1	Testing the contribution of dispersal to microbial succession following a wildfire.		
2			
3	Kristin M. Barbour ^{a#} , Claudia Weihe ^a , Kendra E. Walters ^b , and Jennifer B. H. Martiny ^a		
4			
5	^a Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA		
6	USA		
7	^b Biology Department, Reed College, Portland, OR, USA		
8			
9	Running head: Microbial Dispersal Impacts Post-Fire Succession		
10			
11	# Address correspondence to Kristin M. Barbour, kbarbou1@uci.edu		
12	Present address: 321 Steinhaus Hall		
13	Department of Ecology and Evolutionary Biology		
14	University of California		
15	Irvine, CA 92697		
16			
17			
18			
19	Abstract word count: 167		
20	Text word count: 6,927 (3,985 when excluding Materials and Methods)		
21			
22			
23			

Abstract

Given increased wildfire activity, there is growing interest in understanding the drivers of microbial succession after fire. Dispersal may be especially important to post-fire succession as biotic communities can be more susceptible to invasion following a disturbance. Here, we experimentally manipulated dispersal into disturbed leaf litter communities collected following a wildfire and tracked bacterial and fungal dispersal assemblages over time. We show that the identity and source of microbes immigrating into the soil surface post-fire change across time with seasonal shifts and the reemergence of above ground vegetation. Further, dispersal significantly contributed to the reassembly of leaf litter microbial communities after the fire, producing an increasingly distinct assembly trajectory. The effect of dispersal on α - and β -diversity was ecosystem-dependent but, unexpectedly, influenced bacterial and fungal communities in a similar manner within ecosystems. Collectively, these results demonstrate that dispersal explicitly alters the course of microbial community succession following a wildfire and may impact bacteria and fungi in parallel ways, despite differing in traits expected to alter dispersal patterns.

Importance

Identifying the mechanisms underlying microbial community succession is necessary for predicting how microbial communities, and their functioning, will respond to future environmental change. Dispersal is one mechanism expected to affect microbial succession, yet the difficult nature of manipulating microorganisms in the environment has limited our understanding of its contribution. Using a dispersal exclusion experiment, this study isolates the specific effect of environmental dispersal on bacterial and fungal community assembly over time

following a wildfire. The work demonstrates the potential to quantify dispersal impacts on soil microbial communities over time and test how dispersal might further interact with other assembly processes in response to environmental change.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

47

48

49

Introduction

Dispersal, or the movement of organisms across space, has been recognized as a fundamental mechanism influencing microbial community assembly (1, 2). Like other biological processes (e.g., selection, speciation, and drift), the contribution of dispersal to community assembly can vary based on contemporary and historical conditions, such as after a disturbance (3, 4). Wildfire is one disturbance that has rapidly increased in frequency and intensity over the last few decades, particularly in drought prone regions such as the Southwestern United States (5, 6). Given that fire activity is predicted to continue increasing (7, 8), there is considerable interest in understanding how ecological communities respond to and recover from fire, especially in grasslands were a majority of annual global fires occur (9). Historically, researchers have focused on the secondary succession of plant communities, but there are growing efforts to understand the assembly of soil microbial communities (10) due to their role in post-fire nutrient cycling (11, 12) and plant restoration (13). Wildfires can alter surface soil microbial communities, including those in leaf litter, directly through heating and indirectly by altering the physical and chemical properties of bulk soil and leaf litter, such as through the incomplete combustion of organic matter (14, 15). The specific effect of wildfire on microbial communities is highly variable, with some studies reporting no change in alpha diversity (16–18) and others reporting effects on composition, abundance, and diversity that last years (19) to decades (20). This variability is likely due to differences in fire

severity, soil type, pre-fire microbial community, and sampling methods (i.e., soil depth and timing post fire) between studies. Despite these inconsistencies, some general patterns do emerge. For instance, wildfires typically reduce overall microbial abundance and richness in the surface soil (21). Additionally, fungi are generally more sensitive to fire than bacterial communities, perhaps due to a lower heat tolerance or the death of plants associated with mycorrhizal fungi (21, 22). Post-fire surveys have also shown that fire can select for pyrophilous or "fire-loving" microbes such as fungi in the genera *Pyronema* and bacteria in the sporeforming phylum *Firmicutes* or in the genus *Massilia* (phylum *Proteobacteria*) (23–26).

Given that wildfire can dramatically lower microbial abundance and diversity, dispersal may be especially important to post-fire succession, defined here as the sequential manner by which communities change over time following a disturbance (27). Dispersal can influence community reassembly in numerous ways. For instance, dispersal can reintroduce (or rescue from lowered abundances) taxa more abundant in the pre-fire community (28, 29). Dispersal can also facilitate the arrival of novel taxa that are better suited for the post-fire conditions and thus, outcompete resident taxa (30, 31). Alternatively, high dispersal rates can introduce mal-adapted individuals, potentially impeding community resilience (32–34). Finally, dispersal can alter overall β-diversity, or the variance in composition between local communities, depending on how variable the assemblage of dispersing microbes is across a landscape (4, 35). In sum, there are a variety of ways that microbial dispersal is expected to influence post-fire succession; however, the specific effects of dispersal have not been assessed by experimentally manipulating dispersal in an environmental community.

Here, we investigated the impacts of dispersal on microbial communities in leaf litter, the topmost layer of soil, following a vegetation fire in two adjacent ecosystems in Southern

California, a semi-arid grassland and coastal sage scrub (CSS). Fueled by hot, dry summers and strong Santa Ana winds, wildfires are common in these Mediterranean-type ecosystems with six fires recorded at our experimental field site since the beginning of the 20th century (1914, 1948, 1967, 1998, 2007, and 2020) (36). To test the influence of dispersal on the post-fire succession of leaf litter microbial communities, we constructed bags which either permitted ("open" bags, 2 mm window screen) or prevented ("closed" bags, 0.22 µm nylon) microbial cells from immigrating in or out. The bags were filled with either sterile glass microscope slides (grassland only) or charred leaf litter collected after the wildfire in 2020 (Fig. 1 and S1). Glass microscope slides capture microbial cells immigrating into the surface soil, while restricting cell growth by not providing an energy source (37). In comparison, the charred leaf litter allowed us to assess the role of post-fire dispersal on fungal and bacterial community succession in the field.

We hypothesized that dispersal impacts the succession of post-fire leaf litter communities. To address this hypothesis, we asked two questions: 1) What is the identity and source of microbes (both bacteria and fungi) dispersing into the soil surface following a fire? We expected that dispersal from air and exposed bulk soil (via wind and rain) would be the dominant dispersal source into the leaf litter layer post-fire. However, we also anticipated that the composition of dispersing propagules would change over time as vegetation, a key source of dispersal into the soil surface at this site pre-fire (37), recovered. 2) How does dispersal influence (a) composition of bacterial and fungal communities and (b) specifically, their abundance and α - and β -diversity during post-fire succession? We predicted that dispersal would quickly alter community composition post-fire resulting in an alternative assembly trajectory whereby over time, communities will become increasingly dissimilar to communities closed to dispersal. We also predicted that exposure to dispersal would increase α -diversity after the fire, but especially for

fungi because of their greater sensitivity to wildfire than bacteria. Similarly, we expected that dispersal would increase bacterial and fungal β -diversity during post-fire succession as the vegetation recovered in patches.

Results

The microbial dispersal assemblage changes over time

To characterize the microbial propagules dispersing into the soil surface (hereafter, the "dispersal assemblage"), we assessed the taxonomic composition (bacteria and fungi) and the abundance (bacteria only) of the cells captured on the glass slides in the grassland only. The dispersal assemblage was differentiated from burned leaf litter communities by a higher relative abundance of the bacterial genus *Hymenobacter* and fungal genus *Filobasidium* (Fig. 2; Table S1; SIMPER analysis).

Since abiotic and biotic properties of the landscape changed throughout the duration of the experiment as seasons shifted and above-ground vegetation recovered, we specifically tested if the dispersal assemblage changed over time. The abundance of immigrating bacterial cells varied over time (Fig. 3A; Table S2; ANOVA: P < 0.001) and was higher during the wet season in January and February ($post\ hoc$ comparison: P < 0.05). Bacterial diversity (Shannon Diversity) also changed across time (ANOVA: P < 0.001) and showed a similar pattern as abundance, peaking during the wet months (Fig. 3B; Table S3; P < 0.001). Further, the composition of the bacteria dispersing into the soil surface also changed (Fig. 3C; Table S4; PERMANOVA: $P \le 0.001$). Initially, Actinobacteria dominated the dispersal assemblage (January 2021 abundance: 50.6%). However, by the end of the experiment, the majority of dispersing bacteria were from the phylum Bacteroidetes (January 2022 abundance: 54.0%). This broad shift in composition

was driven by a 134-fold increase in the relative abundance of the genus Hymenobacter (phylum Bacteroidetes) from 0.29% at the first timepoint to 39% at the final timepoint (Fig. S2A). Along with taxonomic changes, β -diversity, or the compositional variability of immigrating bacteria among sampling locations, also changed across time. Specifically, the composition of bacteria dispersing into the soil surface was most variable across the landscape during the dry season (May and September) (Fig 3C; PERMDISP post hoc pairwise-comparisons: P < 0.05).

