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ABSTRACT

Leader-follower games involve a leader committing strategies be-
fore her followers. We consider quantal response leader-follower
games, where the followers’ response is probabilistic due to their
bounded rationality. Moreover, both the leader’s and followers’
action spaces are exponentially large with respect to the problem
size, hence rendering the overall complexity to solve these games
beyond NP-complete. We propose the XOR-Game algorithm, which
converges in linear speed towards the equilibrium of convex quan-
tal response leader-follower games (#P-hard to find the equilibrium
even though convex). XOR-Game combines stochastic gradient de-
scent with XOR-sampling, a provable sampling approach which
transforms highly intractable probabilistic inference into queries
to NP oracles. We tested XOR-Game on zero-sum and distribution
matching leader-follower games. Experiments show XOR-Game
converges faster to a good leader’s strategy compared to several
baselines. In particular, XOR-Game helps to find the optimal reward
allocations for the Avicaching game in the citizen science domain,
which harnesses rewards to motivate bird watchers towards tasks
of high scientific value.
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1 INTRODUCTION

Leader-follower games, also known as the Stackelberg games [13],
involve leaders committing strategies before her followers. Over the
years, leader-follower games have been studied extensively with
their wide applications in security [47, 56], crowdsourcing [57, 58],
AT for social good [19, 41], etc. Recent studies have focused on the
participants’ bounded rationality [46]. In other words, players do
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not always play the best moves due to imperfect information or
limited computational capacity.

In quantal response leader-follower games, the followers take
probabilistic actions due to their bounded rationality. In a Logistic
quantal response game, a follower maximizes her utility, albeit
together with extreme value distributed latent factors. In the eyes
of an observer who does not know the latent factors, the follower’s
behavior is in an exponential family distribution. Quantal response
games have been studied in security games [11] , and in games for
social good [38]. The authors of [32] proposes an iterative approach
to compute a near-optimal strategy for the leader in response to
quantal responding adversaries.

In this paper, we consider solving quantal response leader-follower
games, in which the sizes of the action spaces of both the leader and
the followers grow exponentially quickly w.r.t. the problem size.
Exponentially large action spaces are prevalent in real-world games,
e.g., in real-time strategy (RTS) games [6] or security games [11].
They pose significant challenges in finding the equilibrium of the
game because they prevents the leader from enumerating the entire
action space, letting along reasoning about the followers’ responses.
Although several algorithms have been proposed in computing the
equilibrium for normal form games [34, 43] and extensive form
games [8, 51, 54], their mathematical programs involve summing
over all the followers’ actions. This becomes intractable as the
number of actions grows exponentially in the size of the game.

We propose XOR-Game, the first algorithm which converges
in linear speed towards the equilibrium of a convex quantal
response leader-follower game with exponentially large action
spaces. Despite the game is convex with respect to the leader’s
strategy, the problem is still at least #P-hard due to the inference
of the followers’ actions from exponentially many probabilistic
choices. Overall XOR-Game optimizes for the leader’s objective
following a Stochastic Gradient Descent (SGD) process. Our inno-
vation is to harness XOR-sampling in the estimation of the gradient
direction of each SGD step towards the optimal leader’s strategy.
XOR-sampling transforms the highly intractable (#P complete) prob-
abilistic inference and sampling problems into queries to NP oracles
using randomly generated XOR constraints. In another view, our
XOR-Game algorithm transforms the highly intractable problem of
reasoning about the followers’ probabilistic actions into problems
within the NP complexity class while obtaining provable guaran-
tees on the linear convergence speed and the distances towards



the optimum. Notice other sampling approaches, e.g., MCMC sam-
pling, provide unbiased samples only after an exponential number
of burn-in steps. This is impossible in practice, and hence using
these sampling approaches cannot result in similar convergence
bounds as ours. Our guarantee is also significantly stronger than
those offered by e.g., variational approaches [4, 24, 27-29, 45, 55],
which are typically lower bounded only and can be arbitrarily
loose. Even though the idea of incorporating XOR-sampling ap-
pears straightforward, all the theoretic derivation towards linear
convergence guarantees cannot borrow from existing theoretic re-
sults of SGD. The key difficulty is due to that XOR-sampling only
provides constant approximation guarantees for the probability of
drawing samples but cannot guarantee unbiased sample estimation,
which unfortunately was needed by most prior analysis.

Among many real-world applications, we consider two special
cases of convex quantal response leader-follower games. The first
is a zero-sum game, where the leader is to minimize the expected
utility of the followers. The second is a distribution-matching leader-
follower game, which the leader harnesses rewards to move the
distribution of the followers’ actions towards a given distribution.
Our games have applications in the citizen science domain, where
the organizer harnesses rewards to motivate citizen scientists to-
wards tasks with high scientific value. In particular, we apply our
game in the recently deployed Avicaching game [57, 58] in the eBird
citizen science framework, where the organizer encourages bird
enthusiasts towards bird watching activities in remote and under-
sampled locations. The experiment evaluations on both synthetic
games as well as on real-world Avicaching games show that our
XOR-Game is able to produce better leader’s strategies in fewer
SGD iterations compared to competing approaches.

2 PRELIMINARIES
2.1 Quantal Response Model

Classic decision theory takes the rational agent assumption, in
which agents make perfect choices to maximize their utilities. How-
ever, this assumption falls short in the explanation of probabilistic
decision-making and occasional deviation from optimal choices.
Random utility models were developed to capture the bounded
rationality of human decisions [5, 53]. Since its inception, ran-
dom utility models have been used extensively in modeling human
decision-making, ranging from demand prediction [3, 5, 53], behav-
ior modeling [23, 26] to crowd-sourcing [17, 48].

Quantal response games, originated from Quantal choice model [33],

were developed from random utility behavior models, and have
achieved promising results modeling the bounded rationality of
human beings [12, 39]. When faced with N = 2" choices, where
the i-th choice has an observable utility value V;, quantal response
model assumes that the agent’s choice a is to maximize the sum of
the utility V; and a latent factor ¢;:

a= argmaxie{l,___’szn}Vi +€j. (1)

€; is 1.i.d. distributed in the standard Gumbel extreme value distri-
bution Gumbel(0, 1). In other words, the probabilistic nature of the
agent’s decision-making is due to the joint optimization of V; + ¢;
rather than V; only. Noted that ¢; is only available to the agent
but hidden from the observer. Gumbel noise is well accepted in

literature to account for the stochasticity and/or irrationality of
human decision-making [35, 48, 49]. Other types of noises, such
as Gaussian noise, lead to other interesting models, such as the
probit model. We leave as future work to consider those models.
Finally, Gumbel(0,1) is used to simplify the theoretic derivation of
our algorithm. Gumbel distributions with other parameters can be
considered in a similar way.

Under the random utility model, it can be proven that in the eyes
of an observer who do not have access to ¢;, the probability that the
agent chooses the i-th option is given by the following exponential
family distribution:

exp(Vi) exp(Vi)

PO == = SN ) 2

Here, Z = Z}V: :12n exp(V;) is known as the partition function. Var-
ious quantities have been calculated for random utility behavior
models, including the following expected utility:

THEOREM 2.1. [30] Under the random utility model, an agent’s ex-
pected utility when following the decisions made based on Equation 1
is log(Zf\Szn V) +y. y is the Euler-Mascheroni constant.

Exponential Action Spaces. In this paper, we consider games
with exponential many choices. In other words, N = O(2") and
n denotes the input problem size. For example, in the Avicaching
game in the citizen science domain where rewards are used to
motivate crowdsourcing agents to explore sites with high scientific
values, each agent’s choice is represented as a set of locations that
the agent explores. Suppose there are n locations, the set of choices
are all the sets of locations, the size of which is 2.

2.2 Quantal Response Leader-Follower Games

Leader-follower games, also known as Stackelberg games, have
attracted much research attention. In a game, the leader commits a
strategy before her followers, often resulting in different equilib-
rium solutions from the Nash equilibrium where both sides commit
strategies at the same time.

The random utility behavior model discussed in the previous sec-
tion leads to quantal response leader-follower games. In a quantal
response leader-follower game, the follower’s decision-making fol-
lows a random utility model. The equilibrium of a quantal response
leader-follower game can be computed through:

min L({V;, P(i)},7),
!
s.t.a=argmax;e(y  N—pn} Vi(r) + €, (3)
e 4 Gumbel(0,1), Vi e {1,...,N = 2"}

Here, the leader’s objective is to minimize L. The follower’s
utility function for choice i has part V;, observable by the leader and
depends on the leader’s strategy r. It also contains an extreme value
distributed latent part ¢;, which is only available to the follower
but hidden to the leader.

Compared with the standard leader-follower game, the the quan-
tal response game brings in the probabilistic responses of the follow-
ers into consideration, which fits better to reality in many occasions.
Due to the latent factor ¢;, the follower’s action is probabilistic in
the eye of the leader; namely, the follower takes the i-th action



with probability P(i), which has the exponential family form in
Equation 2. The objective is written as L({V;, P(i)}, r) showing that
the leader’s objective function can be dependent on his strategy
r, the follower’s observable utility V; and/or the probabilities of
making each decision P(i). The formulation in Equation 3 can be
used to model both cases where the leader takes pure or mixed
strategies. In the pure strategy case, the leader’s action r can be an
indicator variable of which action to take. In the mixed strategy
case, r becomes a vector listing the probability of taking each action.
Since we assume the follower acts according to a quantal response
model, she always plays probabilistic (hence mixed) strategies in
the eyes of the leader.

