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Abstract

Given increased wildfire activity, there is growing interest in understanding the drivers of
microbial succession after fire. Dispersal may be especially important to post-fire succession as
biotic communities can be more susceptible to invasion following a disturbance. Here, we
experimentally manipulated dispersal into disturbed leaf litter communities collected following a
wildfire and tracked bacterial and fungal dispersal assemblages over time. We show that the
identity and source of microbes immigrating into the soil surface post-fire change across time
with seasonal shifts and the reemergence of above ground vegetation. Further, dispersal
significantly contributed to the reassembly of leaf litter microbial communities after the fire,
producing an increasingly distinct assembly trajectory. The effect of dispersal on a- and 3-
diversity was ecosystem-dependent but, unexpectedly, influenced bacterial and fungal
communities in a similar manner within ecosystems. Collectively, these results demonstrate that
dispersal explicitly alters the course of microbial community succession following a wildfire and
may impact bacteria and fungi in parallel ways, despite differing in traits expected to alter

dispersal patterns.

Importance

Identifying the mechanisms underlying microbial community succession is necessary for
predicting how microbial communities, and their functioning, will respond to future
environmental change. Dispersal is one mechanism expected to affect microbial succession, yet
the difficult nature of manipulating microorganisms in the environment has limited our
understanding of its contribution. Using a dispersal exclusion experiment, this study isolates the

specific effect of environmental dispersal on bacterial and fungal community assembly over time
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following a wildfire. The work demonstrates the potential to quantify dispersal impacts on soil
microbial communities over time and test how dispersal might further interact with other

assembly processes in response to environmental change.

Introduction

Dispersal, or the movement of organisms across space, has been recognized as a
fundamental mechanism influencing microbial community assembly (1, 2). Like other biological
processes (e.g., selection, speciation, and drift), the contribution of dispersal to community
assembly can vary based on contemporary and historical conditions, such as after a disturbance
(3, 4). Wildfire is one disturbance that has rapidly increased in frequency and intensity over the
last few decades, particularly in drought prone regions such as the Southwestern United States
(5, 6). Given that fire activity is predicted to continue increasing (7, 8), there is considerable
interest in understanding how ecological communities respond to and recover from fire,
especially in grasslands were a majority of annual global fires occur (9). Historically, researchers
have focused on the secondary succession of plant communities, but there are growing efforts to
understand the assembly of soil microbial communities (10) due to their role in post-fire nutrient
cycling (11, 12) and plant restoration (13).

Wildfires can alter surface soil microbial communities, including those in leaf litter, directly
through heating and indirectly by altering the physical and chemical properties of bulk soil and
leaf litter, such as through the incomplete combustion of organic matter (14, 15). The specific
effect of wildfire on microbial communities is highly variable, with some studies reporting no
change in alpha diversity (16—18) and others reporting effects on composition, abundance, and

diversity that last years (19) to decades (20). This variability is likely due to differences in fire
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severity, soil type, pre-fire microbial community, and sampling methods (i.e., soil depth and
timing post fire) between studies. Despite these inconsistencies, some general patterns do
emerge. For instance, wildfires typically reduce overall microbial abundance and richness in the
surface soil (21). Additionally, fungi are generally more sensitive to fire than bacterial
communities, perhaps due to a lower heat tolerance or the death of plants associated with
mycorrhizal fungi (21, 22). Post-fire surveys have also shown that fire can select for pyrophilous
or “fire-loving” microbes such as fungi in the genera Pyronema and bacteria in the spore-
forming phylum Firmicutes or in the genus Massilia (phylum Proteobacteria) (23-26).

Given that wildfire can dramatically lower microbial abundance and diversity, dispersal may
be especially important to post-fire succession, defined here as the sequential manner by which
communities change over time following a disturbance (27). Dispersal can influence community
reassembly in numerous ways. For instance, dispersal can reintroduce (or rescue from lowered
abundances) taxa more abundant in the pre-fire community (28, 29). Dispersal can also facilitate
the arrival of novel taxa that are better suited for the post-fire conditions and thus, outcompete
resident taxa (30, 31). Alternatively, high dispersal rates can introduce mal-adapted individuals,
potentially impeding community resilience (32—34). Finally, dispersal can alter overall 3-
diversity, or the variance in composition between local communities, depending on how variable
the assemblage of dispersing microbes is across a landscape (4, 35). In sum, there are a variety of
ways that microbial dispersal is expected to influence post-fire succession; however, the specific
effects of dispersal have not been assessed by experimentally manipulating dispersal in an
environmental community.

Here, we investigated the impacts of dispersal on microbial communities in leaf litter, the

topmost layer of soil, following a vegetation fire in two adjacent ecosystems in Southern
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California, a semi-arid grassland and coastal sage scrub (CSS). Fueled by hot, dry summers and
strong Santa Ana winds, wildfires are common in these Mediterranean-type ecosystems with six
fires recorded at our experimental field site since the beginning of the 20th century (1914, 1948,
1967, 1998, 2007, and 2020) (36). To test the influence of dispersal on the post-fire succession of
leaf litter microbial communities, we constructed bags which either permitted (“open” bags, 2
mm window screen) or prevented (“closed” bags, 0.22 pm nylon) microbial cells from
immigrating in or out. The bags were filled with either sterile glass microscope slides (grassland
only) or charred leaf litter collected after the wildfire in 2020 (Fig. 1 and S1). Glass microscope
slides capture microbial cells immigrating into the surface soil, while restricting cell growth by
not providing an energy source (37). In comparison, the charred leaf litter allowed us to assess
the role of post-fire dispersal on fungal and bacterial community succession in the field.

