for privacy.

Remark 2. It is worth noting that the local perturbation noise
via the Gaussian mechanism does not change the unimodal
symmetry property of the probability density function (pdf) of
the noisy stochastic gradient. More specifically, the resultant
distribution of the effective noise is the convolution of the pdf
of symmetric unimodal sub-sampling noise and the Gaussian
perturbation noise for privacy.

We next specialize the convergence result by invoking the
amount of local perturbation for privacy according to the
Gaussian mechanism in the following corollary.

Corollary 2. (Utility guarantee) Suppose the global loss
function F (w) satisfies the above assumptions. Then, for
some constant c > 0, a number of iterations T , a batch
size nb = T/c, and a learning rate η = 1/

√
∥L∥1nb, the



convergence rate of the private wireless FL algorithm via the
Gaussian mechanism (3) is

1

T

T−1∑
t=0

E
[
∥g(t)∥1

]
≤
√

∥L∥1
Tc

(
1 +

2

K · SNR

)
(R+ c/2)

+

√
8c

3
√
T

(
∥σg∥1 +

2dC

ϵ

√
2 log

1.25

δ

)
. (7)

Remark 3. It is worth mentioning that we perturb each
coordinate of the stochastic gradient via the same amount of
perturbation noise. As shown in Theorem 2, the convergence
bound gives a fine-grained structure on the error. One may
utilize this by perturbing each coordinate independently but
differently to obtain the same level of privacy. However, this
requires a new analysis of the Gaussian mechanism that
accounts for the per coordinate sensitivity.

IV. NUMERICAL RESULTS

In this section, we complement our theoretical findings
through numerical experiments. We consider an image clas-
sification task with K = {20, 50} users. For the channel
model, we use the ITU Extended Pedestrian A model [22]. To
capture the long-term variations, we independently regenerate
the channels between the PS and the users for each communi-
cation round. The subcarrier spacing, the sample rate, and the
inverse DFT (IDFT) size are 15 kHz, 30.72 Msps, and 2048,
respectively. For encoding, we use 1200 subcarriers (i.e., the
signal bandwidth is 18 MHz) and set the rest of subcarriers as
guards. Therefore, each OFDM symbol encodes 600 gradients
with the proposed scheme. For the time synchronization errors,
we assume that the maximum time difference between arriving
users’ signals is 55.6 ns, and the synchronization uncertainty
at the PS is 3 samples, i.e., 97.6 ns. We set 1/σ2

m to 20 dB.
For the users’ local data, we use the MNIST dataset contain-

ing labeled handwritten-digit images size of 28×28 from digit
0 to digit 9. To prepare the data, we first choose 50000 training
images from the database, where each digit has 5000 distinct
images, and we assume that each user has 250 and 100 distinct
images for each digit for K = 20 and K = 50, respectively.
We use 10000 test samples available in the MNIST dataset for
the test accuracy calculations. For the model, we consider a
convolution neural network (CNN), which has 123090 learn-
able parameters, given in [10, TABLE I]. We set the learning
rate and the batch size to be 0.001 and 64, respectively.

In Fig. 3 and 4, we show the impact of local perturbation
noise on the testing accuracy while taking into account the
time-synchronization errors (see also Fig. 5 and 6 for training
losses comparison). First, we observe that the accuracy per-
formance of the two cases looks similar for two reasons: (i)
the stochasticity-induced local perturbation noise is dominant,
which is also designed to be the same across users, and
(ii) the negligence of large-scale fading1 for the wireless
channel. However, the privacy guarantees for K = 50 users

1As future work, we will study the impact of large scale fading and take
the transmit power control into account.
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Fig. 3. The impact of local perturbation noise on the testing accuracy,
where δ = 10−3, K = 20 users, C = 1 and T = 1000
communication rounds.
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Fig. 4. The impact of local perturbation noise on the testing accuracy,
where δ = 10−3, K = 50 users, C = 1 and T = 1000
communication rounds.

are improved, as shown in (5). This is because the local
perturbation noises get aggregated over the wireless channel.
As a numerical example, by invoking worst case expression
for the privacy leakage in (5) when σ2 = 0.1, yields that the
achieved local privacy level for K = 20 users is ϵ = 9.3262
and for K = 50, ϵ = 6.5936. Although the obtained privacy
guarantees seem loose under the choice of simulation parame-
ters, one can utilize the random client participation in federated
learning to tighten further and amplify the privacy guarantees.
Additionally, in a typical wireless FL setting, we may have
hundreds of mobile users; the PS can select a specified number
of users at each communication round. Selecting K out of N
users uniformly at random will amplify the privacy guarantee
as (log(p(eϵ−1)+1), pδ), where p = K/N . We also compare
the performance of our proposed FSK-MV scheme with the
OBDA scheme [7]. We can see clearly that the imperfect time-
synchronization cause a drastic reduction in the performance
of the OBDA scheme. On the other hand, the FSK-MV scheme
is robust against time-synchronization errors.
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Fig. 5. The impact of local perturbation noise on the training loss,
where δ = 10−3, K = 20 users, C = 1 and T = 1000
communication rounds.
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Fig. 6. The impact of local perturbation noise on the training loss,
where δ = 10−3, K = 50 users, C = 1 and T = 1000
communication rounds.

V. CONCLUSION & FUTURE WORK

In this work, we have studied the problem of wireless
federated learning with local differential privacy constraints.
Further, we have proposed a non-coherent scheme based on
FSK-MV modulation that is robust to time synchronization
errors and does not require channel state information or power
control. We have formally characterized the per-user privacy
leakage and shown that our proposed scheme boosted the
privacy guarantees, and further that that the leakage scales as
O(1/

√
K) thanks to the superposition property of the wireless

channel. Furthermore, we have acknowledged the ongoing
efforts in the field to enhance convergence by employing model
sparsification. In our ongoing work, we plan to consider this
technique as a potential approach to improving performance.
Finally, we mention the following open question: if we relax
the global CSI assumption in the privacy analysis at the
untrusted node (i.e., the PS), we get an improved level of
privacy compared to the privacy guarantee presented in (4)?
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