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ABSTRACT

Numerical analyses can aid design exploration, but there are several computational approaches
available to consider design options. These range from “brute-force” search to optimization.
However, the implementation of optimization can be challenging for the complex, time-intensive
analyses required to assess seismic performance. In response to this challenge, this study tests
several optimization strategies for the direct displacement-based design of a lateral force-resisting
system (LFRS) using mass timber panels with U-shaped flexural plates (UFPs) and post-tensioning
high-strength steel rods. The study compares two approaches: (1) a brute-force sampling of designs
and data filtering to determine acceptable solutions, and (2) various automated optimization
algorithms. The differential evolution algorithm was found to be the most efficient and robust
approach, saving 90% of computational cost compared to brute-force sampling while producing
comparable solutions. However, every optimization formulation did not return best range of design
options, often requiring reformulation or hyperparameter tuning to ensure effectiveness.

INTRODUCTION

The design of mass timber lateral systems involves navigating an interconnected web of constraints
and objectives, especially when performing seismic design. Assessing the seismic design
performance of lateral force-resisting systems can thus require significant computation, even if
aspects of full three-dimensional behavior are simplified for design. Using numerical analyses,
design exploration can be achieved manually, through optimization, or a brute-force search that
generates many candidates. Optimization can in theory lead to acceptable answers most efficiently,
but its implementation with certain structural analysis algorithms can be challenging. Many
optimization-based structural analysis models behave as black boxes that only produce data at
certain steps, requiring careful problem formulation, algorithm selection, and a strategy for
monitoring extracted data to achieve quality results.

This research focuses on testing various optimization approaches for the direct displacement-based
design of lateral force-resisting systems (LFRS) that combine mass timber panels with U-shaped
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flexural plates (UFPs) for energy dissipation and post-tensioning high-strength steel rods for self-
centering. First, a brute-force sampling approach is coupled with the OpenSeesPy analysis
framework (McKenna et al., 2010) to analyze thousands of models with different design inputs,
such as the number and characteristics of UFPs. Additional design variables used to generate these
samples include the diameter of post-tensioning steel rods, their post-tensioning force, UFP width
and thickness, and a moment distribution factor which indicates the load percentage that must be
carried by the mass timber panel plus the high-strength steel rods. The difference must be carried
by the energy dissipators (the UFPs). For each design iteration, the initial multi-degree-of-freedom
(MDOF) model is substituted with an equivalent single-degree-of-freedom (SDOF) oscillator to
estimate the design forces associated with the target drift, which was defined for Service Level
Earthquake (SLE), Design Earthquake (DE), and risk-targeted Maximum Considered Earthquake
(MCER) levels. Once the sampled simulations were generated, data filtering was used to determine
acceptable solutions based on the demand-over-capacity ratio and validate the initial moment
distribution factor. Next, several optimization algorithms were tested with varying arrangements
of objectives and constraints to solve this design problem automatically and return qualified
solutions. The results were then compared to determine how much benefit the optimization
provides in terms of fewer simulations, which translates to less computation time, while still
finding a similar number of qualified solutions for further evaluation by the designer.

BACKGROUND REVIEW

Structural Optimization for Seismic Loads. Optimization has been widely used in other
engineering fields but has recently gained attention in the design of building systems (Gerber &
Lin, 2014; Wortmann, 2019). However, the complex and multi-disciplinary nature of early
building design and the need for custom solutions for specific sites have limited the use of
optimization in practice to only a few prominent examples (Cichocka et al., 2017). In traditional
engineering, designers will typically simulate a limited number of options. If the design options
can be encoded parametrically, designers can potentially improve the outcome by considering
many more possibilities. This is commonly done using a brute-force method, which involves
creating many designs and then filtering through the data to identify a few acceptable design
solutions (Brown & Mueller, 2017). If the problem can be formulated well, structural optimization
can provide a more efficient design approach. Optimization has been applied to the design of lateral
force-resisting systems and has shown promise in seismic design. Recent examples include large-
scale building and bridge designs, as well as the structural component optimization of seismic
dampers (Apostolakis et al., 2023; Velasco et al., 2022; Xiang & Zhu, 2022). To further consider
lateral force-resisting systems, researchers have coupled OpenSees with various optimization
algorithms (Arroyo & Gutiérrez, 2017; Moradi & Burton, 2018). However, the optimization
routines are usually controlled by another software and full integration of OpenSees models with
optimization remains challenging (Xu et al., 2021).

Direct Displacement-based Design. OpenSees (Open System for Earthquake Engineering
Simulation) is an open-source software framework that allows for the simulation of complex
structural behavior, particularly in the context of earthquake engineering (McKenna, 2011). Direct
displacement-based design (DDBD) is a seismic design approach that focuses on designing
structures based on their expected displacement demands rather than their force demands (Powell,
2008). DDBD allows engineers to simulate the behavior of structures under various seismic loads



(e.g., using OpenSeesPy) and to directly design them based on the resulting displacements,
ensuring that they will perform well during earthquakes (Abdi et al., 2022). This approach offers
several advantages over traditional design methods, including better performance and reduced
construction costs. By utilizing DDBD, engineers can achieve more efficient and effective design
solutions that prioritize structural safety and resilience in seismic events (Segovia & Ruiz, 2017).
Using open-source analysis tools like OpenSeesPy aids in designing structural systems and
components that are not currently listed or developed in codes and standards.

