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Abstract

We propose an approximation to the forward filter backward sampler (FFBS)

algorithm for large-scale spatio-temporal smoothing. FFBS is commonly used

in Bayesian statistics when working with linear Gaussian state-space models,

but it requires inverting covariance matrices which have the size of the latent

state vector. The computational burden associatedwith this operation effectively

prohibits its applications in high-dimensional settings. We propose a scalable

spatio-temporal FFBS approach based on the hierarchical Vecchia approxima-

tion of Gaussian processes, which has been previously successfully used in

spatial statistics. On simulated and real data, our approach outperformed a

low-rank FFBS approximation.
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1 INTRODUCTION

Developments in data collection and storage technologies over the past decade have led to an unprecedented influx of

data across scientific disciplines. Environmental sciences in particular have profited immensely from these advances. For

example, frequent and high-resolution measurements of carbon dioxide acquired by the Orbiting Carbon Observatory

(Sun et al., 2017) helped to increase the understanding of CO2 sinks and sources. Massive remotely sensed data were

demonstrated to be of help in determining the concentration of volcanic ash in the atmosphere (Bugliaro et al., 2021),

which is crucial for air traffic control and weather forecasting. Not all big datasets are collected using satellites however.

Recently, Argo, a large system of autonomous floats, was deployed worldwide to collect data used in studying ocean

temperature changes and the water cycle (Jayne et al., 2017).

Datasets of this kind are often spatio-temporal in nature and typically measure some scientifically interesting phe-

nomenon. This leads the researchers to analyze them using a “mechanistic” approach. Within this paradigm, changes

in time are represented by a (possibly discretized) differential equation, while the residual variation in space is captured

using a purely statistical model (e.g., Wikle et al., 2019). Using this framework, data can be used to estimate the true value

of the variable of interest, filling in the gaps where the observations are missing or inaccurate due to measurement errors,

as well as to infer the unknown parameters. The first of these objectives is traditionally accomplished using the Kalman

filter (Kalman, 1960) and smoother (also known as the Rauch–Tung–Striebel smoother, Rauch et al., 1965), while param-

eter inference is possible using a Gibbs sampler, often based on the forward filter backward sampler (FFBS, Carter &

Kohn, 1994; Durbin & Koopman, 2002; Frühwirth-Schnatter, 1994).

Amajor challenge in using these existing techniques with big environmental data is their poor scalability as the num-

ber of observations or grid points grows. Specifically, the computational cost of the canonical versions of filtering and
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smoothingmethods is cubic in the number of observations at each time point. Countless approximations have been devel-

oped to address these problems, many of them being focused on filtering inference (see, e.g., Jurek & Katzfuss, 2022, and

the citations therein). A particularly promising class of methods, which have recently gained prominence, are algorithms

using an ensemble to represent the distribution of the state vector (Evensen et al., 2022; Grudzien & Bocquet, 2021), most

notably the ensemble Kalman filter (Evensen, 1994; Katzfuss et al., 2020). Variational approaches led to the development

of the so-called 4D-VAR algorithm (see, e.g., Evensen et al., 2022, for a comprehensive introduction), which has found

mission-critical operational applications (see, e.g., ECMWF, 2021).

Relatively little attention has been devoted to smoothing. Among the existing works, Katzfuss and Cressie (2012)

propose a method based on a low-rank approximation of the latent Gaussian random field, which scales well but may

not be able to reproduce fine-scale features. Stroud et al. (2010) suffer from somewhat of the opposite problem, because it

relies on tapering the sample covariance matrix and thus may struggle with smooth covariance functions (see numerical

experiments in Jurek & Katzfuss, 2021). Sigrist et al. (2015) propose an approach based on spectral methods which are

limited to observations on a regular grid. Another technique for approximate smoothing inference uses particle-based

methods (Carvalho et al., 2010), but suchmethods cannot be used when the dimension of the latent space exceeds several

hundred because of particle collapse. Amethod that is perhaps the closest to our in spirit is based on the ensembleKalman

smoother, which is reviewed and extended in Katzfuss et al. (2020). However, it also requires additional approximations

such as tapering, and the number of distinct samples that it produces is always equal to the size of the ensemble, which

can be inefficient.

We propose a scalable algorithm for generating samples from the smoothing distribution, directly approximating the

FFBS algorithm, based on the hierarchical Vecchia (HV) approximation that has previously been used for spatio-temporal

filtering (Jurek&Katzfuss, 2022).We summarize the previous results developed in the context of filtering and extend them

to approximate smoothing inference. This is not straightforward because matrix approximations used in previous work

cannot be easily applied in the context of smoothing. We conducted numerical experiments showing that our sampler

outperformed a low-rank approximation and showing how our method can be used to estimate unknown parameters

using aGibbs sampler.We also applied ourmethod to a real data set and showed that it performed better than a competing

approach. The code and data needed to reproduce our results can be found at https://github.com/marcinjurek/scalable-

FFBS.