We hypothesized that dispersal impacts the succession of post-fire leaf litter communities.
To address this hypothesis, we asked two questions: 1) What is the identity and source of
microbes (both bacteria and fungi) dispersing into the soil surface following a fire? We expected
that dispersal from air and exposed bulk soil (via wind and rain) would be the dominant dispersal
source into the leaf litter layer post-fire. However, we also anticipated that the composition of
dispersing propagules would change over time as vegetation, a key source of dispersal into the
soil surface at this site pre-fire (37), recovered. 2) How does dispersal influence (a) composition
of bacterial and fungal communities and (b) specifically, their abundance and a- and B-diversity
during post-fire succession? We predicted that dispersal would quickly alter community
composition post-fire resulting in an alternative assembly trajectory whereby over time,
communities will become increasingly dissimilar to communities closed to dispersal. We also

predicted that exposure to dispersal would increase a-diversity after the fire, but especially for
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fungi because of their greater sensitivity to wildfire than bacteria. Similarly, we expected that
dispersal would increase bacterial and fungal B-diversity during post-fire succession as the

vegetation recovered in patches.

Results
The microbial dispersal assemblage changes over time

To characterize the microbial propagules dispersing into the soil surface (hereafter, the
“dispersal assemblage”), we assessed the taxonomic composition (bacteria and fungi) and the
abundance (bacteria only) of the cells captured on the glass slides in the grassland only. The
dispersal assemblage was differentiated from burned leaf litter communities by a higher relative
abundance of the bacterial genus Hymenobacter and fungal genus Filobasidium (Fig. 2; Table
S1; SIMPER analysis).

Since abiotic and biotic properties of the landscape changed throughout the duration of the
experiment as seasons shifted and above-ground vegetation recovered, we specifically tested if
the dispersal assemblage changed over time. The abundance of immigrating bacterial cells varied
over time (Fig. 3A; Table S2; ANOVA: P <0.001) and was higher during the wet season in
January and February (post hoc comparison: P < 0.05). Bacterial diversity (Shannon Diversity)
also changed across time (ANOVA: P < 0.001) and showed a similar pattern as abundance,
peaking during the wet months (Fig. 3B; Table S3; P < 0.001). Further, the composition of the
bacteria dispersing into the soil surface also changed (Fig. 3C; Table S4; PERMANOVA: P <
0.001). Initially, Actinobacteria dominated the dispersal assemblage (January 2021 abundance:
50.6%). However, by the end of the experiment, the majority of dispersing bacteria were from

the phylum Bacteroidetes (January 2022 abundance: 54.0%). This broad shift in composition
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was driven by a 134-fold increase in the relative abundance of the genus Hymenobacter (phylum
Bacteroidetes) from 0.29% at the first timepoint to 39% at the final timepoint (Fig. S2A). Along
with taxonomic changes, -diversity, or the compositional variability of immigrating bacteria
among sampling locations, also changed across time. Specifically, the composition of bacteria
dispersing into the soil surface was most variable across the landscape during the dry season
(May and September) (Fig 3C; PERMDISP post hoc pairwise-comparisons: P < 0.05).
Following the same pattern as bacterial diversity, the diversity of fungi dispersing into the
soil surface varied over time (Fig 3D; Table S5; ANOVA: P <0.001) and was generally higher
during the wet season. (We did not assess fungal abundance on the glass slides, so we cannot
compare to bacterial abundance.) The composition of fungi immigrating onto the glass slides
also varied temporally (Fig. 3E; Table S6; PERMANOVA: P < 0.001), with the first post-fire
samples (January 2021) being quite distinct and more variable in composition compared to later
timepoints (PERMDISP post hoc pairwise-comparisons: P < 0.05). Throughout the course of the
experiment, the fungal dispersal assemblage was dominated by the phyla Ascomycota and
Basidiomycota, but notably, there was a 3-fold increase in the relative abundance of the genus
Alternaria (phylum Ascomycota) from 9.5% to 28% from the first to the final timepoint (Fig.

S2B). Alternaria also dominates the unburned leaf litter fungal community at this field site (38).

Sources of dispersing microbes

To investigate where bacteria and fungi on the glass slides were immigrating from, we
sampled microbial communities from three potential dispersal sources (air, surrounding leaf
litter, and soil) collected at each timepoint. Bacterial and fungal composition were significantly

different between all the three dispersal sources (Fig. S3; PERMANOVA post hoc pairwise-
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comparisons: P <0.001). A SourceTracker analysis found that these sources varied in their
contribution to the bacterial and fungal dispersal assemblages found on the glass slides (Fig. 4;
Kruskal-Wallis: P < 0.01 in both cases). The largest proportion of the bacterial dispersal
assemblage could be traced back to air and environmental leaf litter (34% and 26%,
respectively), while dispersal from air alone explained the greatest proportion of the fungal
community on the glass slides (42%). Against our expectations, dispersal from bulk soil
contributed a smaller amount to the overall bacterial and fungal dispersal assemblages (20% and
3%, respectively); however, it explained the largest proportion of the bacterial community on the

glass slides in January 2021, prior to the reemergence of vegetation (Fig. 4, red points).