Following the same pattern as bacterial diversity, the diversity of fungi dispersing into the soil surface varied over time (Fig 3D; Table S5; ANOVA: P < 0.001) and was generally higher during the wet season. (We did not assess fungal abundance on the glass slides, so we cannot compare to bacterial abundance.) The composition of fungi immigrating onto the glass slides also varied temporally (Fig. 3E; Table S6; PERMANOVA: P < 0.001), with the first post-fire samples (January 2021) being quite distinct and more variable in composition compared to later timepoints (PERMDISP *post hoc* pairwise-comparisons: P < 0.05). Throughout the course of the experiment, the fungal dispersal assemblage was dominated by the phyla *Ascomycota* and *Basidiomycota*, but notably, there was a 3-fold increase in the relative abundance of the genus *Alternaria* (phylum Ascomycota) from 9.5% to 28% from the first to the final timepoint (Fig. S2B). *Alternaria* also dominates the unburned leaf litter fungal community at this field site (38).

Sources of dispersing microbes

To investigate where bacteria and fungi on the glass slides were immigrating from, we sampled microbial communities from three potential dispersal sources (air, surrounding leaf litter, and soil) collected at each timepoint. Bacterial and fungal composition were significantly different between all the three dispersal sources (Fig. S3; PERMANOVA *post hoc* pairwise-

comparisons: P < 0.001). A SourceTracker analysis found that these sources varied in their contribution to the bacterial and fungal dispersal assemblages found on the glass slides (Fig. 4; Kruskal-Wallis: P < 0.01 in both cases). The largest proportion of the bacterial dispersal assemblage could be traced back to air and environmental leaf litter (34% and 26%, respectively), while dispersal from air alone explained the greatest proportion of the fungal community on the glass slides (42%). Against our expectations, dispersal from bulk soil contributed a smaller amount to the overall bacterial and fungal dispersal assemblages (20% and 3%, respectively); however, it explained the largest proportion of the bacterial community on the glass slides in January 2021, prior to the reemergence of vegetation (Fig. 4, red points).

Wildfire effects on the microbial leaf litter community

In addition to characterizing the microbes dispersing onto the soil surface, we also assessed how dispersal influenced the succession of microbial communities on burned leaf litter. To validate that the leaf litter communities were disturbed by the fire, we compared microbial composition on the burned litter collected after the Silverado fire in 2020 with pre-fire litter collected at the same field site between 2016 and 2018 (38). Post-fire bacterial and fungal composition were significantly different from pre-fire communities in both ecosystems, regardless of the dispersal treatment (Fig. 2; PERMANOVA *post hoc* pairwise-comparisons: $P \le 0.001$ all cases). This result supports previous findings showing these leaf litter communities were altered by the wildfire (39). Overall, burned leaf litter was characterized by a higher relative abundance of the bacterial genus *Pseudomonas* and lower relative abundance of the fungal genus *Alternaria* (Fig. 2; Table S7; SIMPER analysis). In particular, the burned CSS leaf litter was dominated by the fungal genus *Aureobasidium* which showed an 18-fold and 16-fold

increase in relative abundance in the open and closed bags, respectively, compared to the unburned community (Fig. 2B).

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

185

186

Dispersal affects microbial succession post-fire

To isolate the effect of dispersal on microbial succession after the wildfire, we compared community assembly on burned leaf litter in open and closed litterbags. As we expected, dispersal significantly contributed to the post-fire succession of microbial communities. In both ecosystems, bacterial and fungal composition was affected by the dispersal treatment (Fig. 5; Table S4 and S6; PERMANOVA: $P \le 0.001$ in all cases). Overall, dispersal had a greater impact on the post-fire assembly of the bacterial community, explaining a larger proportion of compositional variation (18% and 34% in the grassland and the CSS, respectively) compared to the fungal communities (15% and 21%) (Fig. S4; Table S4 and S6). In the grassland, leaf litter communities exposed to dispersal were represented by a higher relative abundance of the bacterial genera Massilia and Hymenobacter as well as the fungal genus Coniochaeta (Fig. 2; Table S8; SIMPER analysis). CSS leaf litter communities in the absence of dispersal were characterized by a greater relative abundance of the bacterial genus Curtobacterium and fungal genus *Cladosporium* compared to the open bags (Fig. 2; Table S8; SIMPER analysis). Dispersal also affected how bacterial communities assembled over time (Fig. S5A; Table S4; PERMANOVA: bag type by timepoint interaction, $P \le 0.001$ in both ecosystems). Bacterial composition did not initially differ between the dispersal treatments in January 2021, 3 months after the fire (post hoc pairwise comparison: P > 0.05). However, as we expected, the effect of dispersal on bacterial assembly increased with time in both ecosystems such that community

composition was most dissimilar between the open and closed bags at the final collection in January 2022, 14 months after the fire.

Exposure to dispersal altered fungal community succession over time in a similar manner (Fig. S5B; Table S6; PERMANOVA: bag type by timepoint interaction, $P \le 0.001$ in both ecosystems). Like the bacterial communities, the effect of dispersal increased with time. Fungal composition did not differ between the open and closed bags in either ecosystem until the second collection in February 2021 (*post hoc* pairwise comparison: P < 0.05) and composition was most dissimilar between dispersal treatments towards the end of the experiment (January 2022 in the grassland and September 2021 in the CSS).

Dispersal differentially affects microbial abundance and α - and β -diversity on leaf litter

Exposure to dispersal altered bacterial abundance on the leaf litter but did so in an ecosystem-dependent manner (Fig. 6A; Table S2; ANOVA: ecosystem by bag type interaction, P < 0.001). In the grassland, bacterial abundance in the open litter bags was 46% lower than that in the closed bags (open = 1.3×10^9 cells per g dry litter; closed = 2.4×10^9 cells per g dry litter; ANOVA: bag type, P < 0.001). In contrast, exposure to dispersal increased bacterial abundance in the CSS leaf litter by 47% (open = 3.1×10^7 cells per g dry litter; closed = 2.1×10^7 cells per g dry litter; P < 0.001). Moreover, the effect of dispersal on bacterial abundance in the CSS litter changed over time (bag type by timepoint interaction: P < 0.05), whereby the difference in average abundance between the open and closed bags seen during the first 6 months of the experiment was not detectable by September 2021, 11 months after the wildfire.

Dispersal also affected microbial diversity, influencing bacterial and fungal diversity in a similar manner (Fig. 6B and C). Exposure to dispersal decreased bacterial diversity by an

average of 3% in the grassland while increasing diversity by 58% on average in the CSS. However, the effect of dispersal on bacterial diversity changed over time in the grassland (Table S3; bag type by timepoint interaction: P < 0.001). Specifically, bacterial diversity in the grassland did not differ between the dispersal treatments until the final timepoint when exposure to dispersal decreased bacterial diversity by 12% on average (Fig. 6B). In contrast, bacterial diversity in the CSS was higher in the open bags for the duration of the experiment.

For the fungal communities, exposure to dispersal did not significantly impact overall diversity in the grassland (Table S5; P > 0.05), but increased diversity in the CSS by 13% on average (P < 0.001). Like the bacterial communities, fungal diversity was only significantly different between the open and closed bags at the final timepoint in both ecosystems (Fig. 6C).

In addition to affecting α -diversity, exposure to dispersal also changed β -diversity of the leaf litter communities. However, the effect of dispersal on β -diversity varied between ecosystems. Exposure to dispersal increased overall variability in bacterial composition in the grassland (Fig. 5C; PERMDISP: $P \le 0.001$) but marginally decreased β -diversity in the CSS (P = 0.096) against our expectations.

In contrast, dispersal did not affect variability in fungal composition in the grassland (Fig. 5D; P = 0.20) but marginally increased compositional heterogeneity in the CSS (P = 0.065). We note that this variation in dispersion may also contribute to the significant compositional differences found between dispersal treatments in both ecosystems (40).

Discussion

By manipulating dispersal directly (excluding it completely), this study demonstrates that microbial dispersal influences microbial succession in surface soil. Dispersal is important for the

succession of bacteria and fungi on leaf litter following wildfire, a disturbance that alters both the soil microbial community and the assemblage of microbes dispersing into the soil surface.

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Given that the wildfire removed much of the vegetation and standing leaf litter, we expected that the air and bulk soil would be key sources of microbial dispersal into the leaf litter layer (Q1). This prediction was only partially supported, as air was a key source of immigrating microbes (bacteria and fungi) post-fire while the bulk soil was less important (although we note that the air community itself likely includes bacteria and fungi previously liberated from other sources such as bulk soil and the phyllosphere (41, 42)). Further, a previous study conducted at this field site before the fire found that only 4% of the bacteria immigrating into the surface soil were traced back to the bulk soil, compared to 20% here (a 5-fold increase post-fire) (37). Increased importance of these dispersal sources post-fire may be due to the fire removing much of the standing vegetation and persistent leaf litter layer and, thus, reducing physical barriers between the air and soil surface. One caveat of this result is that the glass slides may be less likely to capture taxa that disperse by active dispersal mechanisms, such as fungi that move by hyphal growth (37). Additionally, the glass slides may have selected for taxa with greater resistance to degradation from UV radiation, moisture stress, and nutrient poor conditions that more closely mirror conditions previously experienced by aerial dispersers. For instance, Hymenobacter, the most abundant bacterial genera captured on the glass slides at later timepoints, is a common atmospheric bacterium that displays resistance to radiation (43, 44).

