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Abstract

Although parallelism has been extensively used
in reinforcement learning (RL), the quantitative
effects of parallel exploration are not well un-
derstood theoretically. We study the benefits of
simple parallel exploration for reward-free RL
in linear Markov decision processes (MDPs) and
two-player zero-sum Markov games (MGs). In
contrast to the existing literature, which focuses
on approaches that encourage agents to explore a
diverse set of policies, we show that using a sin-
gle policy to guide exploration across all agents
is sufficient to obtain an almost-linear speedup
in all cases compared to their fully sequential
counterpart. Furthermore, we demonstrate that
this simple procedure is near-minimax optimal in
the reward-free setting for linear MDPs. From a
practical perspective, our paper shows that a sin-
gle policy is sufficient and provably near-optimal
for incorporating parallelism during the explo-
ration phase.

1 INTRODUCTION

Parallel methods in deep RL have been successfully applied
to problems ranging from Go (Silver et al., 2016, 2017)
and Starcraft (Vinyals et al., 2019) to Atari games (Nair
et al., 2015) and unmanned aerial vehicles (Pham et al.,
2018). In the episodic case, parallel methods use P agents,
each simultaneously interacting with the environment for
K episodes. At the beginning of each episode, each agent
is assigned an exploration policy that it uses to collect a
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trajectory from the environment. Agents update their poli-
cies as they explore and learn in the environment, with ag-
gregation and synchronization mechanisms that calculate
the exploration policy for the next episode. For example,
Nair et al. (2015) synchronized the value function estimates
stored on each agent and used the same value function to
guide subsequent exploration. As a result of having multi-
ple agents collecting data simultaneously and exploring the
environment, parallel methods are faster than their single-
agent or sequential counterparts. They can learn near-
optimal policies in a relatively short amount of time—only
K rounds are needed to collect and use a total of KP tra-
jectories. While synchronization of agents’ policies is often
used to ensure unbiased gradient estimates for the neural
networks used to represent the value function, synchroniza-
tion of the exploration policies is not necessary for unbi-
ased gradient estimates. Alternative approaches have been
proposed to improve the coordination of multiple agents for
exploration in parallel RL.

Importantly, much of the literature has focused on the di-
versity of exploration policies—plausibly as a necessary
condition for efficient exploration. Dimakopoulou and
Van Roy (2018) proposed multiple sampling-based algo-
rithms that provide agents with a diverse set of exploration
policies. Mahajan et al. (2019) proposed the use of mutual
information to ensure that agents explore with a diverse set
of policies—we remark that Mahajan et al. (2019) focused
on the multi-agent RL (MARL) case and not on parallel
exploration in RL. At a high level, these alternatives ensure
that the agents’ exploration policies are sufficiently differ-
ent from one another and argue that the diversity speeds up
the learning process.

Taken together, existing theory and practice motivate a cen-
tral question: is the diversity of exploration (by different
policies) always required for efficient parallel exploration
in RL? By efficient exploration, we refer to exploration that
results in a speed-up of the learning process.

We consider this question in the reward-free RL setting.
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This setting allows us to isolate the benefits of parallelism
in exploration, as it separates the collection of trajecto-
ries from the learning of an optimal policy (Wang et al.,
2020; Qiu et al., 2021; Wagenmaker et al., 2022). Thus,
the reward-free setting provides a level playing field for
comparing exploration procedures. Therefore, we can fo-
cus on studying which procedure explores the environment
more efficiently, without requiring the procedure to balance
the trade-off between exploration and exploitation—a chal-
lenge inherent in the online RL setting (Jin et al., 2020b).

We provide a surprising negative answer to the central
question by showing that diversity is not necessary for ef-
ficient parallel exploration. In summary, we show that no
sophisticated coordination is necessary and that a simple
algorithm in which all agents use the same exploration pol-
icy to collect data is sufficient for efficient parallel explo-
ration. Specifically, we prove that when the number of par-
allel agents is no larger than the number of rounds we in-
teract with the environment, using a single policy to guide
exploration is sufficient to achieve a near-minimax optimal
rate. Even outside of this regime, we prove that our method
has an almost-linear speedup in learning compared to a sin-
gle agent setting.

We demonstrate the surprising effectiveness of our pro-
posed approach in solving both MDPs and two-player zero-
sum Markov games (MGs). The latter is widely regarded
as one of the simplest forms of multi-agent reinforcement
learning (MARL) (Zhang et al., 2021), which has resulted
in its increased popularity in recent years (Zhang et al.,
2020a; Chen et al., 2022; Kozuno et al., 2021; Zhu and
Zhao, 2022). Our results suggest that the success of our
parallelization method is not dependent on the simplicity
of the MDP, and can be extended to more complex MARL
problems.

The paper is organized as follows. In Section 2, we for-
mally introduce the setting. To provide insight into both the
construction and analysis of our proposed algorithms for
the reward-free setting, we consider the online RL setting
in Section 3. In Section 4, we describe the algorithms used
for reward-free exploration in both MDPs and two-player
zero-sum MGs, and analyze their theoretical properties.

Contributions We summarize our contributions and
their practical implications.

• We introduce the first parallel reward-free RL algo-
rithms for both linear MDPs and MGs, inspired by a
straightforward parallel online RL algorithm. Specifi-
cally, all algorithms—-both online and reward-free—
are simple in nature and use the same exploration pol-
icy for all agents. Compared to their sequential coun-
terparts, our algorithms demonstrate an almost-linear
speedup in performance.

• We provide an information-theoretic lower bound on

the ability of any parallel reward-free RL algorithm
to achieve ϵ-suboptimality. By comparing the lower
and upper bounds, we demonstrate that our algo-
rithm is nearly minimax optimal when the number of
agents is P = O(K) for K episodes. We empha-
size that this assumption accurately reflects real-world
use cases where the number of collected trajectories
is often much larger than the number of available
agents (Pham et al., 2018; Silver et al., 2016, 2017;
Vinyals et al., 2019). With regard to near-optimality,
our upper bound fully matches the speed-up term from
the lower bound (i.e., in K and P ) and is only greater
than the lower bound by a low-degree polynomial fac-
tor on the other problem parameters. Consequently,
even if different exploration policies are used for each
agent, their performance can at most match the rate
of our single-policy algorithm in terms of K and P ,
which are arguably two of the most important param-
eters in parallel exploration. For a more detailed dis-
cussion, see Section 4.3.

• In terms of practical implications, our work justifies
the simple approach of employing the same explo-
ration policy across all agents in parallel RL. This
eliminates the necessity for complex parallel systems
that result in additional computational and communi-
cation overhead required to explore with a diverse set
of policies.

1.1 Related Works

Our paper is related to the literature on reward-free, multi-
agent, distributed, and deployment-efficient RL, as well as
the literature on parallel and federated bandits.

Reward-free RL Reward-free RL addresses the problem
initially proposed in Jin et al. (2020a) in which agents at-
tempt to explore the environment without knowledge of
their individual reward functions. The setting focuses only
on the exploration capabilities of different algorithms and
serves as a level playing field when comparing different
exploration strategies. Jin et al. (2020a) studied reward-
free exploration in tabular MDPs and Wang et al. (2020)
proposed a provably efficient reward-free exploration algo-
rithm for linear MDPs. Qiu et al. (2021) proposed a reward-
free exploration algorithm when using a kernel function
approximation that is efficient for both MDPs and two-
player zero-sum MGs. More recently, Wagenmaker et al.
(2022) provided a tighter reward-free exploration algorithm
that matches the sample complexity of PAC RL for linear
MDPs, while Agarwal et al. (2020) studied reward-free RL
with unknown feature representation in low-rank MDPs.

Multi-agent RL Our paper is related to cooperative
MARL (Boutilier, 1996). In the online cooperative set-
ting, Agarwal et al. (2021) proposed a communication ef-
ficient algorithm for tabular MDPs, and Dubey and Pent-
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land (2021) derived a provably efficient algorithm in the
linear MDP setting, allowing agents’ reward functions to
be heterogeneous. We note that the online RL setting is
not suitable for isolating the effectiveness of exploration
alone, as it requires exploration strategies to balance both
exploration and exploitation. Zhang and Zavlanos (2019);
Lin et al. (2019); Suttle et al. (2020) studied distributed
variants of the actor-critic algorithm (Konda and Tsitsiklis,
1999), but did not explicitly characterize the benefits that
arise from parallel exploration. Our work also contributes
to the literature on two-player zero-sum MGs, which is an-
other example of MARL (Perolat et al., 2015; Zhao et al.,
2022; Zhu and Zhao, 2022; Kozuno et al., 2021; Chen et al.,
2022).

Parallel and Federated Bandits (Karbasi et al., 2021;
Chan et al., 2021) studied parallelized learning in contex-
tual bandits, where the decision maker receives a batch of
bandit feedback with a predetermined size at the beginning
of each round. (Zhu et al., 2021; Huang et al., 2021; Shi
et al., 2021; Dubey and Pentland, 2020) focused on feder-
ated bandits and efficient parallel algorithms adapted to the
federated learning setting.

Concurrent RL The works (Bai et al., 2019) and (Zhang
et al., 2020b) also analyze the setting in which parallel
agents can perform exploration with a single policy. They
provide almost-linear speedup conditions, but their setting
differs from ours: they only focus on the tabular case for
online RL and do not study MGs. We note, however, that
they are more interested in the problem of reducing the up-
dating frequency of policies in RL.

Deployment Efficient RL Drawing inspiration from ban-
dit learning with low switching costs (Auer et al., 2002;
Cesa-Bianchi et al., 2013), a recent line of work has ex-
amined efficient algorithms for RL when the number of
times the exploration policy changes is restricted. Bai et al.
(2019) proposed a low switching cost Q learning algo-
rithm for tabular MDPs, and Gao et al. (2021) developed
a provably efficient low switching cost algorithm for lin-
ear MDPs. Huang et al. (2022) provided a mathematically
rigorous definition for deployment efficiency, which is in-
herently linked to the concept of low switching cost, and
presented two provably efficient algorithms for deployment
efficient reward-free RL. As we will discuss later, the algo-
rithms attain suboptimal sample complexity.

Transfer learning The work (Tuynman and Ortner, 2022)
examines the setting in which multiple agents explore a
copy of the same tabular MDP, except that the reward may
vary. They demonstrate that sharing trajectories among
agents results in better total regret performance than each
agent learning without sharing.

1.2 Notation

Let ∥ · ∥ be the Euclidean norm, and ∥v∥A =
√
vTAv

for a positive semidefinite matrix A. Let ⪯,⪰ be the ma-
trix Loewner order. For a positive integer k, let [k] =
{1, 2, . . . , k}. Let Im be the m × m identity matrix and
let I[ · ] be the indicator function. Let ∆(A) be the prob-
ability simplex defined on a given finite set A. We de-
fine the clipping operator as Π[0,a][b] := min{b, a}+ =
min{max{b, 0}, a} for any a > 0 and b ∈ R. Given the
big-O complexity notation O, we use Õ to hide polyloga-
rithmic terms in the quantities of interest.

2 PRELIMINARIES

Markov Decision Processes. An episodic Markov deci-
sion process (MDP) takes the formM = (S,A, H,P, r)
where S is the state space, A is the action space, H ∈ Z≥1

is the length or number of steps of each episode, P =
{Ph}Hh=1 are the transition probability measures where
Ph(·|x, a) is the transition kernel over the next states if
action a ∈ A is taken for state x ∈ S at step h ∈ [H],
and r = {rh}Hh=1 with rh : S × A → [0, 1] are the re-
ward functions. For simplicity of presentation, we assume
deterministic rewards, but remark that random rewards, as
long as they are bounded, do not affect our results. We as-
sume that A is a finite set of actions and the non-bandit
case H ≥ 2. A stochastic policy π = {πh}Hh=1 con-
sists of functions πh : S → ∆(A) that map the state
x ∈ S at step h of the MDP to a distribution over ac-
tions. The value function V π

h : S → R is V π
h (x; r) =

Eπ

[∑H
h′=h rh′(sh′ , ah′)|sh′ = x

]
and the action-value

function or Q-function Qπ
h : S × A → R is Qπ

h(x, a; r) =

Eπ

[∑H
h′=h rh′(sh′ , ah′)|sh′ = x, ah′ = a)

]
, where the

expectation Eπ is taken with respect to both the random-
ness in the transitions P and the randomness inherent in
the policy π. When the given reward function is under-
stood from the context, we will omit it from the notation of
the value and action-value functions.

For any function f : S → R, we define the transition
operator as (Phf)(x, a) = Ex′∼Ph(·|x,a)[f(x

′)] and the
Bellman operator as (Bhf)(x, a) = rh + (Phf)(x, a) for
each step h ∈ [H]. The Bellman equation associated with
a policy π is: Qπ

h(x, a) = (rh(x, a) + PhV
π
h+1)(x, a),

V π
h (x) = Ea∼πh(x)[Q

π
h(x, a)], V π

H+1(x) = 0, for any
(x, a) ∈ S×A. Let π∗ = argmaxπ V

π
1 (x), V ∗

h = V π∗

h (x),
and Q∗

h(x, a) = Qπ∗

h (x, a).

Zero-sum Markov Games. An episodic zero-sum Markov
game (MG) takes the form MG = (S,A,B, H,P, r)
where S is the state space, A is the action space for Player
1, B is the action space for Player 2, H is the number of
steps per episode, P = {Ph}h∈[H] are transition proba-
bility measures and Ph(· | x, a, b) denotes the transition
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kernel over the next step if Player 1 takes action a ∈ A
and Player 2 takes action b ∈ B for state x ∈ S at
step h ∈ [H], and reward functions r = {rh}h∈[H] with
rh : S × A × B → [0, 1]. We assume that both ac-
tion spaces A and B are finite sets. We denote Player
1’s policy by π = {πh}Hh=1 with π : S → ∆(A) and
Player 2’s by ν = {νh}Hh=1 with ν : S → ∆(B). We
define the value function V π,ν

h : S → R at the h-th
step as V π,ν

h (x; r) = Eπ,ν [
∑H

h′=h rh′(sh′ , ah′ , bh′) | sh =
x] and the Q function Qπ,ν

h : S × A × B → R as
Qπ,ν

h (x, a, b; r) := Eπ,ν [
∑H

h′=h rh′(sh′ , ah′ , bh′) | sh =
x, ah = a, bh = b]. The Nash equilibrium (NE) is de-
fined as any pair of policies (π†, ν†) that is a solution to
maxπ∈∆(A) minν∈∆(B) V

π,ν
1 (x; r) for a given initial state

x — the max and min can be interchanged (Shapley,
1953). For simplicity, we let V †

h (x; r) = V π†,ν†

h (x; r)

and Q†
h(x, a, b; r) = Qπ†,ν†

h (x, a, b; r) denote the value
function and Q-function under the NE (π†, ν†) at step
h ∈ [H]. Given a state x ∈ S , the best response
against Player 1 with policy π is defined as br2(π) :=
argminν V

π,ν
1 (x; r) and the one against Player 2 with pol-

icy ν is defined as br1(ν) := argmaxπ V
π,ν
1 (x; r). Note

that V br1(ν̃),ν̃
1 (x; r) ≥ V †

1 (x; r) ≥ V
π̃,br2(π̃)
1 (x; r) holds

for any policies π̃ and ν̃ and x ∈ S . We also introduce the
notation V ∗

1 (s; r) = maxπ,ν V
π,ν
1 (s; r) and the associated

optimal value function and optimal Q-function for the h-th
step as V ∗

h (x; r) and Q∗
h(x, a, b; r).

Linear MDP. Under a linear MDP setting, there exists
a known feature map ϕ : S × A → Rd such that for
every h ∈ [H], there exist d unknown (signed) mea-
sures µh =

(
µ
(1)
h , . . . µ

(d)
h

)
over S and an unknown vec-

tor θh ∈ Rd such that Ph(x
′|x, a) = ⟨ϕ(x, a), µh(x

′)⟩,
rh(x, a) = ⟨ϕ(x, a), θh⟩ for all (x, a, x′) ∈ S×A×S . We
assume the non-scalar case with d ≥ 2 and that the feature
map satisfies ∥ϕ(x, a)∥ ≤ 1 for all (x, a) ∈ S × A and
max{∥µh(S)∥, ∥θh∥} ≤

√
d at each step h ∈ [H], where

(with an abuse of notation) ∥µh(S)∥ =
∫
S ∥µh(x)∥dx.

Note that the transition kernel Ph(·|x, a) may have infinite
degrees of freedom since the measure µh is unknown.

Linear MG. The linear MG is defined in a similar way to
the linear MDP by simply adding an additional argument to
the feature map ϕ to include the effect of the actions taken
by the second player.