Wildfire effects on the microbial leaf litter community

In addition to characterizing the microbes dispersing onto the soil surface, we also assessed
how dispersal influenced the succession of microbial communities on burned leaf litter. To
validate that the leaf litter communities were disturbed by the fire, we compared microbial
composition on the burned litter collected after the Silverado fire in 2020 with pre-fire litter
collected at the same field site between 2016 and 2018 (38). Post-fire bacterial and fungal
composition were significantly different from pre-fire communities in both ecosystems,
regardless of the dispersal treatment (Fig. 2; PERMANOVA post hoc pairwise-comparisons: P <
0.001 all cases). This result supports previous findings showing these leaf litter communities
were altered by the wildfire (39). Overall, burned leaf litter was characterized by a higher
relative abundance of the bacterial genus Pseudomonas and lower relative abundance of the
fungal genus Alternaria (Fig. 2; Table S7; SIMPER analysis). In particular, the burned CSS leaf

litter was dominated by the fungal genus Aureobasidium which showed an 18-fold and 16-fold
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increase in relative abundance in the open and closed bags, respectively, compared to the

unburned community (Fig. 2B).

Dispersal affects microbial succession post-fire

To isolate the effect of dispersal on microbial succession after the wildfire, we compared
community assembly on burned leaf litter in open and closed litterbags. As we expected,
dispersal significantly contributed to the post-fire succession of microbial communities. In both
ecosystems, bacterial and fungal composition was affected by the dispersal treatment (Fig. 5;
Table S4 and S6; PERMANOVA: P <0.001 in all cases). Overall, dispersal had a greater impact
on the post-fire assembly of the bacterial community, explaining a larger proportion of
compositional variation (18% and 34% in the grassland and the CSS, respectively) compared to
the fungal communities (15% and 21%) (Fig. S4; Table S4 and S6). In the grassland, leaf litter
communities exposed to dispersal were represented by a higher relative abundance of the
bacterial genera Massilia and Hymenobacter as well as the fungal genus Coniochaeta (Fig. 2;
Table S8; SIMPER analysis). CSS leaf litter communities in the absence of dispersal were
characterized by a greater relative abundance of the bacterial genus Curtobacterium and fungal
genus Cladosporium compared to the open bags (Fig. 2; Table S8; SIMPER analysis).

Dispersal also affected how bacterial communities assembled over time (Fig. S5A; Table
S4; PERMANOVA: bag type by timepoint interaction, P < 0.001 in both ecosystems). Bacterial
composition did not initially differ between the dispersal treatments in January 2021, 3 months
after the fire (post hoc pairwise comparison: P> 0.05). However, as we expected, the effect of

dispersal on bacterial assembly increased with time in both ecosystems such that community
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composition was most dissimilar between the open and closed bags at the final collection in
January 2022, 14 months after the fire.

Exposure to dispersal altered fungal community succession over time in a similar manner
(Fig. S5B; Table S6; PERMANOVA: bag type by timepoint interaction, 2 < 0.001 in both
ecosystems). Like the bacterial communities, the effect of dispersal increased with time. Fungal
composition did not differ between the open and closed bags in either ecosystem until the second
collection in February 2021 (post hoc pairwise comparison: P < 0.05) and composition was most
dissimilar between dispersal treatments towards the end of the experiment (January 2022 in the

grassland and September 2021 in the CSS).

Dispersal differentially affects microbial abundance and o~ and [-diversity on leaf litter

Exposure to dispersal altered bacterial abundance on the leaf litter but did so in an
ecosystem-dependent manner (Fig. 6A; Table S2; ANOVA: ecosystem by bag type interaction, P
< 0.001). In the grassland, bacterial abundance in the open litter bags was 46% lower than that in
the closed bags (open = 1.3 x 10° cells per g dry litter; closed = 2.4 x 107 cells per g dry litter;
ANOVA: bag type, P <0.001). In contrast, exposure to dispersal increased bacterial abundance
in the CSS leaf litter by 47% (open = 3.1 x 107 cells per g dry litter; closed = 2.1 x 107 cells per g
dry litter; P < 0.001). Moreover, the effect of dispersal on bacterial abundance in the CSS litter
changed over time (bag type by timepoint interaction: P < 0.05), whereby the difference in
average abundance between the open and closed bags seen during the first 6 months of the
experiment was not detectable by September 2021, 11 months after the wildfire.

Dispersal also affected microbial diversity, influencing bacterial and fungal diversity in a

similar manner (Fig. 6B and C). Exposure to dispersal decreased bacterial diversity by an
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average of 3% in the grassland while increasing diversity by 58% on average in the CSS.
However, the effect of dispersal on bacterial diversity changed over time in the grassland (Table
S3; bag type by timepoint interaction: P < 0.001). Specifically, bacterial diversity in the
grassland did not differ between the dispersal treatments until the final timepoint when exposure
to dispersal decreased bacterial diversity by 12% on average (Fig. 6B). In contrast, bacterial
diversity in the CSS was higher in the open bags for the duration of the experiment.

For the fungal communities, exposure to dispersal did not significantly impact overall
diversity in the grassland (Table S5; P > 0.05), but increased diversity in the CSS by 13% on
average (P <0.001). Like the bacterial communities, fungal diversity was only significantly
different between the open and closed bags at the final timepoint in both ecosystems (Fig. 6C).

In addition to affecting a-diversity, exposure to dispersal also changed pB-diversity of the
leaf litter communities. However, the effect of dispersal on B-diversity varied between
ecosystems. Exposure to dispersal increased overall variability in bacterial composition in the
grassland (Fig. 5C; PERMDISP: P < 0.001) but marginally decreased pB-diversity in the CSS (P
=0.096) against our expectations.

In contrast, dispersal did not affect variability in fungal composition in the grassland (Fig.
5D; P = 0.20) but marginally increased compositional heterogeneity in the CSS (P = 0.065). We
note that this variation in dispersion may also contribute to the significant compositional

differences found between dispersal treatments in both ecosystems (40).