This article is organized as follows. Section 2 introduces notation and briefly describes the linear Gaussian state space

model and the canonical methods used for filtering, smoothing and sampling. Section 3 presents sparse Cholesky fac-

torization and the HV approximation. In Section 4, we propose approximations to the canonical methods from Section 2

and conclude with a scalable version of the FFBS algorithm. Section 5 contains numerical experiments which demon-

strate excellent performance of our approximate methods. Section 6 discusses an application to a real data set. Section 7

concludes and proposes directions for future research.

2 SPATIO-TEMPORAL STATE-SPACE MODEL

Consider a Gaussian process x(⋅) defined over a domain [1, 2, … ,T] × ⊂ R2. Let  = {s1, s2, … , sn} be a grid over
and let xt =

[
x(t, s1), x(t, s2), … , x(t, sn)

]⊤
. Note that the grid is taken to be the same at all time points, which is common

in the case of big environmental datasets, for example those collected using remote sensing.We assume that the dynamics

of the process at the subsequent time points can be expressed as an autoregressive model:

xt = Etxt−1 +wt, wt ∼ n(0,Qt), (1)

where the evolution matrix Et is assumed to be sparse. We do not make any special additional assumptions regarding the

covariance matrix Qt. The initial state follows a normal distribution: x0 ∼ n(𝝁0|0,𝚺0|0).

We consider a situation in which at each time point we are given yt, an nt-dimensional vector of data observed at time

t = 1, 2, … ,T, related to the true process through a linear function:

yt = Htxt + vt, vt ∼ nt (0,Rt). (2)

We assume that observation error covariance matrix Rt is diagonal. (This can be extended to block-diagonal Rt with

small blocks.) We use y1∶t ∶= (y⊤1 , … , y⊤t )
⊤ to denote a vector of observations from time 1 to time t and we define x1∶t
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analogously. At each time t, the locations of the observations yt can be a (different) subset of size nt of the grid , indicated
by the nt × n matrix Ht. In this article, we are interested in obtaining the filtering and smoothing distributions of xt
for t = 1, 2, … ,T, that is, p(xt|y1∶t) and p(xt|y1∶T), respectively. To accomplish this goal, we start with the canonical

algorithms for filtering and generating samples from the smoothing distribution.

2.1 The filtering distribution

Under the assumptions introduced in Section 2 the filtering distribution, [xt|y1∶t] is Gaussian and can be obtained using
the Kalman filter (Kalman, 1960). We use 𝝁t|t to denote E[xt|y1∶t] and set 𝚺t|t ∶= Cov(xt|y1∶t). To derive the Kalman
filtering procedure, we first give the one-step ahead forecasting distribution:

xt|y1∶t−1 ∼ n(𝝁t|t−1,𝚺t|t−1),

where 𝝁t|t−1 ∶= Et𝝁t−1|t−1 and 𝚺t|t−1 ∶= Et𝚺t−1|t−1E
⊤
t +Qt.

Based on Bayes’ theorem, it follows that [xt|y1∶t] ∝ [yt|xt][xt|y1∶t−1]. Thus, we have

𝝁t|t ∶= 𝝁t|t−1 +Kt(yt −Ht𝝁t|t−1),

𝚺t|t ∶= 𝚺t|t−1 −KtHt𝚺t|t−1,

whereKt ∶= 𝚺t|t−1H
⊤
t (Ht𝚺t|t−1H

⊤ + Rt)
−1 is the n × nt Kalman gain matrix.

Algorithm 1. Kalman filter (KF)

Input: moments of the initial distribution 𝝁0|0,𝚺0|0, evolution model {Et,Qt}
T
t=0,

observation model {Ht,Rt}
T
t=0, data {yt}

T
t=0

Result:moments of the filtering distribution
{
𝝁t|t,𝚺t|t

}T
t=0

1: for t = 1, 2,… ,T do

2: Compute forecast mean 𝝁t|t−1 = Et𝝁t−1|t−1.

3: Compute forecast covariance 𝚺t|t−1 = Et𝚺t−1|t−1ETt +Qt.

4: Calculate Kt = 𝚺t|t−1H⊤
t (Ht𝚺t|t−1H⊤

t + Rt)
−1.

5: Calculate filtering mean 𝝁t|t = 𝝁t|t−1 +Kt(yt −Ht𝝁t|t−1).

6: Calculate filtering covariance 𝚺t|t = 𝚺t|t−1 −KtHt𝚺t|t−1.