2.2.1  Zero-sum Games. While the XOR-Game algorithm can prov-
ably optimize many quantal response leader-follower games, we
mainly consider two variants for this paper. The first variant we
consider is the zero sum case, where the leader is to minimize the ex-
pected utility of the follower. In other words, the leader’s objective
is (according to Theorem 2.1):

N=2"

Z eVi(r))+y. 4)

i=1

Lo({Vi, P()}.r) = log

We consider a special case where V; is linear in r, namely, V;(r) =
QiT r + ¢;. Here 0; measures the influence of rewards on the leader’s
action. ¢; represents the intrinsic utility in choosing action i and
can vary across actions (even though it does not depend on r).
We show that the game in this case is convex in r (proof is in the
supplementary materials):

THEOREM 2.2. When V;(r) = Ql.Tr + ¢i, the zero-sum quantal
response leader-follower game is convex in r. Moreover, the gradient
VLy(r) has the following form of an expectation:

N=2"

Z P(i)6;. (5)

i=1

VLo(r) =Ep(;[0i] =

It is known in a zero-sum matrix game, the Stackelberg equilib-
rium matches exactly to the Nash equilibrium [52, 61]. Nevertheless,
we would like to point out that in our definition of a quantal re-
sponse game, the follower’s action is designed to maximize her
utility function V; in addition to an unobserved ¢; (Equation 1),
where V; depends on the complete information of the leader’s strat-
egy r. This definition implicitly assumes the leader commits her
strategy before the follower. The Nash equilibrium, in this setting,
can be difficult to be properly defined.

2.2.2 Distribution Matching Games. Another variant we consider
in this paper is the game where the leader would like to stimulate
certain behaviors from the follower. In particular, the leader would
like to match the probability distribution of the follower’s actions P
to a desired distribution Q. The difference between two distributions
is measured by Kullback-Leibler (KL) divergence. In other words,
the leader’s objective is:

This formulation is specially useful for mechanism design problems,
e.g.in [20, 40, 44]. In cases where certain follower’s actions increase

the social welfare, the leader would set high Q values to promote
these actions. Again, we focus on the special case where V; is linear
in 7 in this paper:

THEOREM 2.3. When Vi(r) = GiTr + ¢; is linear in r, the distribu-
tion matching leader-follower game is convex in r and the gradient
VLpp(r) can be represented as:

N=2" N=2"

> P - Z Q(i)0;. (7)

i=1
This theorem’s proof is in the supplementary materials.

Vipm =Epi)[0i] —Egi)[0i] =

Avicaching Game in Citizen Science. As a specific example, we
consider a leader-follower game in the citizen science domain,
where the leader (citizen science game organizer) harnesses lim-
ited rewards to encourage citizen scientists (followers) to conduct
observations in remote and undersampled locations. We look into
the Avicaching game hosted in the eBird citizen science program
[57], where rewards are used to encourage bird watchers (citizen
scientists, or followers) to visit undersampled Avicaching sites,
which have large scientific values but are inconvenient and/or less
interesting to visit than traditional hotspots. Each bird watcher’s
choice is characterized by a set of locations L C {I3,..., I}, which
represents the set of spots one plan to visit during a bird watching
trip. The organizer, in this case, harnesses reward r = (rq,..., 1)
to stimulate visits to under-sampled locations. Here, r; is the re-
ward that a bird watcher receives when he visits location [;. The
bird watchers’ (followers’) utility V7, (r) models both the intrinsic
utilities to visit the location set L as well as the reward received.

2.3 XOR Sampling

Sampling from a combinatorial space has a formal complexity of
#P-complete, the difficulty of which is beyond NP-completeness.
Luckily, the recently proposed XOR-Sampling algorithm, as the
result of a rich line of works using streamlining randomized con-
straints [1, 2, 9, 15, 16, 21, 22], provides a constant approxima-
tion guarantee on the probabilities of the samples generated. XOR-
sampling transforms the highly intractable sampling problem into
queries to NP-oracles while obtaining provable guarantees.

The high-level idea of XOR-sampling is to harness randomized
constraints to guarantee the randomness of the samples generated.
Consider a simple case where w(x) : {0,1}" — {0, 1} is a binary
function and one would like to obtain a sample from the solution
space {x : w(x) = 1} uniformly at random. Querying a NP oracle
returns one x satisfying w(x) = 1 albeit not at random. XOR-
sampling works by querying NP oracles to find x which satisfies
w(x) = 1and subject to a few randomized XOR constraints. It can be
proven that each additional XOR constraint removes approximately
half of the solutions to w(x) = 1 at random. Hence, once a desirable
number of XOR constraints are added and the resulting space has
only one solution, it can be proven that the only solution remaining
is a random one from the original space {x : w(x) = 1}. In this
way, XOR-sampling is able to bound the probability of obtaining
each sample within a constant multiplicative factor of its ground-
truth probability. For general weighted functions XOR-sampling
has similar guarantees, although the sampling process becomes



more complex. Our proposed XOR-Game algorithm depends on the
following approximation bounds:

THEOREM 2.4. (Ermon et al, 2013)' Let1 < 6 < V2,0 <y < 1,
w : {0,1}" — R be an unnormalized weight function. P(x) «
w(x) is the normalized distribution. Then, with probability at least
1 —y, XOR-Sampling(w, 8, y) succeeds and outputs a sample xo us-
ing O(—nlog(1—1/V8) log(—n/y log(1 — 1/V5))) NP-oracle queries.
Upon success, each xq is produced with probability P’ (xg). We have

émmsﬁwwsﬁww

Moreover, let ¢ : {0,1}" — R be a function mapping binary vectors
to R. Denote ¢(x)* = max{¢(x),0} and ¢(x)~ = min{d(x), 0} as
the positive and negative part of $(x). Then the expectation of one
sampled $(x) satisfies,

SEp(0 [0 < Bpr ) [9(0)"] < Bp) [$007,

FEp () [$0)7] < B [$0)7] < 5B [0,

Algorithm 1: XOR-Game,

Input :r, {Oi}l{il, {¢i}fil
Params:T,K,n, 6,y

fort=0to T do
k«1;
while k < K do
P(i) « exp(HiTrt + ¢i);
" « XOR-Sampling(P(i),d,y);
if I # Failure then
l;c 1
k—k+1;
end
end
9t — % Zpy O
Tt+1 =Tt = Ngt;
end

return ir = % ZLI re

3 XOR-GAME

The challenge in solving quantal response leader follower games is
the intractable probabilistic inference over the follower’s strategies.
In this paper, we consider games in which the follower’s action
space is exponentially large. In other words, the number of actions
N is of size O(2"), where n is the problem size. These games are
prevalent in real world. See the Avicaching game presented in the
experiment section for an example. Notice we assume there are an
compact representation for all 6;’s and ¢;’s. Even though there are
2N vectors of these, we assume the availability of efficient functions
0(i) and ¢(i). When given i, they return ; and ¢;, respectively. The
length of encoding both functions 6(i) and ¢ (i) are within O(n),
i.e., the length of the problem description. In this setup, the quantal

The details of the discretization scheme and the choices of parameters of the original
algorithm which yield the bound of this form is discussed in [14].

Algorithm 2: XOR-Gamep s

Input :ro, {Q()}N . {61 . {9},
Params:T,K,S,n, 6,y

Jje 1
while j < S do
I «— XOR-Sampling(Q, 8, y);
if I”” # Failure then
l}’ " je—j+1;
end
end
fort=0to T do
k«—1;
while k < K do
P(i) o exp(0]'rs + 1)
I" — XOR-Sampling(P(i), 8, y);
if I’ # Failure then
‘ l]'<<—l';k<—k+1;
end
end

- 1 vK 1 ¢S .
gt < & L= O, — 5 2 O
Te41 = re — Ngs;

end

return 7r = % Zthl re

response leader-follower game is at least #P-hard, even limiting
to the convex games considered in Theorem 2.2 and 2.3. This is
because it is already #P-hard to compute the partition function in
P(i) in Equation 2. In other words, it is already #P-complete to
evaluate the leader’s objective function even for a fixed strategy.

We propose XOR-Game, which converges towards the equi-
librium of convex quantal response leader-follower games in
linear number of stochastic gradient descent iterations. The
XOR-Game algorithm should enjoy the convergence bound for a
wide variety of quantal response games. However, the actual algo-
rithms and the convergence bounds slightly differ across different
game setups, due to differences in estimating the derivatives and
their correspondingly different approximation bounds given by
XOR-sampling. In this paper, we demonstrate such convergence
bounds on the aforementioned zero-sum and distribution matching
quantal response leader-follower games. However, we are confident
that similar guarantees generalize to many other games.