Parallelism in the Online Case and Performance Met-
ric. Consider the case where we have P agents living in
an identical episodic Markov decision process and explor-
ing it in a total of K episodes. We assume that all agents
start at some s0 ∈ S at the beginning of each episode.
Given an agent p ∈ [P ] at a step h ∈ [H] of an episode
k ∈ [K], let xk,p

h be the state, ak,ph be the action taken ac-
cording to some policy πk,p

h , and rk,ph := rh(x
k,p
h , ak,ph ) be

the reward obtained. Let πk,p := {πk,p
h }Hh=1. For a set of

policies {πk,p}k∈[K],p∈[P ] provided by an online RL algo-
rithm, performance is measured by parallel regret

Regret(K,P ) =

P∑
p=1

K∑
k=1

(V π∗

1 (s0)− V πk,p

1 (s0)). (2.1)

Parallelism in the Reward-free Case for MDP and its
Performance Metric. In the exploration phase of the
reward-free RL problem, we consider the case where we
have P agents, each of whom live in an identical episodic
Markov decision process, collecting trajectories in a total of
K episodes. We assume that all agents start at some s0 ∈ S
at the beginning of each episode. We use the same notation
as introduced for the online case, with the difference that
the reward function will be computed by the algorithm it-
self. In the planning phase, a central server receives all
the trajectories collected by the agents and, given a reward
function r = {rh}h∈[H] provided by the user, computes a
policy π = {πh}Hh=1. Given the policy computed by the
planning phase, the performance metric is the suboptimal-
ity metric

SubOpt(π; r) = V π∗

1 (s0; r)− V π
1 (s0; r). (2.2)

Parallelism in the Reward-free Case for MG and its
Performance Metric. We basically consider the same set-
ting as in the MDP case, but with an underlying zero-sum
Markov game instead. Given some policies π for Player
1 and ν for Player 2 computed by the planning phase, we
define our performance metric as

SubOpt(π, ν; r) = V
br1(ν),ν
1 (s0; r)− V

π,br2(π)
1 (s0; r).

(2.3)
Note that SubOpt(π, ν; r) = 0 iff (π, ν) is a Nash equilib-
rium.

In this paper, we consider linear MDPs and linear MGs.

3 WARM UP: THE PARALLEL ONLINE
RL CASE

We propose Parallel Optimistic Least-Squares Value Itera-
tion (POLSVI), as described in Algorithm 1. Our algorithm
is based on the LSVI-UCB algorithm (Jin et al., 2020b) and
is parallelized as follows. At each episode, a central server
aggregates the state-action trajectories collected by the par-
allel agents up to the previous episode in a covariance ma-
trix Λk

h (line 7 of Algorithm 1), after which it computes
an optimistic estimate of the Q-function (line 9) using the
optimism bonus β(ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·))1/2. Each agent

then simultaneously explores the environment by follow-
ing a greedy policy using the common function computed
by the central server. The state-action trajectories taken by
all the P agents will then be collected by the central server
at the next episode and the whole process repeats. We have
the following result for the POLSVI algorithm.
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Algorithm 1 Parallel Optimistic LSVI (POLSVI)
1: Input: P , K, β, λ
2: for episode k ∈ [K] do
3: xk,p

1 ← s0 for p ∈ [P ]
4: # DONE BY CENTRAL SERVER:
5: Qk

H+1(·, ·)← 0
6: for h = H, . . . , 1 do
7: Λk

h ← λId +∑P
p=1

∑k−1
τ=1 ϕ(x

τ,p
h , aτ,ph )ϕ(xτ,p

h , aτ,ph )⊤

8: wk
h ← (Λk

h)
−1
∑P

p=1

∑k−1
τ=1 ϕ(x

τ,p
h , aτ,ph )[rτ,ph +

maxa∈A Qk
h+1(x

τ,p
h+1, a)]

9: Qk
h(·, ·) ← min{(wk

h)
⊤ϕ(·, ·) +

β(ϕ(·, ·)⊤(Λk
h)

−1ϕ(·, ·))1/2, H}
10: end for
11: # DONE BY EACH AGENT p ∈ [P ] IN PARAL-

LEL:
12: for h ∈ [H] do
13: ak,ph ∈ argmaxa∈A Qk

h(x
k,p
h , a) # GREEDY

POLICY
14: Observe xk,p

h+1

15: end for
16: end for

Theorem 3.1 (Performance of the POLSVI algorithm).
There exists an absolute constant cβ > 0 such that, for
any fixed δ ∈ (0, 1), if we set λ = 1 and β = cβdH

√
ι,

with ι := log(dKHP/δ), then, with probability at least
1− 2δ,

Regret(K,P ) ≤ O
(√

KP
√
d3H4ι2

)
︸ ︷︷ ︸

Base term

+O
(√

d4H4ιP log

(
1 +

KP

d

))
︸ ︷︷ ︸

Overhead term

. (3.1)

From Theorem 3.1 we observe that our performance metric
has two complexity terms: the base term and the overhead
term, which we discuss next.

Speedup in the Base Term. The base term is the per-
formance that would be obtained by the sequential coun-
terpart of POLSVI in KP episodes. The regret metric
that we would employ for the sequential counterpart be-
comes Regret(K) =

∑K
k=1 V

π∗

1 (xk
1) − V πk

1 (xk
1), where

K is the number of episodes and πk is the (greedy) policy
taken by the single agent at episode k ∈ [K]. (Jin et al.,
2020b) proved that with probability 1 − δ: Regret(K) ≤
O(
√
K
√
d3H4ι2), where ι = log(2dKH/δ) (under λ = 1

and β = cβdH
√
ι, cβ being some absolute constant).

Therefore, the base term in our learning regret (3.1) indi-
cates an almost linear speedup, because of the factor

√
KP

compared to the factor
√
K in the performance of the se-

quential algorithm. In other words, in terms of the base

term, there is a complexity equivalence between perform-
ing the sequential algorithm for KP episodes and perform-
ing the parallelized version with P agents for K episodes.

Overhead Term: the Price of Parallelization. Given that
the base term indicates a speedup in POLSVI with respect
to its sequential counterpart, the overhead term adds an ex-
tra complexity term due to the use of parallel agents in the
RL algorithm — this term would be nonexistent if the al-
gorithm was sequentially executed by a single agent. Fol-
lowing the proof of Theorem 3.1, the overhead term orig-
inates from the occurrence of the event “Λk+1

h ≻ 2Λk
h”

across different steps h ∈ [H] and episodes k ∈ [K] — we
call this event a doubling round, a term taken from Chan
et al. (2021), where a similar phenomenon occurs in ban-
dits. The overhead term is a bound on the total number
of doubling rounds in all steps from all episodes in which
the algorithm is executed. Given a fixed step h, a doubling
round occurs when the information in the covariance ma-
trix between two consecutive episodes is too different, that
is, when aggregating the information collected by the par-
allel agents adds a considerable amount of information or
novelty to what has been obtained so far in the previous
episode. In Appendix A, we further explain how the inef-
ficiency of parallel exploration and the stochasticity of the
environment result in doubling rounds.

POLSVI employs a single policy during exploration On
line 13 of Algorithm 1, we observe that all agents are using
the same function Qk

h in order to compute their greedy poli-
cies, instead of each agent constructing its own Q-function
to define its respective greedy policy. If agents have dif-
ferent Q-functions, then each one may take very distinct
(greedy) actions given the same state, i.e., there would be
heterogeneous policies.

4 PARALLELIZING REWARD-FREE
EXPLORATION: A SURPRISINGLY
SIMPLE BASELINE

We have shown that a simplistic incorporation of paral-
lelism in the online RL setting results in nearly optimal
regret up to logarithmic factors, without having the agents
execute a diverse set of policies. We use this intuition to
develop algorithms and results for the reward-free setting.

4.1 Markov Decision Process

Algorithm 2 and Algorithm 3 detail the exploration
and planning phases of the Reward-Free Parallel Op-
timistic Least-Squares Value Iteration (RF-POLSVI) al-
gorithm. The exploration phase is very similar to
POLSVI, with the difference that the optimistic bonus term
β(ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·))1/2 is used both in the construc-

tion of the reward function (see the term rkh(·, ·) in line 9)
and in its usual role as an optimism bonus (see line 11).
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In the planning phase, the central server computes the fi-
nal greedy policy based on the information collected by
the parallel agents in the exploration phase, using a user-
specified reward. The performance of the RF-POLSVI al-
gorithm is summarized in the following result.

Theorem 4.1 (Performance of the RF-POLSVI algorithm).
There exists an absolute constant cβ > 0 such that, for any
fixed δ ∈ (0, 1), if we set λ = 1 and β = cβdH

√
ι, with

ι := log(dKHP/δ), then, with probability at least 1− 3δ,

SubOpt(π; r) ≤ O

(√
d3H6ι2

KP

)
︸ ︷︷ ︸

Base term

+O

(√
d4H6ι

K
log

(
1 +

KP

d

))
︸ ︷︷ ︸

Overhead term

. (4.1)

We have the same observations on the overhead and base
terms in the suboptimality performance metric (4.1). Like-
wise, we observe that RF-POLSVI employs a single policy
for exploration: line 15 of Algorithm 2 shows each agent
following the same greedy policy based on the function Qk

h.
(Wang et al., 2020) studied the sequential counterpart of
RF-POLSVI and we observe that the base term indicates an
almost linear speed-up with respect to its sequential coun-
terpart. The overhead term is again an additional penalty
term due to doubling rounds.

4.2 Zero-Sum Markov Games

We study reward-free RL with an underlying zero-sum
Markov game to demonstrate the power of parallel explo-
ration in the MARL context. We propose the Reward-Free
Markov Game Parallel Optimistic Least-Squares Value
Iteration (RFMG-POLSVI) algorithm. The exploration
phase, described in Algorithm 5 in Appendix B, is basi-
cally the same as RF-POLSVI with the difference that the
action space is extended to a product of action spaces cor-
responding to each of the two players in the MG — and
so there is exploration using a single policy. In the plan-
ning phase, in Algorithm 4, the central server computes
the policies for each player through the computation of two
Nash Equilibria for two-player zero-sum (static) games at
each step of the MG — lines 11 and 12 of Algorithm 4 are
minimax problems. The following result summarizes the
performance of the RFMG-POLSVI algorithm.

Theorem 4.2 (Performance of the RFMG-POLSVI algo-
rithm). There exists an absolute constant cβ > 0 such that,
for any fixed δ ∈ (0, 1), if we set λ = 1 and β = cβdH

√
ι,

with ι := log(dKHP/δ), then, with probability at least

Algorithm 2 Reward-Free POLSVI (RF-POLSVI) — Ex-
ploration phase

1: Input: P , T , β, λ
2: for episode k ∈ [K] do
3: xk,p

1 ← s0 for p ∈ [P ]
4: # DONE BY CENTRAL SERVER:
5: Qk

H+1(·, ·)← 0
6: for h = H, . . . , 1 do
7: Λk

h ← λId +∑P
p=1

∑k−1
τ=1 ϕ(x

τ,p
h , aτ,ph )ϕ(xτ,p

h , aτ,ph )⊤

8: uk
h(·, ·)← min{β(ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·))1/2, H}

9: rkh(·, ·)← uk
h(·, ·)/H

10: wk
h ← (Λk

h)
−1
∑P

p=1

∑k−1
τ=1 ϕ(x

τ,p
h , aτ,ph )

×maxa∈A Qk
h+1(x

τ,p
h+1, a)

11: Qk
h(·, ·) ← min{(wk

h)
⊤ϕ(·, ·) + rkh(·, ·) +

uk
h(·, ·), H}

12: end for
13: # DONE BY EACH AGENT p ∈ [P ] IN PARAL-

LEL:
14: for h ∈ [H] do
15: ak,ph ∈ argmaxa∈A Qk

h(x
k,p
h , a) # GREEDY

POLICY
16: Observe xk,p

h+1

17: end for
18: end for
19: Return {(xk,p

h , ak,ph )}(h,k,p)∈[H]×[K]×[P ] # COL-
LECTED TRAJECTORIES

1− 3δ,

SubOpt(π, ν; r) ≤ O

(√
d3H6ι2

KP

)
︸ ︷︷ ︸

Base term

+O

(√
d4H6ι

K
log

(
1 +

KP

d

))
︸ ︷︷ ︸

Overhead term

. (4.2)

We are not aware of a sequential counterpart to RFMG-
POLSVI in the literature. However, recently, Qiu et al.
(2021) provided (sequential) algorithms for reward-free RL
for MGs with theoretical guarantees under kernel func-
tion and neural network approximation — indeed, RFMG-
POLSVI is based on a parallel adaptation of the general
structure of the algorithms by Qiu et al. (2021). Since the
suboptimality in (4.2) has the same form as in (4.1), we can
conclude that we also have an almost linear speed-up com-
pared to the sequential counterpart of our algorithm. The
overhead term is also polylogarithmic in P .
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Algorithm 3 Reward-Free POLSVI (RF-POLSVI) —
Planning phase

1: Input: P , β, λ, {(xk,p
h , ak,ph )}(h,k,p)∈[H]×[K]×[P ], r =

{rh}h∈[h]

2: Q̂H+1(·, ·)← 0
3: for h = H, . . . , 1 do
4: Λh ← λId +∑P

p=1

∑K
τ=1 ϕ(x

τ,p
h , aτ,ph )ϕ(xτ,p

h , aτ,ph )⊤

5: uh(·, ·)← min{β(ϕ(·, ·)⊤(Λh)
−1ϕ(·, ·))1/2, H}

6: ŵh ← (Λh)
−1
∑P

p=1

∑K
τ=1 ϕ(x

τ,p
h , aτ,ph )

×maxa∈A Q̂h+1(x
τ,p
h+1, a)

7: Q̂h(·, ·) ← min{(ŵh)
⊤ϕ(·, ·) + rh(·, ·) +

uh(·, ·), H}
8: πh(·) ∈ argmaxa∈A Q̂h(·, a)
9: end for

10: Return π = {πh}h∈[H]

4.3 Lower Bound in Reward-Free Exploration

We now present and discuss the lower bound for paral-
lel reward-free exploration in linear MDPs. Our proof
technique mimics that of (Wagenmaker et al., 2022) as
the lower bound constructed there is the tightest one for
reward-free exploration in linear MDPs.

Theorem 4.3. Let ϵ > 0, P > 0, d > 1, and KP ≥ d2.
Consider running a parallel algorithm with P agents for
K episodes in a (d + 1)-dimensional linear MDP, where
each agent is allowed to have a unique exploration pol-
icy. Suppose that the parallel algorithm stops at a possibly
random stopping time τ and outputs a policy π̂ which is
a guess at an ϵ-optimal policy. Then, there is a univer-
sal constant c > 0 such that unless KP ≥ c(dH/ϵ)2,
there exists a linear MDP M for which PrM[{τ >
K or π̂ is not ϵ-optimal}] ≥ 0.1; i.e., with constant proba-
bility either π̂ is not ϵ-optimal or more than KP samples
are collected.

We remark that Theorem 4.3 derives a lower bound for PAC
RL (Strehl et al., 2009), a setting that focuses on learning
a policy with suboptimality at most ϵ for a given reward
function. As reward-free RL is capable of returning poli-
cies with suboptimality at most ϵ for arbitrary reward func-
tions, any reward-free RL algorithm may be used for PAC
RL and, naturally, any lower bound for PAC RL holds for
reward-free RL.

Near-Minimax Optimality. We highlight the fact that
Theorem 4.3 and Theorem 4.1, in combination, show
that RF-POLSVI is near-minimax optimal up to logarith-
mic factors when P = O(K). More specifically, when
P = O(K), the suboptimality of Algorithm 2 decreases
at a rate of Õ(d2H3/

√
KP ), which translates to K =

Ω̃(d4H6/(Pϵ2)) rounds of interaction with the environ-

Algorithm 4 Reward-Free Markov Game POLSVI
(RFMG-POLSVI) — Planning phase

1: Input: P , β, λ,
{(xk,p

h , ak,ph , bk,ph )}(h,k,p)∈[H]×[K]×[P ], r = {rh}h∈[h]

2: QH+1(·, ·, ·)← 0
3: Q

H+1
(·, ·, ·)← 0

4: for h = H, . . . , 1 do
5: Λh ← λId +∑P

p=1

∑K
τ=1 ϕ(x

τ,p
h , aτ,ph , bτ,ph )ϕ(xτ,p

h , aτ,ph , bτ,ph )⊤

6: uh(·, ·, ·) ← min{β(ϕ(·, ·, ·)⊤(Λh)
−1ϕ(·, ·, ·))1/2,

H}
7: wh ← (Λh)

−1
∑P

p=1

∑K
τ=1 ϕ(x

τ,p
h , aτ,ph , bτ,ph )

×Ea∼πh+1(x
τ,p
h+1),b∼D(xτ,p

h+1)
[Qh+1(x

τ,p
h+1, a, b)]

8: wh ← (Λh)
−1
∑P

p=1

∑K
τ=1 ϕ(x

τ,p
h , aτ,ph , bτ,ph )

×Ea∼D(xτ,p
h+1),b∼νh+1(x

τ,p
h+1)

[Q
h+1

(xτ,p
h+1, a, b)]

9: Qh(·, ·, ·) ← Π[0,H][(wh)
⊤ϕ(·, ·, ·) + rh(·, ·, ·) +

uh(·, ·, ·)]
10: Q

h
(·, ·, ·) ← Π[0,H][(wh)

⊤ϕ(·, ·, ·) + rh(·, ·, ·) −
uh(·, ·, ·)]

11: (πh(x), D(x)) ∈ Nash Equilibrium (Qh(x, ·, ·)) for
any x ∈ S

12: (D(x), νh(x)) ∈ Nash Equilibrium (Q
h
(x, ·, ·)) for

any x ∈ S
13: end for
14: Return π = {πh}h∈[H], ν = {νh}h∈[H]

ment, matching the lower bound derived in Theorem 4.3
necessary to obtain a (dH2ϵ)-optimal policy — i.e., our al-
gorithm matches the minimax lower bound up to a factor
dH2 (ignoring logarithmic factors). We highlight that it
may be possible that minimax optimality may be attained
by heterogeneous policies; however, as our results demon-
strate, these heterogeneous policies can at most match the
rate of our single policy algorithm in terms of K and P ,
arguably two of the most important parameters in parallel
exploration. Moreover, the extra dH2 factor in our rate is
benign considering that we only have a single exploration
policy, and yet we avoid extra high-degree or even expo-
nential factors on the problem parameters.