In addition to identifying the key sources of dispersal onto the soil surface, we also characterized the identity of the dispersing propagules (Q1). As we expected, the composition of fungi and bacteria dispersing into the grassland leaf litter layer shifted over time. These temporal changes in the dispersal assemblage may be due to the post-fire plant succession. However, we

cannot entirely disentangle how much of this temporal variation was due to the wildfire effects on the landscape verses seasonal shifts in precipitation, wind, and other meteorological factors that alter dispersal patterns across the landscape (45, 46).

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

Although we cannot trace specific taxa from the dispersal assemblage to the leaf litter, our experiment demonstrates that dispersal alters the successional trajectory of leaf litter microbial communities by impacting composition, abundance, and α - and β -diversity (Q2). The effect of dispersal on specific taxa on leaf litter was highly variable. For instance, exposure to dispersal negatively impacted some taxa, such as the bacterial genus Curtobacterium and the fungal genus Cladosporium. Both taxa displayed relatively higher abundance in the closed CSS leaf litter communities, indicating that dispersing taxa compete with these taxa. In contrast, the bacterial genus Massilia increased in relative abundance in the leaf litter communities exposed to dispersal in both ecosystems. Other taxa showed a minimal response to the dispersal treatment but were greatly impacted by the wildfire. In particular, the fungal genus Aureobasidium made up over 36% of the post-fire CSS leaf litter community in both the open and closed bags compared to 2% of the pre-fire community. Aureobasidium is not commonly recognized as a pyrophilous fungi; however, the genus was found to be enriched in burned bulk surface soil from a recently burned pine forest (47), suggesting it may have a competitive advantage in post-fire or post-disturbance environments.

Dispersal also impacted leaf litter bacterial and fungal communities in an ecosystem-dependent manner. Previous studies report contrasting effects of dispersal on microbial assembly, but the factors responsible for these differences remain unclear. For instance, exposure to dispersal increased compositional variation (β -diversity) of nectar-inhabiting microbes on flowers (49), while it homogenized bacterial composition on pre-fire leaf litter in this grassland

system (50). Still, it is somewhat unexpected to observe differential impacts of dispersal in adjacent vegetation communities. We can think of at least three reasons for this ecosystemdependence in our system. First, the severity of the disturbance may have varied between ecosystems. Specifically, a thinner and more uniform char layer in the grassland suggests the wildfire burned more severely and with greater variability in the CSS than in the grassland at this field site. The effect of wildfire on microbial communities is proportional to the fire severity (24, 51). Thus, leaf litter communities in the CSS may have been differentially susceptible to dispersing microbes compared to those in the grassland. Second, the effect of dispersal may depend on substrate quality which also differs between ecosystems (52). Given that resource availability can alter invasion success (53, 54), chemical differences between the grass and shrub leaf litter may alter community response to dispersal. Third, the leaf litter may have been exposed to unique dispersal assemblages in each ecosystem. Indeed, we cannot verify this assumption because we only placed glass slides in the grassland. Regardless of the dispersal treatment, however, ecosystem type was a main factor determining microbial community composition on the leaf litter, confirming previous results from this field site (38). Given that the grassland and CSS experience similar climate conditions, we attribute these ecosystem effects to differences in the leaf litter chemistry of the plant communities. The effect of ecosystem indicates that, in addition to dispersal, habitat filtering (selection) on the leaf litter communities or their dispersal sources is an important drivers of microbial community succession.

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

Within ecosystems, dispersal impacted some aspects of bacterial and fungal community succession in a similar manner, including α -diversity and grassland β -diversity trends (Q2). This result countered our hypothesis that differences in traits, such as size, morphology and dispersal modes of bacteria and fungi would influence their dispersal patterns and therefore the effects of

their dispersal on microbial succession (55–57). The similar way in which dispersal impacted both communities was also surprising given that we assayed the communities using different marker genes. These findings suggest that other factors are more important for post-fire succession of both bacteria and fungi. For instance, charred leaf litter was used in this experiment which contains highly aromatic structures that resist decomposition (58, 59), potentially constraining the effect of dispersal on both bacterial and fungal communities. Further, bacterial and fungal diversity showed similar patterns on the glass slides, matching seasonal shifts in abiotic conditions (Fig. 3B and C). Thus, abiotic properties seem to influence the effects of dispersal more than specific trait differences between bacteria and fungi. Although we do not expect mycorrhizal fungi to make up a signification portion of the leaf litter community, we note that primer bias may influence our characterization of the fungal communities in the open and closed bags as the ITS2 primer does not detect all arbuscular mycorrhizal fungi (60, 61). Further, we cannot exclude the possibility undetected differences in moisture or differences in the composition of small grazers, microfauna, and plant roots may also contribute to the successional differences seen between the communities exposed to dispersal and those that were not.

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

Taken together, our results demonstrate how dispersal explicitly contributes to bacterial and fungal succession following a wildfire. Previous work in this system shows that relatively minor shifts in microbial taxonomic composition can affect leaf litter decomposition rates (62) so the role of dispersal in post-fire succession could have consequential impacts on ecosystem processes such as carbon cycling. With other growing evidence that microbial communities are dispersal limited, future studies might aim to directly measure the functional consequences of dispersal. Further exploring whether more active management of key dispersal sources may expedite community recovery of soil microbial communities should also be considered.

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

Materials and Methods

Field site and Silverado Fire

This experiment was conducted adjacent to the Loma Ridge Global Change Experiment (LRGCE) in a California grassland and neighboring CSS located in northern Irvine, California, USA (33°44′ N, 117°42′ W, 365 m elevation). Plant community composition varies between the grassland and CSS at Loma Ridge (38). The grassland is dominated by non-native annual grasses (Bromus diandrus, Avena fatua) and the native forb Deinandra fasciculata while native droughtdeciduous shrubs (Artemisia californica, Salvia mellifera) dominate the neighboring CSS (63, 64). Leaf litter chemistry also varies between the grassland and CSS. In particular, the shrub litter has higher lignin and lower cellulose content than that in the grassland and is more resistant to microbial decomposition (52, 65). In both ecosystems, leaf litter bacterial communities are dominated by the phyla *Proteobacteria* and *Actinobacteria* and fungal communities by Ascomycota and Basidiomycota (38, 39). Soils are fine-loamy, mixed, thermic Typic Palexeralfs sandy loams (California Soil Resource Lab, https://casoilresource.lawr.ucdavis.edu/gmap/). In the top 15 cm of soil, total organic carbon pools are similar between the grassland and CSS while total nitrogen is higher in the CSS (66). The climate is Mediterranean (dry summers and wet winters) with a mean annual temperature of 17°C and a mean annual precipitation of 325 mm. On October 26, 2020, the grassland and CSS were burned by the Silverado Fire (Fig. 1). The wildfire reduced vegetation cover in both ecosystems. Fire intensity was not quantitatively assessed due to the unplanned nature of the fire and safety concerns preventing access to the site immediately after the fire. In both ecosystems, the fire removed most of the surface litter layer; however, some partially burned leaf litter remained on the soil surface. Partially charred leaf

litter was collected in the grassland and CSS as soon as we were permitted into the site on November 18, 2020, 23 days after the wildfire (Fig. 1B and E insets).

Dispersal manipulations

To manipulate microbial dispersal, litterbags were constructed from either 0.22 μ m nylon or 2 mm window screen. The 2 mm pores in the window screen mesh allow bacterial and fungal cells to disperse in and out of the bags ("open" litterbags). Conversely, 0.22 μ m pores in the nylon restrict immigration of bacteria and fungi ("closed" litterbags). Autoclaved litterbags (10 cm x 10 cm) were filled with 3 g of charred leaf litter (wet weight) collected from either the grassland or CSS (open litterbags: n = 35 per ecosystem; closed litterbags: n = 35 per ecosystem). Filled litterbags were stored at 4°C for up to 6 days.

To characterize the abundance and composition of the dispersal assemblage, 50 dispersal bags (5 cm x 7.5 cm) were filled with a single glass microscope slide (open: n = 35; closed: n = 15). Walters et al. (37) showed the closed bag treatment successfully prevents the glass slides from capturing dispersing microbes. Thus, we reduced the number of closed glass slides that we deployed into the field to minimize resource consumption and preparation time. Glass microscope slides (2.5 cm x 7.5 cm) were cleaned with diH₂O, sterilized with 70% ethanol, dried, sealed into dispersal bags, and autoclaved.

On November 25, 2020, 30 days after the wildfire, the 70 grass and 70 CSS litterbags were deployed onto the soil surface of their respective ecosystems in 14 experimental blocks (1 m x 1 m, 7 blocks per ecosystem). At the time of deployment, dispersal bags were placed directly onto exposed bulk soil which had a thin, but heterogenous, char layer still present (Fig. S1). Previous work at this site revealed that dispersal from vegetation contributes to the assembly of

undisturbed leaf litter microbial communities (37). Due to the opportunistic nature of this experiment and limited resources, we kept the number of samples manageable and chose to only deploy the 50 glass slide dispersal bags into the grassland (Fig. 1F).

Dispersal bag collection

At five timepoints, we collected seven litterbags per dispersal treatment (2 ecosystems x 2 dispersal treatments x 7 replicates = 28 litterbags/timepoint), seven open glass slides, and three closed glass slides (10 glass slide bags/timepoint). Dispersal bags were collected approximately 3 months (T1: January 13, 2021), 4 months (T2: February 16, 2021), 7 months (T3: May 26, 2021), 11 months (T4: September 21, 2021), and 15 months (T5: January 11, 2022) after the wildfire. We anticipated that dispersal would have a greater influence over community assembly immediately following the wildfire disturbance. We, therefore, concentrated collection timepoints towards the beginning of the experiment.