The algorithm variants for solving zero sum game and distribu-
tion matching game are shown in Algorithm 1 and Algorithm 2.
The procedures of XOR-Game and XOR-Gamepys have minimal
differences. Both algorithms apply SGD to find the optimal reward
r that minimizes the leader’s objective. ry is the initialization of the
reward vector. The follower’s observable utility is V;(r) = Hl.Tr + ¢i.
Samples generated from XOR-sampling are used to estimate the
expectations in the gradient calculation (according to Equation 5
and 7). Because XOR-Sampling has a failure rate, repeated sam-
pling is used until a desired number of samples are obtained. K
samples are drawn from the behavior model of followers, and S



samples are from the targeting model. XOR-Sampling takes pa-
rameters (8, y). After the gradient estimation, r41 from the next
iteration moves from r; following the negative gradient direction.
n is the step size of SGD. Finally after T SGD steps, the average
of r1,...,rr is returned as the output. Denote the total variance
Varp(;)(0:) = Ep(; (||0i||§) - ||EP(1')(91‘)||%. We can show that the
convergence bound for XOR-Gamey to solve the zero sum game is:

THEOREM 3.1. (Convergence for zero-sum game) In a zero sum
quantal response leader follower game with objective in Equation 4
andVi(r) = 9?r+¢i, r* attains the minimum of the leader’s objective.
rT is the output of XOR-Gamey starting from ro and running T SGD
iterations. In iteration t of SGD, g; is the estimated gradient, i.e.,
res1 = re —nge. If maxp Varp(;) (6;) < o lre=r*ll2 <R p < (2-
&%) /(0*8), maxp |[Ep(;) (67)l2 < G, and maxp |[Ep(;) (6;)|l2 < G,
where 07 = max{0,0} and 6~ = min{0, 0}, we have

E[Lo(r7)] = Lo(r") <

8||ro = r*||?
Sllro = 71l +2 (6% + 2G2) + 2p8(82 — 1)G? +2(8* — 1)GR.
2nT K

Theorem 3.1 proves that XOR-Game converges to the equi-
librium of the zero-sum game in a linear number of SGD steps
in addition to a few vanishing terms. Here, the first term on the
right-hand side scales inversely proportional to the number of SGD
iterations T, suggesting a linear convergence speed towards the
equilibrium. The second term can be reduced by increasing K, the
number of XOR samples in estimating Ep ;) [0;]. The third and the
fourth terms are the products of constants with (8% — 1), which can
be minimized with a more accurate, yet more time-consuming XOR-
sampling (bringing & closer to 1). The proof of Theorem 3.1 shares
the same high-level idea with Theorem 3.4. The detailed proof is left
to the supplementary materials. The convergence bound for XOR-
Gamepy, the algorithm variant to solve the distribution matching
game depends on a stronger condition:

Definition 3.2. (Match signs at every dimension) A group of vec-
tors © = {61, ..., 0N} matches signs at every dimension, if for any
two vectors 0;, 9]' €0,0; = (6i,..., QiL)T, Gj = (Gjl, Cee 9jL)T,
for any dimension k € {1,...,L}, we have 0;;0;; > 0.

The provable guarantee for XOR-Gamepy; requires all 0; in the
distribution matching game to match signs at every dimension.
This requirement is not too stringent. As we have pointed out,
distribution matching leader follower games are usually seen in
mechanism design problems, where the leader searches for a strat-
egy to maximize certain behaviors from the followers. Here, the
leader’s strategy r typically represents the incentives offered to
the follower. 6; in this case becomes indicator variables whether
certain incentives are earned if the follower takes action i. Due to
this reason, all §; are non-negative, satisfying the matching signs
condition. With these definitions, the convergence bound for the
distribution matching leader follower game is as follows:

THEOREM 3.3. (Convergence for distribution matching game) Sup-
pose a distribution matching leader-follower game has the objec-
tive in Equation 6. Vi(r) = GiTr + ¢;. Denote r* as the optimal
leader’s strategy. v is the output of the XOR-Gamepys. Suppose
{01,...,0N} match signs at every dimension, maxp Varp(; (6;) <

o?, maxp [|Ep(;) (0:)|l2 < G, Varg(;) (6:) < %, [[Egi)(0:)ll2 < G,
when 1 < § < V2 is used in XOR-sampling and the SGD step size
n < (2-682)/(6%5), ||ri = r*|l2 < R forallry,...,rr, we have:

8llro = r*113
—_—

E[Lpm(r7)] = Lpm(r™) < 2T (8)
2, 2 2, 2
2 o +G 2 2 o +G
(5% -1) [\/EGR+2’7(—min{K,S} +5G) +2n(8 +1)—mm{K’S},

To interpret this inequality, the first term on the right-hand
side of inequality 8 scales inversely proportional to T, showing
a linear convergence speed towards the optimal leader’s strategy
r*. The second term is the product of (8% — 1) and a constant (all
terms in the square bracket). This term can be minimized with
more accurate (yet more expensive) XOR-sampling, bringing in &
closer to 1. The term in the second line scales inversely proportional
to min{K, S}, which can be minimized by increasing K and S; e.g.,
drawing more samples. In summary, this theorem still shows a linear
convergence bound and two tails terms which can be minimized
via better sampling. The proof of Theorem 3.3 depends on the
following Theorem 3.4, which was motivated by Theorem 3 in
[14]. Nevertheless, Theorem 3 in [14] does not apply to the case
where the difference of two XOR sampling processes are used to
estimate the gradient. We therefore need to come up with novel
proof techniques for distribution matching games, which yields the
following Theorem 3.4:

THEOREM 3.4. Suppose function f : R? — R is L-smooth con-
vex. r* = arg min, f(r). At any point r, the gradient Vf(r) can be
decomposed into Vf(r) = Vp(r) — Vq(r). At the t-th iteration of
SGD, gt = k¢ — Iy is the estimated gradient, i.e., rr41 = 1t — ngs. kt
(orl;) is the estimation of Vp(ry) (or Vq(ry) ). {ke, lt, Vp(re), Vq(re)}
match signs at every dimension. If Var(k;) < o2, Var(l;) < o2,
[IE[k]]1? < G2, ||E[L:]]|% < G?, and there exists 1 < ¢ < V2, s.t.

“[Vp(r1* < BIKT < e[Vp(ra)T*

c[Vp(r)l™ <Elk; ] < =[Vp(r)]™

o | =

—

“[Vg(rol" < BI] < c[Vq(r)]*

c[Va(r]~ < Ell;] < - [Va(m)] ™

2

2 __
Let R = max; ||ry — r*||, withn < ECC LT = % Zthl ¢, we have:

ELf(FD)] - £() < ?
aplro =l (c - %) (V2GR +2n(a? +G*)) + 2 (” %) v

The proof of Theorem 3.3 is to apply Theorem 3.4 to the objective
function of XOR-Gamepy;. Notice that Lpys is L-smooth when the
total variation maxp Varp(;)(0;) is bounded (proved in a lemma).
Those 4 constraints on the expectation of estimated gradients can
be achieved by tuning parameters of XOR-Sampling.

To prove Theorem 3.4, we need the following lemmas. The proofs
of these lemmas are left in the supplementary materials:

LEMMA 3.5. Suppose f is convex. r* = argmin, f(r). At the t-th
iteration of SGD, g; = k; —1; is the estimated gradient. {k;,1;, Vp(rs),



Vq(r:)} match signs at every dimension, and there exists 1 < ¢ < V2,

st ¢ [Vp(r)l* < E[kf] < c[Vp(ro)l*, c[Vp(r)]™ < E[k;] <

c[Vp(rol™, £[Vq(r]* < E[If] < e[Vq(ra)l*, c[Vq(r)]™ <
E[l[] < %[Vq(rt)]’, we have:

(Vp(re),Elk:]) 2 %IIE[k:]IIS, (10)

(Vq(re). BILD) 2 <L (1)

(Vp(re), E[L]) < c(Elk:], E[L]), (12)

(Vq(re), Elke]) < c(E[k:] E[Le]). (13)

LEMMA 3.6. Suppose all variables and pre-conditions are defined

as in Theorem 3.4. In particular, Var(k;) < o2, Var(l;) < o2,

B[k 1112 < G2, ||E[L:]]|2 < G2, we have
[|Tr[Cov(ke, 1)1 = [E[¢ke, 1t)] = (E[keLE[L])] < 02 (14)
E[(ks, 1:)] < o + G2 (15)

LEmMMA 3.7. Suppose all variables and conditions are defined as in
Theorem 3.4. We have:

(Vf(re),re =1*) < c(Blke] —=E[L],re — )+
\/E(c— —) GR. (16)

Proor. (Formal proof of Theorem 3.4) By L-smoothness of f,
for the ¢-th iteration,

Fr1e1) < FO0) + (TFrrien =)+ 2l =il
2
= 1) = n{Tp(r0) = Varo) e = 1) + “2 k= |

2
= F(r)+ ke~ 1P
1 (Vp(re), ke) = (Vq(re). k) = (Vp(re), It) + (Vq(re), 1)) -

Take the expectation w.r.t. k; and I; on both sides, and notice Equa-
tions 10, 11, 12, 13 in Lemma 3.5, we have:

E[f(reen)] < f(re) = g[IIE[k:]H% +[[E[L1151+

L’72 2
2nc(Elk: | E[L]) + TE[Hkt = L|I°].

Notice Var(k;) = E[llk:|I5] — [[E[k]1I3, Var(l) = E[IlLII3] -
[E(L]I3, and Tr[Coo(ke, )] = E[¢ke, [t)] — (E[k:].E
ther rewrite the right-hand side as:

BLf ()]
< f(r0) = L [EllIkelI3]

[I¢]), we fur-

— Var(ke) +E[||l|15] = Var(l) | +

2
2ncB[(ke, 1)) = Tr[Cou(ky, 1)]] + I%E[Hkt - 1I7].