As discussed in Section 1, we remark that the assump-
tion P = O(K) for near-optimality holds even in large-
scale real-world parallel RL applications, such as Alp-
haZero (Silver et al., 2017), which used 700,000 batches
of trajectories generated using only 5,000 parallel proces-
sors.

We end the section by noting that the proposed parallel
reward-free exploration algorithms are surprisingly hard
to beat. In particular, we show that simple adaptations
of state-of-the-art results in reward-free exploration cannot
outperform our proposed methods.

Comparison to Huang et al. (2022). Huang et al. (2022)
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proposed a deployment efficient reward-free exploration al-
gorithm that can be trivially adapted to the parallel setting.
However, without additional assumptions on the feature
representations — assuming that the so-called reachability
coefficient is sufficiently large (see Definition 4.3 in Huang
et al. (2022)) — only Algorithm 1 from (Huang et al., 2022)
can be applied, which requires K = O(1/(PϵcK )) rounds
of interactions. In other words, using the results in (Huang
et al., 2022) directly cannot achieve the optimality obtained
in our setting, even when P = O(K).

Comparison to Wagenmaker et al. (2022). Wagenmaker
et al. (2022) proposed a reward-free RL algorithm for lin-
ear MDPs that achieves a O(d2H5/ϵ2) sample complex-
ity, which improves the dependence on d (the dimension-
ality of the linear feature representation ϕ) with respect to
the sequential counterpart of RF-POLSVI: from d3 to d2.
However, we notice that RF-POLSVI has a sample com-
plexity dependence on d4 coming from the overhead term,
and not from the base term. Therefore, we argue that im-
plementing a parallelized version of the algorithm by Wa-
genmaker et al. (2022) using our single policy exploration
method would still incur the same dependence on d4 and
no reduction in d would be gained. Moreover, we remark
that even in the sequential case, the improvement by Wa-
genmaker et al. (2022) is in d only and requires a signif-
icantly more complex algorithm and representation. In-
stead, RF-POLSVI achieves an almost linear speedup in
P under mild assumptions with an algorithm that has a less
complex structure.

5 CONCLUSION

We formally proved that, for various RL problems, a sim-
ple way of aggregating information collected in parallel by
agents in the exploration phase results in both an almost
linear speedup term benefiting from the amount of paral-
lelization P , and an additional complexity term polyloga-
rithmic on such P . For the reward-free setting, our method
is nearly minimax optimal. Moreover, we showed the ben-
efits of parallel exploration in a MARL context.

Our work gives rise to a host of open questions that re-
main to be answered. The success of more intricate coordi-
nated exploration has been demonstrated in empirical stud-
ies, while our simplistic approach is provably near-optimal.
What are the theoretical justifications in support of these
coordinated exploration strategies? Are there settings un-
der which coordinated approaches provably outperform our
simplistic approach, i.e., by better matching the minimax
lower bound? What could be the communication, compu-
tation, and sample complexity trade-offs between coordi-
nated exploration and exploration using only a single pol-
icy?
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A FURTHER EXPLANATION OF DOUBLING ROUNDS

There are two ways to further understand when a doubling round may occur.

• If exploration is not very efficient across episodes, then we have that all the parallel agents are exploring similar
directions or regions of the action-state space across episodes — this could happen, for example, due to optimism
biasing the agents in their exploration. Then, when the stochasticity of the environment surprises the agents by leading
them to explore more diverse regions, the aggregation of this information in the newly computed covariance matrix
will differentiate it more than usual with respect to the covariance matrix of the previous episode, thus triggering a
doubling round.

• If all agents were exploring the state-action space more efficiently across episodes by having more diversity in their
exploration, we would not expect such an abrupt change between information aggregation to happen since the novelty
across episodes would be at a more stable level and the stochasticity of the environment would have less effect in
driving diversity in the exploration across the agents.

In either case, it is the inefficiency of exploration across parallel agents that introduces doubling rounds.

B RFMG-POLSVI ALGORITHM: EXPLORATION PHASE

Algorithm 5 Reward-Free Markov Game POLSVI (RFMG-POLSVI) — Exploration phase
1: Input: P , K, β, λ,
2: for episode k ∈ [K] do
3: xk,p

1 ← s0 for p ∈ [P ]
4: # DONE BY CENTRAL SERVER:
5: Qk

H+1(·, ·, ·)← 0
6: for h = H, . . . , 1 do
7: Λk

h ← λId +
∑P

p=1

∑k−1
τ=1 ϕ(x

τ,p
h , aτ,ph , bτ,ph )ϕ(xτ,p

h , aτ,ph , bτ,ph )⊤

8: uk
h(·, ·, ·)← min{β(ϕ(·, ·, ·)⊤(Λk

h)
−1ϕ(·, ·, ·))1/2, H}

9: rkh(·, ·, ·)← uk
h(·, ·, ·)/H

10: wk
h ← (Λk

h)
−1
∑P

p=1

∑k−1
τ=1 ϕ(x

τ,p
h , aτ,ph , bτ,ph )max(a,b)∈A×B Qk

h+1(x
τ,p
h+1, a, b)

11: Qk
h(·, ·, ·)← Π[0,H][(w

k
h)

⊤ϕ(·, ·, ·) + rkh(·, ·, ·) + uk
h(·, ·, ·)]

12: end for
13: # DONE BY EACH AGENT p ∈ [P ] IN PARALLEL:
14: for h ∈ [H] do
15: (ak,ph , bk,ph ) ∈ argmax(a,b)∈A×B Qk

h(x
k,p
h , a, b) # GREEDY POLICY

16: Observe xk,p
h+1

17: end for
18: end for
19: Return {(xk,p

h , ak,ph , bk,ph )}(h,k,p)∈[H]×[K]×[P ] # COLLECTED TRAJECTORIES BY THE AGENTS

C USEFUL TECHNICAL RESULTS

For the rest of the appendix, let Z≥0 (Z≥1) be the set of non-negative (positive) integers.
Proposition C.1 (Linear Q-function with bounded parameters; Proposition 2.3 and Lemma B.1 in (Jin et al., 2020b)). Con-
sider a linear MDPM. For any policy π, there exist paremeters wπ

h ∈ Rd, h ∈ [H], such that Qπ
h(x, a) = ⟨ϕ(x, a), wπ

h⟩
for any (x, a) ∈ S ×A and ∥wπ

h∥ ≤ 2H
√
d.

Proposition C.1 holds virtually the same for linear Markov games.
Lemma C.1 (Bound on quadratic form). Consider ΛA,B = λId +

∑A
a=1

∑B
b=1 ϕa,bϕ

⊤
a,b where ϕa,b ∈ Rd and λ > 0.

Then,
A∑

a=1

B∑
b=1

ϕ⊤
a,b(ΛA,B)

−1ϕa,b ≤ d.
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Proof. Observe that

A∑
a=1

B∑
b=1

ϕ⊤
a,b(ΛA,B)

−1ϕa,b =

A∑
a=1

B∑
b=1

tr(ϕ⊤
a,b(ΛA,B)

−1ϕa,b) = tr((ΛA,B)
−1

A∑
a=1

B∑
b=1

ϕa,bϕ
⊤
a,b).

Given the eigenvalue decomposition
∑A

a=1

∑B
b=1 ϕa,bϕ

⊤
a,b = U diag(λ1, . . . , λd)U

⊤ with λi ≥ 0, i ∈ [d], we obtain

ΛA,B = U diag(λ1 + λ, . . . , λd + λ)U⊤, and so tr((ΛA,B)
−1
∑A

a=1

∑B
b=1 ϕa,bϕ

⊤
a,b) =

∑d
i=1 λi/(λi + λ) ≤ d.

We now introduce an auxiliary definition.

Definition C.1 (Sequences LP , L̄P and their truncation). We now define the infinite sequence LP , with integer P ≥ 1, as

(1, 1), (1, 2), . . . , (1, P ), (2, 1), (2, 2), . . . , (2, P ), (3, 1), . . .

where the first term of the elements is an increasing sequence that takes values in Z≥1 but the second term only takes values
in [P ] periodically. We can index sequences using LP , as for example in {φ(a,b)}(a,b)∈LP

where φ(a,b) ∈ Rn, n ≥ 1.
We denote by LP (ā, b̄) the finite sequence resulting from the truncation of the sequence LP at its element (ā, b̄) ∈ LP .
Similarly, we define the infinite sequence L̄P , with integer P ≥ 1, by appending the sequence (0, 1), (0, 2), . . . , (0, P ) at
the beginning of LP . Thus LP ⊊ L̄P . For any appropriate element (ā, b̄) of LP or L̄P , we have that (ā, b̄)−k, k ≥ 1,
represents the kth previous element to (ā, b̄).

Using the recently introduced definition, we present another technical lemma.

Lemma C.2 (Concentration bound for self-normalized processes). Let B ∈ Z≥1. Let {F(a,b)}(a,b)∈L̄B
be a filtration.

Let {x(a,b)}(a,b)∈LB
be a stochastic process on S such that x(a,b) ∈ F(a,b), and let {ϕ(a,b)}(a,b)∈LB

be an Rd-valued
stochastic process such that ϕ(a,b) ∈ F(a,b)−1 and

∥∥ϕ(a,b)

∥∥ ≤ 1. Let G be a function class of real-valued functions
such that supx∈S |g(x)| ≤ H for any g ∈ G, and with ϵ-covering number Nϵ with respect to the distance dist(g, g′) =

supx∈S |g(x)− g′(x)|. Let ΛA,B = λId +
∑A

a=1

∑B
b=1 ϕ(a,b)ϕ

⊤
(a,b). Then for any A ∈ Z≥1 for every A,B ∈ Z≥1, every

g ∈ G, and any δ ∈ (0, 1], we have that with probability at least 1− δ,∥∥∥∥∥
A∑

a=1

B∑
b=1

ϕ(a,b){g(x(a,b))− E[g(x(a,b))|F(a,b)−1 ]}

∥∥∥∥∥
2

Λ−1
A,B

≤ 4H2

[
d

2
log

(
λ+AB/d

λ

)
+ log

Nϵ

δ

]
+

8A2B2ϵ2

λ
.

Proof. First, from our assumptions, for any g ∈ G, there exists a g̃ in the ϵ-covering such that g = g̃ + ∆g with
supx∈S |∆g(x)| ≤ ϵ. Then,∥∥∥∥∥

A∑
a=1

B∑
b=1

ϕ(a,b){g(xτ )− E[g(xτ )|F(a,b)−1 ]}

∥∥∥∥∥
2

Λ−1
A,B

≤ 2

∥∥∥∥∥
A∑

a=1

B∑
b=1

ϕ(a,b){g̃(x(a,b))− E[g̃(x(a,b))|F(a,b)−1 ]}

∥∥∥∥∥
2

Λ−1
A,B︸ ︷︷ ︸

(I)

+ 2

∥∥∥∥∥
A∑

a=1

B∑
b=1

ϕ(a,b){∆g(x(a,b))− E[∆g(x(a,b))|F(a,b)−1 ]}

∥∥∥∥∥
2

Λ−1
A,B︸ ︷︷ ︸

(II)

,

(C.1)

where we used ∥a+ b∥ ≤ ∥a∥ + ∥b∥ =⇒ ∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2 + 2 ∥a∥ ∥b∥ ≤ 2 ∥a∥2 + 2 ∥b∥2 for any a, b ∈ Rd,
and which actually holds for any weighted Euclidean norm.

We start by analyzing the term (I) in equation (C.1). Let ε(a,b) := g̃(x(a,b)) − E[g̃(x(a,b))|F(a,b)−1 ]. Now, we observe
that 1) E[ε(a,b)|F(a,b)−1 ] = 0 and 2) ε(a,b) ∈ [−H,H] since g̃(x(a,b)) ∈ [0, H]. From these two facts we obtain that
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ε(a,b)|F(a,b)−1 is H-sub-Gaussian. Therefore we can apply the concentration bound of self-normalized processes from
Theorem 1 of (Abbasi-Yadkori et al., 2011) along with a union bound over the ϵ-covering of G to conclude that, with
probability at least 1− δ,

(I) =

∥∥∥∥∥
A∑

a=1

B∑
b=1

ϕ(a,b)ε(a,b)

∥∥∥∥∥
2

Λ−1
A,B

≤ log

(
det(ΛA,B)

1/2 det(λId)
−1/2

δ/Nϵ

)
(a)
≤ 2H2

(
d

2
log

(
λ+AB/d

λ

)
+ log

(
Nϵ

δ

))
, (C.2)

where (a) follows from det(λId) = λd and from the determinant-trace inequality from Lemma 10 in (Abbasi-Yadkori
et al., 2011) which let us obtain det(ΛA,B) ≤ (λ+AB/d)d.

Now we analyze the term (II) in equation (C.1). Let ε̄(a,b) := ∆g(x(a,b))− E[∆g(x(a,b))|F(a,b)−1 ]. Then,

∥∥∥∥∥
A∑

a=1

B∑
b=1

ϕ(a,b)ε̄(a,b)

∥∥∥∥∥ ≤
A∑

a=1

B∑
b=1

∥∥ϕ(a,b)ε̄(a,b)
∥∥ (a)
≤

A∑
a=1

B∑
b=1

|ε̄(a,b)|

≤
A∑

a=1

B∑
b=1

|∆g(x(a,b))|+ |E[∆g(x(a,b))|F(a,b)−1 ]| ≤
A∑

a=1

B∑
b=1

2ϵ = 2ABϵ,

where (a) follows from
∥∥ϕ(a,b)

∥∥ ≤ 1. Thus, using this result, we obtain

(II) ≤ 1

λ

∥∥∥∥∥
A∑

a=1

B∑
b=1

ϕ(a,b)ε̄(a,b)

∥∥∥∥∥
2

≤ 1

λ
4A2B2ϵ2.

We finish the proof by multiplying by two the terms (I) and (II), and then adding them up to use them as an upper bound
to (C.1) .

D PROVING THEOREM 3.1

For simplicity, we will use the following notation: at episode k, we denote πk,p = {πk,p
h }h∈[H] as the greedy policy

induced by {Qk
h}Hh=1 as performed by agent p ∈ [P ] (line 13 of Algorithm 1), and we let the value function V k,p

h (xk,p
h ) =

Qk
h(x

k,p
h , πk,p

h (xk,p
h )) = maxa∈A Qk

h(x
k,p
h , a), and with some abuse of notation V k,p

h (x) = Qk
h(x, π

k,p
h (x)). We also set

ϕk,p
h := ϕ(xk,p

h , ak,ph ).

We now bound the parameters {wk
h}h∈[H],k∈[K] from POLSVI (line 8 of algorithm 1) using Lemma C.1.

Lemma D.1 (Parameter bound for POLSVI). For any (k, h) ∈ [K] × [H], the parameter wk
h in the POLSVI algorithm

satisfies
∥∥wk

h

∥∥ ≤ (1 +H)
√

d(k−1)P
λ .
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Proof. For any vector v ∈ Rd,

|v⊤wk
h| = |v⊤(Λk

h)
−1

k−1∑
τ=1

P∑
p=1

ϕτ,p
h [rτ,ph +max

a∈A
Qk

h+1(x
τ,p
h+1, a)]|

(a)
≤ (1 +H)

k−1∑
τ=1

P∑
p=1

|v⊤(Λk
h)

−1ϕτ,p
h |

(b)

≤ (1 +H)

√√√√[ k−1∑
τ=1

P∑
p=1

v⊤(Λk
h)

−1v

][k−1∑
τ=1

P∑
p=1

(ϕτ,p
h )⊤(Λk

h)
−1ϕτ,p

h

]
(c)
≤ (1 +H)

√
d

√√√√k−1∑
τ=1

P∑
p=1

v⊤(Λk
h)

−1v

(d)
≤ (1 +H)

√
d(k − 1)P

λ
∥v∥ ,

where (a) follows from the bounded rewards and Qk
h+1(·, ·) ≤ H; (b) from applying Cauchy-Schwarz twice as in the

following series of inequalities: given q = (q1, . . . , qm) and q = (p1, . . . , pm) where qi and pi are vectors of arbitrary
dimension we have

∑m
i=1 |q⊤i pi| ≤

∑m
i=1 ∥qi∥ ∥pi∥ ≤

√∑m
i=1 ∥qi∥

√∑m
i=1 ∥pi∥ ; (c) follows from Lemma C.1; and (d)

from (Λk
h)

−1 ⪯ λ−1Id. The proof concludes by considering that
∥∥wk

h

∥∥ = maxv:∥v∥=1 |v⊤wk
h|.

Now we use Lemma C.2 to prove a useful concentration bound for POLSVI.