Discussion

By manipulating dispersal directly (excluding it completely), this study demonstrates that

microbial dispersal influences microbial succession in surface soil. Dispersal is important for the
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succession of bacteria and fungi on leaf litter following wildfire, a disturbance that alters both the
soil microbial community and the assemblage of microbes dispersing into the soil surface.

Given that the wildfire removed much of the vegetation and standing leaf litter, we
expected that the air and bulk soil would be key sources of microbial dispersal into the leaf litter
layer (Q1). This prediction was only partially supported, as air was a key source of immigrating
microbes (bacteria and fungi) post-fire while the bulk soil was less important (although we note
that the air community itself likely includes bacteria and fungi previously liberated from other
sources such as bulk soil and the phyllosphere (41, 42)). Further, a previous study conducted at
this field site before the fire found that only 4% of the bacteria immigrating into the surface soil
were traced back to the bulk soil, compared to 20% here (a 5-fold increase post-fire) (37).
Increased importance of these dispersal sources post-fire may be due to the fire removing much
of the standing vegetation and persistent leaf litter layer and, thus, reducing physical barriers
between the air and soil surface. One caveat of this result is that the glass slides may be less
likely to capture taxa that disperse by active dispersal mechanisms, such as fungi that move by
hyphal growth (37). Additionally, the glass slides may have selected for taxa with greater
resistance to degradation from UV radiation, moisture stress, and nutrient poor conditions that
more closely mirror conditions previously experienced by aerial dispersers. For instance,
Hymenobacter, the most abundant bacterial genera captured on the glass slides at later
timepoints, is a common atmospheric bacterium that displays resistance to radiation (43, 44).

In addition to identifying the key sources of dispersal onto the soil surface, we also
characterized the identity of the dispersing propagules (Q1). As we expected, the composition of
fungi and bacteria dispersing into the grassland leaf litter layer shifted over time. These temporal

changes in the dispersal assemblage may be due to the post-fire plant succession. However, we
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cannot entirely disentangle how much of this temporal variation was due to the wildfire effects
on the landscape verses seasonal shifts in precipitation, wind, and other meteorological factors
that alter dispersal patterns across the landscape (45, 46).

Although we cannot trace specific taxa from the dispersal assemblage to the leaf litter,
our experiment demonstrates that dispersal alters the successional trajectory of leaf litter
microbial communities by impacting composition, abundance, and o- and B-diversity (Q2). The
effect of dispersal on specific taxa on leaf litter was highly variable. For instance, exposure to
dispersal negatively impacted some taxa, such as the bacterial genus Curtobacterium and the
fungal genus Cladosporium. Both taxa displayed relatively higher abundance in the closed CSS
leaf litter communities, indicating that dispersing taxa compete with these taxa. In contrast, the
bacterial genus Massilia increased in relative abundance in the leaf litter communities exposed to
dispersal in both ecosystems. Other taxa showed a minimal response to the dispersal treatment
but were greatly impacted by the wildfire. In particular, the fungal genus Aureobasidium made
up over 36% of the post-fire CSS leaf litter community in both the open and closed bags
compared to 2% of the pre-fire community. Aureobasidium is not commonly recognized as a
pyrophilous fungi; however, the genus was found to be enriched in burned bulk surface soil from
a recently burned pine forest (47), suggesting it may have a competitive advantage in post-fire or
post-disturbance environments.

Dispersal also impacted leaf litter bacterial and fungal communities in an ecosystem-
dependent manner. Previous studies report contrasting effects of dispersal on microbial
assembly, but the factors responsible for these differences remain unclear. For instance, exposure
to dispersal increased compositional variation (-diversity) of nectar-inhabiting microbes on

flowers (49), while it homogenized bacterial composition on pre-fire leaf litter in this grassland
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system (50). Still, it is somewhat unexpected to observe differential impacts of dispersal in
adjacent vegetation communities. We can think of at least three reasons for this ecosystem-
dependence in our system. First, the severity of the disturbance may have varied between
ecosystems. Specifically, a thinner and more uniform char layer in the grassland suggests the
wildfire burned more severely and with greater variability in the CSS than in the grassland at this
field site. The effect of wildfire on microbial communities is proportional to the fire severity (24,
51). Thus, leaf litter communities in the CSS may have been differentially susceptible to
dispersing microbes compared to those in the grassland. Second, the effect of dispersal may
depend on substrate quality which also differs between ecosystems (52). Given that resource
availability can alter invasion success (53, 54), chemical differences between the grass and shrub
leaf litter may alter community response to dispersal. Third, the leaf litter may have been
exposed to unique dispersal assemblages in each ecosystem. Indeed, we cannot verify this
assumption because we only placed glass slides in the grassland. Regardless of the dispersal
treatment, however, ecosystem type was a main factor determining microbial community
composition on the leaf litter, confirming previous results from this field site (38). Given that the
grassland and CSS experience similar climate conditions, we attribute these ecosystem effects to
differences in the leaf litter chemistry of the plant communities. The effect of ecosystem
indicates that, in addition to dispersal, habitat filtering (selection) on the leaf litter communities
or their dispersal sources is an important drivers of microbial community succession.

