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Abstract

While undergraduate Computer Science (CS) degree programs typi-
cally prepare students for well-established roles (e.g. software developer,
professor, and designer), several emergent CS career roles have gained
prominence during the 21st century. CS majors (and students consid-
ering CS as a major) are often unaware of the wide range of careers
available to job candidates with a CS background. This experience re-
port describes seven innovative courses that broaden awareness of CS
career roles and prepare students for technical interviews. Five courses
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prepared students for these career roles: Full-Stack Developer, Prod-
uct Manager, ML or NLU Scientist, Technical Entrepreneur, and User
Experience Designer/Developer/Researcher. The other two courses had
traditional content but explicitly prepared students for technical inter-
views. These courses were co-developed by industry professionals and
CS professors, and co-taught during a semester-long academic program.
This paper highlights the replicable aspects of the program: the courses,
teaching practices, and evaluation instruments (a teaching practices in-
ventory and a data structures inventory).

1 Introduction

It is well known that Computer Science (CS) majors often have gaps in career
readiness when interviewing for jobs in the tech industry and during their first
months on the job [4, 13, 14, 19, 20, 24, 25]. Another critical but lesser-known
gap is in career awareness. CS degree programs prepare students for established
roles (e.g. software developer, professor, designer) but typically aren’t as well
equipped to prepare them for newer roles such as Full-Stack Developer, Product
Manager, Machine Learning (ML) or Natural Language Understanding (NLU)
Scientist, Technical Entrepreneur, or User Experience (UX) Professional.

This paper addresses gaps in career awareness by describing five courses
taught in 2020 that introduced undergraduate CS majors to these careers. It
addresses gaps in career readiness by describing how two additional courses
explicitly prepared students for technical interviews. It also describes the pro-
gram’s teaching philosophy, which was designed to foster learning, soft skills,
and social capital building. Although the courses were taught within a pro-
gram sponsored by an industry-academic partnership, this paper focuses on
the replicable aspects of the program (courses, teaching practices, inventories)
rather than the partnership itself. This information is useful for departments
and other programs that seek to address gaps in career awareness or career
readiness through courses, events (e.g. career panels), or interview prep clubs.

This paper is organized as follows. The background section describes the
program’s setting, participants, and teaching philosophy. The next two sections
discuss the courses that broadened awareness of CS career roles, and the courses
that provided interview preparation. The paper concludes with a discussion.

2 Background

2.1 Setting and Participants

The courses described in this paper were taught during the 2020 Spring semester
within an academic program hosted by an industry-academic partnership. The
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partnership involved Google, a host university that awarded academic credits
(Howard University), and nine additional colleges/universities. The program
was designed to be a residential, immersive experience for students and vis-
iting faculty members to spend a semester on the Google campus taking (or
co-teaching) CS courses. In keeping with a design-based research methodology
[7, 27], the 2020 program built on lessons learned from other recent industry-
academic partnerships for CS, e.g. [3, 11, 15, 21] and prior iterations of the
program [2]. The courses were chosen by balancing the availability of Google
employees to co-develop and co-teach courses pertaining to their profession (e.g.
Full Stack Developer), and the need to offer some core courses so students could
satisfy degree requirements (e.g. Database Systems).

The 2020 Spring participants included 40 undergraduate CS majors (40%
female), 12 instructors, and more than 100 Google volunteers who served as
mock interviewers, teaching assistants, mentors, guest speakers, and panelists.
Students took all of their Spring courses within the context of this program,
choosing to take at least four of the seven courses offered.

Details about the industry-academic partnership, residential life, and community-
building were discussed in [2]. While these aspects of the program would be
difficult to replicate under normal circumstances, the 2020 program was inter-
rupted by COVID-19 and switched abruptly to remote learning mid-semester.
Subsequent iterations of the program have been fully remote. The goal of this
paper is to focus on the the widely replicable aspects of the 2020 program: the
courses, teaching practices, and inventory instruments.