Lemma D.2 (Concentration bound on value functions for POLSVI). Consider the setting of Theorem 3.1. There exists an
absolute constant C independent of cβ such that for any fixed δ ∈ (0, 1), the following event E holds with probability at
least 1− δ,

∀(k, h) ∈ [K]× [H] :

∥∥∥∥∥
k−1∑
τ=1

P∑
p=1

ϕτ,p
h [V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph )]

∥∥∥∥∥
(Λk

h)
−1

≤ CdH
√
log[(cβ + 1)dKHP/δ].

Proof. Define the function class

V =

{
V : S → R

∣∣∣ V (·) = min

{
max
a∈A

w̄⊤ϕ(·, a) + β
√
ϕ(·, a)⊤Λ̄−1ϕ(·, a), H

}}
, (D.1)

where ∥w̄∥ ≤ L, the minimum eigenvalue of Λ̄ is greater or equal than λ, and ∥ϕ(x, a)∥ ≤ 1 for all (x, a) ∈ S × A. Let
Nϵ be the ϵ-covering number of V with respect to the distance dist(V, V ′) = supx∈S |V (x) − V ′(x)|. Then, we can use
Lemma D.6 of (Jin et al., 2020b) to obtain the bound

logNϵ ≤ d log(1 + 4L/ϵ) + d2 log
[
1 + 8d1/2β2/(λϵ2)

]
. (D.2)

Now, let us go back to the POLSVI algorithm. We obtain that, with probability at least 1− δ, δ ∈ (0, 1),∥∥∥∥∥
k−1∑
τ=1

P∑
p=1

ϕτ,p
h [V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph )]

∥∥∥∥∥
2

(Λk
h)

−1

(a)
≤ 4H2

[
d

2
log

(
λ+ (k − 1)P/d

λ

)
+ logNϵ + log

1

δ

]
+

8(k − 1)2P 2ϵ2

λ

(b)

≤ 4H2

[
d

2
log

(
λ+ (k − 1)P/d

λ

)
+ d log

(
1 +

4(1 +H)
√
d(k − 1)P

ϵ
√
λ

)

+d2 log

(
1 +

8d1/2β2

λϵ2

)
+ log

1

δ

]
+

8(k − 1)2P 2ϵ2

λ

(D.3)
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where (a) is a direct application of Lemma C.2; and (b) follows from the realization that from lines 9 and 13 in algorithm 1,

V k
h+1(·) ∈ V and so has covering number upper bounded as in (D.2) with L = (1+H)

√
d(k−1)P

λ by using the bound from
Lemma D.1.

Recalling that λ = 1 and β = cβdHι with ι = log(dKHP/δ) in the setting of Theorem 3.1, we claim that, after setting
ϵ = dH

KP in our previous equation, there exists an absolute constant C > 0 independent of cβ such that

∥∥∥∥∥
k−1∑
τ=1

P∑
p=1

ϕτ,p
h [V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph )]

∥∥∥∥∥
2

(Λk
h)

−1

≤ Cd2H2 log((cβ + 1)dKHP/δ). (D.4)

Proving this claim would conclude the proof.

We first introduce a couple of useful results:

ι2 = log

(
dKHP

δ

)
≥ log(dKHP ) ≥ log(2 · 2) = log(4) > 1, (D.5)

log

(
(cβ + 1)dKHP

δ

)
= log(cβ + 1) + ι ≥ ι > 1. (D.6)

Now we start by replacing λ = 1 in the right-hand side of (D.3),

4H2

[
d

2
log

(
1 +

(k − 1)P

d

)
+ d log

(
1 +

4(1 +H)
√
d(k − 1)P

ϵ

)

+d2 log

(
1

δ

(
1 +

8d1/2β2

ϵ2

))]
+ 8(k − 1)2P 2ϵ2

≤ 4H2d2

[
log

(
1 +

(k − 1)P

d

)
+ log

(
1 +

4(1 +H)
√
d(k − 1)P

ϵ

)

+ log

(
1

δ

(
1 +

8d1/2β2

ϵ2

))]
+ 8(k − 1)2P 2ϵ2.

Now we replace ϵ = dH
KP in the previous expression,

4d2H2

[
log

(
1 +

(k − 1)P

d

)
+ log

(
1 +

4(1 +H)(k − 1)1/2KP 3/2d1/2

dH

)
+ log

(
1

δ

(
1 +

8d1/2β2K2P 2

d2H2

))]
+ 8d2H2 (k − 1)2

K2

= 4d2H2

[
log

(
1 +

(k − 1)P

d

)
+ log

(
1 +

4(1 +H)(k − 1)1/2KP 3/2

d1/2H

)
+ log

(
1

δ

(
1 +

8β2K2P 2

d3/2H2

))]
+ 8d2H2 (k − 1)2

K2

≤ 4d2H2

[
log

(
1 +

KP

d

)
+ log

(
1 +

4
(
1 + 1

H

)
K3/2P 3/2

d1/2

)
+ log

(
1

δ

(
1 +

8β2K2P 2

d3/2H2

))]
+ 8d2H2.

≤ 4d2H2

[
log

(
1 +

KP

d

)
+ log

(
1 +

8K3/2P 3/2

d1/2

)
+ log

(
1

δ

(
1 +

8β2K2P 2

d3/2H2

))]
+ 8d2H2.
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Now we replace β = cβdH
√
ι in the previous expression,

4d2H2

[
log

(
1 +

KP

d

)
+ log

(
1 +

8K3/2P 3/2

d1/2

)
+ log

(
1

δ

(
1 +

8c2βd
2H2ιK2P 2

d3/2H2

))]
+ 8d2H2

= 4d2H2

[
log

(
1 +

KP

d

)
+ log

(
1 +

8K3/2P 3/2

d1/2

)
+ log

(
1

δ

(
1 + 8c2βd

1/2ιK2P 2
))]

+ 8d2H2

≤ 8d2H2 log

(
1 +

8K3/2P 3/2

d1/2

)
︸ ︷︷ ︸

(I)

+4d2H2 log

(
1

δ

(
1 + 8c2βd

1/2ιK2P 2
))

︸ ︷︷ ︸
(II)

+ 8d2H2 log

(
(cβ + 1)dKHP

δ

)

(D.7)

where the inequality has made use of (D.6). We now upper bound the terms highlighted in (D.7). Then,

(I) ≤ 8d2H2 log
(
1 + 8K3/2P 3/2

)
≤ 8d2H2 log

(
9K2P 2

)
≤ 8d2H2 log

(
9(1 + cβ)

2(dKPH)2
)

(a)
≤ 8d2H2 log

(
(1 + cβ)

2(dKPH)2

δ2

)
+ 8d2H2 log(9) log

(
(cβ + 1)dKHP

δ

)
= (16 + 8 log(9))d2H2 log

(
(cβ + 1)dKHP

δ

)
,

where (a) follows from (D.6). For the other term,

(II)
(a)
≤ 4d2H2 log

(
8(cβ + 1)2ι(dKHP )2

δ

)
(b)

≤ 4d2H2 log

(
(cβ + 1)2ι(dKHP )2

δ2

)
+ 4d2H2 log(8)

= 4d2H2 log

(
(cβ + 1)2(dKHP )2

δ2

)
+ 4d2H2 log(ι) + 4d2H2 log(8)

(c)
≤ 8d2H2 log

(
(cβ + 1)dKHP

δ

)
+ 4d2H2ι+ 4d2H2 log(8)

(d)
≤ (12 + 4 log(8))d2H2 log

(
(cβ + 1)dKHP

δ

)
where (a) follows from cβ > 0, (b) from δ2 < δ, (c) from log(ι) < ι (since ι > 1 from (D.5)), and (d) from ι ≤
log
(

(cβ+1)dKHP
δ

)
and from (D.6).

Now, joining the upper bounds for (I) and (II) in (D.7), we finally obtain

∥∥∥∥∥
k−1∑
τ=1

P∑
p=1

ϕτ,p
h [V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph )]

∥∥∥∥∥
2

(Λk
h)

−1

≤ (36 + 8 log(9) + 4 log(8))d2H2 log((cβ + 1)dKHP/δ)

which proves the claim and thus the proof.

The previous lemma will be used to upper bound the difference between the estimated Q-function by POLSVI before
adding the optimism bonus (see line 9 in algorithm 1) and the Q-function for any fixed policy. The optimism bonus will
play an important role in such an upper bound.
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Lemma D.3 (Bounded difference between the estimated Q-function before optimism and an arbitrary Q-function).
Consider the setting of Theorem 3.1. There exists an absolute constant cβ > 0 such that for β = cβdH

√
ι with

ι = log(dKHP/δ) and any fixed policy π̄, given the event E defined in Lemma D.2, we have for all (x, a, h, k) ∈
S ×A× [H]× [K] that

⟨ϕ(x, a), wk
h⟩ −Qπ̄

h(x, a) = Ph(V
k
h+1 − V π̄

h+1)(x, a) + ∆k
h(x, a),

for some ∆k
h(x, a) such that |∆k

h(x, a)| ≤ β
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a).

Proof. For any k ∈ [K],

wk
h − wπ̄

h = (Λk
h)

−1
k−1∑
τ=1

P∑
p=1

ϕτ,p
h (rτ,ph + V k

h+1(x
τ,p
h+1))− wπ̄

h

(a)
= (Λk

h)
−1

k−1∑
τ=1

P∑
p=1

ϕτ,p
h (ϕτ,p

h
⊤
wπ̄

h − PhV
π̄
h+1(x

τ,p
h , aτ,ph ) + V k

h+1(x
τ,p
h+1))− wπ̄

h

= (Λk
h)

−1

((
k−1∑
τ=1

P∑
p=1

ϕτ,p
h (ϕτ,p

h )⊤ − Λk
h

)
wπ̄

h

+

k−1∑
τ=1

P∑
p=1

ϕτ,p
h

(
V k
h+1(x

τ,p
h+1)− PhV

π̄
h+1(x

τ,p
h , aτ,ph )

))

(b)
= (Λk

h)
−1

(
−λwπ̄

h +

k−1∑
τ=1

P∑
p=1

ϕτ,p
h (V k

h+1(x
τ,p
h+1)− PhV

π̄
h+1(x

τ,p
h , aτ,ph ))

)

= −λ(Λk
h)

−1wπ̄
h︸ ︷︷ ︸

(I)

+(Λk
h)

−1
k−1∑
τ=1

P∑
p=1

ϕτ,p
h (V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph ))︸ ︷︷ ︸

(II)

+ (Λk
h)

−1
k−1∑
τ=1

P∑
p=1

ϕτ,p
h Ph(V

k
h+1 − V π̄

h+1)(x
τ,p
h , aτ,ph )︸ ︷︷ ︸

(III)

.

where (a) follows from the fact that for any (x, a, h) ∈ S × A× [H], Qπ̄
h(x, a) := ⟨ϕ(x, a), wπ̄

h⟩ = (rh + PhV
π̄
h+1)(x, a)

for some wπ̄
h ∈ Rd (this follows from Proposition C.1 and the Bellman equation); and (b) follows from the definition of

Λk
h in the POLSVI algorithm. Since ⟨ϕ(x, a), wk

h⟩−Qπ̄
h(x, a) = ⟨ϕ(x, a), wk

h−wπ̄
h⟩ for any (x, a) ∈ S ×A, then we look

to bound the inner product of each of the terms (I) – (III) with the term ϕ(x, a).

We first analyze the term (I),

|⟨ϕ(x, a), (I)⟩| = |⟨ϕ(x, a), λ(Λk
h)

−1wπ̄
h⟩| = |λ⟨(Λk

h)
−1/2ϕ(x, a), (Λk

h)
−1/2wπ̄

h⟩|

≤ λ
∥∥wπ̄

h

∥∥
(Λk

h)
−1

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a) ≤

√
λ
∥∥wπ̄

h

∥∥√ϕ(x, a)⊤(Λk
h)

−1ϕ(x, a)

where the last inequality follows from ∥ · ∥(Λk
h)

−1 ≤ 1√
λ
∥ · ∥.

For the term (II), since the event E from Lemma D.2 is given and λ = 1, we directly obtain

|⟨ϕ(x, a), (II)⟩| =

∣∣∣∣∣
〈
ϕ(x, a), (Λk

h)
−1

k−1∑
τ=1

P∑
p=1

ϕτ,p
h (V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph ))

〉∣∣∣∣∣
≤

∥∥∥∥∥
k−1∑
τ=1

P∑
p=1

ϕτ,p
h (V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph ))

∥∥∥∥∥
(Λk

h)
−1

∥ϕ(x, a)∥(Λk
h)

−1

≤ CdH
√
log((cβ + 1)dKHP/δ)

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)
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where C is an absolute constant independent of cβ > 0.

For the term (III),

⟨ϕ(x, a), (III)⟩ =

〈
ϕ(x, a), (Λk

h)
−1

k−1∑
τ=1

P∑
p=1

ϕτ,p
h Ph(V

k
h+1 − V π̄

h+1)(x
τ,p
h , aτ,ph )

〉

=

〈
ϕ(x, a), (Λk

h)
−1

k−1∑
τ=1

P∑
p=1

ϕτ,p
h (ϕτ,p

h )⊤
∫
S
(V k

h+1 − V π̄
h+1)(x

′)dµh(x
′)

〉
(a)
=

〈
ϕ(x, a),

∫
S
(V k

h+1 − V π̄
h+1)(x

′)dµh(x
′)

〉
︸ ︷︷ ︸

(III.1)

−λ
〈
ϕ(x, a), (Λk

h)
−1

∫
S
(V k

h+1 − V π̄
h+1)(x

′)dµh(x
′)

〉
︸ ︷︷ ︸

(III.2)

where (a) follows from the definition of Λk
h in the POLSVI algorithm. We immediately see from our assumption on linear

MDP that (III.1) = Ph(V
k
h+1 − V π

h+1)(x, a) and

|(III.2)| ≤ λ

∥∥∥∥∫
S
(V k

h+1 − V π̄
h+1)(x

′)dµh(x
′)

∥∥∥∥
(Λk

h)
−1

√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

≤
√
λ

∥∥∥∥∫
S
(V k

h+1 − V π̄
h+1)(x

′)dµh(x
′)

∥∥∥∥√ϕ(x, a)⊤(Λk
h)

−1ϕ(x, a)

(a)
≤
√
λ2H

∫
S
∥µh(x

′)∥ dx′
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

(b)

≤ 2H
√
dλ
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

where (a) follows from the value functions being bounded, and (b) from the definiton of the linear MDP.

Finally, putting it all together with λ = 1, we conclude that,

|⟨ϕ(x, a), wk
h⟩ −Qπ̄

h(x, a)− Ph(V
k
h+1 − V π̄

h+1)(x, a)|

≤
(∥∥wπ̄

h

∥∥+ CdH
√
log((cβ + 1)dKHP/δ) + 2H

√
d

)√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

≤
(
4H
√
d+ CdH

√
log((cβ + 1)dKHP/δ)

)√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a)

where the last inequality follows from Proposition C.1.

Now, from equation (D.6) in Lemma D.2, we have
√
log((cβ + 1)dKHP/δ) > 1 independently from cβ > 0, and thus

|⟨ϕ(x, a), wk
h⟩ −Qπ̄

h(x, a)− Ph(V
k
h+1 − V π̄

h+1)(x, a)| ≤ C̄dH
√

log((cβ + 1)dKHP/δ)
√
ϕ(x, a)⊤(Λk

h)
−1ϕ(x, a),

for an absolute constant C̄ = C + 4 independent of cβ .

Finally, to prove this lemma, we only need to show that there exists a choice of the absolute constant cβ > 0 so that
C̄
√
log((cβ + 1)dKHP/δ) ≤ cβ

√
ι, which is equivalent to

C̄
√

ι+ log(cβ + 1) ≤ cβ
√
ι (D.8)

since
√
log
(

(1+cβ)dKHP
δ

)
=
√
log
(
dKHP

δ

)
+ log(1 + cβ) =

√
ι+ log(1 + cβ).

Two facts are known: 1) ι ∈ [log(2),∞) by its definition and d ≥ 2; and 2) C̄ is an absolute constant independent of cβ .

Since we know we are looking for cβ > 0 and using the bound log(x) ≤ x − 1 for any positive x ∈ R, we conclude that
proving the following equation implies (D.8),

C̄
√

ι+ cβ ≤ cβ
√
ι. (D.9)
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Since both sides are nonnegative, we square them and obtain that it becomes equivalent to showing that cβ satisfies 0 ≤
ιc2β − C̄2cβ − C̄2ι, and solving this quadratic expression let us conclude that this is satisfied if cβ ≥ g(ι) with g(ι) =

C̄2

2ι + 1
2

√
C̄4

ι2 + 4C̄2. We now observe that ι 7→ g(ι) is a non-increasing function for ι ∈ [log(2),∞); therefore, if we
want (D.9) (and so (D.8) to hold for any ι ∈ [log(2),∞), it suffices to choose

cβ ≥
C̄2

2 log(2)
+

1

2

√
C̄4

(log(2))2
+ 4C̄2. (D.10)

This finishes the proof.

We now continue with our proof of Theorem 3.1. Let us first condition on the event E defined in Lemma D.2.