Within ecosystems, dispersal impacted some aspects of bacterial and fungal community
succession in a similar manner, including a-diversity and grassland B-diversity trends (Q2). This
result countered our hypothesis that differences in traits, such as size, morphology and dispersal

modes of bacteria and fungi would influence their dispersal patterns and therefore the effects of
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their dispersal on microbial succession (55-57). The similar way in which dispersal impacted
both communities was also surprising given that we assayed the communities using different
marker genes. These findings suggest that other factors are more important for post-fire
succession of both bacteria and fungi. For instance, charred leaf litter was used in this
experiment which contains highly aromatic structures that resist decomposition (58, 59),
potentially constraining the effect of dispersal on both bacterial and fungal communities. Further,
bacterial and fungal diversity showed similar patterns on the glass slides, matching seasonal
shifts in abiotic conditions (Fig. 3B and C). Thus, abiotic properties seem to influence the effects
of dispersal more than specific trait differences between bacteria and fungi. Although we do not
expect mycorrhizal fungi to make up a signification portion of the leaf litter community, we note
that primer bias may influence our characterization of the fungal communities in the open and
closed bags as the ITS2 primer does not detect all arbuscular mycorrhizal fungi (60, 61). Further,
we cannot exclude the possibility undetected differences in moisture or differences in the
composition of small grazers, microfauna, and plant roots may also contribute to the successional
differences seen between the communities exposed to dispersal and those that were not.

Taken together, our results demonstrate how dispersal explicitly contributes to bacterial
and fungal succession following a wildfire. Previous work in this system shows that relatively
minor shifts in microbial taxonomic composition can affect leaf litter decomposition rates (62) so
the role of dispersal in post-fire succession could have consequential impacts on ecosystem
processes such as carbon cycling. With other growing evidence that microbial communities are
dispersal limited, future studies might aim to directly measure the functional consequences of
dispersal. Further exploring whether more active management of key dispersal sources may

expedite community recovery of soil microbial communities should also be considered.
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Materials and Methods
Field site and Silverado Fire

This experiment was conducted adjacent to the Loma Ridge Global Change Experiment
(LRGCE) in a California grassland and neighboring CSS located in northern Irvine, California,
USA (33°44' N, 117°42' W, 365 m elevation). Plant community composition varies between the
grassland and CSS at Loma Ridge (38). The grassland is dominated by non-native annual grasses
(Bromus diandrus, Avena fatua) and the native forb Deinandra fasciculata while native drought-
deciduous shrubs (Artemisia californica, Salvia mellifera) dominate the neighboring CSS (63,
64). Leaf litter chemistry also varies between the grassland and CSS. In particular, the shrub
litter has higher lignin and lower cellulose content than that in the grassland and is more resistant
to microbial decomposition (52, 65). In both ecosystems, leaf litter bacterial communities are
dominated by the phyla Proteobacteria and Actinobacteria and fungal communities by
Ascomycota and Basidiomycota (38, 39). Soils are fine-loamy, mixed, thermic Typic Palexeralfs
sandy loams (California Soil Resource Lab, https://casoilresource.lawr.ucdavis.edu/gmap/). In
the top 15 cm of soil, total organic carbon pools are similar between the grassland and CSS while
total nitrogen is higher in the CSS (66). The climate is Mediterranean (dry summers and wet
winters) with a mean annual temperature of 17°C and a mean annual precipitation of 325 mm.

On October 26, 2020, the grassland and CSS were burned by the Silverado Fire (Fig. 1). The
wildfire reduced vegetation cover in both ecosystems. Fire intensity was not quantitatively
assessed due to the unplanned nature of the fire and safety concerns preventing access to the site
immediately after the fire. In both ecosystems, the fire removed most of the surface litter layer;

however, some partially burned leaf litter remained on the soil surface. Partially charred leaf
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litter was collected in the grassland and CSS as soon as we were permitted into the site on

November 18, 2020, 23 days after the wildfire (Fig. 1B and E insets).

Dispersal manipulations

To manipulate microbial dispersal, litterbags were constructed from either 0.22 pm nylon or
2 mm window screen. The 2 mm pores in the window screen mesh allow bacterial and fungal
cells to disperse in and out of the bags (“open” litterbags). Conversely, 0.22 pm pores in the
nylon restrict immigration of bacteria and fungi (“closed” litterbags). Autoclaved litterbags (10
cm x 10 cm) were filled with 3 g of charred leaf litter (wet weight) collected from either the
grassland or CSS (open litterbags: n = 35 per ecosystem; closed litterbags: n = 35 per
ecosystem). Filled litterbags were stored at 4°C for up to 6 days.

To characterize the abundance and composition of the dispersal assemblage, 50 dispersal
bags (5 cm x 7.5 cm) were filled with a single glass microscope slide (open: n = 35; closed: n =
15). Walters et al. (37) showed the closed bag treatment successfully prevents the glass slides
from capturing dispersing microbes. Thus, we reduced the number of closed glass slides that we
deployed into the field to minimize resource consumption and preparation time. Glass
microscope slides (2.5 cm x 7.5 cm) were cleaned with diH20, sterilized with 70% ethanol,
dried, sealed into dispersal bags, and autoclaved.

On November 25, 2020, 30 days after the wildfire, the 70 grass and 70 CSS litterbags were
deployed onto the soil surface of their respective ecosystems in 14 experimental blocks (1 m x 1
m, 7 blocks per ecosystem). At the time of deployment, dispersal bags were placed directly onto
exposed bulk soil which had a thin, but heterogenous, char layer still present (Fig. S1). Previous

work at this site revealed that dispersal from vegetation contributes to the assembly of
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undisturbed leaf litter microbial communities (37). Due to the opportunistic nature of this
experiment and limited resources, we kept the number of samples manageable and chose to only

deploy the 50 glass slide dispersal bags into the grassland (Fig. 1F).

Dispersal bag collection

At five timepoints, we collected seven litterbags per dispersal treatment (2 ecosystems x 2
dispersal treatments x 7 replicates = 28 litterbags/timepoint), seven open glass slides, and three
closed glass slides (10 glass slide bags/timepoint). Dispersal bags were collected approximately
3 months (T1: January 13, 2021), 4 months (T2: February 16, 2021), 7 months (T3: May 26,
2021), 11 months (T4: September 21, 2021), and 15 months (T5: January 11, 2022) after the
wildfire. We anticipated that dispersal would have a greater influence over community assembly
immediately following the wildfire disturbance. We, therefore, concentrated collection
timepoints towards the beginning of the experiment.