On the day of collection, open leaf litter and glass slide bags were placed in sterile plastic bags in the field before being transported back to the lab. Leaf litter samples were immediately ground with a coffee grinder and homogenized. A 0.1 g aliquot of ground leaf litter was placed into a 50 mL conical tube with 5 mL 1% phosphate-buffered glutaraldehyde (Pi-buffered GTA) and stored in the dark at 4°C for up to two days in preparation for bacterial abundance analysis. At each timepoint, moisture content was measured on a 1 g subsample of ground, homogenized leaf litter. Overall, leaf litter moisture content was not significantly different between the open and closed litter bags (t-test: P = 0.60). All remaining ground, homogenized leaf litter was stored at -70°C until DNA extraction.

Glass slides were transferred on collected day from dispersal bags into sterilized Whirl-Pak bags (Nasco, WI, USA) containing 2 mL 0.9% sterile saline. Notably, glass slides had a visible layer of dust and/or bulk soil on the surface at the time of collection and were often in direct contact with vegetation or leaf litter at later timepoints as the plant community recovered post-fire. The Whirl-Paks were agitated by hand for 30 seconds to dislodge microbial cells from the glass slide surface into the saline solution. A 600 µL aliquot of this cell solution was stored at -70°C until DNA extraction. 156 µL of 10% Pi-buffered GTA was added to the remaining cell solution (final concentration 1% Pi-buffered GTA) and fixed samples were stored in the dark at 4°C for up to 12 hours for bacterial abundance analysis.

Dispersal source sampling

Surrounding air, bulk soil, and vegetation were previously identified as potential sources of dispersal into the surface leaf litter layer at this field site (37). At each sampling timepoint, we collected air (n = 2), surface soil (n = 1), and environmental (not litterbag) leaf litter samples (n = 1) from each ecosystem. To collect air samples, we directed airflow from a portable fan (O2Cool FD10101) at two sterile agar plates for 30 minutes. Air samples were collected 3 feet off the soil surface and within 10 feet of the experimental blocks in both ecosystems. On the day of collection, a sterile razor blade was used to scrape off the top 1 mm of agar. Environmental leaf litter and bulk soil samples were collected randomly from the seven experimental blocks and pooled into one composite sample for each timepoint. Soil samples were collected by scraping a sterile garden trowel across the soil surface to collect the top 1 cm of bulk soil. On the day of collection, soil samples were sieved (2 mm) and environmental leaf litter samples were ground

and homogenized. Agar, soil, and environmental litter samples were stored at -70°C until DNA extraction.

Bacterial abundance using flow cytometry

Bacterial abundance from grass litter, CSS litter, and glass slide samples were measured using flow cytometry (67). For grass litter samples, 550 μ L 0.1 M tetrasodium pyrophosphate was added to the fixed sample and gently sonicated for 30 min in the dark at 4°C. The samples were then vacuum filtered through a 2.7 μ m filter to remove larger nonbacterial cells and debris. GTA-fixed glass slide samples were also filtered through a 2.7 μ m filter. As for all steps of microbial characterization, the ease in which cells dislodge from the glass slides may vary between taxa potentially biasing downstream analyses.

Due to increased background noise created by debris particles, an optimized method to quantify bacterial abundance from soil and shrub leaf litter was used to prepare CSS litter samples for flow cytometry (67). To extract bacterial cells from the CSS litter, a detergent solution consisting of 1.2 mL 250 mM tetrasodium pyrophosphate (TSP) and 31 μL Tween 80 was added to the fixed samples followed by 30 min of gentle sonication in the dark at 4°C. 1 mL aliquots of the liquid slurry were then layered on top of 0.5 mL Nycodenz (80% [wt/vol] prepared in 50 mM sterile TSP buffer). Samples were then centrifuged for 30 min at 14,000 x g. The upper and middle cell-containing phases were collected and transferred to 1 mL 50 mM TSP followed by 25 min of centrifuging at 17,000 g. The cell pellet was then resuspended in 800 μL 50 mM TSP.

All samples were processed through the flow cytometer on the day of filtration or isolation.

To measure bacterial abundance on a NovoCyte flow cytometer (ACEA Biosciences, San Diego,

CA, USA), 3 µL of 200x SYBR green (Invitrogen Life Science Technologies, S756, Grand Island, NY, USA) was added to 600 µL final sample and incubated in the dark at room temperature for 15 minutes. Samples were run for 30 s at 40 µL/min. Flow cytometer gating parameters used to count cells were previously optimized (67). Cell abundance was calculated as the number of stained counts minus stained counts from control samples per g dry litter or per cm² glass slide for leaf litter and glass slide samples, respectively.

Glass slide samples closed to dispersal had few cells (4,353 cells/cm² on average) compared to the open glass slides (202,677 cells/cm² on average), demonstrating that the closed bags effectively reduced dispersal. Given that these samples had such low abundance, DNA was not extracted nor sequenced from the closed glass slide bags, and we only report the results from the slides exposed to dispersal.

DNA extraction and sequencing

Genomic DNA was extracted from 0.05 g ground litter, 0.1 g sifted soil, 250 μL unfiltered glass slide solution, and 0.05-0.1 g agar using ZymoBIOMICS 96 DNA Kits following the manufacturer's protocol, except the maximum centrifuge force was 2808g, instead of 3500g. For all leaf litter and soil samples, bead-beating was conducted for 5 min at 6.5 m/s in a FastPrep 24 (MP Biomedicals, Irvine CA, USA). Bead-beating was reduced to 3 minutes at 6.5 m/s for glass slide and air samples to avoid shearing DNA in these low biomass samples. To minimize batch differences, all samples were randomized prior to DNA extraction.

To characterize bacterial community composition, we amplified the V4-V5 region of the 16S rRNA gene using the 515F (GTGYCAGCMGCCGCGGTAA) and 926R (CCGTCAATTCCTT- TRAGTTT) primers (68, 69). For 16S PCR reactions, 1 µL

genomic DNA was combined with 10.5 µL PCR grade water, 12.5 µL AccustartII PCR tough mix (Quanta BioSciences Inc, Beverly, MA, USA), 0.5 µL of the 10 µM barcoded forward primer, and 0.5 µL of the 10 µM reverse primer. For glass slide and air samples, 5 µL genomic DNA was added with only 6.5 µL PCR grade water. An initial denaturation step was performed at 94 °C for 3 min, followed by 30 cycles of denaturing at 94 °C for 45 s, annealing at 55 °C for 30 s, and extension at 72 °C for 60 s, with a final extension at 72 °C for 10 min. To characterize fungal community composition, we amplified the internal transcribed spacer 2 (ITS 2) region using ITS9F (GAACGCAGCRAAIIGYGA) and ITS4R (TCCTCCGCTTATTGATATGC) primers (70). For ITS PCR reactions, 1 µL genomic DNA was combined with 10 µL PCR grade water, 12.5 µL AccustartII PCR tough mix (Quanta BioSciences Inc, Beverly, MA, USA), 0.75 μL of the 10 μM barcoded forward primer, and 0.75 μL of the 10 μM reverse primer. For glass slide and air samples, 5 μL genomic DNA was added with only 6 µL PCR grade water. An initial denaturation step was performed at 94 °C for 5 min, followed by 35 cycles of denaturing at 95 °C for 45 s, annealing at 50 °C for 60 s, and extension at 72 °C for 90 s, with a final extension at 72 °C for 10 min. Sequencing libraries were created by pooling PCR products based on band brightness in gel pictures (high (1 μ L), medium (2 μ L), and low (3 μ L), very low (5 μ L), no band (8 μ L)). Originally, the 16S and ITS amplicons from the experimental litter, environmental litter, and environmental soil samples were pooled together in one library and amplicons from the experimental glass slide and environmental air samples were pooled together in a second library. Both libraries were cleaned using Sera-Mag SpeedBeads (71). The amplicon libraries were sequenced separately in two paired-end Illumina MiSeq (2 x 300bp) runs by the UC Irvine Genomics High Throughput Sequencing Facility (Irvine, CA, USA). Due to poor sequencing

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

quality, the 16S amplicons from all samples were re-pooled, cleaned, and sequenced in a separate run. Low sequencing reads were obtained again for CSS leaf litter samples from the first and second collection dates (January and February 2021). Thus, DNA from 16 of these samples with poor sequencing results and 7 samples that sequenced well in previous runs were reextracted, re-amplified, and re-sequenced in a third sequencing run.

Amplicon sequencing processing

Forward reads from the three Illumina amplicon libraries were demultiplexed separately using QIIME2, version 2021.2 (72). Reverse reads were discarded from all runs due to low sequencing quality. Forward reads were trimmed to 237 bases and DADA2 was used to define operational taxonomic units (OTU) defined at 100% identity (sequence variants) for all three libraries (73). Trimmed and denoised sequences from all independent MiSeq runs were then merged to create a single OTU table. Taxonomic identity was assigned using the q2-feature-classifer plugin and classify-sklearn in QIIME2 (74) to generate a Naïve Bayes classifier trained on reference sequences from the SILVA 138 SSU Ref NR99 database (75) filtered at 99% identity trimmed to 237 bp for bacteria and untrimmed UNITE database v8.3 for fungi (76). Sequences assigned to chloroplast, mitochondria, Archaea, or unidentified at the phylum level were removed prior to downstream analysis.