We introduce the following notation: δk,ph := V k
h (xk,p

h ) − V πk,p

h (xk,p
h ), and ζk,ph+1 := Phδ

k,p
h+1(x

k,p
h , ak,ph ) − δk,ph+1. Then,

for any (p, h, k) ∈ [P ]× [H]× [K], we use Lemma D.3 (with x = xk,p
h and a = ak,ph following the lemma’s notation) to

obtain,
Qk

h(x
k,p
h , ak,ph )−Qπk,p

h (xk,p
h , ak,ph )

≤ Ph(V
k
h+1 − V πk,p

h+1 )(xk,p
h , ak,ph ) + β

√
(ϕk,p

h )⊤(Λk
h)

−1ϕk,p
h

=⇒ V k
h (xk,p

h )− V πk,p

h (xk,p
h )

≤ (Ph(V
k
h+1 − V πk,p

h+1 )(xk,p
h , ak,ph ))− δk,ph+1) + δk,ph+1 + β

√
(ϕk,p

h )⊤(Λk
h)

−1ϕk,p
h

=⇒ δk,ph ≤ ζk,ph+1 + δk,ph+1 + β

√
(ϕk,p

h )⊤(Λk
h)

−1ϕk,p
h .

(D.11)

We define ζk,p1 = 0 for every (k, p) ∈ [K]× [P ].

Now, let us focus on the regret performance metric. Now,

Regret(K,P ) =

K∑
k=1

P∑
p=1

(V ⋆
1 (s0)− V πk,p

1 (s0))
(a)
≤

K∑
k=1

P∑
p=1

(V k
1 (s0)− V πk,p

1 (s0))

(b)
=

K∑
k=1

P∑
p=1

δk,p1

(c)

≤
K∑

k=1

P∑
p=1

H∑
h=1

ζk,ph︸ ︷︷ ︸
(I)

+β

K∑
k=1

P∑
p=1

H∑
h=1

√
(ϕk,p

h )⊤(Λk
h)

−1ϕk,p
h︸ ︷︷ ︸

(II)

, (D.12)

where (a) follows from the optimism upper bound found in Lemma B.5 from (Jin et al., 2020b) but using the event E from
Lemma D.2; (b) follows since xk,p

1 = so for every (k, p) ∈ [K]× [P ]; and (c) follows from the recursive formula in (D.11)
and the fact that δk,pH+1 = ζk,pH+1 = 0 and ζk,p1 = 0.

We first analyze the term (I) from (D.12). Let us define the filtration {F(k,h,p)}(k,h,p)∈L⋆ where L⋆ is a sequence such that
L⋆ ⊂ Z≥1 × [H] × [P ] and its elements are arranged as follows. Firstly, we let the third coordinate take values from 1
to P and repeat this periodically ad infinitum, so that each period has P elements of L⋆. Secondly, the second coordinate
takes the value 1 for all elements in the first period of the third coordinate, then it takes the value 2 for all elements of
the second period of the third coordinate, and so on until taking the value of H for all elements in the H-th period of the
third coordinate — this will constitute a period in the second coordinate — after which the second coordinate takes the
value 1 again and continue describing periods (of HP elements each) ad infinitum. Finally, we let the third coordinate take
the value corresponding to the number of periods so far in the second coordinate (thus the values of the first coordinate is
unbounded). Consider any element (k, h, p) ∈ L⋆. We denote by (k, h, p)−1 its previous element in L⋆. We let F(k,h,p)

contain the information of all states xk̄,p̄

h̄
and actions ak̄,p̄

h̄
whose indexes (k̄, h̄, p̄) belong to the set L⋆ up to the element

(k, h, p) ∈ L⋆.

We then can conclude that {ζk,ph }(k,h,p)∈L⋆ is a martingale difference sequence due to the following two properties:



One Policy is Enough: Parallel Exploration with a Single Policy is Near-Optimal for Reward-Free Reinforcement Learning

1. ζk,ph ∈ F(k,h,p)−1 . For h = 1, E[ζk,ph |F(k,h,p)−1 ] = 0 is trivial, so we focus on h = 2, . . . ,H . Note
that since xk,p

h ∼ Ph−1(·|xk,p
h−1, a

k,p
h−1) (line 14 of POLSVI), we have that E[δk,ph |F(k,h,p)−1 ] = E[V k

h (xk,p
h ) −

V πk,p

h (xk,p
h )|F(k,h,p)−1 ] = Ex′∼Ph−1(·|xk,p

h−1,a
k,p
h−1)

[V k
h (x′) − V πk,p

h (x′)] = Ph−1δ
k,p
h (xk,p

h−1, a
k,p
h−1), which immedi-

ately implies E[ζk,ph |F(k,h,p)−1 ] = 0.

2. |ζk,ph | ≤ |Phδ
k,p
h+1(x

k,p
h , ak,ph )|+ |δk,ph+1| ≤ 2H <∞ since V k

h (x)− V πk,p

h (x) ∈ [−H,H] for any x ∈ S .

Therefore, we can use the Azuma-Hoeffding inequality to conclude that, for any ϵ > 0,

Pr

(
K∑

k=1

P∑
p=1

H∑
h=1

ζk,ph > ϵ

)
≤ exp

(
−2ϵ2

(KHP )(4H2)

)
.

We choose ϵ =
√
2KH3P log

(
1
δ

)
. Then, with probability at least 1− δ,

(I) =
K∑

k=1

P∑
p=1

H∑
h=1

ζk,ph ≤

√
2KH2HP log

(
1

δ

)
≤ 2H

√
KHPι, (D.13)

recalling that ι = log
(
dKHP

δ

)
. We call Ē the event such that (D.13) holds.

Let Dk,h be the event that there is a doubling round at step h ∈ [H] in episode k ∈ [K], i,e., “Λk+1
h ≻ 2Λk

h”.

We now analyze the term (II) from (D.12). We split (II) according to the event of doubling rounds,

(II) = β

K∑
k=1

H∑
h=1

I[Dk,h]

P∑
p=1

√
(ϕk,p

h )⊤(Λk
h)

−1ϕk,p
h + β

K∑
k=1

H∑
h=1

I[Dc
k,h]

P∑
p=1

√
(ϕk,p

h )⊤(Λk
h)

−1ϕk,p
h . (D.14)

For the first term in (D.14),

β

K∑
k=1

H∑
h=1

I[Dk,h]

P∑
p=1

√
(ϕk,p

h )⊤(Λk
h)

−1ϕk,p
h

≤ β√
λ

K∑
k=1

H∑
h=1

I[Dk,h]

P∑
p=1

∥∥∥ϕk,p
h

∥∥∥ ≤ βP√
λ

K∑
k=1

H∑
h=1

I[Dk,h]. (D.15)

We now bound the second term in (D.14). Let us fix any h ∈ [H]. We can define the bounded sequence {ϕk,p
h }(k,p)∈LP

with ∥ϕk,p
h ∥ ≤ 1 for any (k, p) ∈ Z≥0 × [P ]. We also define

Λk,p
h := λId +

k−1∑
τ=1

P∑
p̄=1

ϕτ,p̄(ϕτ,p̄
h )⊤ +

p−1∑
p̄=1

ϕk,p̄(ϕk,p̄
h )⊤

and notice that Λk,1
h = Λk

h and that Λk,p
h ⪯ Λk+1,1

h for any p ∈ [P ].

Now, consider we are in the case that there is no doubling round, i.e., I[Dc
k,h] = 1. Then,

Λk
h ⪯ Λk,p

h ⪯ Λk+1,1
h = Λk+1

h ⪯ 2Λk
h =⇒ (Λk

h)
−1 ⪰ (Λk,p

h )−1 ⪰ 1

2
(Λk

h)
−1,

which then implies that

K∑
k=1

P∑
p=1

(ϕk,p
h )⊤(Λk

h)
−1ϕk,p

h ≤ 2

K∑
k=1

P∑
p=1

(ϕk,p
h )⊤(Λk,p

h )−1ϕk,p
h

(a)
≤ 4 log

[
det(ΛK,P

h )

det(λId)

]

where (a) follows from using (Abbasi-Yadkori et al., 2011, Lemma 11), whose conditions are satisfied from our bounded
sequence {ϕk,p

h }(k,p)∈LP
(for fixed h) and the fact that the minimum eigenvalue of Λk

h is lower bounded by λ = 1 for every



Pedro Cisneros-Velarde, Boxiang Lyu, Sanmi Koyejo, Mladen Kolar

k ∈ [K]. Now, we have that ΛK,P
h = ΛK+1

h , which is a positive definite matrix whose maximum eigenvalue can be bounded

as
∥∥ΛK+1

h

∥∥ ≤ ∥∥∥∑K
k=1

∑P
p=1 ϕ

k,p
h (ϕk,p

h )⊤
∥∥∥+ λ ≤ KP + λ, and so det(ΛK+1

h ) ≤ det((KP + λ)Id) = (KP + λ)d. We

also have that det(λId) = λd. Then, using these results in our previous equation, we obtain that

K∑
k=1

P∑
p=1

(ϕk,p
h )⊤(Λk

h)
−1ϕk,p

h ≤ 4 log

[
KP + λ

λ

]d
= 4d log(KP + 1) ≤ 4dι, (D.16)

where the last inequality holds since log(KP + 1) ≤ log
(
dKHP

δ

)
= ι for d ≥ 2.

Now, for a fixed h ∈ [H], letRh := {k ∈ [K] | I[Dc
k,h] = 1}. Then, taking the second term in (D.14),

β

K∑
k=1

H∑
h=1

I[Dc
k,h]

P∑
p=1

√
(ϕk,p

h )⊤(Λk
h)

−1ϕk,p
h = β

H∑
h=1

∑
k∈Rh

P∑
p=1

√
(ϕk,p

h )⊤(Λk
h)

−1ϕk,p
h

(a)
≤ β

H∑
h=1

√
|Rh|P

√√√√∑
k∈Rh

P∑
p=1

(ϕk,p
h )⊤(Λk

h)
−1ϕk,p

h

≤ β

H∑
h=1

√
|Rh|P

√√√√ K∑
k=1

P∑
p=1

(ϕk,p
h )⊤(Λk

h)
−1ϕk,p

h

(b)

≤ 2β
√
dι

H∑
h=1

√
|Rh|P ≤ 2βH

√
dKPι, (D.17)

where (a) follows from the Cauchy-Schwartz inequality, and (b) from (D.16). We now combine the results in (D.15)
and (D.17), i.e., the upper bounds for (II), and obtain, letting λ = 1,

(II) ≤ βP

K∑
k=1

H∑
h=1

I[Dk,h] + 2βH
√
dKPι.

Using this last result along with (D.13) in (D.12), we conclude that,

Regret(K,P ) ≤ 2H
√
KHPι+ 2βH

√
dKPι+ βP

K∑
k=1

H∑
h=1

I[Dk,h]

= 2
√
KH3Pι+ 2cβ

√
d3KH4Pι2 + cβdPH

√
ι

K∑
k=1

H∑
h=1

I[Dk,h]

(a)
≤ (2 + 2cβ)

√
d3KH4Pι2 + cβdPH

√
ι

K∑
k=1

H∑
h=1

I[Dk,h] (D.18)

where (a) follows from
√
ι ≤ ι which follows from equation (D.5).

We now bound the number of possible doubling rounds. Consider any h ∈ [H]. When there is a doubling round at episode
k, we can find some y ∈ Rd, ∥y∥ = 1, such that y⊤Λk+1

h y > 2y⊤Λk
hy. Then, we can apply Lemma 12 from (Chan et al.,

2021) to obtain det(Λk+1
h ) > 2 det(Λk

h). If nh is the number of doubling rounds at step h ∈ [H] across all episodes, then

det(ΛK+1
h ) > (2)nh det(Λ1

h), and so log
(

det(ΛK+1
h )

det(Λ1
h)

)
> nh log(2). Now, since

∥∥∥ϕk,p
h

∥∥∥ ≤ 1 and λ = 1, by Lemma 19.4
from (Lattimore and Szepesvári, 2020), we have that

log

(
det(ΛK+1

h )

det(Λ1
h)

)
≤ d log

(
tr(λId) +KP

d

)
− log(det(λId)) = d log

(
1 +

KP

d

)
.

Then, our recently derived results let us conclude that
∑K

k=1

∑H
h=1 I[Dk,h] =

∑H
h=1 nh < dH

log(2) log
(
1 + KP

d

)
; and using

this bound in (D.18) let us obtain

Regret(K,P ) ≤ (2 + 2cβ)
√
d3KH4Pι2 +

cβd
2H2

log(2)
P
√
ι log

(
1 +

KP

d

)
.
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Finally, since P[not E ] ≤ δ and P[not Ē ] ≤ δ, a union bound lets us conclude that all the results proven so far hold with
probability 1− 2δ. This finishes the proof of Theorem 3.1.

E PROVING THEOREM 4.1

For simplicity, we will use the same notation as described at the beginning of section D for the exploration phase with the
following notation for the reward functions in the exploration phase: rk := {rkh}h∈[H] and rk,ph := rkh(x

k,p
h , ak,ph ). For the

planning phase, we denote the given reward r := {rh}h∈[h]. For the planning phase, we define the value function V̂ k
h (·) =

maxa∈A Q̂k
h(·, a). Additionally, if we take the underlying MDP M and replace its reward function by r̄ = {r̄h}h∈[H],

then we denote the value functions of the newly created MDP by Vh(·, r̄), h ∈ [H]; and denote the optimal value functions
by V ∗

h (·, r̄), h ∈ [H].

We introduce our first auxiliary lemma.

Lemma E.1 (Concentration bound on value functions in the exploration phase for RF-POLSVI). Consider the setting of
Theorem 4.1. There exists an absolute constant C independent of cβ such that for any fixed δ ∈ (0, 1), the following event
E holds with probability at least 1− δ,

∀(k, h) ∈ [K]× [H] :

∥∥∥∥∥
k−1∑
τ=1

P∑
p=1

ϕτ,p
h [V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph )]

∥∥∥∥∥
(Λk

h)
−1

≤ CdH

√
log

(
(cβ + 1)dKHP

δ

)
.

Proof. First, notice that
∥∥wk

h

∥∥ ≤ H
√
dKP by following the same proof as in Lemma D.1 and choosing λ = 1. Then, we

notice that (V k
h )(k,h)∈[K]×[H] belongs to the following function class

V =

{
V : S → R

∣∣∣ V (·) = min

{
max
a∈A

ŵ⊤ϕ(·, a)

+

(
1 +

1

H

)
min{β

√
ϕ(·, a)⊤Λ̂−1ϕ(·, a), H}, H

}}
, (E.1)

where ∥ŵ∥ ≤ H
√
dKP , the minimum eigenvalue of Λ̂ is greater or equal than λ, and ∥ϕ(x, a)∥ ≤ 1 for all (x, a) ∈ S×A.
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For any V, V ′ ∈ V , let dist(V, V ′) = supx∈S |V (x)− V ′(x)|. Set û(x, a) := min{β
√
ϕ(·, a)⊤Λ̂−1ϕ(·, a), H}. Then,

dist(V, V ′) = sup
x∈S

∣∣∣max
a∈A

min{ŵ⊤ϕ(x, a) + (1 + 1/H)û(x, a), H}

−max
a∈A

min{(ŵ′)⊤ϕ(x, a) + (1 + 1/H)û′(x, a), H}
∣∣∣

(a)
≤ sup

x∈S,a∈A

∣∣∣(ŵ⊤ϕ(x, a) + (1 + 1/H)û(x, a))

− ((ŵ′)⊤ϕ(x, a) + (1 + 1/H)û′(x, a))
∣∣∣

≤ sup
ϕ:∥ϕ∥≤1

∣∣∣(ŵ − ŵ′)⊤ϕ
∣∣∣+ sup

x∈S,a∈A
2
∣∣∣û(x, a)− û′(x, a)

∣∣∣
(b)

≤ sup
ϕ:∥ϕ∥≤1

∣∣∣(ŵ − ŵ′)⊤ϕ
∣∣∣

+ sup
ϕ:∥ϕ∥≤1

2β
∣∣∣√ϕ⊤Λ̂−1ϕ−

√
ϕ⊤(Λ̂′)−1ϕ

∣∣∣
(c)
≤ ∥ŵ − ŵ′∥+ sup

ϕ:∥ϕ∥≤1

2β

√∣∣∣ϕ⊤(Λ̂−1 − (Λ̂′)−1)ϕ
∣∣∣

= ∥ŵ − ŵ′∥+ 2β

√∥∥∥Λ̂−1 − (Λ̂′)−1
∥∥∥

≤ ∥ŵ − ŵ′∥+ 2β

√∥∥∥Λ̂−1 − (Λ̂′)−1
∥∥∥
F

(E.2)

where (a) follows from the fact that the min{·, H} operator is non-expansive and that the property | supa∈A g(a) −
supa∈A h(a)| ≤ supa∈A |g(a)− h(a)| for any g, h : A → R, and (b) follows from the inequality |√p−√q| ≤

√
|p− q|

for any p, q ≥ 0. Now, we notice that (E.2) is a bound of the same form as equation (28) from Lemma D.6 of (Jin et al.,
2020b), and so we can use this lemma to obtain that the ϵ-covering number of V , Nϵ, with respect to the distance dist(·, ·)
can be upper bounded as

logNϵ ≤ d log(1 + 4H
√
dKP/ϵ) + d2 log

[
1 + 32d1/2β2/(λϵ2)

]
.

Then, the proof of the lemma follows immediately from closely following the proof of Lemma D.2.

We use the previous lemma to obtain a useful upper bound to the optimal value function resulting from an MDP whose
rewards are the ones computed at the current episode of the exploration phase.