On the day of collection, open leaf litter and glass slide bags were placed in sterile plastic
bags in the field before being transported back to the lab. Leaf litter samples were immediately
ground with a coffee grinder and homogenized. A 0.1 g aliquot of ground leaf litter was placed
into a 50 mL conical tube with 5 mL 1% phosphate-buffered glutaraldehyde (Pi-buffered GTA)
and stored in the dark at 4°C for up to two days in preparation for bacterial abundance analysis.
At each timepoint, moisture content was measured on a 1 g subsample of ground, homogenized
leaf litter. Overall, leaf litter moisture content was not significantly different between the open
and closed litter bags (t-test: P = 0.60). All remaining ground, homogenized leaf litter was stored

at -70°C until DNA extraction.
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Glass slides were transferred on collected day from dispersal bags into sterilized Whirl-Pak
bags (Nasco, WI, USA) containing 2 mL 0.9% sterile saline. Notably, glass slides had a visible
layer of dust and/or bulk soil on the surface at the time of collection and were often in direct
contact with vegetation or leaf litter at later timepoints as the plant community recovered post-
fire. The Whirl-Paks were agitated by hand for 30 seconds to dislodge microbial cells from the
glass slide surface into the saline solution. A 600 pL aliquot of this cell solution was stored at -
70°C until DNA extraction. 156 pL of 10% Pi-buffered GTA was added to the remaining cell
solution (final concentration 1% Pi-buffered GTA) and fixed samples were stored in the dark at

4°C for up to 12 hours for bacterial abundance analysis.

Dispersal source sampling

Surrounding air, bulk soil, and vegetation were previously identified as potential sources of
dispersal into the surface leaf litter layer at this field site (37). At each sampling timepoint, we
collected air (n = 2), surface soil (n = 1), and environmental (not litterbag) leaf litter samples (n =
1) from each ecosystem. To collect air samples, we directed airflow from a portable fan (O2Cool
FD10101) at two sterile agar plates for 30 minutes. Air samples were collected 3 feet off the soil
surface and within 10 feet of the experimental blocks in both ecosystems. On the day of
collection, a sterile razor blade was used to scrape off the top 1 mm of agar. Environmental leaf
litter and bulk soil samples were collected randomly from the seven experimental blocks and
pooled into one composite sample for each timepoint. Soil samples were collected by scraping a
sterile garden trowel across the soil surface to collect the top 1 cm of bulk soil. On the day of

collection, soil samples were sieved (2 mm) and environmental leaf litter samples were ground

19



435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

and homogenized. Agar, soil, and environmental litter samples were stored at -70°C until DNA

extraction.

Bacterial abundance using flow cytometry

Bacterial abundance from grass litter, CSS litter, and glass slide samples were measured
using flow cytometry (67). For grass litter samples, 550 pL 0.1 M tetrasodium pyrophosphate
was added to the fixed sample and gently sonicated for 30 min in the dark at 4°C. The samples
were then vacuum filtered through a 2.7 um filter to remove larger nonbacterial cells and debris.
GTA-fixed glass slide samples were also filtered through a 2.7 um filter. As for all steps of
microbial characterization, the ease in which cells dislodge from the glass slides may vary
between taxa potentially biasing downstream analyses.

Due to increased background noise created by debris particles, an optimized method to
quantify bacterial abundance from soil and shrub leaf litter was used to prepare CSS litter
samples for flow cytometry (67). To extract bacterial cells from the CSS litter, a detergent
solution consisting of 1.2 mL 250 mM tetrasodium pyrophosphate (TSP) and 31 uL Tween 80
was added to the fixed samples followed by 30 min of gentle sonication in the dark at 4°C. 1 mL
aliquots of the liquid slurry were then layered on top of 0.5 mL Nycodenz (80% [wt/vol]
prepared in 50 mM sterile TSP buffer). Samples were then centrifuged for 30 min at 14,000 x g.
The upper and middle cell-containing phases were collected and transferred to 1 mL 50 mM TSP
followed by 25 min of centrifuging at 17,000 g. The cell pellet was then resuspended in 800 pL
50 mM TSP.

All samples were processed through the flow cytometer on the day of filtration or isolation.

To measure bacterial abundance on a NovoCyte flow cytometer (ACEA Biosciences, San Diego,
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CA, USA), 3 uL of 200x SYBR green (Invitrogen Life Science Technologies, S756, Grand
Island, NY, USA) was added to 600 pL final sample and incubated in the dark at room
temperature for 15 minutes. Samples were run for 30 s at 40 pL/min. Flow cytometer gating
parameters used to count cells were previously optimized (67). Cell abundance was calculated as
the number of stained counts minus stained counts from control samples per g dry litter or per
cm? glass slide for leaf litter and glass slide samples, respectively.

Glass slide samples closed to dispersal had few cells (4,353 cells/cm? on average) compared
to the open glass slides (202,677 cells/cm? on average), demonstrating that the closed bags
effectively reduced dispersal. Given that these samples had such low abundance, DNA was not
extracted nor sequenced from the closed glass slide bags, and we only report the results from the

slides exposed to dispersal.