After re-arranging terms, the right-hand side again becomes:

BLf o)) < o)~ P2, 4P vl ()
tail :g(Var(kt) + Var(ly)) — 2ncTr[Coou(ks, I;) |+

2n(c = B[ (ke 1)

Using Var(k;) < o, Var(l;) < o® and Lemma 3.6, we have:
1 1
tail < 2 (c— —) (02+G2)+2q (c+—) o’ (18)
c c

For simplicity, denote the right-hand side of the previous inequality
as a constant Cq. Hence, Equation 17 becomes:

n(2- LUC)

E[f(re+1)] < f(re) = E[llk: — L][*] + C1.

BUf (res)] < (re) = TElllke ~ I + 1.

Because f is convex, f(ry) < f(r*) + (Vf(rt),rs — r*). Follow the
previous inequality we get:

BU ()] <F () + (VF(re)ore = 1) = TEL ke = L]12] + Cr.

Because of Lemma 3.7, we can further rewrite the previous inequal-
ity as

E[f(re+1)] < f(r*) + c(E[k¢]
\/E(c— —)GR— Bk — 1112 + C1.

—E[l],rs —r)+

Define C; = C; + V2 (c - %) GR, and notice k; — I = g;, we can
write

BIf (res)] < £(°) + e(Elgel.re = ') = TE[llgel ] +C
= F0)+ o (2nCBlacd re =) =Bl ) + o
= F0) + 5B [2ntgere =) = nPllgul 3] + .

From the second last to the last equation, we also take expectation
w.r.t. r; on both sides. The equality holds because the randomness
of g; come from the sampling step at the ¢-th iteration, which is
independent of r; (whose randomness come from the first t — 1
* | |2

iterations). Because r41 = rt — g, we have ||re = r*|[5 — ||re41 —

r*||§ =2n{gs, 1t — ¥y — 172||gt||§. Hence we have:

c
E[f(r+1)] < f(r') + EE[”H =13 = llree1 = r*[13] + Ca. (19)
By summing up Equation 19 for t =0,...,T — 1, we get

cllro —r*|I3

+TCs. (20)
2n

T-1
D Elf(res) - f0)] <
t=0

Finally, by Jensen’s inequality, Tf(r7) < ZLI f(re),

T-1 T
> ELf (1) - F) =EL . F(r)] = TF(F)
t=0 t=1
> TE[f(rp)] = Tf(r"). (21)
Combining equations 20, 21, we have
BIf(D)] < (*)+—c”r°_r*”§+c 22
fEPI < () + =5 7=+ G, (22)

which is exactly the equation in Theorem 3.4. O



To quantify the computational complexity of XOR-Game, we
prove the following theorem in the supplementary materials detail-
ing the number of queries to NP oracles needed for XOR-Gamep s
and XOR-Gamey. The proof of this Theorem is again left in the
supplementary materials.

THEOREM 3.8. XOR-Gamey in Algorithm 1 uses O(—Tnlog(1 —
1/V5) log(—n/ylog(1 - 1/V8)) + TK) queries to NP oracles. XOR-
Gamepyyr in Algorithm 2 uses O(—=Tnlog(1 — 1/V6) log(n/y log(1 —
1/V8)) + TK +S) queries to NP oracles.

4 EXPERIMENTS

We demonstrate empirical evidence that XOR-Game outperforms a
few competing approaches in the speed and the quality of the solu-
tions found for both the quantal response zero-sum leader-follower
games and distribution-matching games. Our evaluation is con-
ducted on a synthetic benchmark set and a behavior model learned
from real-world data obtained from the Avicaching game, which
promotes bird watchers to collect data in remote and undersampled
locations using the so-called Avicaching points [57, 58]. The base-
line approaches we consider are: (1) BRQR algorithm [59], which
minimizes the leader’s objective in quantal response stackelberg
games. Their approach is based on a full gradient descend (GD)
optimizer, hence needs to go over all the follower’s actions in each
iteration and is only applicable on games with small action spaces.
(2) gibbs_game, which uses SGD to minimize the leader’s objective
but utilizes Gibbs sampling in the estimation of the gradient direc-
tion. (3) bp_game, which uses samples generated from the marginal
probabilities computed via loopy belief propagation during SGD,
[31, 37, 60] and (4) cbp_game, which harnesses the recently pro-
posed BP chain method in generating samples in SGD [18]. For the
fairness of comparisons, the leader’s objective Ly for the zero-sum
game is computed using an exact model counter Ace [10]. The
leader’s objective Lpys for the distribution matching game is the
KL-divergence, which is computed using Ace and XOR-sampling.
The estimated KL-divergence is close to the groundtruth due to the
constant approximation guarantee of XOR-sampling and the exact-
ness of Ace. Additional details are in the supplementary materials.
In synthetic and real-world experiments, we use the Avicaching
game as the background. In the Avicaching game, the leader (Avi-
caching game organizer) harnesses rewards to motivate the follow-
ers (bird watchers) to visit remote and under-sampled locations.
The rewards are in the form of virtual Avicaching points, which
marks the participants’ contributions to science. At the end of each
season of the Avicaching game, a lottery is drawn from which Avi-
caching participants have opportunities to win birding gears based
on how many Avicaching points they have contributed. In both
the synthetic and the real-world experiments, one action that one
Avicaching participant can take is to visit a set of locations L. In
practice, we assume bird watchers only choose between locations
historically documented in the eBird dataset [50] hence we have
information for all the locations. We assume the probability that
one Avicaching participant visit a set of locations L is given by:

P(L) o exp(wy0] r + wgFL+LTWL). (23)

Here, we use P(L) instead of P(i) because each action is character-
ized by a set of locations. We assume L is represented as a vector

Table 1: Comparison between XOR-Game; and BRQR

Size || Lossxor | Losspror | Timexopr | Timegrgor
22 [ 0.0425 0.0071 147.59s 4.10s
2% [ 0.0677 0.0149 154.96s 28.11s
28 ][ 0.0346 0.0139 196.48s 46.16s
216 11 0.0338 0.0178 302.24s 499.57s
232 1 0.0814 N/A 699.36s >3h
204 [ 0.0799 N/A 8476.04s | >3h

of indicator variables of visited locations. wyFL + LTWL is repre-
sented using symbol ¢ during theoretic derivation. Each column
of F includes features associated with each location, such as its
landscape composition, proximity to water, etc, which affects bird
watchers’ intrinsic utilities in visiting these locations. W is a matrix
characterizing the changing of utilities when visiting multiple loca-
tions (e.g., bird watchers typically do not prefer visiting multiple
locations of the same type). 61 is a vector of indicator variables of
whether visiting location set L receives each reward. w, and wg
are the relative importance of rewards and location features. For
distribution matching game, we assume Q(L) has the same form
as P(L) although with different parameters to promote visits to
remote and under-sampled locations.

Validation on Small Games. We first validate that XOR-Game
finds close-to-optimal leader’s strategies on small sized games.
Specifically, we focus on the zero-sum quantal response game.
BROR is used as the baseline for comparison. The difference in
leader’s utility values between the equilibrium and the ones found
by the algorithms are shown as Lossxog and Lossgrgr in Table 1.
Here “Size” represents the number of different location sets a fol-
lower can visit, Timexog and Timeggrgr are the running times of
different algorithms respectively. We can see from the table that
both XOR-Game and BRQR find close-to-optimal leader’s strategies.
Initially XOR-Game takes longer to converge, but BRQR cannot
scale to modest sized games as it runs out of a 3-hour time limit
for a game with action space of > 232. XOR-Game still produces
near optimal solutions in this size. Further details of this experi-
ment (in particular, the speed the two algorithms converge to these
solutions) are left to the supplementary materials.

Evaluation on Large Synthetic Benchmarks. We further evaluate
the performance of XOR-Game on both the zero-sum game and
the distribution matching game on large synthetic benchmarks. In
these experiments, we intentionally increase the dimensionality
of the reward vector r to be quadratic in the number of locations
to increase the difficulty of benchmarks. To be specific, we let
0r, = vector(LLT) = (i1, lila, ..., lily, . . ., Inly) T where L is the lo-
cation set vector L = (I, ..., ln)T. This is to assume one participant
can receive a unique reward r;; by visiting location pair (i, j). We
enforce each r;; to be non-negative and no greater than 1. During
SGD, when r;; becomes negative (or bigger than 1), we reset it to
be 0 (or 1). Additional details are in the supplementary materials.

Figure 1 (left and middle) shows the performance of various algo-
rithms as the optimization progresses. Here, each curve shows the
leader’s objective averaged over 20 benchmarks. For each bench-
mark, we let all algorithms start from the same initial solution.
When computing the average, we normalize the objective function
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Figure 1: (Left and Middle) XOR-Game converges faster and to better solutions compared with competing approaches on
synthetic datasets. (Left) Experiment on the zero sum game. (Middle) Experiment on the distribution matching game. (Right)
XOR-Game converges faster than competing approaches on a behavior model learned from data collected from a real-world
Avicaching game. X-axis shows the number of SGD iterations. Y-axis shows the leader’s objective function L (Ly or Lpys). AVG

depicts L(r7).

values against that of the initial solution so each algorithm always
starts from an objective function value of 1.

Notably, XOR-Game descends to the best solutions within the
least number of SGD iterations for both the zero-sum games and
the distribution matching games. We would like to point out that
XOR-sampling in this case is efficient in obtaining the samples,
even though XOR-sampling has to answer NP-complete queries. In
particular, it roughly takes 1 second for XOR-sampling to obtain 100
samples during SGD, but in general it takes 50 seconds for Gibbs
sampling (300 MCMC steps), 2.8 seconds for belief propagation,
and 4700 seconds for chained belief propagation (cbp). Because cbp
is so slow, we use 100 samples in the gradient estimation for all
other approaches but only 10 samples for cbp.