Lemma E.2 (Upper bound on the value function at the exploration phase). Consider the setting of Theorem 4.1. With
probability at least 1− 2δ, for all k ∈ [K],

1. V ∗
1 (s0, r

k) ≤ V k
1 (s0),

2.
∑K

k=1 V
k
1 (s0) ≤ 2H

√
KHι
P + 6βH

√
dKι
P + 10βdH log

(
1 + KP

d

)
.

Proof. We first condition on the event E defined in Lemma E.1, which holds with probability at least 1− δ. Since we have
a linear MDP, for any (x, a) ∈ S × A, we have Ph(x

′|x, a) = ⟨ϕ(x, a), µh(x
′)⟩ and so PhV

k
h+1(x, a) = ⟨ϕ(x, a), w̃k

h⟩
with w̃k

h :=
∫
x∈S V k

h+1(x
′)dµh(x

′) =
∫
x′∈S V k

h+1(x
′)µh(x

′)dx′. Then,

∥∥w̃k
h

∥∥ ≤ H

∫
x′∈S

∥µh(x
′)∥ dx′ ≤ H

√
d.
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Now, using this result, we have for every (x, a, h, k) ∈ [S]× [A]× [H]× [K],

ϕ(x, a)⊤wk
h − PhV

k
h+1(x, a)

= ϕ(x, a)⊤(Λk
h)

−1
k−1∑
τ=1

P∑
p=1

ϕτ,p
h V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x, a)

= ϕ(x, a)⊤(Λk
h)

−1

(
k−1∑
τ=1

P∑
p=1

ϕτ,p
h V k

h+1(x
τ,p
h+1)− Λk

hw̃
k
h

)

= ϕ(x, a)⊤(Λk
h)

−1

(
k−1∑
τ=1

P∑
p=1

ϕτ,p
h V k

h+1(x
τ,p
h+1)− λw̃k

h −
k−1∑
τ=1

P∑
p=1

ϕτ,p
h (ϕτ,p

h )⊤w̃k
h

)

= ϕ(x, a)⊤(Λk
h)

−1

(
k−1∑
τ=1

P∑
p=1

ϕτ,p
h

(
V k
h+1(x

τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph )

))
︸ ︷︷ ︸

(I)

−λϕ(x, a)⊤(Λk
h)

−1w̃k
h︸ ︷︷ ︸

(II)

.

Analyzing the term (I),

|(I)| ≤ ∥ϕ(x, a)∥(Λk
h)

−1

∥∥∥∥∥
k−1∑
τ=1

P∑
p=1

ϕτ,p
h

(
V k
h+1(x

τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph )

)∥∥∥∥∥
(Λk

h)
−1

(a)
≤ CdH

√
log

(
(cβ + 1)dKHP

δ

)
∥ϕ(x, a)∥(Λk

h)
−1 ,

where (a) follows from Lemma E.1. For the term (II), |(II)| ≤
∥∥w̃k

h

∥∥
(Λk

h)
−1 ∥ϕ(s, a)∥(Λk

h)
−1 ≤ H

√
d√

λ
∥ϕ(s, a)∥(Λk

h)
−1 . Then,

using these results with λ = 1,

|ϕ(x, a)⊤wk
h − PhV

k
h+1(x, a)| ≤ (CdH

√
log((cβ + 1)dKHP/δ) +H

√
d) ∥ϕ(x, a)∥(Λk

h)
−1

(a)
≤ C̄dH

√
log((cβ + 1)dKHP/δ) ∥ϕ(x, a)∥(Λk

h)
−1

(b)

≤ cβdH
√
log(dKHP/δ) ∥ϕ(x, a)∥(Λk

h)
−1

= β ∥ϕ(x, a)∥(Λk
h)

−1 ,

(E.3)

where (a) follows from the fact that
√
log((cβ + 1)dKHP/δ) > 1 independently from cβ from equation (D.6) from the

proof of Lemma D.2 and using the absolute constant C̄ = C + 1; and where (b) follows from cβ being chosen as in the
expression of equation (D.10) from the proof of Lemma D.3.

Now we prove statement 1 of the lemma, which we do by induction. Consider any x ∈ S . For step H + 1, it trivially
holds that V ∗

H+1(x, r
k) ≤ V k

H+1(x) since V ∗
H+1(x, r

k) = V k
H+1(x) = 0. Now, assume that at step h ∈ [H] it holds that

V ∗
h+1(x, r

k) ≤ V k
h+1(x). Then, using the Bellman equation,

V ∗
h (x, r

k) = max
a∈A
{rkh(x, a) + PhV

∗
h+1(·, rk)(x, a)}

(a)
≤ max

a∈A
{rkh(x, a) + PhV

k
h+1(x, a)}

(b)

≤ max
a∈A
{rkh(x, a) + ϕ(x, a)⊤wk

h + β∥ϕ(x, a)∥(Λk
h)

−1}

(c)
≤ min

{
max
a∈A
{rkh(x, a) + ϕ(x, a)⊤wk

h + β∥ϕ(x, a)∥(Λk
h)

−1}, H
}

= V k
h (x),

where (a) follows from the induction assumption, (b) follows from (E.3), and (c) from V ∗
h (s, r

k) ≤ H . This finishes the
proof by induction.

Now we start our proof for statement 2 of the lemma. For every (k, h, p) ∈ [K] × [H − 1] × [P ], let ζk,ph =

PhV
k
h+1(x

k,p
h , ak,ph ) − V k

h+1(x
k,p
h+1) and ζk,pH = 0 for any (k, p) ∈ [K] × [P ]. Now, fix any p ∈ [P ] and condition on
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event E to obtain
K∑

k=1

V k
1 (s0)

(a)
≤

K∑
k=1

(
(ϕk,p

1 )⊤wk
1 + rk1 + β∥ϕ(xk,p

1 , ak,p1 )∥(Λk
1 )

−1

)
≤

K∑
k=1

(
(ϕk,p

1 )⊤wk
1 + β(1 + 1/H)∥ϕ(xk,p

1 , ak,p1 )∥(Λk
1 )

−1

)
(b)

≤
K∑

k=1

(
P1V

k
2 (xk,p

1 , ak,p1 ) + β(2 + 1/H)∥ϕ(xk,p
1 , ak,p1 )∥(Λk

1 )
−1

)
=

K∑
k=1

(
ζk,p1 + V k

2 (xk,p
2 ) + β(2 + 1/H)∥ϕ(xk,p

1 , ak,p1 )∥(Λk
1 )

−1

)
≤ . . .

≤
K∑

k=1

H−1∑
h=1

ζk,ph + β(2 + 1/H)

K∑
k=1

H∑
h=1

∥∥∥ϕ(xk,p
h , ak,ph )

∥∥∥
(Λk

h)
−1

=

K∑
k=1

H∑
h=1

ζk,ph + β(2 + 1/H)

K∑
k=1

H∑
h=1

∥∥∥ϕ(xk,p
h , ak,ph )

∥∥∥
(Λk

h)
−1

.

(E.4)

where (a) follows from the fact that all agents are equally initialized (line 3 of algorithm 2) which then implies
Qk

1(x
k,p1

1 , ak,p1

1 ) = Qk
1(x

k,p2

1 , ak,p2

1 ) for every p1, p2 ∈ [P ] since xk,p1

1 = xk,p2

1 ; and (b) follows from (E.3).

Now, using the sequence L∗ defined in the proof of Theorem 3.1 and following that proof itself, we can deduce that
{ζk,ph }(k,h,p)∈L∗ is a martingale difference sequence and use the Azuma-Hoeffding inequality to conclude that, for any
ϵ > 0,

Pr

(
K∑

k=1

P∑
p=1

H∑
h=1

ζk,ph > ϵ

)
≤ exp

(
−2ϵ2

(KHP )(4H2)

)
.

We choose ϵ =
√
2KH3P log

(
1
δ

)
. Then, with probability at least 1− δ,

K∑
k=1

P∑
p=1

H∑
h=1

ζk,ph ≤

√
2KH3P log

(
1

δ

)
≤ 2H

√
KHPι, (E.5)

recalling that ι = log
(
dKHP

δ

)
. We call Ē the event such that (E.5) holds.

Now, let Dk,h be the event that there is a doubling round at step h ∈ [H] of episode k ∈ [K], i.e., “Λk+1
h ≻ 2Λk

h”.
Following a similar analysis to Theorem 3.1, we can conclude that

K∑
k=1

P∑
p=1

H∑
h=1

∥ϕ(xk,p
h , ak,ph )∥(Λk

h)
−1 ≤ 2H

√
dKPι+

dH

log(2)
P log

(
1 +

KP

d

)
. (E.6)

Now, we go back to (E.4), sum over the agents p ∈ [P ] both sides of the inequality and divide then by P both sides
respectively, and on this result then use both (E.6) and (E.5) to obtain an upper bound, which results in

K∑
k=1

V k
1 (s0) ≤ 2H

√
KHι

P
+ 6βH

√
dKι

P
+

3βdH

log(2)
log

(
1 +

KP

d

)
.

This finishes the proof of statement 2 as we note 3/ log(2) < 10 and thereby completes our proof.

Assume we take the underlying MDPM and decide to use {uh/H}h∈[H] as the underlying reward, then, the next lemma
provides an upper bound of its associated optimal value function.
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Lemma E.3 (Bounding the optimal value function with rewards taken from the planning phase). With probability 1− 2δ,

V ∗
1

(
s0,
{uh

H

}
h∈[H]

)
≤ (2 + 6cβ)

√
d3H4ι2

KP
+ 10cβ

√
d4H4ι

K
log

(
1 +

KP

d

)
where {uh}h∈[H] is as described in the planning phase of RF-POLSVI.

Proof. Observe we have that for every k ∈ [K], Λh ⪰ Λk
h =⇒ Λ−1

h ⪯ (Λk
h)

−1 (remember that Λh is defined in the
planning phase of RF-POLSVI). Then, for every (k, h) ∈ [K]× [H], rkh(·, ·) ≥ uh(·, ·)/H , and so for any x ∈ S ,

V ∗
1

(
x,
{uh

H

}
h∈[H]

)
≤ V ∗

1 (x, {rkh}h∈[H]). (E.7)

Then,

V ∗
1 (s0, {uh/H}h∈[H])

(a)
≤ 1

K

K∑
k=1

V ∗
1 (s0, r

k)

(b)

≤ 2H

√
Hι

KP
+ 6βH

√
dι

KP
+ 10βdH

1

K
log

(
1 +

KP

d

)
≤ (2 + 6cβ)

√
d3H4ι2

KP
+ 10cβ

√
d4H4ι

K
log

(
1 +

KP

d

)
where (a) follows from (E.7) and (b) follows from Lemma E.2. This finishes the proof.

The following lemma shows that optimism can be used to bound the optimal Q-function.

Lemma E.4 (Action-value bounds using optimism). With probability 1− δ, for the reward r given in the planning phase
of RF-POLSVI and for any h ∈ [H],

Q∗
h(·, ·; r) ≤ Q̂h(·, ·) ≤ rh(·, ·) + PhV̂h+1(·, ·) + 2uh(·, ·). (E.8)

Proof. We first prove the right inequality in (E.8). Carefully following the same derivation of equation (E.3) of Lemma E.2
(using V̂h instead of V k

h for every h ∈ [H]), we obtain that, with probability at least 1−δ, for every (x, a, h) ∈ S×A×[H],∣∣∣ϕ(x, a)⊤ŵh − PhV̂h+1(x, a)
∣∣∣ ≤ β∥ϕ(x, a)∥Λ−1

h
, (E.9)

and so

Q̂h(x, a) ≤ ϕ(x, a)⊤ŵh + rh(x, a) + uh(x, a)

≤ rh(x, a) + PhV̂h+1(x, a) + uh(x, a) + β∥ϕ(x, a)∥Λ−1
h

(a)
=⇒ Q̂h(x, a) ≤ min{rh(x, a) + PhV̂h+1(x, a) + 2uh(x, a), H}

≤ rh(x, a) + PhV̂h+1(x, a) + 2uh(x, a)

where (a) follows from the fact Q̂h(s, a) ≤ H and that uh(·, ·) = min
{
β ∥ϕ(x, a)∥Λ−1

h
, H
}

.

We now prove the left inequality in (E.8), which we do by induction on h. Consider any (x, a) ∈ S ×A. For the time step
h = H + 1 the inequality trivially holds since the value functions are equal to zero. Suppose now that for some h ∈ [H],
Q∗

h+1(x, a; r) ≤ Q̂h+1(x, a). Then,

ϕ(x, a)⊤ŵh

(a)
≥PhV̂h+1(x, a)− β∥ϕ(x, a)∥Λ−1

h

(b)

≥PhV
∗
h+1(x, a; r)− β∥ϕ(x, a)∥Λ−1

h
.
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where (a) follows from (E.9), and (b) from the induction hypothesis. Finally, using the Bellman equation along with the
previous expression,

Q∗
h(x, a; r) = rh(x, a) + PhV

∗
h+1(x, a; r)

≤ rh(x, a) + ϕ(x, a)⊤ŵh + β∥ϕ(x, a)∥Λ−1
h

(a)
=⇒ Q∗

h(x, a; r) ≤ min{rh(x, a) + ϕ(x, a)⊤ŵh + β∥ϕ(x, a)∥Λ−1
h
, H}

= Q̂h(x, a),

where (a) follows since Q∗
h+1(x, a; r) ≤ H . This finishes the proof by induction.

We now continue with the proof of Theorem 4.1, conditioning on the events defined in Lemma E.2 and Lemma E.4 which
hold altogether with probability at least 1− 3δ.

Then,

V ∗
1 (s0; r)− V π

1 (s0; r)

(a)
≤ V̂1(s0)− V π

1 (s0; r)

= Q̂1(s0, π1(s0))−Qπ
1 (s0, π1(s0); r)

≤ Ex2∼P1(·|s0,π1(s0))[r1(s0, π1(s0)) + V̂2(x2) + u1(s0, π(s0))− r1(s0, π1(s0))− V π
2 (x2; r)]

= Ex2∼P1(·|s0,π1(s0))[V̂2(x2) + u1(s0, π(s0))− V π
2 (x2; r)]

≤ Ex2∼P1(·|s0,π1(s0)),x3∼P2(·,|x2,π2(x2))[u1(s0, π(s0)) + u2(x2, π(x2)) + V̂3(x3)− V π
3 (x3; r)]

= . . .

≤ E

[
H∑

h=1

uh(xh, π(xh)) | x1 = s0

]
= V π

1 (s0, {uh}h∈H)

(b)

≤ V ∗
1 (s0, {uh}h∈H)

= HV ∗
1 (s0, {uh/H}h∈H),

where (a) follows from V̂1(x) = maxa∈A Q̂1(x, a) ≥ maxa∈A Q∗
1(x, a; r) = V ∗

1 (x; r) for any x ∈ S by Lemma E.4, and
(b) follows from the definition of V ∗

1 (s0, {uh}h∈H).

Finally, from Lemma E.3 we obtain

V ∗
1 (x1; r)− V π

1 (x1; r) ≤ (2 + 6cβ)

√
d3H6ι2

KP
+ 10cβ

√
d4H6ι

K
log

(
1 +

KP

d

)
,

which finishes the proof.

F PROVING THEOREM 4.2

For simplicity, we will use the same notation as described at the beginning of section D for the exploration phase, with the
modification of including an extra argument due to the action of the second player, e.g., rk,ph := rkh(x

k,p
h , ak,ph , bk,ph ).

For the planning phase, we define the value functions V h(x) = Ea∼πh+1(x),b∼D(x)[Qh(x, a, b)] and V h(x) =

Ea∼D(x),b∼νh+1(x)[Qh
(x, a, b)], where π,D, ν and D are described in lines 11-12 of algorithm 4.