DNA extraction and sequencing

Genomic DNA was extracted from 0.05 g ground litter, 0.1 g sifted soil, 250 pL unfiltered
glass slide solution, and 0.05-0.1 g agar using ZymoBIOMICS 96 DNA Kits following the
manufacturer’s protocol, except the maximum centrifuge force was 2808g, instead of 3500g. For
all leaf litter and soil samples, bead-beating was conducted for 5 min at 6.5 m/s in a FastPrep 24
(MP Biomedicals, Irvine CA, USA). Bead-beating was reduced to 3 minutes at 6.5 m/s for glass
slide and air samples to avoid shearing DNA in these low biomass samples. To minimize batch
differences, all samples were randomized prior to DNA extraction.

To characterize bacterial community composition, we amplified the V4-V5 region of the
16S rRNA gene using the 515F (GTGYCAGCMGCCGCGGTAA) and

926R (CCGTCAATTCCTT- TRAGTTT) primers (68, 69). For 16S PCR reactions, 1 pL
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genomic DNA was combined with 10.5 uL PCR grade water, 12.5 uL Accustartll PCR tough
mix (Quanta BioSciences Inc, Beverly, MA, USA), 0.5 puL of the 10 uM barcoded forward
primer, and 0.5 pL of the 10 uM reverse primer. For glass slide and air samples, 5 pL. genomic
DNA was added with only 6.5 uLL PCR grade water. An initial denaturation step was performed
at 94 °C for 3 min, followed by 30 cycles of denaturing at 94 °C for 45 s, annealing at 55 °C for
30 s, and extension at 72 °C for 60 s, with a final extension at 72 °C for 10 min.

To characterize fungal community composition, we amplified the internal transcribed spacer
2 (ITS 2) region using ITS9F (GAACGCAGCRAAIIGYGA) and ITS4R
(TCCTCCGCTTATTGATATGC) primers (70). For ITS PCR reactions, 1 pL. genomic DNA
was combined with 10 pL PCR grade water, 12.5 pLL Accustartll PCR tough mix (Quanta
BioSciences Inc, Beverly, MA, USA), 0.75 uL of the 10 uM barcoded forward primer, and 0.75
uL of the 10 uM reverse primer. For glass slide and air samples, 5 pL genomic DNA was added
with only 6 uLL PCR grade water. An initial denaturation step was performed at 94 °C for 5 min,
followed by 35 cycles of denaturing at 95 °C for 45 s, annealing at 50 °C for 60 s, and extension
at 72 °C for 90 s, with a final extension at 72 °C for 10 min.

Sequencing libraries were created by pooling PCR products based on band brightness in gel
pictures (high (1 pL), medium (2 pL), and low (3 pL), very low (5 pL), no band (8 uL)).
Originally, the 16S and ITS amplicons from the experimental litter, environmental litter, and
environmental soil samples were pooled together in one library and amplicons from the
experimental glass slide and environmental air samples were pooled together in a second library.
Both libraries were cleaned using Sera-Mag SpeedBeads (71). The amplicon libraries were
sequenced separately in two paired-end I[llumina MiSeq (2 x 300bp) runs by the UC Irvine

Genomics High Throughput Sequencing Facility (Irvine, CA, USA). Due to poor sequencing
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quality, the 16S amplicons from all samples were re-pooled, cleaned, and sequenced in a
separate run. Low sequencing reads were obtained again for CSS leaf litter samples from the first
and second collection dates (January and February 2021). Thus, DNA from 16 of these samples
with poor sequencing results and 7 samples that sequenced well in previous runs were re-

extracted, re-amplified, and re-sequenced in a third sequencing run.

Amplicon sequencing processing

Forward reads from the three [llumina amplicon libraries were demultiplexed separately
using QIIME?2, version 2021.2 (72). Reverse reads were discarded from all runs due to low
sequencing quality. Forward reads were trimmed to 237 bases and DADA?2 was used to define
operational taxonomic units (OTU) defined at 100% identity (sequence variants) for all three
libraries (73). Trimmed and denoised sequences from all independent MiSeq runs were then
merged to create a single OTU table. Taxonomic identity was assigned using the q2-feature-
classifer plugin and classify-sklearn in QIIME2 (74) to generate a Naive Bayes classifier trained
on reference sequences from the SILVA 138 SSU Ref NR99 database (75) filtered at 99%
identity trimmed to 237 bp for bacteria and untrimmed UNITE database v8.3 for fungi (76).
Sequences assigned to chloroplast, mitochondria, Archaea, or unidentified at the phylum level
were removed prior to downstream analysis.

To compare our post-fire leaf litter communities with pre-fire samples, we reprocessed 16S
and ITS amplicon sequences obtained from a previous leaf litter survey conducted from August
2016 to March 2018 at this field site (38). Forward reads from the pre-fire library were trimmed

to 237 bases, denoised, and merged with the post-fire sequences to create a separate OTU table.
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Taxonomic identity was then assigned using the same SILVA and UNITE classifiers as

previously mentioned.

Statistical analysis

To account for differences in sequencing depth among samples, we rarefied OTU tables
produced in QIIME2 to 1300 sequences or 1328 sequences for the bacterial and fungal
communities respectively with 300 resamplings using the EcolUtilis package in R version 4.0.3
(77, 78). Community composition was compared between samples using Bray-Curtis
dissimilarity matrices generated from square root transformed rarefied OTU tables. To assess
how the composition of dispersing microbes changed across time and test the effects of dispersal
on leaf litter microbial community composition following the wildfire, permutational
multivariate analysis of variance (PERMANOVA) and post-hoc tests were performed using
PERMANOVA+ on PRIMER v6 (40, 79). Block was included as a random effect factor for all
PERMANOVA models. Al PERMANOVA analyses were run as type III partial sum of squares
for 999 permutations. Variance explained by each experimental variable was calculated by
dividing the estimated components of variance of statistically significant terms by the sum of all
significant terms and the residuals. The proportion of the glass slide communities attributed to
different dispersal sources (air, environmental leaf litter, and bulk soil) was estimated using
SourceTracker (v1.0.1) in R with default parameters except alphal and alpha2 were tuned to
0.001 and 0.1 respectively for the bacterial community analysis using cross-validation and 0.001
for both parameters for the fungal community analysis (80).