7: end for

2.2 Kalman smoother

Computing the smoothing distribution can be accomplished using the Kalman smoother (Rauch et al., 1965). Let 𝝁t|T ∶=

E(xt|y1∶T) and 𝚺t|T ∶= Cov(xt|y1∶T). Then the linear Gaussian state-space model of Section 2 implies that the smoothing
distribution will also be Gaussian: xt|y1∶T ∼ n(𝝁t|T ,𝚺t|T). Notice that

[xt|y1∶T] = ∫ [xt|xt+1, y1∶T][xt+1|y1∶T] dxt+1,

where [xt|xt+1, y1∶T] ∝ [xt+1|xt][xt|y1∶t]. It follows that the conditionalmean and conditional covariance in the smoothing
distribution are given by

𝝁t|T ∶= 𝝁t|t + Jt(𝝁t+1|T − 𝝁t+1|t),

𝚺t|T ∶= 𝚺t|t + Jt(𝚺t+1|T − 𝚺t+1|t)J
⊤
t ,

where Jt ∶= 𝚺t|tE
⊤
t+1𝚺

−1
t+1|t.
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Algorithm 2. Kalman smoother (KS)

Input: moments of the initial distribution 𝝁0|0,𝚺0|0, evolution model {Et,Qt}
T
t=0,

observation model {Ht,Rt}
T
t=0, data {yt}

T
t=0

Result:moments of the smoothing distribution
{
𝝁t|T ,𝚺t|T

}T
t=0

1: Obtain moments of the filtering distribution
{
𝝁t|t,𝚺t|t

}T
t=0

using KF (Algorithm 1).

2: for t = T − 1,T − 2,… , 1 do

3: Compute Jt = 𝚺t|tE⊤
t+1𝚺

−1
t+1|t

4: Compute smoothing mean 𝝁t|T = 𝝁t|t + Jt(𝝁t+1|T − 𝝁t+1|t),

5: end for

Algorithm 3. Forward filter backward sampler (Durbin & Koopman, 2002; Jarociński, 2015)

Input: moments of the initial distribution 𝝁0|0,𝚺0|0, evolution model {Et,Qt}
T
t=0,

observation model {Ht,Rt}
T
t=0, data {yt}

T
t=0, desired number of samples Nsamp

Result: sample from the smoothing distribution: x1∶T

1: Generate x̂0|0 ∼ n(0,𝚺0|0).

2: Generate x̂1∶T and ŷ1∶T using (1) and (2).

3: Calculate y∗1∶T where y
∗
t = yt − ŷt.

4: Use KS (Algorithm 2) to obtain {𝝁̂t|T}
T
t=1, where 𝝁̂t|T = E(x1∶T|ŷ∗1∶t).

5: for t = 1,… ,T do

6: xt = x̂t + 𝝁̂t|T is a sample from
[
xt|y1∶T

]
.

7: end for

The full Kalman smoother typically can compute also the smoothing covariance matrix 𝚺t|T = 𝚺t|t + Jt(𝚺t+1|T −

𝚺t+1|t)J
⊤
t . We skip this calculation in our Algorithm 2, as it is not necessary for the construction of the algorithm which

samples from the smoothing distribution.

2.3 Forward filter backward sampler

In Bayesian statistics instead of calculating the full smoothing distribution, it is often enough to be able to draw samples

from [xt|xt+1, y1∶T]. This is particularly true in Markov chain Monte Carlo (MCMC)-based methods. Inspired by this fact,
some authors (Carter & Kohn, 1994; Durbin & Koopman, 2002; Frühwirth-Schnatter, 1994) developed algorithms which

draw a sample from (1) and (2) and then linearly transform it based on actual observations from (2) to obtain a sample

from the smoothing distribution. It is preferable to simulation using moments generated by the Kalman smoother, which

would require, in general, factorization of all smoothing covariance matrices 𝚺t|T . We briefly summarize the algorithm

known as FFBS (Durbin & Koopman, 2002) below, using the helpful insights from Jarociński (2015).

We note that a sample from the smoothing distribution can also be used as the approximation of the full distribution.

For example, if we are interested in prediction, the samplemean and quantiles can be used as a tool formaking predictions

and quantifying uncertainty, respectively.

2.4 Computational complexity

Algorithms 2 and 3 rely on calculating the correction factor Jt, which requires computing the inverse of the forecast

covariance matrix 𝚺t|t−1. In the case of Algorithm 1, a prerequisite for the other two, we also need to obtain the Kalman

gainmatrixKt which is a linear function of the inverse ofHt𝚺t|t−1H
⊤ + Rt. This proves to be the computational bottleneck,

since the number of operations required for matrix inversion is proportional to the cube of its dimension. As the size

of the grid n and the number of observations at each time point nt grow, these inversion operations take a prohibitive
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amount of time. In the next section, we review the sparse Cholesky factorization method and subsequently show how it

can be used to approximate Algorithms 1–3.

3 SPARSE CHOLESKY FACTORIZATION

3.1 HV approximation

In this section, we describe the HV approximation. It has recently been shown that this approach ensures that the sparsity

of the approximateCholesky factor of the filtering covariancematrix is the same at all time points (Jurek&Katzfuss, 2022).

Moreover, following the findings of Schäfer et al. (2021) the approximation to the forecast distribution at each time point

is optimal in the sense of KL-divergence, given the sparsity pattern. Here we summarize a special case of the Vecchia

approximation which was shown to be near optimal (Zilber & Katzfuss, 2021) and which additionally has the property

of preserving the sparsity of the Cholesky decomposition of the covariance matrix under inversion. As we show in the

following sections, this characteristic is fundamental for a construction of a scalable FFBS.