Let ā = (a, b), a ∈ A, b ∈ B, so that ā ∈ Ā := A × B. Then, we can reduce the planning phase of the RFMG-POLSVI
algorithm as if it were the one from RF-POLSVI over an underlying MDPM′ = (S, Ā,H,P; r) with the kernel being
considered as Ph(· | x, ā) and the reward function as rh(x, ā) with ā ∈ A and x ∈ S for any step h ∈ [H] — in other
words, the action that a single agent takes in the MDPM′ is equivalent to the joint action of the two players of the Markov
Game.
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Therefore, using this reduction, we use Lemma E.1 to conclude that with probability 1− δ, δ ∈ (0, 1), the following event
E holds

∀(k, h) ∈ [K]× [H] :

∥∥∥∥∥
k−1∑
τ=1

P∑
p=1

ϕτ,p
h [V k

h+1(x
τ,p
h+1)− PhV

k
h+1(x

τ,p
h , aτ,ph , bτ,ph )]

∥∥∥∥∥
(Λk

h)
−1

≤ CdH

√
log

(
(cβ + 1)dKHP

δ

)
, (F.1)

where C is an absolute constant independent of cβ . Likewise, we can use (F.1) and Lemma E.2 to conclude that, with
probability at least 1− 2δ for all k ∈ [K],

V ∗
1 (s0, r

k) ≤ V k
1 (s0), (F.2)

and that

K∑
k=1

V k
1 (s0) ≤ 2H

√
KHι

P
+ 6βH

√
dK̄Kι

P
+ 10βdH log

(
1 +

KP

d

)
. (F.3)

Lemma F.1 (Concentration bounds using optimism). Consider the setting of Theorem 4.2. Then, the following event Ẽ
holds with probability at least 1− δ: ∀(x, a, b, h) ∈ S ×A× B × [H],

|PhV h+1(x, a, b)− w⊤
h ϕ(x, a, b)| ≤ β ∥ϕ(x, a, b)∥Λ−1

h
, (F.4)

|PhV h+1(x, a, b)− w⊤
h ϕ(x, a, b)| ≤ β ∥ϕ(x, a, b)∥Λ−1

h
. (F.5)

Proof. We first focus on proving equation (F.4). Closely following the exact proof as in Lemma D.1, we conclude that
∥wh∥ ≤ H

√
dKP for any h ∈ [H]. Then, we notice that V h, h ∈ [H], belongs to the following function class

V =

{
V : S → R

∣∣∣ V (·) = min

{
max

{
max

π′∈∆(A)
min

ν′∈∆(B)
Ea∼π′,b∼ν′ [ŵ⊤ϕ(·, a, b) + r(·, a, b)

+min{β
√

ϕ(·, a, b)⊤Λ̂−1ϕ(·, a, b), H}], 0
}
, H

}}
, (F.6)

where ∥ŵ∥ ≤ H
√
dKP , the minimum eigenvalue of Λ̂ is greater or equal than λ, and ∥ϕ(x, a, b)∥ ≤ 1 for all

(x, a, b) ∈ S × A × B. For any V, V ′ ∈ V , let dist(V, V ′) = supx∈S |V (x) − V ′(x)|. Set û(x, a, b) :=
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min{β
√
ϕ(·, a, b)⊤Λ̂−1ϕ(·, a, b), H}. Then,

dist(V, V ′) = sup
x∈S

∣∣∣ max
π′∈∆(A)

min
ν′∈∆(B)

Ea∼π′,b∼ν′
[
Π[0,H][ŵ

⊤ϕ(x, a, b) + r(x, a, b) + û(x, a, b)]
]

− max
π′∈∆(A)

min
ν′∈∆(B)

Ea∼π′,b∼ν′
[
Π[0,H][(ŵ

′)⊤ϕ(x, a, b) + r(x, a, b) + û′(x, a, b)]
] ∣∣∣

(a)
≤ sup

x∈S,a∈A,b∈B

∣∣∣Π[0,H][ŵ
⊤ϕ(x, a, b) + r(x, a, b) + û(x, a, b)]

−Π[0,H][(ŵ
′)⊤ϕ(x, a, b) + r(x, a, b) + û′(x, a, b)]

∣∣∣
(b)

≤ sup
x∈S,a∈A,b∈B

∣∣∣(ŵ⊤ϕ(x, a, b) + r(x, a, b) + û(x, a, b))

− ((ŵ′)⊤ϕ(x, a, b) + r(x, a, b) + û′(x, a, b))
∣∣∣

≤ sup
ϕ:∥ϕ∥≤1

∣∣∣(ŵ − ŵ′)⊤ϕ
∣∣∣+ sup

ϕ:∥ϕ∥≤1

∣∣∣û(x, a, b)− û′(x, a, b)
∣∣∣

(c)
≤ sup

ϕ:∥ϕ∥≤1

∣∣∣(ŵ − ŵ′)⊤ϕ
∣∣∣

+ sup
ϕ:∥ϕ∥≤1

β
∣∣∣√ϕ⊤Λ̂−1ϕ−

√
ϕ⊤(Λ̂′)−1ϕ

∣∣∣
(d)
≤ ∥ŵ − ŵ′∥+ sup

ϕ:∥ϕ∥≤1

β

√∣∣∣ϕ⊤(Λ̂−1 − (Λ̂′)−1)ϕ
∣∣∣

= ∥ŵ − ŵ′∥+ β

√∥∥∥Λ̂−1 − (Λ̂′)−1
∥∥∥

≤ ∥ŵ − ŵ′∥+ β

√∥∥∥Λ̂−1 − (Λ̂′)−1
∥∥∥
F

(F.7)

where (a) follows from the fact that the max-min operator is non-expansive and the fact that given a set G and function
g : G → R, maxµ∈∆(G) Ey∼µ[g(y)] ≤ maxy∈G g(y); (b) follows from the fact that the clipping operator is non-expansive;
(c) follows from the min operator being non-expansive; and (d) follows from the inequality |√p − √q| ≤

√
|p− q| for

any p, q ≥ 0. Now, we notice that (F.7) is a bound of the same form as equation (28) from (Jin et al., 2020b, Lemma D.6),
and so we can use this lemma to conclude that the ϵ-covering number of V , Nϵ, with respect to the distance dist(·, ·) can
be upper bounded as

logNϵ ≤ d log(1 + 4H
√
dKP/ϵ) + d2 log

[
1 + 8d1/2β2/(λϵ2)

]
. (F.8)

Then, we can closely follow the derivation of the equation in Lemma D.2 to obtain that the following event holds with
probability at least 1− δ,

∀h ∈ [H] :

∥∥∥∥∥
K∑

τ=1

P∑
p=1

ϕτ,p
h [V h+1(x

τ,p
h+1)− PhV h+1(x

τ,p
h , aτ,ph , bτ,ph )]

∥∥∥∥∥
Λ−1

h

≤ CdH
√

log[(cβ + 1)dKHP/δ].

for some absolute constant C independent of cβ > 0. We now condition on this event. Then, we can closely follow the
same proof procedure as the one given in Lemma E.2 to derive equation (E.3) and thus obtain, for any (x, a, b) ∈ S×A×B
with λ = 1,

|ϕ(x, a, b)⊤wh − PhV h+1(x, a, b)| ≤ β ∥ϕ(x, a, b)∥Λ−1
h

,

where β can be chosen in exactly the same way as in Theorem 3.1,i.e., exactly as in (F.3). This finishes the proof for
inequality (F.4).

To prove inequality (F.5), it is easy to prove that V h, h ∈ [H], belongs to a very similar function class as V in (F.6), and so
we can use the same proof for inequality (F.4).
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Lemma F.2 (Bounds on value functions for the planning phase). Consider the setting of Theorem 4.2. Conditioned on the
event Ẽ defined in Lemma F.1, we have that for every (x, h) ∈ S × [H]

V †
h (x; r) ≤ V h(x) ≤ Ea∼πh,b∼br2(π)h [(PhV h+1 + rh + 2uh)(x, a, b)], (F.9)

V †
h (x; r) ≥ V h(x) ≥ Ea∼br1(ν)h,b∼νh

[(PhV h+1 − rh − 2uh)(x, a, b)]. (F.10)

Proof. We first prove the leftmost inequality (F.9), which we do by induction. The case for step H + 1 is trivial since
V †
H+1(x; r) = VH+1(x) = 0 for any x ∈ S . We now consider the induction step V †

h+1(x; r) ≤ V h+1(x). Then,

Q†
h(x, a, b; r)

(a)
= rh(x, a, b) + PhV

†
h+1(x, a, b; r)

(b)

≤ rh(x, a, b) + PhV h+1(x, a, b; r)

(c)
≤ rh(x, a, b) + w̄⊤

h ϕ(x, a, b) + β ∥ϕ(x, a, b; r)∥Λ−1
h

(d)
=⇒ Q†

h(x, a, b; r) ≤ min{rh(x, a, b) + PhV h+1(x, a, b; r) + β ∥ϕ(x, a, b; r)∥Λ−1
h

, H}
(e)
= min{rh(x, a, b) + w̄⊤

h ϕ(x, a, b) + uh(x, a, b), H}
= Qh(x, a, b)

where (a) follows from the Bellman equation, (b) follows from the induction step, (c) follows from Lemma F.1, (d) follows
from Q†

h(x, a, b; r) ∈ [0, H], and (e) from the fact that uh(·, ·, ·) = min{β ∥ϕ(·, ·, ·)∥Λ−1
h

, H}. Then, using this result
leads to

V †
h (x; r) = max

π′
h∈∆(A)

min
ν′
h∈∆(B)

Ea∼π′
h,b∼ν′

h
[Q†

h(x, a, b; r)]

≤ max
π′
h∈∆(A)

min
ν′
h∈∆(B)

Ea∼π′
h,b∼ν′

h
[Qh(x, a, b)]

= V h(x).

This finishes the proof by induction of the leftmost inequality in (F.9).

Now we analyze the rightmost inequality in (F.9) follows from

V h(x) = min
ν′∈∆(B)

Ea∼πh,b∼ν′Qh(x, a, b)

= Ea∼πh,b∼br2(π)hQh(x, a, b)

= Ea∼πh,b∼br2(π)h min{max{(w⊤
h ϕ+ rh + uh)(x, a, b), 0}, H}

(a)
≤ Ea∼πh,b∼br2(π)h min{max{(PhV h+1 + rh + β ∥ϕ(·, ·, ·)∥Λ−1

h
+ uh)(x, a, b), 0}, H}

(b)
=⇒ V h(x) ≤ Ea∼πh,b∼br2(π)h min{max{(PhV h+1 + rh + 2uh)(x, a, b), 0}, H}

(c)

≤ Ea∼πh,b∼br2(π)h [(PhV h+1 + rh + 2uh)(x, a, b)],

where (a) follows from Lemma F.1; (b) follows from V h(x) ≤ H and the definition of uh; and (c) follows from (PhV h+1+
rh + 2uh)(s, a, b) ≥ 0. This finishes the proof for the rightmost inequality in (F.9).

Finally, the proof for the inequalities in (F.10) can be obtained by carefully following and modifying all the proof just done
for the inequalities in (F.9).

Lemma F.3 (Bounding best-responses with rewards taken from the planning phase). We have that for any initial state
s0 ∈ S ,

V
π,br2(π)
1 (s0, u/H) ≤ 1

K

K∑
k=1

V ∗
1 (s0, r

k),

V
br1(ν),ν
1 (s0, u/H) ≤ 1

K

K∑
k=1

V ∗
1 (s0, r

k).
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Proof.

V
π,br2(π)
1 (s0, u/H)

(a)
≤ V ∗

1 (s0, u/H)
(b)

≤ V ∗
1 (s0, r

k)

=⇒ V
π,br2(π)
1 (s0, u/H) ≤ 1

K

K∑
k=1

V ∗
1 (s0, r

k)
(F.11)

where (a) follows from the definition of the optimal value function, (b) from the same arguments shown in deriving
equation (E.7) for any k ∈ [K].

The second inequality can be obtained similarly.

We now continue with the proof of Theorem 4.2, conditioning on the event such that equations (F.2)–(F.3) hold and on the
event defined in Lemma F.1, which altogether hold with probability at least 1− 3δ.

Then,

V †
1 (s0; r)− V

π,br2(π)
1 (s0; r)

(a)
≤ V 1(s0)− V

π,br2(π)
1 (s0; r)

(b)

≤ Ea1∼π1,b1∼br2(π)1 [(r1 + P1V 2 + 2u1)(s0, a1, b1)]− V
π,br2(π)
1 (s0; r)

(c)
= Ea1∼π1,b1∼br2(π)1 [(r1 + P1V 2 + 2u1)(s0, a1, b1)− r1(s0, a1, b1)

− P1V
π,br2(π)
2 (s0, a1, b1; r)]

= Ea1∼π1,b1∼br2(π)h [P1V 2(s0, a1, b1)− P1V
π,br2(π)
2 (s0, a1, b1; r) + 2u1(s0, a1, b1)]

= Ea1∼π1,b1∼br2(π)1,x2∼P1
[V 2(x2)− V

π,br2(π)
2 (x2; r) + 2u1(s0, a1, b1)]

≤ . . .

≤ E∀h∈[H]: ah∼πh,bh∼br2(π)h,xh+1∼Ph

[
H∑

h=1

2uh(xh, ah, bh)

∣∣∣∣∣x1 = s0

]
= 2HV

π,br2(π)
1 (s0, u/H)

(d)
≤ 2H

1

K

K∑
k=1

V ∗
1 (s0, r

k)

(e)
≤ 2H

1

K

K∑
k=1

V k
1 (s0)

where (a) and (b) follows from Lemma F.2, (c) comes from the Bellman equation, (d) comes from Lemma F.3, and (e)
follows from (F.2). Then, from (F.3)

V †
1 (x1; r)− V

π,br2(π)
1 (x1; r) ≤ 4H2

√
Hι

KP
+ 12βH2

√
dι

KP
+ 20βdH2 1

K
log

(
1 +

KP

d

)
. (F.12)
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Next, we prove the upper bound of the term V
br1(ν),ν
1 (s0; r)− V †

1 (s0; r).

V
br1(ν),ν
1 (s0; r)− V †

1 (s0; r)

(a)
≤ V

br1(ν),ν
1 (s0; r)− V

π,br2(π)
1 (s0; r)

(b)

≤ V
br1(ν),ν
1 (s0; r)− Ea1∼br1(ν)1,b1∼ν1

[(P1V 2 − r1 − 2u1)(s0, a1, b1)]

(c)
= Ea1∼br1(ν)1,b1∼ν1

[P1V
br1(ν),ν
2 (s0, a1, b1; r)− P1V 2(s0, a1, b1) + 2u1(x1, a1, b1; r)]

= Ea1∼br1(ν)1,b1∼ν1,x2∼P1
[V

br1(ν),ν
2 (x2; r)− V 2(x2) + 2u1(x1, a1, b1)]

≤ . . .

≤ E∀h∈[H]: ah∼br1(ν)h,bh∼νh,xh+1∼Ph

[
H∑

h=1

2uh(xh, ah, bh)

∣∣∣∣∣x1 = s0

]
= 2HV

br1(ν),ν
1 (s0, u/H)

(d)
≤ 2H

1

K

K∑
k=1

V ∗
1 (s0, r

k)

(e)
≤ 2H

1

K

K∑
k=1

V k
1 (s0)

where (a) and (b) follows from Lemma F.2, (c) comes from the Bellman equation, (d) comes from Lemma F.3, and (e)
follows from (F.2). Then, from (F.3)

V
br1(ν),ν
1 (x1; r)− V †

1 (x1; r) ≤ 4H2

√
Hι

KP
+ 12βH2

√
dι

KP
+ 20βdH2 1

K
log

(
1 +

KP

d

)
. (F.13)

Now, adding (F.12) with (F.13), we obtain,

V
br1(ν),ν
1 (s0; r)− V

π,br2(π)
1 (s0; r) ≤ 8H2

√
Hι

KP
+ 12βH2

√
dι

KP
+ 20βdH2 1

K
log

(
1 +

KP

d

)
= 8

√
H5ι

KP
+ 12cβ

√
d3H6ι2

KP
+ 20cβ

√
d4H6

K
log

(
1 +

KP

d

)
≤ (8 + 12cβ)

√
d3H6ι2

KP
+ 20cβ

√
d4H6

K
log

(
1 +

KP

d

)
This finishes the proof.

G PROVING THEOREM 4.3

As mentioned in the main document, our proof technique mimics that of (Wagenmaker et al., 2022).

We introduce some notation: for a vector a ∈ Rd, let ai denote its i-th component; for any positive integer A, let [A] =
{1, . . . , A}.

We first define the following parallel linear bandit setting.

Definition G.1 (Parallel linear bandit setting). Let K,P > 0 be arbitrary and fixed strictly positive integers, Φ = {ϕ ∈
Rd : ∥ϕ∥2 = 1} be the d-dimensional Euclidean norm sphere and Θ = {−µ, µ}d for some µ ∈ (0, 1

20
√
d
]. For some

some fixed θ ∈ Θ, consider the query model where at every step k = 1, . . . ,K we choose a batch of query values
{ϕk,1, . . . , ϕk,P } ⊆ Φ and observe, for each p ∈ [P ] independently, the reward

yk,p ∼ Bernoulli(1/2 + ⟨θ, ϕk,p⟩). (G.1)

After choosing the last batch of query values at step K, the query model outputs a final query value ϕK+1. We call K the
number of episodes for which we run the query model.
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Note that the parallel linear bandit setting in Definition G.1 becomes the single linear bandit setting when P = 1.

Also, note that any query strategy π which produces a final output according to our query model induces a distribution over
the set Φ in its output, thus, for a parallel linear bandit setting with K episodes we have that ϕK+1 ∼ π.

We begin by producing a lower bound on parallel adaptive linear regression.

Lemma G.1. Consider the parallel linear bandit setting in Definition G.1 with K episodes. Then,

inf
θ̂,π

max
θ∈Θ

Eθ[∥θ̂ − θ∥22] ≥
dµ2

2

(
1−

√
20KPµ2

d

)

where the infimum is taken over all measurable estimators θ̂ and measurable (but potentially adaptive) query policies π,
and Eθ denotes the expectation with respect to the randonmness in the observations and queries when θ ∈ Θ is the true
parameter.

Proof. Our proof is similar in spirit to that of Theorem 5 in (Wagenmaker et al., 2022). Consider a given estimator θ̂
produced by a query strategy. We immediately have

max
θ∈Θ

Eθ[∥θ̂ − θ∥2] ≥ Eθ∼Uniform(Θ)Eθ[∥θ̂ − θ∥2]

= Eθ∼Uniform(Θ)Eθ[

d∑
i=1

(θ̂i − θi)
2]

(a)

≥ Eθ∼Uniform(Θ)Eθ

[
µ2

d∑
i=1

I[θiθ̂i < 0]

]
, (G.2)

where (a) follows from the fact that (θi − θ̂i)
2 ∈ {0, 4µ2} with (θi − θ̂i)

2 = 4µ2 if and only if θiθ̂i < 0.