Evaluation on the Avicaching Game. We then evaluate all ap-
proaches on a behavior model learned from real-world data col-
lected from the Avicaching Game. The data comes from an actual
field deployment of the Avicaching game in the eBird crowdsourc-
ing platform between March 27 and October 29, 2015 (30 weeks)
in Tompkins and Cortland counties of the New York State. A set
of 50 Avicaching locations were selected, which were all publicly
accessible but received no visits prior to the game. The goal of
the Avicaching game was to shift the bird watchers’ efforts from
traditional bird watching hot spots to these Avicaching locations,
harnessing Avicaching points. The numbers of Avicaching points
offered for each visit to these Avicaching locations were updated
every Monday. The Avicaching game was remarkably effective dur-
ing this field deployment. It was reported in [57] that 19% of the
bird watching effort in these two counties were shifted to these
under-sampled Avicaching locations.

Before evaluating algorithms, we first learn a behavior model in
the form of Equation 23 for all eBird participants. Because the field
study gives an independent reward to each Avicaching location, we
set 0, to be L. Ggr = LTr represents the total reward from visiting
the location set L. F includes landscape features obtained from the
2011 National Land Cover Database (NLCD). LT WL represents the
change in utility functions for visiting multiple locations. Overall,
weFL+ LTWL represents the intrinsic utility of visiting locations L.
Each data point consists of the set of locations L one bird watcher
visits and the corresponding reward r of the week. Parameters wy,
wy, and W are learned using Contrastive Divergence [7].

We run various algorithms for the distribution matching game
to minimize the KL-divergence between the learned probability
density P(L) with a manually designed Q(L), which promotes the
visiting of under-sampled Avicaching locations and suppresses the
visiting to others. The rewards were set to be greater than 0 but less
than 100 for each location (same order of magnitude as the actual
field deployment). Additional details in terms of learning P(L) and
Q(L) can be found in the supplementary materials.

Figure 1(right) demonstrates that XOR-Game descends to an
optimal reward allocation faster than competing approaches. All
benchmarks start with identically initialized rewards. We manually
inspected the solutions. The final solutions of all approaches reach
almost zero for the KL-divergence, suggesting a possibility to match
the learned probability density P(L) to Q(L) using available re-
wards. Nevertheless, we cannot conclude that the Avicaching game
participants will act according to Q if we had the opportunities to
deploy the rewards into the field. This is because all calculations
are based on a learned behavior model from historical data. We
cannot guarantee how much the learned model captures the subtle
aspects of human decision-making and new visiting patterns may
emerge as the human behavior changes with the introduction of
the Avicaching game. On average, the wall-clock time for each
method is: XOR_game(24h), bp_game(21h), and gibbs_game(10h).
The cbp_game is exlcuded for comparison because it takes >8h per
SGD iteration. In summary, XOR-Game requires the least number
of SGD iterations to descend to the best leader’s strategies among
all benchmark algorithms. XOR-game completes in a reasonable
time, has good empirical performance and provable guarantees.

5 CONCLUSION

We proposed XOR-Game to solve the convex quantal response
leader-follower games with exponentially large action spaces. XOR-
Game has a linear convergence speed towards the equilibrium of
the leader-follower games. Our approach is based on an integration
of XOR-Sampling and stochastic gradient descent, transforming the
otherwise #P-hard problem into queries within the NP complexity
class, while obtaining guarantees for the convergence speed. The
experiments on both synthetic and real-world Avicaching games
show that XOR-Game outperforms other baseline methods and
hence prove its great potential for real-world applications.
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A ALGORITHM AND PROOFS

A.1 Proofs for Theorems in Section 2

ProoF. (Theorem 2.2) First, consider the derivative of the leader’s
objective function of Ly (r) in Equation 4 w.r.t. r,

N
VLo(r) = Vylog (Z eHiTr+¢,-)

i=1

Z 9 r+¢i9_
0T r+¢; !

ZN i=1
= Z P(i)0; = Bp(;) [6]
i=1

Then compute the Hessian matrix H(Ly),
H(Lo) = V(VLo(r))

N N N T
= > P()0;60] - (Z P(i)é)i) (Z P(j)ej)
i=1 i=1 j=1

= Coo(0;,0).

Apparently, the Hessian matrix of the leader’s objective function
Lo(r) is in the form of a co-variance matrix which is positive semi-
definite. Thus the convexity of Ly(r) is proved. ]

Proor. (Theorem 2.3) Taking derivative of the objective function
Lpm(r) wrt.r,

Vipm =V, (Z Q() log 75

=-V, (Z (i) logP(o)

i=1

Q())

. T .
= P(i) (Zﬁ\lz1 e9jTr+¢j)2 ( ) ZN 0i e
N N N
=>100) Y P()6; - > Q(0)o;
i=1 Jj=1 i=1
=Ep(;)[0i] —Eg(i)[0:]

The Hessian matrix H(Lpyy) is
H(Lppm) = V(VLippm) = V(Ep(; [6:])

N N N T
= Zp(z’)eiel? - (Z P(i)9i) (Z P(j)@j)
i=1 i=1 j=1

= COZ)(Q;’, ej).

The Hessian matrix H(Lpyy) is in the form of a co-variance matrix
which is positive semi-definite. So Lpys is convex w.r.t. r. o

A.2 Proofs for Zero-sum Quantal Response
Leader Follower Games

The XOR-Game algorithm for solving zero-sum quantal response
leader follower game is shown in Algorithm 1. The performance

of this al% orithm is guaranteed by Theorem 3.1. Our definition for
[VLo(r)]™ (or [VLy(r)] ") in the proofs to the zero-sum game are

as follows:
Z P(i)[671,

ZP(l)

Here, [f]* = max{f, 0} extracts the positive part of f, and [f]~ =
min{f, 0} extracts the negative part of f. Notice in the previous
definition, we first extract the positive (negative) part of each 6;
then take the expectation, the result of which can be different from
first taking the expectation then extracting the positive (negative)
part. It is straightforward to see that

VLo(r) = [VLo(n)]" + [VLo(r)] ™.

In the lemmas below we sometimes use f to represent Ly, in which
case [Vf(rs)]" ([Vf(r:)]~) assume that we first extract the positive
(negative) part then take the expectation as well. This definition
carries over to the distribution matching leader follower games,
although there we impose the condition that all {61, ..., 05} match
signs at every dimension. Under that condition, the order of taking
the expectation and extracting the positive (negative) parts do not
affect the final result.

[VLo(r)]" =Ep(;) [0

[VLo(r]™ =Ep)[0

LEMMA A.1. Suppose f : R? — R is convex. r* = arg min, f(r).
At the t-th iteration of SGD, g; is the estimated gradient in Algo-
rithm 1: res1 = e = nge. Suppose ||[E[g/1llz < G, |[Elg; |2 < G,
[Ire = r*[l2 < R, we have:

[(Elg71.Elg; DI < G2, (24)
Elg7 1. [r = r"17) < GR (25)
KElg; 1. [r = r"1")I < GR. (26)

Proor. (Lemma A.1) Use Cauchy-Schwarz Inequality, we have,

I(Elg; 1, Elg; DI < I[E[g11l2]IElg; 1llz < G

KE[gr ], [r = r*17) < [IElgz Hl2ll[r = r*17 Iz
= [[Elg; 1ll2]l min{r - r*, 0}]|2
< |[ELg{ Nl2llr =1l
<GR

KElgr 1, [r = 1)1 < [IElgz Nl2ll[r = r*1* Iz
= ||E[g; ll2Il max{r — r*, 0}||>
< IElg; Nl2llr = r*[l2
<GR

This completes the proof. O

LemMaA A.2. Suppose f : R? — R is convex. r* = argmin, f(r).
At the t-th iteration of SGD, g; is the estimated gradient in Algo-
rithm 1: res1 = re = ngs. Suppose |[E[g/ 1|12 < G, |[E[g; 1ll2 < G,
lIre = r*|l2 < R. If there exists 1 < ¢ < V2, s.t. %[Vf(rt)]+ <



Elgf] < c[VF(r)]*, c[VF(r)]™ <Elg7] < L[VF(re)]™, then we

have:

SIELGIE (VSO0 Elarl) +2(c - DG (@)

* * 1
(Vf(r)ore =17) <c(Blgel.re —r") +2(c = <)GR. (28)
Proor. (Lemma A.2) Because

S[VF00T* < Elgf] < cVF 0T,

IVf 0l < Blgi ] < S [VF00]",
We have:
SIIBLg1111 = - Lot Blgt D) < (197001 Elgf)
< c(Blg71.Elg11) = cllElgt I 29)
Similarly,
SIIELG7 11 = <(Elg; 1 Elgr 1) < (9001, Blg; )
< c(Blg; 1. Bloi 1) = cliElg; I (30)
For cross terms, we have:
(V£ Blgr 1) 2165 Blgi ) ay
AVFEOI Blg D) >((Blgr LEIGD. (32

Notice that
1 1 _
E“E[gt]“% =EIIE[9}L] +E[g; 1113

=% (1611 + 1BLa; 1 + 221671 Blg; 1)

Use the results in Equation 29, 30, 31, 32, we can further derive:
1 _ _
ZHE[gt] |5 <([Vf(rol*.Elgr 1) +([Vf(r)] ™. Elg; 1)+

SAVFCOTElgr 1 + (V)] Elgt D
(V£ 01 Elgt ) + (£ ()] Elg D+
(VI Blgr D) + (VS 00l Blgt )+

(3 = D (V£ Blg; 1)+ (VA 001 Blg; 1)
=(V(r0) Elgel) + (5 = DAVFCo)T, Elg; 1+

(< = DAVF001 Bl
(VS0 Elgel) + ( - (@471 Blgr 1)+

(5 - ) Elgr 1. Elg7 ).