We start by defining an order relation ≺ among the elements of the grid  using the maxmin ordering (Schäfer

et al., 2021). From now on we assume that the elements of x0 are sorted according to ≺. We then define a directed acyclic

graph over the subsets of elements of x0 in the following way. We begin by selecting the first r0 elements of x0, which we

call knots, and label them as0. Next we partition the remaining n − r0 variables into J groups G1, … ,GJ and for each

preserve the order ≺ truncated to members of that group. Finally, we select r1 knots from each group and label them as

j for j = 1, … , J. Variables1 = {1, … ,J} form the next level of the hierarchy.

The remaining elements of each group are further partitioned. For example, the #Gj − r1 remaining elements ofGj are

divided into sets Gj,1, … ,Gj,J . Then r2 first elements from each of those smaller groups are put into setsj,1, … ,j,J . In

this way, we obtain the second level of the hierarchy2 =
{1,1, … ,1,J ,2,1, … ,2,J , … ,J,J

}
.

This hierarchy can be visually represented in the form of a directed graph  = (V ,E)where V = 0 ∪1 ∪ · · · and E

is defined as follows. For two verticesj1,… ,jm andi1,… ,il we havej1,… ,jm → i1,… ,il ifi1,… ,il ⊂ Gj1,… ,jm andj1,… ,jm ←

i1,… ,il ifj1,… ,jm ⊂ Gj1,… ,j
𝓁
. The construction of this hierarchy is illustrated in Figure 1.

We also introduce lexicographic order≺L on verticesj1,… ,jm with respect to their subscripts and define S to be an adja-

cency matrix of graph . Note that this matrix is lower triangular because for w, v ∈ V we can have w → v only if w ≺L v.

Further details of the HV construction can be found in Jurek and Katzfuss (2022).

3.2 Sparse Cholesky decomposition based on HV

With the sparsity pattern encoding the HV approximation we nowmodify the standard Cholesky factorization algorithm

in the following way. If an i, jth element of the sparsity pattern matrix S equals 1, we calculate the corresponding element

F IGURE 1 Construction of the hierarchical Vecchia approximation. The first panel shows the entire domain with each dot

representing an element of x0; note that they do not need to be regularly spaced. The black dots, in accordance with the label above, represent

the elements selected as0. The second panel shows the domain split in two. The elements of x0 corresponding to locations in the left half

are assigned to G1, while the remaining elements are assigned to G2. Black dots within each group denote elements of1, the gray dots stand

for elements already assigned to0 and the remaining dots are white. The right panel shows another level of the hierarchy with each

quadrant, from the top-left and counter-clockwise, the area covering G1,1,G1,2,G2,1, and G2,2. Similar to the middle panel, the gray dots

represent elements of0 ∪1 and black dots represent elements of2 split into four sets Ki,j such that Ki,j ⊂ Gi,j for i, j ∈ {1, 2}.
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Algorithm 4. Hierarchical Cholesky factorization (HCF)

Input: Sparsity pattern matrix S, p.d. matrix A of size n × n

Result: Sparse Cholesky factor L

1: for i = 1,… ,n do

2: for j = 1,… , i do

3: Li,j = Si,j ⋅ (Ai,j −
∑j−1

k=1
Li,kLj,k)∕Lj,j

4: end for

5: Li,i = (Ai,i −
∑i−1

k=1 L
2
i,k
)1∕2

6: end for

of the Cholesky factor, using the regular formula and set it to zero otherwise. Note also that given the HV construction

the diagonal elements will always be calculated. Our approach is summarized in Algorithm 4.

If we use N to denote the maximum number of nonzero elements in a row of S, then the complexity of Algorithm 4 is

(nN2). This is because line 3 requires (N) operations and is executed at most N times for each of the n rows.

4 FAST SAMPLING USING SPARSE CHOLESKY FACTORIZATION

In this section, we show how Algorithm 4 (HCF) can be used to ensure the scalability of Algorithm 3 (FFBS). Recall that

the most computationally intensive steps in Algorithm 3 were those calculating the Kt matrix in the forward pass and

inverting the forecast covariance in the backward pass. We show how HCF can be used to accelerate both.

4.1 Approximate filtering

The application of hierarchical Cholesky factorization to filtering was described previously (Jurek & Katzfuss, 2022) and

we briefly summarize it here. Unlike in Algorithm 1, we do not calculate the entire filtering and forecast covariance

matrices, 𝚺t|t−1 and 𝚺t|t, respectively, but rather their hierarchical Cholesky factor. In particular, given the prescribed

sparsity S, we approximate 𝚺t|t−1 ≈ 𝚺̃t|t−1 = Lt|t−1L
⊤
t|t−1, where Lt|t−1 = HCF(S,𝚺t|t−1), which is optimal in the sense of KL

divergence (Schäfer et al., 2021). The computational benefits of using this approximation can be further taken advantage

of Jurek & Katzfuss (2022, Section 3.3) as shown in the following

Claim 1. Assume Lt|t−1 = HCF(S,𝚺t|t−1), where S encodes the HV approximation, 𝚺t|t−1 is a (approximate or exact)

forecast covariance matrix and that P is an order reversing permutation matrix. We have

Ut|t = Pchol(P(L−⊤
t|t−1L

−1
t|t−1 +HtR

−⊤
t Ht)P)P

and

𝚺̃t|t = U−⊤
t|t U

−1
t|t .