We now closely follow and adapt the proof of (Shamir, 2013)[Lemma 4] to our setting until the derivation of equation (G.3).
We then have

Eθ∼Uniform(Θ)Eθ

[
d∑

i=1

I[θiθ̂i < 0]

]

=

d∑
i=1

P̄r[θiθ̂i < 0]

(a)
=

d∑
i=1

(
1

2
Pr[θ̂iθi < 0|θi > 0] +

1

2
Pr[θ̂iθi < 0|θi < 0]

)

=
1

2

d∑
i=1

(
Pr[θ̂i < 0|θi > 0] + Pr[θ̂i > 0|θi < 0]

)
=

1

2

d∑
i=1

(
1− (Pr[θ̂i > 0|θi > 0]− Pr[θ̂i > 0|θi < 0])

)
≥ d

2

(
1− 1

d

d∑
i=1

|Pr[θ̂i > 0|θi > 0]− Pr[θ̂i > 0|θi < 0]|

)

(b)
≥ d

2

1−

√√√√1

d

d∑
i=1

(Pr[θ̂i > 0|θi > 0]− Pr[θ̂i > 0|θi < 0])2

 ,

where (a) follows from θ ∼ Uniform(Θ), (b) follows from
∑d

i=1 |ai| ≤
√
d ∥a∥ for any a ∈ Rd, and where P̄r is a measure

with respect to the distribution of θ and with respect to both the observations and query strategy, whereas Pr is only with
respect to both the observations and query strategy. From now on, we will abuse the notation Pr to denote different types
of measures across our derivations.
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Now, for an arbitrary and fixed i′ ∈ [d],

(Pr[θ̂i′ > 0|θi′ > 0]− Pr[θ̂i′ > 0|θi′ < 0])2

(a)
=
( ∑

u∈{−µ,µ}d−1

Pr[(θj : j ̸= i′) = u]

× (Pr[θ̂i′ > 0|θi′ > 0, (θj : j ̸= i′) = u]− Pr[θ̂i′ > 0|θi′ < 0, (θj : j ̸= i′) = u]
)2

≤
∑

u∈{−µ,µ}d−1

Pr[(θj : j ̸= i′) = u]

× (Pr[θ̂i′ > 0|θi′ > 0, (θj : j ̸= i′) = u]− Pr[θ̂i′ > 0|θi′ < 0, (θj : j ̸= i′) = u])2

≤ max
u∈{−µ,µ}d−1

(Pr[θ̂i′ > 0|θi′ > 0, (θj : j ̸= i′) = u]− Pr[θ̂i′ > 0|θi′ < 0, (θj : j ̸= i′) = u])2.

where (a) follows from the law of total probability. Now, observe that the last term is the square of the total variation
distance, and so, by Pinsker’s inequality we obtain

max
u∈{−µ,µ}d−1

(Pr[θ̂i′ > 0|θi′ > 0, (θj : j ̸= i′) = u]− Pr[θ̂i′ > 0|θi′ < 0, (θj : j ̸= i′) = u])2

≤ 1

2
KL
(
Pr[θ̂i′ > 0|θi′ > 0, {θj : j ̸= i′}]||Pr[θ̂i′ > 0|θi′ < 0, {θj : j ̸= i′}]

)
where KL(p||q) denotes the Kullback-Leibler (KL) divergence between distributions p and q.

As any randomized query strategy π which outputs ϕK+1 can be characterized by a distribution over deterministic query
strategies, we assume without loss of generality that the query strategy is deterministic and show that our lower bound holds
uniformly over all possible deterministic query strategies. Then, as θ̂ = ϕK+1, we are assuming that θ̂ is a deterministic
function of yk,p, (k, P ) ∈ [K] × [P ] (and that, consequently, ϕk,p is a deterministic function function of yk̂,p̂, (k̂, p̂) ∈
[P ]× [k − 1]).

Under this assumption,

KL
(
Pr[θ̂i′ > 0|θi′ > 0, {θj}j ̸=i′ ]||Pr[θ̂i′ > 0|θi′ < 0, {θj}j ̸=i′ ]

)
(a)
= KL

(
Pr[yk,p, (k, p) ∈ [K]× [P ]|θi′ > 0, {θj}j ̸=i′ ]||Pr[yk,p, (k, p) ∈ [K]× [P ]|θi′ < 0, {θj}j ̸=i′ ]

)
(b)
≤

K∑
k=1

P∑
p=1

KL
(
Pr[yk,p|θi′ > 0, {θj}j ̸=i′ , (y

k′,p′
)(k′,p′)∈LP (k,p)]||Pr[yk,p|θi′ < 0, {θj}j ̸=i′ , (y

k′,p′
)(k′,p′)∈LP (k,p)]

)
(c)
=

K∑
k=1

P∑
p=1

KL
(
Pr[yk,p|θi′ > 0, {θj}j ̸=i′ , (y

k′,p′
)(k′,p′)∈[k−1]×[P ]]]||Pr[yk,p|θi′ < 0, {θj}j ̸=i′ , (y

k′,p′
)(k′,p′)∈[k−1]×[P ]]

)
where (a) follows from the fact that θ̂i′ is a deterministic function of all the (random) observations {yk,p : (k, p) ∈
[K]×[P ]} and so describes a new distribution over the observations (since we do not know the form of the exact dependency
we decided to simply list “yk,p, (k, p) ∈ [K]× [P ]” on the argument); (b) follows from the chain rule for KL divergence;
and (c) follows from the fact that for a given episode, the actions taken by each agent are independent (we use the notation
that when k = 1, there is no conditioning on any variable depending on any output reward).

Joining all the results herein derived (and under some renaming of variable indices), we obtain

Eθ∼Uniform(Θ)Eθ

[
d∑

i=1

I[θiθ̂i < 0]

]
≥ d

2

1−

√√√√1

d

d∑
i=1

K∑
k=1

P∑
p=1

Uk,p,i

 (G.3)

where

Uk,p,i = sup
{θi′ :i′ ̸=i}

KL
(
Pr[yk,p|θi > 0, {θi′}i′ ̸=i, (y

k′,p)(k′,p′)∈LP (k,p)]||Pr[yk,p|θi < 0, {θi′}i′ ̸=i, (y
k′,p)(k′,p′)∈LP (k,p)]

)
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The rest of the proof directly follows from the proof of Theorem 5 of (Wagenmaker et al., 2022), where we directly
calculate the KL divergence between two Bernoulli distributions and use the fact that ϕk,p ∈ Φ for all (k, p) ∈ [K] × [P ]
to obtain the inequality

Eθ∼Uniform(Θ)Eθ

[
d∑

i=1

µ2I[θiθ̂i < 0]

]
≥ dµ2

2

(
1−

√
20KPµ2

d

)

which we replace back in (G.2) to obtain

max
θ∈Θ

Eθ[∥θ̂ − θ∥2] ≥ dµ2

2

(
1−

√
20KPµ2

d

)
.

Finally, since this uniform lower bound holds for any deterministic query strategy which outputs the estimator θ̂, it will
also hold for any randomized one (which, as we explained before, can be seen as a distribution over deterministic query
strategies), and thus we can take the infimum as in the lemma’s statement. This completes the proof.

We introduce some terminology. Let ϕ⋆(θ) = supϕ∈Φ⟨θ, ϕ⟩ denote the best arm for any arbitrary θ ∈ Θ. Now, given some
arbitrary fixed parameter θ ∈ Θ and given a query strategy π (which we know outputs a single query value or arm according
to some induced distribution over the set Φ), we define ϕπ = Eϕ∼π[ϕ] and say that π is ϵ-optimal if ⟨θ, ϕ⋆(θ)⟩−⟨θ, ϕπ⟩ ≤ ϵ.

We now establish the following result on our parallel linear bandits setting, which is basically (Wagenmaker et al.,
2022)[Theorem 2] and which we include for completeness since we do adapt some notation and terminology accord-
ing to our particular setting and presentation of the problem. We also provide additional detail where it is needed in the
proof.

Theorem G.1. Let ϵ > 0, P > 0, d > 1, and KP ≥ d2. Consider the parallel linear bandit setting in Definition G.1

with µ =
√

d
700KP and also consider running a (potentially adaptive) parallel algorithm with batches of size P for

K episodes which stops at a possibly random stopping time τ and outputs a policy π̂ which is a guess at an ϵ-optimal
policy. Then, there is a universal constant c > 0 such that unless KP ≥ c(dH/ϵ)2, there exists θ ∈ Θ for which
Prθ[{τ > K or π̂ is not ϵ-optimal}] ≥ 0.1; i.e., with constant probability either π̂ is not ϵ-optimal or more than K batches
are collected.

Proof. Since ϕ⋆(θ) = supϕ∈Φ⟨θ, ϕ⟩ for any θ ∈ Θ, then we easily see that

ϕ⋆(θ) =
θ

∥θ∥
=

θ√
dµ

, (ϕ⋆(θ))T θ =
√
dµ.

Now, consider a fixed θ ∈ Θ. Let π̂ be an ϵ-optimal query policy for θ. Then,

1 = Eϕ∼π̂[∥ϕ∥2]
(a)
≥ ∥ϕπ̂∥2

= ∥ϕ∗(θ)∥2 + 2
(
ϕπ̂ − ϕ⋆(θ)

)⊤
(ϕ∗(θ)) +

∥∥∥ϕπ̂ − ϕ⋆(θ)
∥∥∥2

(b)
= 1 +

2√
dµ

(
ϕπ̂ − ϕ⋆(θ)

)⊤
θ +

∥∥∥ϕπ̂ − ϕ⋆(θ)
∥∥∥2

where (a) comes from Jensen’s inequality and (b) from the fact that ϕ⋆(θ) = θ√
dµ

. Now, from the definition of ϵ-optimality,

we have
(
ϕ⋆(θ)− ϕπ̂

)⊤
θ ≤ ϵ, and thus we obtain∥∥∥ϕπ̂ − ϕ⋆(θ)

∥∥∥2 ≤ 2ϵ√
dµ

. (G.4)

Now, letting π̂ be any query policy, we show how ϕπ̂ may be used to construct an estimator of θ. With a slight abuse of
notation, we define the set Θπ̂ ⊆ Θ, where

Θπ̂ =
{
θ′ ∈ Θ : ∥θ′ −

√
dµϕπ̂∥2 ≤ 2

√
dµϵ
}
.
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As ϕ⋆(θ) = θ√
dµ

and
∥∥ϕπ̂ − ϕ⋆(θ)

∥∥2 ≤ 2ϵ√
dµ

if π̄ is ϵ-suboptimal, we know that
∥∥∥θ −√dµϕπ̄

∥∥∥2 ≤ 2
√
dµϵ, thereby

ensuring the set Θπ̂ is non-empty as long as π̂ is ϵ-suboptimal.

Then, we define θ̂π̂ to be an estimator of θ as follows

θ̂π̂ =

{
any θ′ ∈ Θπ̂ if query policy π̂ is ϵ-optimal
any θ′ ∈ Θ otherwise.

Therefore, if π̂ is ϵ-optimal for θ, it follows that

∥θ̂π̂ − θ∥2 ≤ 2∥θ̂π̂ −
√
dµϕπ̂∥2 + 2∥θ −

√
dµϕπ̂∥2

(a)

≤ 4
√
dµϵ+ 2dµ2

∥∥∥ϕπ̂ − ϕ⋆(θ)
∥∥∥2 (b)

≤ 8
√
dµϵ.

(G.5)

where (a) follows from θ̂π̂ ∈ Θπ̂ and (b) from (G.4). In other words, if we have an ϵ-optimal query policy, we can construct
an estimator θ̂ such that ∥θ̂ − θ∥2 ≤ 8

√
dµϵ.

Now, taking again the arbitrary query policy π̂, we have

Eθ[∥θ̂π̂ − θ∥2] = Eθ[∥θ̂π̂ − θ∥2I[π̂ is ϵ-optimal for θ] + ∥θ̂π̂ − θ∥2I[π̂ is not ϵ-optimal for θ]]
(a)

≤ 8
√
dµϵ+ 4dµ2 Eθ[I[π̂ is not ϵ-optimal for θ]]

(b)
=

8dϵ√
700KP

+
4d2

700KP
Prθ[{π̂ is not ϵ-optimal for θ}],

(G.6)

where (a) follows from (G.5) in the first term and ∥θ1 − θ2∥ ≤ 2
√
dµ for any θ1, θ2 ∈ Φ in the second term; and where (b)

follows from plugging in µ =
√

d/700KP .

Now, from Lemma G.1, we have that our algorithm, since it runs until the stopping time τ , inf θ̂,π maxθ∈Θ Eθ[∥θ̂− θ∥22] ≥
dµ2

2

(
1−

√
20τPµ2

d

)
. Now, if we assume that τ ≤ K, i.e., that we collect no more than K batches of P arms, we obtain

max
θ∈Θ

Eθ[∥θ̂π̂ − θ∥22] ≥ inf
θ̂,π

max
θ∈Θ

Eθ[∥θ̂π̂ − θ∥22] ≥
dµ2

2

(
1−

√
20KPµ2

d

)
(a)
≥ 0.00059d2/KP. (G.7)

where (a) follows from using KP ≥ d2 and µ =
√

d/700KP .

Then, assuming that θ = θ⋆ ∈ argmaxθ∈Θ Eθ[∥θ̂π̂ − θ∥22], (G.6) and (G.7) would not be contradicted if the following
holds,

0.000059
d2

KP
≤ 8dϵ√

700KP
+

4d2

700KP
Prθ[{π̂ is not ϵ-optimal for θ⋆}].

Manipulating this inequality shows that if (
0.00325

2
√
700

)2
d2

ϵ2
≥ KP

then
Prθ[{π̂ is not ϵ-optimal for θ⋆}] ≥ 0.1.

In other words, unless KP = Ω(d2/ϵ2), we have Pr[{π̂ is not ϵ-optimal for θ⋆}] ≥ 0.1.

We now must relate the best arm identification problem in the linear bandit setting to linear MDPs. For this, we can relate
any instance of the linear bandit problem (defined by an instance of the parameter θ ∈ Θ) to an instance of a linear MDP.
The idea is that the task of identifying the optimal policy in the constructed linear MDP reduces to identifying the best
query strategy in the linear bandit setting. We refer readers interested in the exact construction of the linear MDP to the
work (Wagenmaker et al., 2022)[Lemma D.3] and summarize its results in the following lemma.
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Lemma G.2 (Lemma D.3, D.4 from (Wagenmaker et al., 2022), restated). Let ϵ > 0, P > 0, d > 1, and KP ≥ d2.

Also, let θ ∈ Θ = {−µ, µ}d with µ =
√

d
700KP . There exists a (d + 1)-dimensional linear MDP with horizon H such

that, starting at some particular initial state, any ϵ-suboptimal policy for the MDP can be converted to an ϵ/H-suboptimal
query policy in the single linear bandit setting.

Proof. We refer readers interested in a detailed proof to Appendix D.1 of (Wagenmaker et al., 2022).

Note that Lemma G.2 constructs the MDP for the single linear bandit setting; however, in the same lemma’s statement we
have that the parameter µ has P in the denominator (instead of 1 as in the original work by Wagenmaker et al. (2022)). This
is not a problem since having P ≥ 1 does not change the validity of the construction of the MDP stated in (Wagenmaker
et al., 2022) – indeed, in the construction by Wagenmaker et al. (2022), the denominator of µ serves only as a scaling to the
unknown signed measure µ1 (which defines a linear MDP; see Section 2) so that it satisfies the condition ∥µ1(S)∥ ≤

√
d.

We now describe a parallel algorithm with P agents for a given policy at iteration k ∈ [K]. At the beginning of the
iteration, we let each agent p ∈ [P ] access the MDP in parallel from the specific initial condition stated by Wagenmaker
et al. (2022) and take an action according to the given policy (the policy is free to define how each agent takes its own action
but must make sure each agent takes actions independently) – since all start in the same initial state, they will be playing
the underlying parallel linear bandit and thus obtain the rewards {yk,p}p∈[P ] (because the construction by (Wagenmaker
et al., 2022) only allows access to the underlying (single) linear bandit only for the transition out of the initial state). Each
agent continues playing their MDP independently according to the construction by Wagenmaker et al. (2022) for all the
rest of the episodes (which requires no further access to the underlying linear bandit). At the end of the episode, the parallel
algorithm can decide whether to make a change to the policy based on the results obtained by all the parallel agents and
use it for the next iteration. After iterating all the K episodes, the algorithm outputs some policy, whose decision for the
transition out of the initial state for all agents would be equivalent to ϕK+1, i.e., the output of a query model for the parallel
linear bandit after k steps.

With Lemma G.2 in mind, we know that identifying ϵ-suboptimal policies in the MDP is at least as hard as identifying
ϵ/H-suboptimal query strategies in the single linear bandit. Previously, we showed that identifying a ϵ-suboptimal query
strategy in the parallel linear bandit setting with P processors and K steps requires KP = Ω(d2/ϵ2). Replacing the ϵ with
ϵ/H gives us the lower bound for linear MDP.
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