To compare our post-fire leaf litter communities with pre-fire samples, we reprocessed 16S and ITS amplicon sequences obtained from a previous leaf litter survey conducted from August 2016 to March 2018 at this field site (38). Forward reads from the pre-fire library were trimmed

to 237 bases, denoised, and merged with the post-fire sequences to create a separate OTU table.

Taxonomic identity was then assigned using the same SILVA and UNITE classifiers as previously mentioned.

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

526

527

Statistical analysis

To account for differences in sequencing depth among samples, we rarefied OTU tables produced in QIIME2 to 1300 sequences or 1328 sequences for the bacterial and fungal communities respectively with 300 resamplings using the EcolUtilis package in R version 4.0.3 (77, 78). Community composition was compared between samples using Bray-Curtis dissimilarity matrices generated from square root transformed rarefied OTU tables. To assess how the composition of dispersing microbes changed across time and test the effects of dispersal on leaf litter microbial community composition following the wildfire, permutational multivariate analysis of variance (PERMANOVA) and post-hoc tests were performed using PERMANOVA+ on PRIMER v6 (40, 79). Block was included as a random effect factor for all PERMANOVA models. All PERMANOVA analyses were run as type III partial sum of squares for 999 permutations. Variance explained by each experimental variable was calculated by dividing the estimated components of variance of statistically significant terms by the sum of all significant terms and the residuals. The proportion of the glass slide communities attributed to different dispersal sources (air, environmental leaf litter, and bulk soil) was estimated using SourceTracker (v1.0.1) in R with default parameters except alpha1 and alpha2 were tuned to 0.001 and 0.1 respectively for the bacterial community analysis using cross-validation and 0.001 for both parameters for the fungal community analysis (80). Given that microbial dispersal can influence beta-diversity and PERMANOVA is sensitive

to differences in dispersion, we ran pairwise comparisons of group mean dispersions between the

dispersal treatments using PERMDISP on PERMANOVA+. To quantify the variation in community composition within open and closed bags from both ecosystems, we assessed the distance of each sample to the group centroid using the "Distance among centroids" function in PERMANOVA+ (40). Nonmetric multidimensional scaling (NMDS) ordination plots were generated from the Bray-Curtis dissimilarity matrices to visualize the effect of dispersal on microbial composition and beta-diversity (dispersion). Finally, a SIMPER analysis was performed in PRIMER v6 (79) to distinguish which genera contributed most to the compositional differences between leaf litter and glass slide communities as well as the burned and unburned samples.

To test for differences in univariate metrics (alpha-diversity and bacterial abundance) between dispersal treatments and across time, mixed model analysis of variance (ANOVA) was performed using the "lmer" function from the lme4 package in R (81). Experimental block was included as a repeated-measure, random effect. The repeated measures mixed model ANOVAs took the general form of (univariate metric) \sim (Bag_type)*(Timepoint) + (1|Block) for the leaf litter samples and (univariate) \sim (Timepoint) + (1|Block) for the glass slide samples. These model designs account for non-independence within blocks and repeated measures across time. Significant pairwise comparisons were determined using post hoc Tukey's HSD test. Shannon Diversity Index and observed OTU richness were highly correlated for both fungal and bacterial communities from the glass slide and leaf litter samples (Spearman correlation: P < 0.001 in all cases). Therefore, we chose to only report results for Shannon Diversity Index.

Data availability

The raw amplicon reads are available through the NCBI Sequence Read Archive under BioProject accession number PRJNA973138.

573 Acknowledgements

We thank Nick Scales and Alberto Barrón-Sandoval for comments on earlier drafts. This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research grants DE-SC0016410 and DE-SC0020382 and by the National Science Foundation (DEB-2113004) to JBHM. It was also supported by the Ridge to Reef NSF Research Traineeship, award DGE-1735040, and the U.S. Department of Education Graduate Assistance in Areas of National Need (GAANN) Fellowship (#P200A210001) to KMB. We also thank the Irvine Ranch Conservancy and UCI Environmental Collaboratory for facilitating research at Loma Ridge. The LRGCE is located on the unceded land of the Tongva/Kizh and Acjachemen Indigenous peoples.

595 References

- 596 1. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. 2012. Beyond
- 597 biogeographic patterns: Processes shaping the microbial landscape. Nat Rev Microbiol
- 598 10:497–506.
- 599 2. Lindström ES, Langenheder S. 2012. Local and regional factors influencing bacterial
- 600 community assembly. Environ Microbiol Rep 4:1–9.
- Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman JE,
- Darcy JL, Lynch RC, Wickey P, Ferrenberg S. 2013. Patterns and Processes of Microbial
- 603 Community Assembly. Microbiol Mol Biol Rev 77:342–356.
- 604 4. Fukami T. 2015. Historical Contingency in Community Assembly: Integrating Niches,
- Species Pools, and Priority Effects. Annu Rev Ecol Evol Syst 46:1–23.
- 606 5. Abatzoglou JT, Williams AP. 2016. Impact of anthropogenic climate change on wildfire
- across western US forests. Proc Natl Acad Sci U S A 113:11770–11775.
- 608 6. Li S, Banerjee T. 2021. Spatial and temporal pattern of wildfires in California from 2000
- 609 to 2019. Sci Rep 11:1–17.
- 610 7. Goss M, Swain DL, Abatzoglou JT, Sarhadi A, Kolden CA, Williams AP, Diffenbaugh
- NS. 2020. Climate change is increasing the likelihood of extreme autumn wildfire
- 612 conditions across California. Environ Res Lett 15.
- 8. Dong C, Williams AP, Abatzoglou JT, Lin K, Okin GS, Gillespie TW, Long D, Lin Y-H,
- Hall A, MacDonald GM. 2022. The season for large fires in Southern California is
- projected to lengthen in a changing climate. Commun Earth Environ 3:1–9.
- 616 9. Leys BA, Marlon JR, Umbanhowar C, Vannière B. 2018. Global fire history of grassland
- 617 biomes. Ecol Evol 8:8831–8852.

- 618 10. Ferrenberg S, O'neill SP, Knelman JE, Todd B, Duggan S, Bradley D, Robinson T,
- Schmidt SK, Townsend AR, Williams MW, Cleveland CC, Melbourne BA, Jiang L,
- Nemergut DR. 2013. Changes in assembly processes in soil bacterial communities
- following a wildfire disturbance. ISME J 7:1102–1111.
- 622 11. Pérez-Valera E, Verdú M, Navarro-Cano JA, Goberna M. 2020. Soil microbiome drives
- the recovery of ecosystem functions after fire. Soil Biol Biochem 149.
- 624 12. Bouskill NJ, Mekonnen Z, Zhu Q, Grant R, Riley WJ. 2022. Microbial contribution to
- post-fire tundra ecosystem recovery over the 21st century. Commun Earth Environ 3.
- 626 13. Ibáñez TS, Wardle DA, Gundale MJ, Nilsson MC. 2022. Effects of Soil Abiotic and
- Biotic Factors on Tree Seedling Regeneration Following a Boreal Forest Wildfire.
- 628 Ecosystems 25:471–487.
- 629 14. Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI. 2005. Post-fire vegetative
- dynamics as drivers of microbial community structure and function in forest soils. For
- 631 Ecol Manage 220:166–184.
- 632 15. Zhang L, Ma B, Tang C, Yu H, Lv X, Mazza Rodrigues JL, Dahlgren RA, Xu J. 2021.
- Habitat heterogeneity induced by pyrogenic organic matter in wildfire-perturbed soils
- 634 mediates bacterial community assembly processes. ISME J 15:1943–1955.
- 635 16. Taş N, Prestat E, McFarland JW, Wickland KP, Knight R, Berhe AA, Jorgenson T,
- Waldrop MP, Jansson JK. 2014. Impact of fire on active layer and permafrost microbial
- communities and metagenomes in an upland Alaskan boreal forest. ISME J 8:1904–1919.
- 638 17. Yang S, Zheng Q, Yang Y, Yuan M, Ma X, Chiariello NR, Docherty KM, Field CB,
- Gutknecht JLM, Hungate BA, Niboyet A, Le Roux X, Zhou J. 2020. Fire affects the
- taxonomic and functional composition of soil microbial communities, with cascading

- effects on grassland ecosystem functioning. Glob Chang Biol 26:431–442.
- 642 18. Glassman SI, Randolph JW, Saroa SS, Capocchi JK, Walters KE, Pulido-Chavez MF,
- Larios L. 2023. Prescribed versus wildfire impacts on exotic plants and soil microbes in
- California grasslands. Appl Soil Ecol 185:104795.
- 645 19. Xiang X, Shi Y, Yang J, Kong J, Lin X, Zhang H, Zeng J, Chu H. 2014. Rapid recovery of
- soil bacterial communities after wildfire in a Chinese boreal forest. Sci Rep 4:1–8.
- 647 20. Dove NC, Taş N, Hart SC. 2022. Ecological and genomic responses of soil microbiomes
- to high-severity wildfire: linking community assembly to functional potential. ISME J 1–
- 649 11.
- 650 21. Pressler Y, Moore JC, Cotrufo MF. 2019. Belowground community responses to fire:
- meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos
- 652 128:309–327.
- 653 22. Dooley SR, Treseder KK. 2012. The effect of fire on microbial biomass: A meta-analysis
- of field studies. Biogeochemistry 109:49–61.
- 655 23. Whitman T, Whitman E, Woolet J, Flannigan MD, Thompson DK, Parisien MA. 2019.
- Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn
- severity gradient. Soil Biol Biochem 138:107571.
- 658 24. Sáenz de Miera LE, Pinto R, Gutierrez-Gonzalez JJ, Calvo L, Ansola G. 2020. Wildfire
- effects on diversity and composition in soil bacterial communities. Sci Total Environ
- 660 726:138636.
- 661 25. Fox S, Sikes BA, Brown SP, Cripps CL, Glassman SI, Hughes K, Semenova-Nelsen T,
- Jumpponen A. 2022. Fire as a driver of fungal diversity A synthesis of current
- knowledge. Mycologia 114:215–241.