We can thus define Lt|t ∶= U−⊤
t|t . Then, as Jurek and Katzfuss (2022) noted, given Lt|t−1 with at most N nonzero ele-

ments in a row, Lt|t has the same sparsity pattern as Lt|t−1 and can be calculated in(nN2) time. These properties allow us

to approximate Algorithm 1 (Kalman filter) using Algorithm 5, which Jurek and Katzfuss (2022) show to have (nN2T)

time complexity.

Note that the approximate filtering and forecast means are denoted with a tilde over each symbol, to differentiate

them from their exact counterparts calculated in Algorithm 1.

4.2 Approximate sampling

Following Algorithm 2, we see that themost time consuming part of the backward pass is matrix inversion in line 3. Addi-

tionally, themultiplication of dense n × nmatrices also requiresmuch computation time for large n. These bottlenecks
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Algorithm 5. Hierarchical Vecchia filter (HVF)

Input:moments of the initial distribution 𝝁0|0,𝚺0|0, evolution model {Et,Qt}
T
t=0,

observation model {Ht,Rt}
T
t=0, data {yt}

T
t=0 and sparsity matrix S

Result: approximate representation of the filtering and forecast distributions{
𝝁̃t|t−1,Lt|t−1

}T
t=0
,
{
𝝁̃t|t,Lt|t

}T
t=0

1: Calculate the HV sparsity matrix S

2: Calculate L0|0 = HCF(S,𝚺0|0)

3: for t = 1, 2,… ,T do

4: Compute 𝝁̃t|t−1 = Et𝝁̃t−1|t−1
5: Calculate the (i, j)th elements of 𝚺̃t|t−1 = EtLt−1|t−1L⊤

t−1|t−1E
⊤
t +Qt, for (i, j) such that Si,j = 1

6: Calculate the HCF of the forecast matrix Lt|t−1 = HCF(S, 𝚺̃t|t−1)

7: Calculate Lt|t using Claim 1.

8: Compute 𝝁̃t|t = 𝝁̃t|t−1 + Lt|tL⊤
t|tH

⊤
t R

−1
t

(
yt −Ht𝝁̃t|t−1

)

9: end for

Algorithm 6. Hierarchical Vecchia smoother (HVS)

Input:moments of the initial distribution 𝝁0|0,𝚺0|0, evolution model {Et,Qt}
T
t=0,

observation model {Ht,Rt}
T
t=0, data {yt}

T
t=0

Result: approximate mean of the smoothing distribution
{
𝝁̃t|T

}T
t=0

1: Obtain representation of the forecast and filtering distributions
{
𝝁̃t|t,Lt|t

}T
t=0
,

{
𝝁̃t|t−1,Lt|t−1

}T
t=0

using HVF (Algorithm 5)

2: for t = T − 1,T − 2,… , 1 do

3: Compute approximate smoothing mean as

𝝁̃t|T = 𝝁̃t|t + Lt|tL⊤
t|tE

⊤
t+1L

−⊤
t+1|tL

−1
t+1|t(𝝁̃t+1|T − 𝝁̃t+1|t),

4: end for

can be eliminated if matrices 𝚺t+1|t and 𝚺t|t are replaced with their hierarchical Cholesky factors Lt+1|t and Lt|t, respec-

tively. This substitution also decreases the cost of matrix multiplication, since all matrices in line 3 are now sparse. This

let allows us to approximate Algorithm 3 by proposing a scalable FFBS in Algorithm 7.

Similar to Algorithm 5, we used symbols with a tilde to denote the approximations of corresponding variables in

Algorithm 2. Regarding complexity of Algorithm 6,Ut|t+1 is sparse with a known sparsity pattern which means that line

3 and can be executed in(nN2T) time (Jurek &Katzfuss, 2022). Line 4 can be executed efficiently series of matrix-vector

multiplications is performed instead. The matrices Lt|t and Ut+1|t have at most N nonzero elements in each row (Jurek

& Katzfuss, 2021). Therefore, if we recall the complexity of Algorithm 5 discussed in Section 4.1 and assume Et is sparse,

then operations in line 4 have complexity (nN). Consequently, Algorithm 6 can be executed in (nN2T) time.

4.3 Scalable FFBS

Using the approximations described in Sections 4.1 and 4.2, we can now provide an algorithm for a scalable FFBS. Fol-

lowing the approach adopted earlier in Section 3, we used the tilde notation to indicate approximations. Notice that we

use Vecchia approximation in order to quickly calculate the square roots {Lt}Tt=1 of the model error covariance matrices

{Qt}
T
t=1. These square roots are then be used for quick generation the synthetic data.