Applying Equation 24 from Lemma A.1 to the last equation, we get
Equation 27.

To prove Equation 28, first notice:
SCEIGH Ire = 1) < (VP01 T =T
< c(Blgi1, [re = r'T,
~(Elg7 I 17) < AV I = 1)
< c(Blgr 1 Ire 1),
C(BIGTL [re = 17 < (VT [re = 717)
< (@G LI - 1),
C(Blg; 1Tt = 1% < (V)1 Ire = 1%
< = Elg 1 I - 1),
Then we have:
(Vf(re),re —r")
= (IVFGOT* + [VFOT ™ [re =71+ [re = r°17)
= (IVFGOT% [re = 17 + (V£ GOT [re = 17
VDT Tre = T+ (IVF 1™ [re = 717
< c(Blgt) [re - r*1%) + e(Blg | [re — r*17)+
“(Elgr 1l =T + < (ElgtL I - 1)
= c(Blgi1 [re = 1) + c(Blgr 1, [re — "1 )+
(Blgy 1 [re = r*T%) + e(BIg7 T, [re = 717+
(= = (Elgr | re = 1) + Blgf ) [ =117

= (% = o)(Elgy I [re = r"17) + (Elgz 1. [re = r"17 )+

(Elge], [re = ")
Using Equation 25, 26, we have the previous line of equation can-
not be greater than c¢(E[g;], [r; — r*]) + 2(c — %)GR. The proof is
completed. O

+

LemMA A.3. If the total variation maxp Varp(;)(0;) < o2, then
both the objective function for the zero-sum game Ly and for the
distribution matching game Lppr are o®-smooth with respect to r.

Proor. (Lemma A.3) Because the Hessian Matrix for the ob-
jective functions of both the zero-sum game and the distribution
matching game are the same, we use L to represent the objective
functions for both games. In other words, the following proof works
when we replace L with either Ly or Lpys. To prove o?-smoothness,
we need to prove

[IVL(r1) = VL(r2)|l2 < 6®|Ir1 = rall2, Vry, 72 € dom L.

Because of the mean value theorem, there exists a point 7 € (r1,r2)
such that

VL(r1) = VL(rz) = V(VL(F))(r1 = r2).
Taking the L norm for both sides, we have
[IVL(r1) = VL(r2)ll2 =IIV(VL(7))(r1 = r2)ll2
<[IVVLEDz I = rell2 (33)

Then, the problem is to bound the matrix 2-norm |[V(VL(7))||2. We
know in both cases of zero-sum game and distribution matching
game:

N N N T
V(VL(r) = > P(i)0;6] - (Z P(i)@i) (Z P(j)@j)
i=1 i=1 j=1

= COU(Q;’, 91'). (34)



We see V(VL(r)) is in the form of a co-variance matrix, which is
both symmetric and positive semi-definite. Notice here the proba-
bility P(i) depends on r. According to matrix theory, the 2-norm
of the matrix is its largest eigenvalue A 4x. Further because the
covariance matrix is positive semi-definite, all its eigenvalues are
non-negative. Hence:

Amax < Zai = Tr(Coo(6;, 0;)).
i

where Tr(Cov(6;,0;)) means the trace of the covariance matrix
(i-e., the sum of all its diagonal entries). Write out the trace, we
found it is exactly the total variation. Hence, we have:

IV(VL(#)l2 = Amax < Tr(Cou(6;,65))
= Ep(;) L116:113] = [1Ep(s) [6:1113
= Varp(;(6;) < o’
Combining this with Equation 33, we know
IVL(r1) = VL(r2)ll2 < 0® [Ir1 = ra]l2.
This completes the proof. ]

ProoF. (Theorem 3.1) In Algorithm 2, the gradient g; is esti-

mated using the mean of K samples % Zf(: 1 91; according to the

gradient in Theorem 2.2. For every sample I/ sampled from the
approximated distribution P’ (I}), the following inequalities hold
because of XOR sampling (Theorem 2.4),

1
EEP(I-)[G?] < Bp (1071 < 0Ep(;) [67],

_ 1 _
OEp(i) [0; 1 <EplOy] < SEP() [0;:1.

To complete the proof, we need to bound the variance of gradient
estimation: Var(g;) = Var(% Z{(zl o).

[Ep (i) [6:]115 = [[Epi) (67 + 671115
= |[Ep(s) 671115 + [[Ep(s) 67 1115+
2(Ep(i) 67 1. Epi) [67 1)
<|IBpi) [67 1115 + [1Ep (i) [6; 1113
< 2G*

Var(6y) = Ep ;) 11611131 = 11Epr (1) (641115
< Ep/() [116p115]
< 8Ep(; 11611131
= 8(Varp(i)(0;) + |[Ep(z) [0:1115)
< 8(c® +2G?)

K
1 1 1]
Var(g:) = Var(? ; 91;) = EVar(Qll{) < I—((O'2 +2G?)

By o2-smooth of Ly, for the t-th SGD iteration,

2
o
Lo(res1) < Lo(re) +(VLo(re), ree1 — 1) + _||rt+1 —rell3

o2n
=Lo(re) = n{VLo(rt), gr) + —— ||9t||2

Take the expectation w.r.t. g; on both 51des,

2,2
B[Lo(res)] < Lo(re) = 1(VLo(re). Elge]) + =Bl llgrl 3]

Before getting the bound of ||E[g¢]||2, we need to bound ELg7 112
and ||E[g; ]||2 as required in Lemma A.2. Notice that E[g;] =
E[% Z{il 912] = Ep/(;)[0i]. According to Theorem 2.4,

Zp'()9+<52p(l)e+ SEp(i) [67]

Z P60 > 5219(:)9

Elg;] =Ep ;[0

Elg; 1 =Ep (3 [0 = 6Ep(;)[0; ]

Since all entries of E[g] are larger or equal to zero, and all en-
tries of E[g; | are less or equal to zero, calculate the [2-norm
on both sides of the inequalities above. We have [|[E[g]]|l2 <
81[Eps) [071ll2 = 6G and |[E[g; Iz < S1IEp(1)[6; Iz = 3G. No-
tice that in Lemma A.2, it was proved that

1
(VLo(r).Elgr]) > 5|Elgr]|I} - 2(8° - §)G?
Thus we have,

E[Lo(r+1)]

o’n?
< Lo(re) = TIIELgel + -Elllge 131 + 29/(8° - 8)G?

2,2

= Lo(re) - 5 ElllgelI3] - Var(ge)) + = Elllgel 5]+ 21(6° - 8)G?

2n — 8a?n?
< Lo(re) = T BlllgelI3] + £ (o +26%) + 2n(8° - 5)G?

6
< Lo(re) = TElllgelI3] + 2 (0 +26%) + 20(5° = 8)G?

Since Ly is convex w.r.t. r,ie. Lo(r*) > Lo(ry) + (VLo (rs), r* —rs),
and Lemma A.2 shows (VLy(r),rr — r*) < §(VE[g:],re — r*) +
2(52 — 1)GR, we have,

BlLo(rien)] < Lo(r") + (VLo(re)re = r*) ~ B lge )+
%(gz +2G2) +25(8° - §)G?
< L") + 5(Blgel.re ~ r*) - DBllgr 1+
%(02 +2G%) +2n(83 - 8)G? +2(82 — 1)GR
= Lo(r") + 8BL(ge. 1 = 1) = L lgel 1+
%(JZ +2G%) +27(8% - 8)G? +2(52 — 1)GR

Then rewrite the term SE[{g;,r; — r*) — g||gt||§] by completing
the square. Let

A= %(02 +2G?) +2n(8 - 8)G? +2(52 — 1)GR



Then we have,

1)
E[Lo(re+1)] < Lo(r™) + EE[ZTK%, re—r*) - ’12||9t||§] +A
1)
< Lo(r') + EE[IIF: = = llre =" = g5 + A

1
=Lo(r") + EE[IIU =15 = llreer = r 131 + A

Summing the equations above for t = 0, ..
T-1 5
Z E[Lo(re+1) — Lo(r")] < EE[IIro =l = llrr = |15 + TA

L T-1,

Sllro — r*||?
GOl =rlly oy
2n
According to Jensen’s inequality TLo(7T)
have

< T, Lo(re), we

T-1
D ElLo(res) = Lo(r)] = ZLo(m ~ TLo(r")
t=0

> TE[Lo(rT)]

Combining the equations above, we have

= TLo(r")

Sllro —r*l15 p
E[L <Lo(r’) + ————2 + L (o2
[Lo(r7)] <Lo(r") onT s

2n(83 — 8)G? +2(8% — 1)GR.
The proof is completed. O

+2G%)+

A.3 Proofs for Distribution Matching Leader
Follower Games

The XOR-Game algorithm for solving distribution matching leader
follower game is shown in Algorithm 2. The performance of this
algorithm is guaranteed by Theorem 3.3 and Theorem 3.4. To prove
Theorem 3.4, we need the following lemmas:

Proor. (Lemma 3.5) To prove inequality 10, without losing gen-
erality, suppose the i-dimension of Vp(r;), namely [Vp(r:)]; is
positive. Because k; and Vp(r;) match signs at every dimension,
we must have the i-th dimension of k;, namely [kt]- also posi-
tive. Thus E[k;]; is also positive. Further because 1 [Vp(rt)]

E[kf] < ¢[Vp(r:)]*, we have inequality 10 holds for du‘nenswn i
Suppose the j-dimension of Vp(r;), namely [Vp(r;)]; is negative.
Using similar argument we have E[k;]; is also negative. Now using
c[Vp(r)]™ <E[k[] < %[Vp(rt)]_, we have inequality 10 holds
for dimension j as well. Following similar proofs, one can prove
inequalities 11, 12, 13. m]

ProoF. (Lemma 3.6) To prove Equation 14, notice

E[(ks, 1)) = (E[k: ], E[I¢]) = ZE [kelilleli] = E[Tke 1 IE[[Le]2)

Here, [k¢]i([l;];) means the l-th dimension of k;(l;). Hence, in-
side the summation of the previous equation is the covariance of

[k¢]:i and [I;];, namely cov([k¢]i, [I¢]i). We know that the Pearson
correlation coefficient p; satisfies:
SR 1(1.1318 A DY a9
VVar([k:]i)yVar([L]:)

Hence:
[E[Cke, 11)] - (Blk: ], E[L])]
=1 coo(lkels, [110)

< Z |cov([kels, [1e]0)]
< Y War(lkd)yVar([L:]:)
= > Lk 2]

Apply the Cauchy-Schwarz Inequality to the last line,
[E[¢kz, 1e)] = (Elk: ] E[L:])]

sJZE[[ktl, ~ (Bl[k:]] )J(ZE[H — (BI[1]1)]?
=+Var(ks)Var(ly)

SO’Z.

- (E[[kt]i])Z\/E[[lt]f] - (E[[L]:])?

To prove inequality 15, notice that

E[(ks, 11)] = BLY. [ke][1):]

i

SEI kel + [17)

i

I/\

= %(E[Ilktllg] +E[1L115D)

1
= 5 (Var(ke) + [ELke]I13 + Var (L) + |[E[L]1I3)
< %(02 +G?+0%+GY) =0®+ G2

The first inequality in the chain above is due to the inequality of
arithmetic and geometric means. O

Proor. (Lemma 3.7) Notice that
(Vf(re),re = %) = (Vp(re) = Vq(re),re = 1)

We split our discussions on multiple conditions concerning the
signs of Vp(rs), Vq(rs) and r; — r* at each dimension. Notice that
Vp(r:), Vq(ry) match signs at each dimension. Hence they are
either both positive or negative. In addition, the signs of r; — r* at
each dimension match that of Vf(r;) = Vp(r;) — Vq(r;) because
of the convexity of f(r;).

First case, suppose at dimension i1, [Vp(r¢)]s,, [Vq(rs)]s, and
[rs — r*];, are all positive. In this dimension, under the condition
of Theorem 3.4, [Vp(r¢)]i, < cE[k:];, and [Vq(rs)]i, = %E[l;]il,



Multiply with the positive [r; — r*];,, we have
([Vp(re) = Va(re)liy, [re = r*liy)

< (cBlktli, = ~Ellelis [re = r']i)

= C<E[kt]i1 - E[lt]i1> [rt - r*]i1> + (C - %) <E[ll‘]i1’ [rt - r*]i1>
< c(Blkeliy = Elle]iy, [re = r"lip)+
(¢ 3 maxt(Etiel 31014 b = 1) 0

Our second case is when [Vp(rs)]i,, [Vq(rs)]i, and [ry — r*];,
are all negative. In this case we use [Vp(rs)];, > cE[k:];, and
[Va(roli, < %E[lt]iz and multiply with the negative term [r; —
r*]i,, and follow the same derivation as in the first case (except
for switching the directions of inequalities when multiplying with
negative numbers). We arrive at the same bound as in Equation 36.
The bound still holds because we take the absolute values of the
last few terms.

The third and the fourth cases are when [Vp (7)1, (i), [Vq(r£)]1i, ()

are positive (negative) but [r; —r*];,(;,) are negative (positive). Fol-
lowing a similar derivation as previous cases,

(I9p(re) = Vqr iy, Ire = i)
< <%E[kt]i3(i4) = Bl i) Ire
= c(Blkeliy 1) — Bl 1 e = D)=
< c(Blke)iy(iy) — Elleliy i) |

1 *
(C - Z) (max{|B[ke], i) 1ELe) iy i 1} Ire = 7 13y )0 (37)

- V*]iS(i4)>

re =1+

We see that the same bound as the previous two cases can be ob-
tained in the last line. Summing up bounds in Equations 36 and 37
over all dimensions, the left-hand side becomes (Vf(r¢), rs — r*),
the first term in the right-hand side becomes c(E[k;] -E[l;], r;—r*).
The second term in the right-hand side becomes

(C - %) > i(max{|E[k:]il, |E[L]il}, |re—r*|i). Using Cauchy-Schwarz

Inequality for the second term, we get:

(c _ %) Z<max{ua[kt]i|, Bl Ire - r°1a)
\/Zmax{aa keli)? (BIL10)?) \/Z re=r']

-2)
)\/Z(Ekt 102 + (B[L]:) \/Z re —r*]
)

1

o

ﬁl»—t

| —_

VIELk I+ ELLIE [ (e = r12

i

(

g\/i(c - %) GR.

Hence, inequality 16 in Lemma 3.7 holds. O

ProOF. (Theorem 3.3) In Algorithm XOR-Game, we use the mean
of K samples 1/K ZK 91/ to approximate the first part of the gradi-

ent in Equation 7: Ep ;) [0;] = Z 1 P(i)0;. Here, each [] is sampled
using XOR sampling, from an approximate probability distribution
P’(I). The true distribution is P. According to Theorem 2.4, for
any sample [,

1

SP(I;) < P'(I) < 86P(1)). (38)

Also according to Theorem 2.4, we have:

gEPm[ i1 < Epapl0p] < 0Epi 071,

_ _ 1 _
SEp(i) 10; 1 < Ep [0y ] < 5Ep() [0 1.

This implies:

1
SEP(i) [9:—] < Epl(ll{) < 5EP(i) [9:—],

1 K
_ +
K Z 91{
i=1
K
1 _
- gl;
=1

Similar bounds can be established for 1/S Z‘Jg._l 07, which is used
- J
to approximate the second part of the gradient in Equation 7:

Eo(j 0] = =, 0()6;.

Because {01, . . ., 0N } match signs at every dimension, 1/K Zf(:l Gll{,
Ep(;)[0i], 1/S Zle
mension. In order to apply Theorem 3.4, we need to bound
Var(1/K Zfil 9115) and Var(1/S Z?:l 91}/). We have:

Var(l) = Ep () 1101131 = 11Ep- 1) [01:111

<Ep ) [|I9z;||§]

< SEp(;) L116:113]

= 8(Varp(s)(0;) + |[Ep(z) [0:1115)

<8(c*+GP).
The derivation from the second to the third equation is due to
Equation 38. Because Var(1/K Z{(zl 91;) = l/KVar(llf), we have
Var(1/K Z{(zl Gll{) < 8(0?+G?) /K. Similarly, Var(1/S Z§:1 91}/) <
5(0’2 +G2)/S. Because Equation 38 and all {6, . . .,
at every dimension, we have

[[Ep(17) [91;]||§ < 8%|[Ep(s) 10111} = 6°G*.

5Ep( )[ ] < EP’(I’)

1 _
< EEP(I-) [6;1.

911/_/, and Eq(;)[0;] all match signs at every di-

0N} match signs

Because If, ..., I} are i.id. sampled, 1/K 21((:1
pectation as /7. Hence:

0p has the same ex-

EP'(I;) < §5%G2.

1 K
K 2%

91},)”% < 82G?. Apply all the bounds

computed above into Equation 9 in Theorem 3.4, also notice L is

o2-smooth due to Lemma A.3, we get the following bound:

Similarly, |[Egr 17y (3 23?:1

_ )2
BILGD] - L(r) < —5”“2”; -
2 G2 ) ) O'2+G2




Proof complete. o

A.4 Proofs for Number of NP Oracles Needed

The proof for the number of NP oracles needed is developed from
[16]. We encourage the readers to read the original papers for better
understanding.

PRrROOF. (Theorem 3.8) From Theorem 2.4, it requires O(—n log(1—

1/V6) log M) queries of NP oracles to generate one
sample. However, as specified in [16], once we have the first sam-
ple, the following samples will not need as many queries. Therefore,
generating K samples can be seen as generating one sample first,
then generating following samples inside the same SGD iteration
next. We fix the number of XOR constraints needed to be added
starting the generation of the second sample (in other words, the
ComputeK procedure in [16] can be avoided for the rest K — 1 sam-
ples). As a result, we need O(K — 1) NP oracle queries in generating
each of the following K — 1 samples. Thus the total queries for

K samples will be O(~nlog(1 — 1/V5) log Znlog(1-1/V3) +K). To
complete T SGD iterations, XOR-Game requires O(—Tnlog(1 —

1/V8) log M +TK) queries to NP oracles. XOR-Gamep s
needs additional samples from Q, hence overall it needs O(—n log(1-

1/V8) log M +TK + S) queries to NP oracles. O

B EXPERIMENTAL DETAILS

Here we show additional details for the experiments in the main
text. In all experiments, XOR-Game is implemented with CPLEX
12.6. All experiments are run on computational nodes with dual 64-
core AMD Epyc 7662 “Rome” processors@2.0GHz with a maximum
256 GB of memory.