2.2 Teaching Philosophy

The teaching philosophy that served as a guiding framework for the program
was informed by the work of Carl Wieman, the Nobel prize winner and Stan-
ford professor who founded the Science Education Initiative to research and
recommend effective evidence-based teaching practices. The Teaching Prac-
tices Inventory (TPI) is an outcome of this work [29, 28, 16]. The inventory’s
eight categories of effective teaching are: 1) Course information provided to
students via hard copy or course web page; 2) Supporting materials provided
to students; 3) In-class features and activities, especially active learning; 4)
Assignments; 5) Feedback and testing; including grading policies; 6) Other
(e.g. surveys and other evaluation instruments); 7) Training and guidance of
Teaching Assistants; 8) Collaboration or sharing in teaching.

The 2020 program addressed the TPI categories as follows. Categories 1+2)
A learning management system served as a communication vehicle and hosted
all the resources necessary for students to succeed; 3) Active learning was used
extensively (discussed below); 4+5) Students had frequent assignments with
timely feedback starting no later than the third week; 6) Evaluation instru-
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ments included mid-semester and end-semester course feedback surveys, an
attitudes survey, and the Basic Data Structures Inventory [23]; 7) Course team
members attended an orientation focused on active learning; 8) Each course
team met weekly; an additional weekly meeting included all the course teams;
classroom observations were conducted throughout the semester, which gener-
ated feedback for the instructors.

Active learning warrants special mention. With active learning, students
participate in the class and become a part of the learning process. Students
are engaged as opposed to being passive, e.g. while listening to lectures. When
managed effectively, active learning promotes learning [28]. The instructors
employed active learning in a variety of ways, usually constraining lectures to
5-20 minutes. All the courses used small group learning in various forms. In
most courses, student teams presented reports or demos during class time. All
the instructors used whiteboarding extensively, facilitated by floor-to-ceiling
whiteboards. One technique involved “everybody up!” where all students got
up to work on whiteboards in small groups while the instructors observed and
moved from group to group. The Technical Entrepreneurship class used a
flipped classroom approach. The Machine Learning class used slide decks that
had periodic slides with prompts for small group discussion. All had guest
speakers where students had the opportunity (or requirement) to ask questions
of the speaker.

Since active learning engages students with communication and collabora-
tion, it supports the development of soft skills. It also fosters social capital
building. Social capital is the relationships and networks one has within a
community, such as the tech community. Social capital building expands one’s
network, fosters a sense of belonging, and shapes one’s identity as a professional
[6]. The importance of social capital for success in the tech industry, especially
for students from historically marginalized groups, is often overlooked [9].

3 Courses that Broadened Awareness of CS Career Roles

Each section below focuses on a career role and the course that introduced it.

3.1 User Experience Designer/Developer/Researcher: HCI Course

Many CS departments now offer Human Computer Interaction (HCI) courses,
but they are often electives. As a result, many CS majors are unaware of the
variety of User Experience (UX) careers within this field including Designer,
Developer/Engineer, and Researcher. UX professionals conduct research to
understand people, their needs, and their contexts. They apply that knowledge
to design, test, communicate, and deliver easy-to-use technologies. They work
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closely with Product Managers and Engineering teams to identify problems
and opportunities, and iteratively develop solutions.

The UX instructors provided hands-on experience with the processes prac-
ticed at Google to design and build products. Students learned about develop-
ing solutions through the lens of accessibility, inclusive design, and equity. This
focus on underrepresented and vulnerable users empowered students to design
with communities, to consider broader systems and contexts as they defined
problems, and to create innovative solutions to serve broader populations and
deliver equitable experiences.

3.2 Full-Stack Developer: Software Design Studio Course

CS degree programs typically require a Software Engineering (SE) course, but
many SE courses and textbooks do not cover full-stack software development.
The past decade has seen rapid advances in web technologies, resulting in a high
demand for full-stack developers. Privileged students with strong networks can
learn these skills outside of the classroom, but many students do not have such
networks. The Software Design Studio course provided this training.