4.4 Computational complexity

Using theHVapproximation substantially reduces the computational cost of sampling from the smoothing distribution. If

S corresponds to aHVapproximation, the first line of the algorithmcanbe calculated in(nN2) time. The computationally



8 of 15 JUREK and KATZFUSS

Algorithm 7. Scalable FFBS

Input:moments of the initial distribution 𝝁0|0,𝚺0|0, evolution model {Et,Qt}
T
t=0,

observation model {Ht,Rt}
T
t=0, data {yt}

T
t=0, and sparsity pattern S

Result: sample x1∶T from the approximate smoothing distribution

1: Calculate L0|0 = HCF(S,𝚺0|0).

2: Generate 𝝐0 ∼ n(0, In), and set x̂0|0 = L0|0𝝐0.

3: for t = 1,… ,T − 1 do

4: Calculate LQt = HCF(S,Qt)

5: Calculate 𝝐t ∼ n(0, In) and set ŵt = LQt 𝝐t.

6: end for

7: Generate x̂1∶T and ŷ1∶T using (1) and (2), replacingwt with ŵt.

8: Calculate y∗1∶T where y
∗
t = yt − ŷt.

9: Use HVS (Algorithm 2) to obtain { ̂̃𝝁t|T}
T
t=1, where

̂̃𝝁t|T = E(xt|ŷ∗1∶t).
10: for t = 1, dots, T do

11: xt = x̂t + ̂̃𝝁t|T is a sample from an approximation of
[
xt|y1∶T

]
.

12: end for

intense operation in the second line is the matrix-vector multiplication, but because L0|0 has the same sparsity pattern

as S, this product can be obtained in (nN) time. Analogous arguments let us conclude that the total cost of line 3 is

(nN2T). Generating synthetic data x̂1∶T and ŷ1∶T can be done in (nNT) time, because we assumed that the evolution
matrix Et is sparse and that Rt is block diagonal with small blocks. The only operation in the remaining lines is the use

of HV smoother in line 9, which requires (nN2T) time.

A typical user of Algorithm 7 will typically generateNsamp > 1 samples from the approximate smoothing distribution,

which means that it will take (nN2TNsamp) time.

5 NUMERICAL COMPARISON

5.1 Setup

In this section, we evaluate our scalable FFBS using simulated data.

We consider an advection diffusion process x(s, t) defined over R2 × [0, … ,T], which means that its dynamics are

expressed by the following partial differential equation:

𝜕x

𝜕t
= 𝛼

(
𝜕2x

𝜕2sx
+

𝜕2x

𝜕2sy

)
+ 𝛽

(
𝜕x

𝜕sx
+

𝜕x

𝜕sy

)
+ 𝜂, (3)

where 𝜂(s, t) is a zero-mean stationary Gaussian process with an exponential covariance function with marginal variance

𝜎2w = 0.1 and range 𝜆 = 0.15. This setting of 𝜆 allows the process to exhibit clear variation over the chosen grid (see

below) but preserves substantial dependence between neighboring locations. We set 𝛼 = 4 × 10−5 and 𝛽 = 10−2 which

leads to a stable differencing scheme for our chosen grid (below) while producing visible advection and diffusion. We

also assume that 𝜂(⋅, ⋅) is independent across time. We then consider a regular grid of size n = 34 × 34 = 1156 covering

the square  = [0, 1] × [0, 1] and discretize x over this grid using centered finite differences. This results in a vector xt
with each component representing the value of x at a corresponding grid point and gives a discrete version of (3) which

takes the form (1). We use x0 ∼  (0,𝚺0|0), where 𝚺0|0 corresponds to the exponential covariance function with range 𝜆,

marginal variance 𝜎20 = 1. This choice of marginal variance, 10 times greater than the marginal variance of the model

error, means that most of the variation is explained by the model, but that the model error is nevertheless non-negligible.

We further assume that at each time point t ∈ [1, 2, … ,T], where T = 20, we are given a set of noisy observations yt
corresponding to some of the points from the grid. We take the measurement error to be Gaussian which means that yt
follows the data model (2) with Rt = 𝜎2vInt where we set 𝜎

2
v = 0.05 and the matrix Ht is obtained by taking a diagonal

matrix In and removing the rows which correspond to the grid points with no associated observations. This choice of 𝜎
2
v



JUREK and KATZFUSS 9 of 15

F IGURE 2 Sample realization of the 2D advection diffusion process described in Section 5.1 at select time points. The first row shows

two consecutive time points while the plots in the second row, corresponding to time points further apart, illustrates the long term evolution

of the process. (a) t = 1, (b) t = 2, (c) t = 10, and (d) t = 20

means that the signal to noise ratio is relatively high. A sample realization of this process at two time points is shown

in Figure 2. Many other combinations of parameter values were previously considered in the case of filtering (Jurek &

Katzfuss, 2021), but the relative performance of the analogs of the HV-based and low-rank filters was robust to these

changes.

We then perform several numerical experiments using the following methods:

Scalable FFBS (scalable): Our method as described in Algorithm 7.

Low-rank-based FFBS (low-rank): A sampling method based on a low-rank approximation of the latent process x.