Evaluation The zero-sum objective Ly is evaluated by the exact
model counter Ace [10]. For distribution matching games, the per-
formance is evaluated by the utility function of the leader, which is
the KL-Divergence between Q(L) and P(L). Notice

KL(QIIP)
=y Q(L)log(%)
LeL P(L)
= Z QL) (LWL — wyrTL — wyFL — LTWL) +1log Z, — log Zg
Le L
=EQ[L"WyL — wpr'L — weFL - LTWL] +log Z, - log Z,

where Zj, and Zg are partition functions of P(L) and Q(L). Ep [LTWqL—

wer L — weFL— LTWL] are approximated with the average of 200
samples using XOR-Sampling. Considering XOR-Sampling has a
constant approximation bound, we believe the estimation to the ex-
pectation is accurate. For synthetic experiment, we used again exact
counter Ace to calculate log partition functions log Z,, and log Zg.
For Avicaching game evaluation, the scale of the problem is beyond
exact approaches. We used the a winning solver HAK [25] solver
implemented in libDAI [36] to compute the partition functions.

B.1 Synthetic Benchmarks

Our synthetic dataset consists of 30 locations. To generate P(L),
wr is set to 0.2. wr is a 1-by-5 weight vector, each entry of which

is randomly drawn from a uniform distribution U[-0.1,0.1]. F is
a 5-by-30 matrix, each entry of which is generated from uniform
distribution U[-0.1,0.1]. W is a 30-by-30 matrix capturing the
inter-dependency of locations in affecting participants’ interests.
We intentionally add a few large entries in W to increase the diffi-
culty of benchmarks. In particular, each entry of W, W;; is generated
by z;j(bij + gij), where z;; is uniformly sampled from a Binomial
distribution with p = 0.1 to serve as a mask, b;; is from uniform
distribution U[-3,3]. gij = 20(hj;j — 0.5), where h;; is drawn from
a Binomial distribution with p = 0.5. The initial reward r is sam-
pled from uniform distribution U (0.1, 1). For distribution matching
game, Q(L) is generated similarly as P(L), except for keeping all
reward r zero. SGD step size n = 0.1 are used in both experiments.

BROR vs. XOR-Game For the comparison between BRQR and
XOR-Game on zero-sum games, the leader’s expected utilities dur-
ing as the optimization progress are shown in Fig 2. BRQR slightly
converges faster than XOR-Game. Both approaches converge to
close-to-optimal solutions. When N grows larger than 216, which
is common in real-world benchmarks, the BRQR soon become in-
feasible because it needs to go over all the actions in each iteration.

B.2 Avicaching Game

This section provides the additional experiments we have done
for the Avicaching Game and additional details for the experiment
setup discussed in the main text. The rough idea behind is (1) learn-
ing the behavior model from real-world dataset, and (2) applying
XOR-Gamepys and other baselines to find the best reward that
can alter the behavior model towards a desired target distribution.
Finally, we evaluate the performance using the KL-Divergence be-
tween the final behavior model and the target model.

B.2.1 Learning Behavior Model. This section describes the exper-
iments we have done for learning the behavior model from Avi-
caching dataset.

Behavior Model As discussed in the main text, the behavior
model used in Avicaching game is as follows,

exp (w,rTL +wlFL+ LTWL)

P(LIr) =
Srerexp (wrrTL’ +wEFL + L’TWL’)

L=Th,....IN]T € {0,1}"N represents a set of visited locations
by setting [; = 1iff. [; is visited. r = [ry, ..., rN]T € RN where r;
represents the reward applied to location i. w, € R is the weighting
parameter characterizing the preference of rewards. wy € RM is the
weighting parameter characterizing the preference of the natural
land features. F = [Fy,...,Fy] € RMXN i the feature matrix
containing the land characteristics of all N locations. W € RN*N
is the regularization term.

Dataset The dataset for learning the behavior model is gener-
ated from the Avicaching game [58] experiment conducted from
03/28/2015 to 10/30/2015 (30 weeks). Participants are encouraged
to visit several locations and report their bird observations. Around
50 users participated in this field experiment. There are 116 obser-
vation points, noted as £, of which 50 locations, noted as L,, are
Avicaching locations. In the actual field experiment, participants
are encouraged to visit Avicaching locations by setting rewards
ranging from 1.0 to 15.0 while the reward of visiting other locations
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Figure 2: The leader’s expected utility vs. # iterations in different sized games for XOR-Game and BRQR. For small-sized games,
BROQR converges in slightly fewer iterations. Both algorithms find close-to-optimal solutions in the end. Combining with
Table 1, the actual running time of BRQR grows much faster than XOR-Game as the game sizes increase, and hence cannot

scale to games with large action spaces.

remain to be 0. The amount of reward changes weekly resulting in
16 different reward schemes.

To generate enough datapoints for training, all participants are
seen to be identical. For each participant, the locations visited in
one week is seen as his/her set of visited locations under the reward
that week. Therefore, we can generate one location set vector L
together with the corresponding reward vector r as one data point.
We successfully generated 1112 pairs (L, r).

The feature matrix F contains land characteristics of all observa-
tion points from the National Land Cover Database (NLCD) 2011.
The database provides spatially explicit and reliable information on
the Nation’s land cover within a 375 meter circle around each loca-
tion. We finally selected 32 features including latitude, longitude,
and 30 distinguishable land cover features. The 32-dimensional
feature vectors of 116 locations formulate the feature matrix F €
R32x116_

Learning Setup Suppose we have K data points {(L;, r;)} witha
known feature matrix F, the log likelihood function I(w;, w £ w) =

£ K log P(Lilr) is:

K
1
Hwr, wp, W) = 7 Z wer L = Alwy, wr, W)
i=1

T T T
A(Wr, wp, W) _ log Z ewrr L+waL+L WL

LeL

From Equation 6. in XOR-CD. The gradient of I(w, w £ W) with
respect to wr, wy, and W can be estimated as

1 & 1
_ Ty, = Trr
gcd(Wr) K ;:1 r'L; S ;:1 r Li

where {L/, ..., L;} are the samples from the current model distri-
bution. We use XOR-Sampling to obtain these samples.



With the gradient estimation, we apply SGD to learn the model
parameters. The dataset {(L, r)} is divided into 16 batches. In each
batch, the reward vectors are the same. The number of all data
points is 1112, and the number of data in each batch ranges from
33 to 136. The learning rate is fixed as 0.01 and the total number of
SGD iterations is 250. For initialization, w, is uniformly sampled
from U(0,1). wy is sampled from U(0.1,1). W is initialized as a
symmetric matrix with entries sampled from U (0.1, 1). For XOR-
Sampling, we utilized the work from Ermon et al. [16]. and used
the same parameter. The number of samples is 80.

Time Consumption In the early stage, each iteration takes
around 480 seconds. From iteration 50, XOR-Sampling takes much
more time for queries to NP oracles. Each iteration takes up to
15000 seconds.

Evaluation We used principal component analysis (PCA) to
empirically visualize the behavior model learned. Figure 3 shows
the 2-dimensional plot of the data points in the real-world exper-
iments and the samples obtained from the learned model (using
XOR sampling). Both the data points and the samples are visualized
using a 2-dimensional PCA in Figure 3. The plot separates on indi-
vidual reward levels. We can see that the samples obtained from
the learned behavior model replicates the original data distribution
well.

B.2.2  XOR-Game & Baseline Settings. Here is additional informa-
tion regarding the experimental details of XOR-Game and other
baselines.

Target Model The idea in Avicaching game is to promote the
probability of sample-needed locations. We empirically designed
the target model as Q(L), where

00 = LT Wol
Sver L TWol
The entry [W]; ; in i-th row, j-th column satisfies:
U(0,0.05) ijeLai=]j
U(0.01,0.02) ij€Lai#]
[W]i,j ~4U(-0.01,0) ielLyjé Ly
U(-0.05,0) Lj¢ Lai=j

U(=0.02,-0.01) i, j¢ Lai+# ]

Generally, the probability of visiting Avicaching locations £, is
much higher than that of other locations in this Q model.

Experimental details The SGD step size is fixed at 0.1. The
maximum iterations T = 100 which is enough for convergence.
The initialization of reward vector is sampled from a uniform dis-
tribution U(5, 10). The number of samples from Q(L) is 100, and
the number of samples from P(L|r;) in each iteration is 50 consid-
ering the trade-off between running time and accuracy. For XOR-
Sampling, parameters are set the same as in [16]. Apart from the
sampling method, all baselines share the same settings as XOR-
Game. For Gibbs-Game, we use Gibbs sampling after taking 5800
MCMC steps in replace of XOR-Sampling. In BP-Game, the samples
are generated from Belief Propagation [42].
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Figure 3: Location set vectors in Avicaching dataset and samples from learned behavior model under different reward level
(visualized through 2-dimensional PCA). We can see that the samples obtained from the learned behavior model (red dots)
replicates the original data distribution (green dots) well.
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