Given that microbial dispersal can influence beta-diversity and PERMANOVA is sensitive

to differences in dispersion, we ran pairwise comparisons of group mean dispersions between the
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dispersal treatments using PERMDISP on PERMANOVA+. To quantify the variation in
community composition within open and closed bags from both ecosystems, we assessed the
distance of each sample to the group centroid using the “Distance among centroids” function in
PERMANOVA+ (40). Nonmetric multidimensional scaling (NMDS) ordination plots were
generated from the Bray-Curtis dissimilarity matrices to visualize the effect of dispersal on
microbial composition and beta-diversity (dispersion). Finally, a SIMPER analysis was
performed in PRIMER v6 (79) to distinguish which genera contributed most to the
compositional differences between leaf litter and glass slide communities as well as the burned
and unburned samples.

To test for differences in univariate metrics (alpha-diversity and bacterial abundance)
between dispersal treatments and across time, mixed model analysis of variance (ANOVA) was
performed using the “Imer” function from the Ime4 package in R (81). Experimental block was
included as a repeated-measure, random effect. The repeated measures mixed model ANOVAs
took the general form of (univariate metric) ~ (Bag_type)*(Timepoint) + (1|Block) for the leaf
litter samples and (univariate) ~ (Timepoint) + (1|Block) for the glass slide samples. These
model designs account for non-independence within blocks and repeated measures across time.
Significant pairwise comparisons were determined using post hoc Tukey’s HSD test. Shannon
Diversity Index and observed OTU richness were highly correlated for both fungal and bacterial
communities from the glass slide and leaf litter samples (Spearman correlation: P < 0.001 in all
cases). Therefore, we chose to only report results for Shannon Diversity Index.

Data availability
The raw amplicon reads are available through the NCBI Sequence Read Archive under

BioProject accession number PRINA973138.
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Figure legends

Fig. 1. Loma Ridge coastal sage scrub (CSS) (A) before and (B) after the Silverado Fire in 2020.
(B inset) Burned CSS leaf litter collected after the wildfire. (C) Leaf litter dispersal treatment
bags deployed into the CSS in November 2020. Closed dispersal bags are made of 0.22 pm
nylon mesh, preventing microbial cells from moving in or out of the bag. Open dispersal bags are
made of 2 mm window screen, allowing for cells to disperse into the bag. Loma Ridge grassland
(D) before and (E) after the Silverado Fire. (E inset) Burned grassland leaf litter collected after
the wildfire. (F) Burned leaf litter dispersal treatment bags and glass slides deployed into the
grassland in November 2020. Glass slides were not deployed in the CSS due to resource

constraints.

Fig 2. Composition of (A) bacterial and (B) fungal genera on pre-fire and burned (open and
closed) leaf litter from the grassland and CSS and glass slides (grassland only) for all timepoints.
Pre-fire composition is represented by the average community composition on leaf litter samples
collected between 2016 and 2018 from this field site (Finks et al., 2021). Open and closed
composition is represented by the average community composition of all burned leaf litter
samples open and closed to dispersal respectively collected for this experiment. Glass slide
composition is represented by the average community composition on all glass slides open to

dispersal. “Other” genera represent all classified genera below 3% relative abundance.

Fig. 3. (A) Abundance, (B) diversity, and (C) non-metric multidimensional scaling (NMDS)

ordination of bacteria dispersing onto the glass slides over time. (D) Diversity and (E) NMDS
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ordination of fungi dispersing onto the glass slides over time. All glass slide samples were

collected from the grassland only.

Fig. 4. Proportion of bacterial and fungal community composition on the glass slides attributable
to different dispersal source communities (air samples, environmental leaf litter, and surface bulk
soil). Color and shape indicate the timepoint from which the sample was collected from the
grassland. Letters indicate significant pairwise differences between dispersal sources (Dunn’s

Multiple Comparison post-hoc test using Bonferroni correction).

Fig. 5. Non-metric multidimensional scaling (NMDS) ordination of leaf litter (A) bacterial and
(B) fungal community composition performed on Bray-Curtis dissimilarities of rarefied and
square root transformed OTU tables. Symbol color represents ecosystem type (green = grassland,
orange = CSS) and symbol shape represents dispersal bag type (filled = closed, outline = open).
95% confidence intervals are shown around each ecosystem by dispersal bag treatment
combination as a whole. Solid and dashed lines represent the confidence intervals for the closed
bags and open bags respectively. See Figure S4 for the same figure colored by time

point. Average within-group distances and standard errors for (C) bacterial and (D) fungal
community composition (Bray-Curtis dissimilarity). Asterisks denote significant differences in

dispersion between open and closed bags within a single ecosystem (***P < 0.001).

Fig 6. Average leaf litter (A) bacterial abundance, (B) bacterial diversity, and (C) fungal

diversity in the open and closed bags from both the grassland and CSS. Sample type is

represented by symbol color. Symbol shape indicates bag type. Asterisks on the x-axis indicate
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pairwise significance (P < 0.05) between open and closed leaf litter bags by month (Tukey’s
HSD). Asterisk color represents the ecosystem(s) where significance occurred (green =
grassland, orange = CSS). Bacterial abundance calculated as per cm? of the glass slide and per

gram of dry litter for the glass slide and leaf litter samples, respectively.
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