Within the context of our article and for ease of comparison, we can view it as a special case of Algorithm 7 with

the Smatrix in which only the diagonal and the first N columns of S are nonzero. This is equivalent to using the

modified predictive process approach (Banerjee et al., 2008; Finley et al., 2009) to approximate the process x and

has the same computational complexity as scalable FFBS.
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TABLE 1 The average time in seconds required to generate one sample from the model from Section 5.1 using each of the sampling

methods

Method Standard Low-rank Scalable

Average time (s) 322.2 13.2 13.3

Standard FFBS (standard): The method described in Algorithm 3. It can be viewed a special case of Algorithm 7, in

which S = 1n1
⊤
n and N = n.

5.2 Timing

We start by showing the difference in wall-clock time required to generate a single sample using the model settings and

sampling methods described in Section 5.1. We run our code on a high-end laptop equipped with 16 Intel i7 CPUs each

with a clock speed of 2.30 GHz and 16 GB of memory. In order to eliminate the influence of random processes executed at

the same time, we use one method at a time, measure the time elapsed from the beginning until the end of Algorithm 3,

repeat it 10 times and report the average. The results are shown in Table 1 and show that both approximate methods have

a similar run time, which is much less than the run time of the standard FFBS. In the subsequent simulations, we show

that the low-rank method, while comparable in execution time, is inferior in performance according to several criteria.

5.3 Sampling the latent vector

In the second set of our simulations, we demonstrate the excellent accuracy of Algorithm 7 by generating a sample of size

m from smoothing distribution of the latent vector xt. We then compare the results generated by othermethods using con-

tinuous rank probability score (CRPS) for ensembles (Gneiting et al., 2008, Section 4.2). In general, if =
{
q1, … , qNsamp

}

is the ensemble of size Nsamp forecasting the vector q we can calculate this score as

CRPS(, q) = 1

Nsamp

Nsamp∑

i=1

||qi − q||2 −
1

2Nsamp

Nsamp∑

i=1

Nsamp∑

j=1

||qi − qj||2,

where || ⋅ ||2 denotes the second (i.e., Euclidian) norm. The lower the value of the CPRS, themore accurately the ensemble
predicts the true realization q. Under some mild conditions, CRPS is a strictly proper scoring rule (Gneiting & Katz-

fuss, 2014; Gneiting & Raftery, 2007). In order to evaluate the performance of scalable FFBS we adopt the following

approach. We generate a sample of size Nsamp = 50 using methods described in Section 5.1 and calculate the CRPS for

each of them at each time point. For each of the approximate methods we then calculate the ratio of their respective

scores and the score of the standard FFBS. We repeat this procedure Niter = 10 times and present these average score

ratios in Figure 3. We conclude that scalable version of the FFBS algorithm we propose is an excellent approximation of

its standard version and that it significantly outperforms the low-rank approach.

5.4 Gibbs sampling

One of the more common applications of the standard FFBS algorithm consists in using it as one of the steps in a Gibbs

sampler. In this section, we demonstrate the performance of such a sampler which relies on the methods described in

Section 5.1.

Using the model from Section 5.1 now, we assume that the 𝜎2w parameter is unknown. Imposing an inverse

gamma prior with shape parameter a = 0.001 and scale parameter b = 0.001 results in the conditional posterior dis-

tribution p(𝜎2w|x1∶T , y1∶T) that is inverse gamma with the shape parameter ã = a + n(T−1)

2
and the scale parameter b̃ =

b + 1

2

∑T
t=2(xt − Etxt−1)

⊤Σ−1
w (xt − Etxt−1). We then run the Gibbs sampler in which we sample the latent vectors {xt}Tt=1

using each of the methods described at the beginning of Section 1 assuming that we have observations corresponding to
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F IGURE 3 Average CRPS ratios for methods described in Section 5 Nsamp = 50 samples based on different versions of the HV

approximation averaged over Niter = 10 repetitions. The red line corresponds to the scalable method, the blue line to the low-rank method

and the black line to the standard sampler. All scores are calculated as relative to the score of the standard FFBS (for which its ratio with itself

is therefore always equal to 1).

F IGURE 4 Samples from the conditional posterior distribution p(𝜎2w|x1∶T , y1∶T). (The true value was 𝜎2w = 0.1.) The blue line denotes

samples obtained using the low-rank method and the red line was generated using the scalable method. The standard method was not

computationally feasible.

a random selection of 30% of grid points, that is, nt = 0.3n. Figure 4 shows the samples from the conditional posterior

distribution. In each case, the sampler was initialized at a random value between 0 and 0.5.We used only the approximate

methods in the construction of the Gibbs sampler, because standard FFBSwas not computationally feasible for a problem

of this size. The results show that the sampler based on the scalable method generates draws of 𝜎2w that are much closer

to the true value (0.1) than the draws obtained using the low-rank method.

6 ANALYSIS OF TOTAL PRECIPITABLE WATER

In this section, we apply our proposed sampler to real observations of the amount total precipitable water (TPW) in the

atmosphere, defined as the mass of the water vapor in a column of air above a given area. TPW is commonly used in

numerical weather prediction, forecasting extreme weather events, or assessing fire danger in drought-stricken areas.