- 664 26. Pulido-Chavez MF, Randolph JWJ, Zalman C, Larios L, Homyak PM, Glassman SI.
- 2023. Rapid bacterial and fungal successional dynamics in first year after chaparral
- wildfire. Mol Ecol 32:1685–1707.
- 667 27. Fierer N, Nemergut D, Knight R, Craine JM. 2010. Changes through time: Integrating
- microorganisms into the study of succession. Res Microbiol 161:635–642.
- 669 28. Low-Décarie E, Kolber M, Homme P, Lofano A, Dumbrell A, Gonzalez A, Bell G. 2015.
- 670 Community rescue in experimental metacommunities. Proc Natl Acad Sci U S A
- 671 112:14307–14312.
- 672 29. Cairns J, Jokela R, Becks L, Mustonen V, Hiltunen T. 2020. Repeatable ecological
- dynamics govern the response of experimental communities to antibiotic pulse
- perturbation. Nat Ecol Evol 4:1385–1394.
- 675 30. Eggers SL, Eriksson BK, Matthiessen B. 2012. A heat wave and dispersal cause
- dominance shift and decrease biomass in experimental metacommunities. Oikos 121:721–
- 677 733.
- 678 31. Comte J, Langenheder S, Berga M, Lindström ES. 2017. Contribution of different
- dispersal sources to the metabolic response of lake bacterioplankton following a salinity
- change. Environ Microbiol 19:251–260.
- Lawrence D, Bell T, Barraclough TG. 2016. The effect of immigration on the adaptation
- of microbial communities to warming. Am Nat 187:236–248.
- 683 33. Graham EB, Stegen JC. 2017. Dispersal-based microbial community assembly decreases
- biogeochemical function. Processes 5.
- 685 34. Evans SE, Bell-Dereske LP, Dougherty KM, Kittredge HA. 2020. Dispersal alters soil
- 686 microbial community response to drought. Environ Microbiol 22:905–916.

- 687 35. Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. 2018. Dispersal timing
- determines the importance of priority effects in bacterial communities. ISME J 12:644
- 689 646.
- 690 36. Weber SE, Diez JM, Andrews L V., Goulden ML, Aronson EL, Allen MF. 2019.
- Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers.
- Fungal Ecol 40:62–71.
- 693 37. Walters KE, Capocchi JK, Albright MBN, Hao Z, Brodie EL, Martiny JBH. 2022. Routes
- and rates of bacterial dispersal impact surface soil microbiome composition and
- functioning. ISME J 1–10.
- 696 38. Finks SS, Weihe C, Kimball S, Allison SD, Martiny AC, Treseder KK, Martiny JBH.
- 697 2021. Microbial community response to a decade of simulated global changes depends on
- the plant community. Elem Sci Anthr 9:1–13.
- 699 39. Barbour KM, Weihe C, Allison SD, Martiny JBH. 2022. Bacterial community response to
- environmental change varies with depth in the surface soil. Soil Biol Biochem
- 701 172:108761.
- 702 40. Anderson MJ, Gorley RN, Clarke KR. 2010. Permanova for Primer 215.
- 703 41. Chaudhary VB, Nolimal S, Sosa-Hernández MA, Egan C, Kastens J. 2020. Trait-based
- aerial dispersal of arbuscular mycorrhizal fungi. New Phytol 228:238–252.
- 705 42. Meyer KM, Porch R, Muscettola IE, Vasconcelos ALS, Sherman JK, Metcalf CJE,
- Lindow SE, Koskella B. 2022. Plant neighborhood shapes diversity and reduces
- interspecific variation of the phyllosphere microbiome. ISME J 16:1376–1387.
- 708 43. Fierer N, Liu Z, Rodríguez-Hernández M, Knight R, Henn M, Hernandez MT. 2008.
- Short-term temporal variability in airborne bacterial and fungal populations. Appl Environ

- 710 Microbiol 74:200–207.
- 711 44. Cáliz J, Triadó-Margarit X, Camarero L, Casamayor EO. 2018. A long-term survey
- unveils strong seasonal patterns in the airborne microbiome coupled to general and
- regional atmospheric circulations. Proc Natl Acad Sci U S A 115:12229–12234.
- 714 45. Cevallos-Cevallos JM, Danyluk MD, Gu G, Vallad GE, Van Bruggen AHC. 2012.
- 715 Dispersal of Salmonella typhimurium by rain splash onto tomato plants. J Food Prot
- 716 75:472–479.
- 717 46. Tignat-Perrier R, Dommergue A, Thollot A, Keuschnig C, Magand O, Vogel TM, Larose
- 718 C. 2019. Global airborne microbial communities controlled by surrounding landscapes
- and wind conditions. Sci Rep 9:1–11.
- 720 47. Packard EE, Durall DM, Jones MD. 2023. Successional changes in fungal communities
- occur a few weeks following wildfire in a mixed Douglas-fir-ponderosa pine forest.
- Fungal Ecol 63.
- 723 48. Mallon CA, Le Roux X, Van Doorn GS, Dini-Andreote F, Poly F, Salles JF. 2018. The
- impact of failure: Unsuccessful bacterial invasions steer the soil microbial community
- away from the invader's niche. ISME J 12:728–741.
- 726 49. Vannette RL, Fukami T. 2017. Dispersal enhances beta diversity in nectar microbes. Ecol
- 727 Lett 20:901–910.
- 728 50. Albright MBN, Martiny JBH. 2018. Dispersal alters bacterial diversity and composition in
- 729 a natural community. ISME J 12:296–299.
- 730 51. Nelson AR, Narrowe AB, Rhoades CC, Fegel TS, Daly RA, Roth HK, Chu RK,
- Amundson KK, Young RB, Steindorff AS, Mondo SJ, Grigoriev I V, Salamov A, Borch
- 732 T, Wilkins MJ. 2022. Wildfire-dependent changes in soil microbiome diversity and

- 733 function. Nat Microbiol 7:1419–1430.
- 734 52. Malik AA, Swenson T, Weihe C, Morrison EW, Martiny JBH, Brodie EL, Northen TR,
- Allison SD. 2020. Drought and plant litter chemistry alter microbial gene expression and
- metabolite production. ISME J 14:2236–2247.
- 737 53. Mallon CA, Poly F, Le Roux X, Marring I, Van Elsas JD, Salles JF. 2015. Resource
- pulses can alleviate the biodiversity-invasion relationship in soil microbial communities.
- 739 Ecology 96:915–926.
- 740 54. Yang T, Wei Z, Friman VP, Xu Y, Shen Q, Kowalchuk GA, Jousset A. 2017. Resource
- availability modulates biodiversity-invasion relationships by altering competitive
- interactions. Environ Microbiol 19:2984–2991.
- 743 55. Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q, Sun S. 2020. Fungal
- community demonstrates stronger dispersal limitation and less network connectivity than
- bacterial community in sediments along a large river. Environ Microbiol 22:832–849.
- 746 56. Vannette RL, McMunn MS, Hall GW, Mueller TG, Munkres I, Perry D. 2021. Culturable
- bacteria are more common than fungi in floral nectar and are more easily dispersed by
- 748 thrips, a ubiquitous flower visitor. FEMS Microbiol Ecol 97:1–9.
- 749 57. Choudoir MJ, DeAngelis KM. 2022. A framework for integrating microbial dispersal
- modes into soil ecosystem ecology. iScience 25:103887.
- 751 58. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar
- effects on soil biota A review. Soil Biol Biochem 43:1812–1836.
- 753 59. Biederman LA, Stanley Harpole W. 2013. Biochar and its effects on plant productivity
- and nutrient cycling: A meta-analysis. GCB Bioenergy 5:202–214.
- 755 60. Hart MM, Aleklett K, Chagnon PL, Egan C, Ghignone S, Helgason T, Lekberg Y, Öpik

- 756 M, Pickles BJ, Waller L. 2015. Navigating the labyrinth: A guide to sequence-based,
- 757 community ecology of arbuscular mycorrhizal fungi. New Phytol 207:235–247.
- 758 61. Lekberg Y, Vasar M, Bullington LS, Sepp SK, Antunes PM, Bunn R, Larkin BG, Öpik M.
- 759 2018. More bang for the buck? Can arbuscular mycorrhizal fungal communities be
- characterized adequately alongside other fungi using general fungal primers? New Phytol
- 761 220:971–976.
- 762 62. Glassman SI, Weihe C, Li J, Albright MBN, Looby CI, Martiny AC, Treseder KK,
- Allison SD, Martiny JBH. 2018. Decomposition responses to climate depend on microbial
- community composition. Proc Natl Acad Sci U S A 115:11994–11999.
- 765 63. Potts DL, Suding KN, Winston GC, Rocha A V., Goulden ML. 2012. Ecological effects
- of experimental drought and prescribed fire in a southern California coastal grassland. J
- 767 Arid Environ 81:59–66.
- 768 64. Kimball S, Goulden ML, Suding KN, Parker S. 2014. Altered water and nitrogen input
- shifts succession in a southern California coastal sage community. Ecol Appl 24:1390–
- 770 1404.
- 771 65. Esch EH, King JY, Cleland EE. 2019. Foliar litter chemistry mediates susceptibility to UV
- degradation in two dominant species from a semi-arid ecosystem. Plant Soil 440:265–276.
- 773 66. Khalili B, Ogunseitan OA, Goulden ML, Allison SD. 2016. Interactive effects of
- precipitation manipulation and nitrogen addition on soil properties in California grassland
- and shrubland. Appl Soil Ecol 107:144–153.
- 776 67. Khalili B, Weihe C, Kimball S, Schmidt KT, Martiny JBH. 2019. Optimization of a
- Method To Quantify Soil Bacterial Abundance by Flow Cytometry. mSphere 4:1–10.
- 778 68. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. 1985. Rapid determination of