In this course, teams of 4-5 students engaged in the software development
lifecycle by designing and building a fully functional web app. Each team pro-
duced designs, milestones, code, and stretch goals. They were required to use
the same JavaScript front-end library (React) and backend service (Firebase).
Otherwise, they had considerable flexibility to create a web app based on their
own interests. Guest speakers lectured on topics including security and pri-
vacy, site reliability engineering, and real-world case studies. At the end of the
semester, each team gave a live demo of their app, and discussed how it was
built and how the team functioned.

3.3 ML or NLU Scientist/Engineer: ML Course

The field of machine learning (ML) leapt to prominence during the last decade.
Now ML research scientists and engineers are in high demand. This ML course
provided a gentle introduction to the field; the only prerequisites were an in-
troductory Data Structures course and experience with Python. It touched
on many applications of ML from everyday life such as recommendation sys-
tems and sentiment analysis, along with data visualization tools. Students
learned about classification, regression, and end-to-end ML pipelines. Weekly
assignments often involved adapting supplied code that used pandas and Ten-
sorFlow libraries within Colab notebooks. At the start of the semester, most
students already had a sense of what ML is and how it is used. In contrast,
most were unfamiliar with the related field, Natural Language Understand-
ing (NLU), even though they are familiar with many apps that use NLU – to
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translate languages, auto-complete sentences, and answer questions within a
web browser. The social implications of ML were discussed throughout the
course in small-group and whole-class discussions. A member of Google’s ML
Ethics team led a full class period dedicated to issues of ethics, bias, and fair-
ness. The final team project involved solving a real-world problem in a Kaggle
competition.

3.4 Product Manager: PM Course

Although Product Managers (PMs) often have leadership roles in tech compa-
nies, undergraduate CS majors are not necessarily exposed to Product Manage-
ment as a discipline. Many PM classes are offered by business programs, such
as Product Management 101 and 102 at Harvard Business School. PMs help
engineering and design teams understand what their target users need, drive
effective collaboration within the team to design and build a solution, evaluate
the success of that solution, and iterate and expand upon it. The PM course
was designed to help students develop the skills needed to succeed in an entry
level PM role. In a group project, they assumed the role of the PM through the
product development lifecycle for a product of their own invention. Students
developed soft skills through negotiation, collaboration, communication, and
learning to exert influence without authority.

3.5 Technical Entrepreneur: Technical Entrepreneurship Course

Successful entrepreneurs need to be innovative and have good business, commu-
nication, cognitive design, and leadership skills. In the Technical Entrepreneur-
ship course, teams within a flipped classroom were immersed in the startup
culture. The goal for each team was to develop a business model and produce
a product solution. Students participated in customer discovery and engaged
in an iterative, fast-paced engineering design-build-test loop. They interacted
with Google engineers and local entrepreneurs who served as subject matter ex-
perts, mentors, guest lecturers, and co-instructors. At the end of the semester,
each team pitched their product to the class and guests from the community.

4 Courses That Provided Interview Preparation

This section discusses the importance of explicit technical interview preparation
and how two courses provided this preparation.
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4.1 The Importance of Technical Interview Preparation

Technical interviews for CS internships and full-time jobs often focus on data
structures and algorithms. Undergraduate CS degree programs typically re-
quire a Data Structures (DS) course, which students typically take during their
first or second year, e.g. [1]. Despite this preparation, many candidates struggle
to pass technical interviews. Contributing factors include content knowledge,
practice with problem solving, knowledge of interview norms, and anxiety.
Although there are several good, well-known resources that help candidates
prepare for technical interviews through self-study [22], fostering a community
of practice with peers, e.g. in a course [18] or club, is desirable.