Hence, inferring complete and noise-free spatio-temporal maps of TPW is of considerable scientific value. The collection

of dataweworkwith is comprised of the total of 47,007measurementsmade over a portion of the continentalUnited States

and the Gulf of Mexico at T = 9 points in time over a period of 40 hours in January 2011. Each data point corresponds

to a cell in a 0.5◦ × 0.5◦ latitude/longitude grid covering the area between −125.18◦ W and −107.21◦ W and 37.14◦ N

and 50.07◦ N, resulting in 15,876 spatial grid cells. All of the observations were acquired using the Microwave Integrated

Retrieval System (MIRS) satellite and are available from the authors upon request.

A superset of the data we use here has been analyzed previously using a low-rank filtering approach similar to the one

described in Section 5.1 in Katzfuss and Hammerling (2017), and a filtering approach based on the HV approximation

(Algorithm 5) in Jurek and Katzfuss (2022).
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F IGURE 5 Total precipitable water (first column) and the pointwise mean of all the samples generated using the scalable method

(second column) and the low-rank method (third column)

For a given time point t, we use yt to denote the corresponding data, each of which is assumed to contain an indepen-

dently and identically distributed normal measurement error with mean 0 and variance 𝜎2v . At each point, we calculated

themean of allmeasurements and subtracted it from the observations gathered at that time. The resulting value at selected

time points are shown in the first column in Figure 5. At each time point, we set aside 1% of all available measurements

to be later used for result verification.

We assume that the temporal evolution of TPW during the study period can be captured by an advection-diffusion

equation, as described in Section 5.1. We use the diffusion coefficient to be 𝛼 = 0.000003 and the advection coefficient

𝛽 = 0 (no advection). If Ẽt denotes the temporal evolution operator obtained using differencing, we take Et = cẼt with

c = 0.9 to allow for more random variation at each time point.
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TABLE 2 Values of parameters used in the application to TPW

𝝀 𝝈2
0

𝝈2w 𝝈2v c 𝜶 𝜷

1.0 74.7 8.3 1.63 0.9 0.000003 0

F IGURE 6 For the TPW data, CRPS for samples calculated using the scalable method relative to the CRPS for samples calculated

using the low-rank method

We take the initial covariance function 𝚺0|0 to be derived from a Matérn covariance function with smoothness 𝜈 =

1.5, range 𝜆, marginal variance 𝜎20 and the Qt matrix to be derived from a Matérn covariance function with the same

smoothness 𝜈 = 1.5 and range 𝜆 and marginal variance 𝜎2w.

In order to determine the values of parameters 𝜆, 𝜎20 , 𝜎
2
w and 𝜎2v we consider a purely spatial problem and assume

that at each time xt corresponds to a discretization of a mean-zero, 2D Gaussian random field with a Matérn covariance

function with smoothness 1.5, range 𝜆t and marginal variance 𝜎2t and that yt are the corresponding observations with

yt|xt =  (xt, 𝜏2t ).We use theVecchia approximationwithN = 80 nonzero elements in each row of S and use it to optimize

the approximate likelihood function (see Zilber & Katzfuss, 2021). We take 𝜆 =
1

T

∑
t 𝜆t, 𝜎

2
v =

1

T

∑
t 𝜏

2
t . For the marginal

variance parameters, we assume that 𝜎20 + 𝜎2w =
1

T

∑
t 𝜎

2
t and then set 𝜎

2
w = (1 − c)𝜎20 . Table 2 summarizes the parameter

values obtained in this way.

Then using Algorithm 7, we generate Nsamp = 20 samples {xi1∶T}
Nsamp

i=1
from the smoothing distribution of the state

vector xt using the scalable method and the low rank method with the conditioning set of size N = 52. In Figure 5, we

present the mean field x =
1

Nsamp

∑Nsamp

i=1
xit for select values of t.

In order to evaluate our method, we use CRPS as described in Section 5.3 using the observations which we set

aside at the beginning. Because of the scale of the problem, the standard method was not feasible. Instead we report

the ratio rCRPS = 100%
CRPSHV
CRPSLR

, which tells us by what percentage the score is reduced, if we use the scalable method

as opposed to the low-rank method. We report the rCRPS for each time point in Figure 6. The results show, that

using the scalable method instead of the low-rank method leads to about 20% lower CRPS at a typical point in

time.

7 CONCLUSIONS

Our article proposes an approximate method of sampling the latent state in the context of linear Gaussian state space

models. Our approach, called scalable FFBS, can be applied even to fields with tens of thousands of random variables.

It also outperforms samplers based on a popular low-rank approximation according to several important metrics. The

proposed algorithm can be extended in several directions. First, combining it with the Laplace approximation, similar to

(Jurek & Katzfuss, 2022), it can be applied to a large class of non-Gaussian distributions. Using the correlation distance

(Kang & Katzfuss, 2021), might allow to accommodate data without a clear spatial structure. We also envision extending

our framework to incorporate several random fields and nonlinear temporal evolution.
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