- 779 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A
- 780 82:6955–6959.
- 781 69. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM,
- 782 Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-
- high-throughput microbial community analysis on the Illumina HiSeq and MiSeq
- 784 platforms. ISME J 6:1621–1624.
- 785 70. Looby CI, Maltz MR, Treseder KK. 2016. Belowground responses to elevation in a
- changing cloud forest. Ecol Evol 6:1996–2009.
- 787 71. Jolivet P, Foley JW. 2015. Solutions for purifying nucleic acids by solid- phase reversible
- 788 immobilization (SPRI)Ludmer Centre for Neuroinformatics and Mental Health. Montreal,
- 789 QC.
- 790 72. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander
- 791 H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A,
- 792 Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da
- 793 Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF,
- Frnst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A,
- Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen
- 796 S, Jarmusch AK, Jiang L, Kaehler BD, Kang K Bin, Keefe CR, Keim P, Kelley ST,
- 797 Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX,
- Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ,
- Melnik A V., Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias
- LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen
- LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song

- SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ,
- Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M,
- Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ,
- Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. 2019. Reproducible, interactive,
- scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–
- 807 857.
- 808 73. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016.
- DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods
- 810 13:581–583.
- 811 74. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA,
- Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon
- sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6:1–17.
- 75. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO.
- 2013. The SILVA ribosomal RNA gene database project: Improved data processing and
- web-based tools. Nucleic Acids Res 41:590–596.
- 817 76. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST,
- Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U,
- Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E,
- Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay
- KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C,
- Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH. 2013. Towards a
- unified paradigm for sequence-based identification of fungi. Mol Ecol
- https://doi.org/10.1111/mec.12481.

825	77.	R Core Team. 2020. A Language and Environment for Statistical Computing. R Found
826		Stat Comput. R Foundation for Statistical Computing, Vienna, Austria.
827	78.	Salazar G. 2021. EcolUtils: Utilities for community ecology analysis. R package version
828		0.1.
829	79.	Clarke KR, Gorley RN. 2006. PRIMER v6: User Manual. Plymouth Mar Lab Plymouth.
830	80.	Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman
831		FD, Knight R, Kelley ST. 2011. Bayesian community-wide culture-independent microbial
832		source tracking. Nat Methods 8:761–765.
833	81.	Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models
834		Using lme4. J Stat Softw 67:1–48.
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		

Figure legends

Fig. 1. Loma Ridge coastal sage scrub (CSS) (A) before and (B) after the Silverado Fire in 2020. (B inset) Burned CSS leaf litter collected after the wildfire. (C) Leaf litter dispersal treatment bags deployed into the CSS in November 2020. Closed dispersal bags are made of 0.22 μm nylon mesh, preventing microbial cells from moving in or out of the bag. Open dispersal bags are made of 2 mm window screen, allowing for cells to disperse into the bag. Loma Ridge grassland (D) before and (E) after the Silverado Fire. (E inset) Burned grassland leaf litter collected after the wildfire. (F) Burned leaf litter dispersal treatment bags and glass slides deployed into the grassland in November 2020. Glass slides were not deployed in the CSS due to resource constraints.

Fig 2. Composition of (A) bacterial and (B) fungal genera on pre-fire and burned (open and closed) leaf litter from the grassland and CSS and glass slides (grassland only) for all timepoints. Pre-fire composition is represented by the average community composition on leaf litter samples collected between 2016 and 2018 from this field site (Finks et al., 2021). Open and closed composition is represented by the average community composition of all burned leaf litter samples open and closed to dispersal respectively collected for this experiment. Glass slide composition is represented by the average community composition on all glass slides open to dispersal. "Other" genera represent all classified genera below 3% relative abundance.

Fig. 3. (A) Abundance, (B) diversity, and (C) non-metric multidimensional scaling (NMDS) ordination of bacteria dispersing onto the glass slides over time. (D) Diversity and (E) NMDS

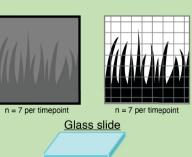
ordination of fungi dispersing onto the glass slides over time. All glass slide samples were collected from the grassland only.

Fig. 4. Proportion of bacterial and fungal community composition on the glass slides attributable to different dispersal source communities (air samples, environmental leaf litter, and surface bulk soil). Color and shape indicate the timepoint from which the sample was collected from the grassland. Letters indicate significant pairwise differences between dispersal sources (Dunn's Multiple Comparison post-hoc test using Bonferroni correction).

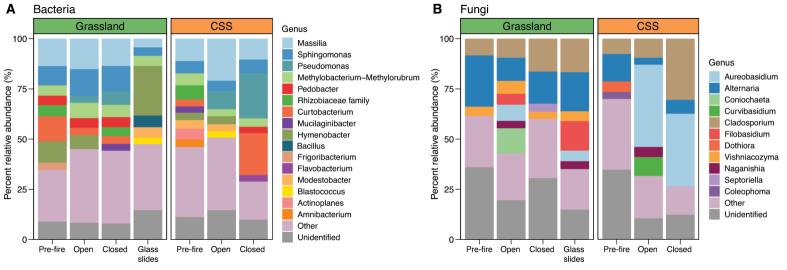
Fig. 5. Non-metric multidimensional scaling (NMDS) ordination of leaf litter (A) bacterial and (B) fungal community composition performed on Bray-Curtis dissimilarities of rarefied and square root transformed OTU tables. Symbol color represents ecosystem type (green = grassland, orange = CSS) and symbol shape represents dispersal bag type (filled = closed, outline = open). 95% confidence intervals are shown around each ecosystem by dispersal bag treatment combination as a whole. Solid and dashed lines represent the confidence intervals for the closed bags and open bags respectively. See Figure S4 for the same figure colored by time point. Average within-group distances and standard errors for (C) bacterial and (D) fungal community composition (Bray-Curtis dissimilarity). Asterisks denote significant differences in dispersion between open and closed bags within a single ecosystem (*** $P \le 0.001$).

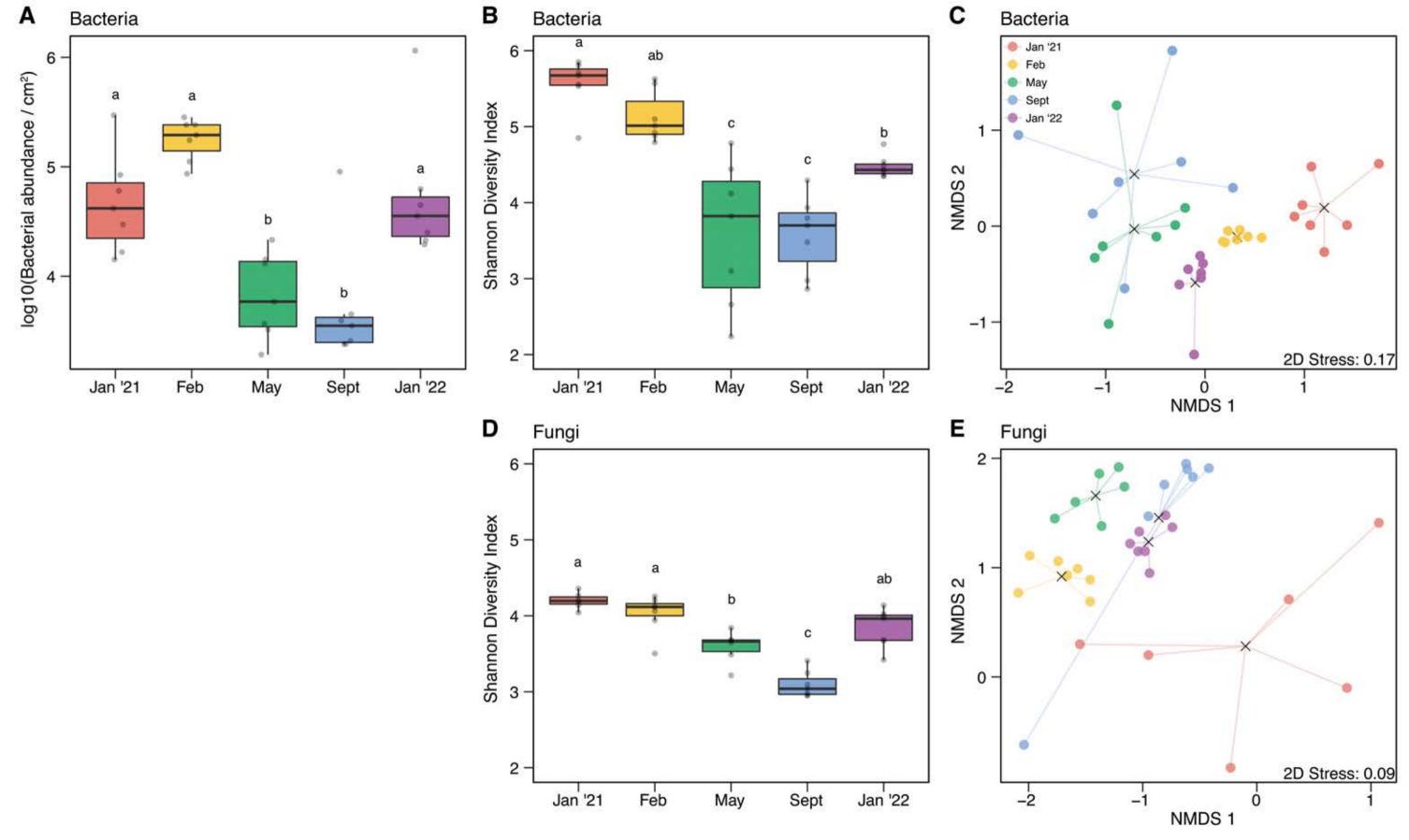
Fig 6. Average leaf litter (A) bacterial abundance, (B) bacterial diversity, and (C) fungal diversity in the open and closed bags from both the grassland and CSS. Sample type is represented by symbol color. Symbol shape indicates bag type. Asterisks on the x-axis indicate