Regarding content knowledge, the coverage of topics in a DS course varies
from school to school. Some topics that are frequently addressed during tech-
nical interviews are not covered in all DS courses, such as hash tables and
runtime complexity [23]. Students often have insufficient practice with think-
ing about how and when to apply DS concepts to solve problems. Without
a good foundation in problem solving, students often don’t even know where
to begin. Many DS courses only provide blocked practice (learn topic A and
practice topic A; learn topic B and practice topic B; and so on). In contrast,
distributing practice with a topic over time, where the topics are interleaved,
is more effective [8, 26, 30]. Ample effective practice develops the mental flex-
ibility to evaluate the pros and cons of various solutions and deal with the
ambiguity that is typical in a technical interview.

Regarding familiarity with the interview process, it is helpful if the candi-
date is aware of interview norms. It is often acceptable to ask for clarifications;
interviewers may pose problems that are intentionally tricky or unsolvable;
and it is common for professionals to undergo multiple interviews, even with
the same company, before landing an offer. It is important for candidates
to be comfortable with solving problems on a whiteboard. Whiteboarding is
typically used during technical interviews – where candidates write code on
a whiteboard while the interviewer poses questions, observes the candidate’s
process, and provides help. Sometimes pair programming is used.

Researchers who studied anxiety in technical interviews found that mock
interviews can instill confidence and reduce anxiety. They suggest that compa-
nies should understand how anxiety may negatively impact interview perfor-
mance, and that CS departments should help students prepare for them [17].
Although anxiety and impostor syndrome affect many interview candidates, it
can be compounded for people from historically marginalized groups, many of
whom are unfamiliar with the norms of technical interviews [12, 9, 10].
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4.2 Courses That Provided Technical Interview Preparation

Two courses explicitly prepared students for technical interviews. Both had an
introductory Data Structures course as a prerequisite.

The Applied Data Structures course focused on practice with topics from a
basic introductory Data Structures course [23] and other topics that students
may encounter during a technical interview such as hash tables and runtime
complexity. Students spent much of class time solving problems on white-
boards. At the start of the semester the Basic Data Structures Inventory
(BDSI) was administered as a pre-test (in-person, on paper) to gauge prior
knowledge [23]. Because their prior knowledge varied considerably, the course
employed a mastery learning approach. Students mastered topics at their own
pace, working in small groups with peers at the same level [5]. To provide
authentic practice, Google volunteers conducted 210 mock interviews.

In the Database Systems course, beyond covering topics such as good data
design and SQL programming, students learned how data structures and algo-
rithms are used within database systems. Activities and assignments engaged
students with problems encountered in technical interviews and the real world.

5 Discussion

At the end of the semester, 36 of 40 students (90%) completed a non-anonymous
online survey. Key takeaways from the 5-point Likert scale questions are: 95%
rated their overall experience with the program as positive; 97% felt they be-
came better programmers; 91% felt likely to succeed in a high-tech job; and 94%
reported that their soft skills improved. In response to the question “What did
you find especially valuable about your academic experience that was different
from your prior university experience?” some representative answers included:
1) "This program was nothing like what I’ve experienced through my years in
school. Most of the courses I’ve taken here aren’t offered at all at my univer-
sity;" 2) "Now, I have work to show and full project experience;" 3) "I think
the mock interviews were probably one of the best things for me because I’ve
never experienced one before and now I am comfortable when I do have one."

A notable limitation to this work was triggered in March 2020 when the
COVID-19 pandemic prompted a switch to online classes, which students at-
tended from home or another remote location. The data structures post-test
could not be given because the BDSI can only be administered in-person and
on paper [23]. Comparing pre-test and post-test results would have provided
valuable information about the program with respect to interview preparation.

This paper provides valuable insights about professional preparation for
CS students. It describes innovative courses that introduce students to lesser
known but exciting careers. It provides valuable insights for preparing students
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for technical interviews. It describes effective teaching practices that promote
learning, soft skills, and social capital building. It also describes two evaluation
instruments – a teaching practices inventory and a data structures inventory.
The information shared can be adapted by CS departments and other programs
to address gaps in career awareness and career readiness through coursework,
events (e.g. career panels), or interview prep clubs.
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