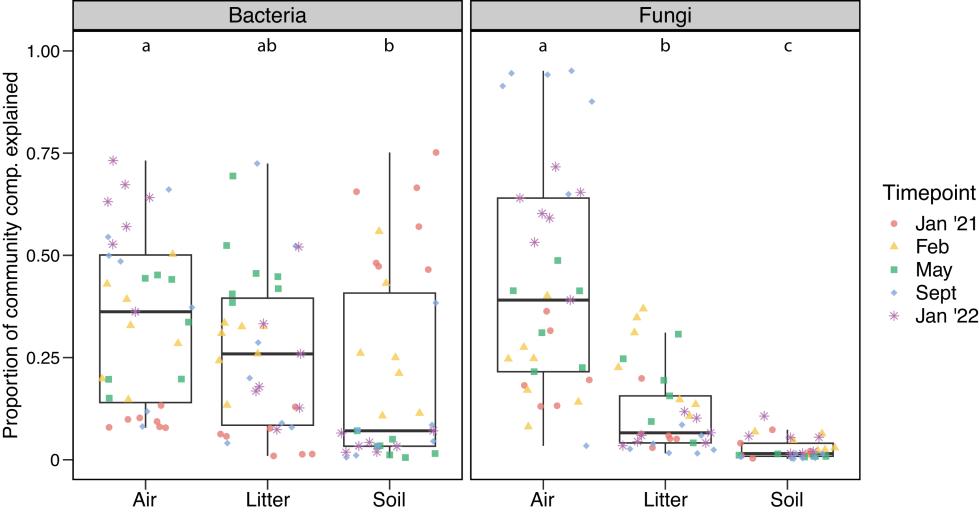
pairwise significance (P < 0.05) between open and closed leaf litter bags by month (Tukey's HSD). Asterisk color represents the ecosystem(s) where significance occurred (green = grassland, orange = CSS). Bacterial abundance calculated as per cm² of the glass slide and per gram of dry litter for the glass slide and leaf litter samples, respectively.

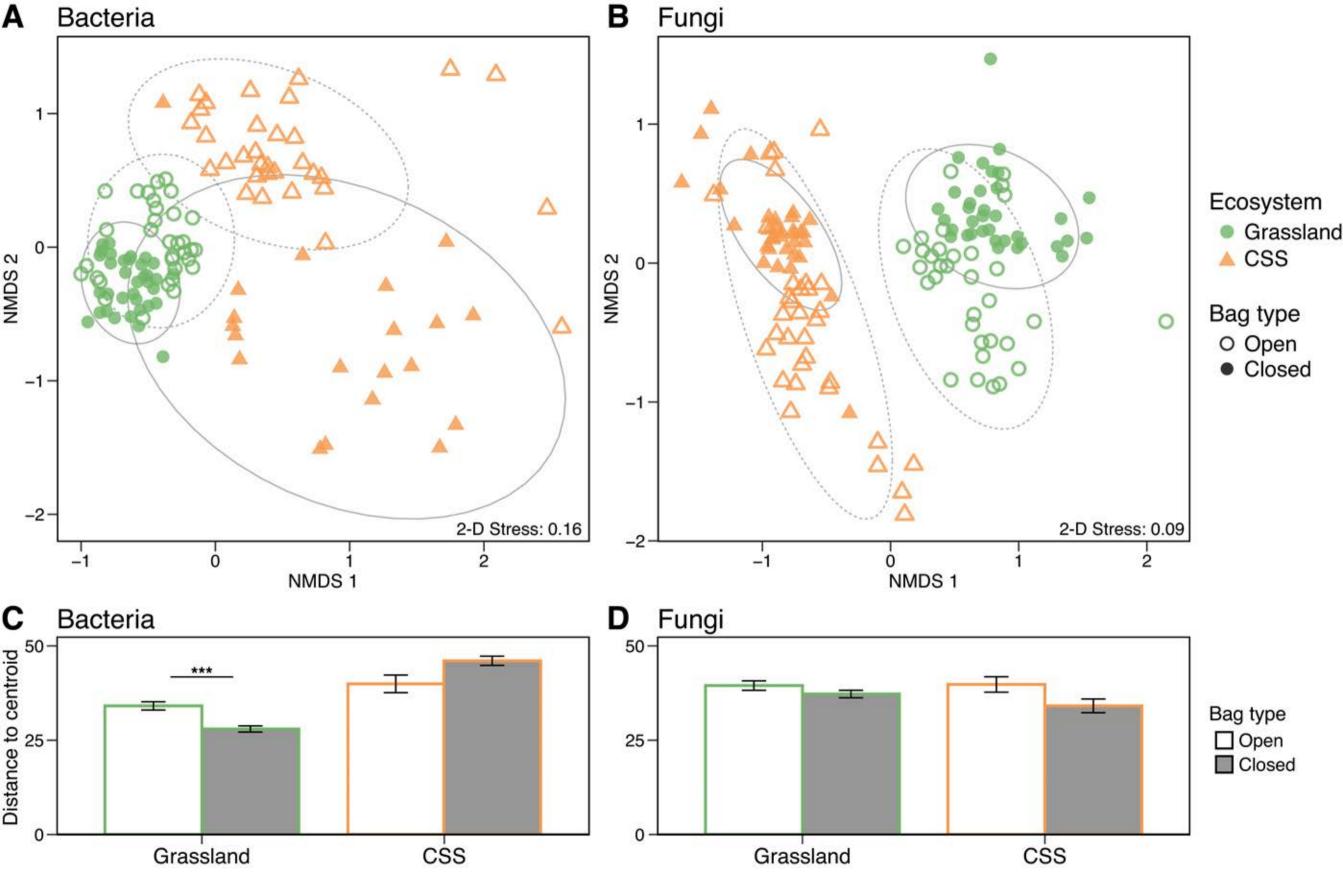

Closed bag

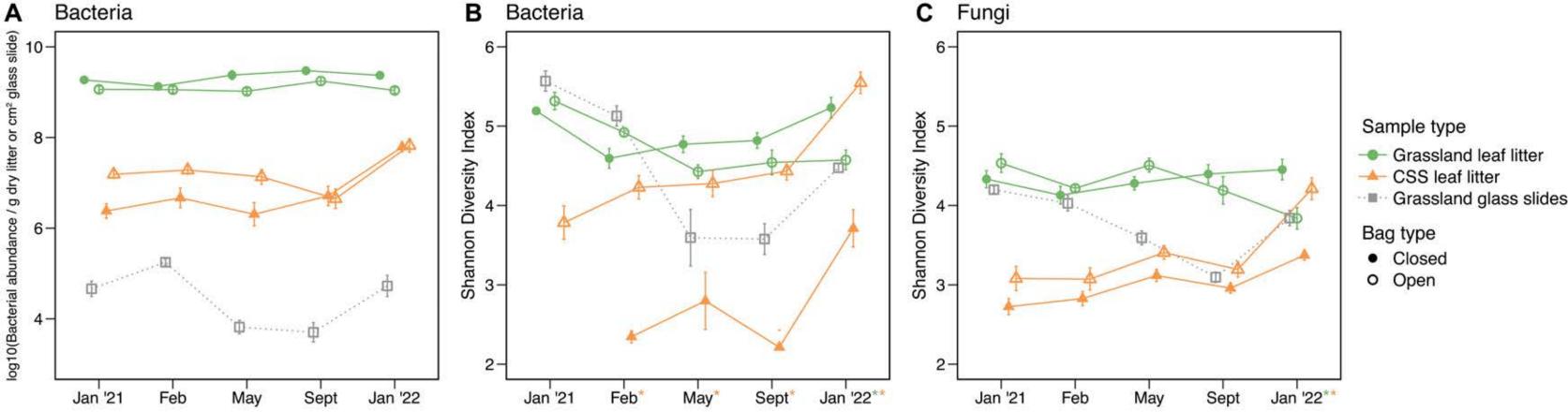
Open bag


Coastal sage scrub






n = 7 per timepoint


Grassland