Converging Design. Coupling different structural seismic design criteria with multi-objective
optimization would enable a novel design approach for optimizing functional recovery that
incorporates sustainable building design principles. Efforts to develop such a Converging Design
(CD) Methodology for functional recovery and sustainability are ongoing (TallWood Design
Institute, 2023). As part of this larger project, a full-scale six-story mass timber structure will be
subjected to multiple earthquakes on the shake-table at the NSF-NHERI Experimental Facility
(EF) San Diego Large High Performance Outdoor Shake Table (UC San Diego, 2023), a shared
use experimental facility. The testing will assess three different LFRS: (1) mass timber panels with
UFPs and high-strength post-tensioned rods in both directions of the building; (2) replacement of
the mass timber wall panels in one direction with new walls using buckling-restrained braces
(BRB) and high-strength post-tensioned rods; and (3) replacement of the same walls as in phase 2
with a BRB truss system; the other direction will use the previous setup style. The case study used
in this paper simulates the setup of Phase 1. Both the brute-force method and optimization
approaches are used herein to demonstrate direct displacement-based design of tall timber lateral
systems using OpenSeesPy.

METHODOLOGY

As shown in Figure 1, the design exploration phase for structural systems can involve evaluating
different combinations of design variables and filtering data to identify the best outcomes.
However, this process can be time-consuming, and the range of acceptable answers may not be
clear. To address these issues, architects and engineers can utilize optimization to monitor the
computational process and gradually move towards increasingly optimized design alternatives.
This paper seeks to evaluate the efficiency of optimization in extracting suitable solutions.

Structural Design Optimization

1 Design Exploration 2 Design Optimization
material-efficient
cost-effective evaluation of multiple data-driven designs generating best outcome for specific condition
minimizing weight to reach desirable answer using optimization techniques

controling deflection

Figure 1. An overview of different methodologies for finding efficient structural designs

Figure 2 provides an illustration of the potential advantages of an optimization approach. Although
defining the initial problem for optimization requires more careful attention to parameters,
variables, and objectives, this approach can significantly reduce the time-consuming simulation
process by ignoring poor-performance solutions. By gradually directing the optimization process
towards the best possible answers, given defined objectives and constraints, architects and
engineers can save time and resources while achieving more effective designs. However, these
benefits are only realized if algorithms can actually solve the problem. Depending on problem



structure, there may be both mathematical and practical reasons why this is not the case. This
research tests whether a seismic design problem, based on direct displacement-based design using
OpenSeesPy, is amenable to solving through optimization.
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Figure 2. Comparing brute force sampling and multi-objective optimization in terms of
problem definition and computational cost

Strategy 1: Brute-force Sampling. An initial design space is first created by defining a 2D model
of the 6-story mass timber structure. The prototype, from the CD research project, focuses on
commercial mass timber spine systems using steel energy dissipators. The design is defined based
on several modifiable variables (Figure 3). In the E-W direction, the walls of the structural system
are composed of mass ply panels (MPP), while the N-S direction are cross laminated timber (CLT)
panels. In both directions, UFPs are placed to connect the walls with the end-columns. The UFPs
work as the main energy dissipation source of the system, while the high-strength post-tensioned
steel rods provide recentering capabilities. The analysis model was created using OpenSeesPy, and
direct displacement-based design was used to extract necessary data regarding simulated
performance. To explore different design alternatives, a for-loop was implemented into the model
to go through variables and store simulation results in a CSV file. The desirable answers were then
extracted for further investigation by the designers by filtering the data to meet specific criteria.
These acceptable or qualified solutions meet the specific requirements with the minimum number
of UFPs and efficient cross sections. However, it should be noted that in a real building, the list of
acceptable solutions would require further attention in terms of nonlinear analysis than what is
presented here. This simulation is thus an initial step in the design process.

Strategy 2: Optimization. The optimization approach is built on several steps from the brute-
force method. Although optimization requires extra time and attention for the problem definition,



it has the potential to provide acceptable answers at each generation or step of computing, which
could save simulation time overall. As shown in Figure 4, the optimization focuses on minimizing
the number of UFPs and sometimes other characteristics while meeting pre-defined constraints.
This problem is local to just the energy dissipation elements—when optimization is done more
globally, engineers focus on optimizing structural systems, cross sections, or material usage across
the entire building. All these variables could be incorporated into the framework in the future.
However, the current approach minimizes material usage for the UFPs towards a more efficient
design within a defined scope, for a specific section of the mass timber building. The number of
UFPs is considered as the main objective, and the constraints include criteria such beta comparison
(error) or demand over capacity (DC) ratio. Five different optimization algorithms are
implemented with the Pymoo python library (Blank & Deb, 2020) on the defined structural model:
NSGA2, NSGA2 MOO, NSGA3, SRES, and Differential Evolution. The range of algorithms
allowed for a combination of objectives and constraints to be tested, sometimes replacing one
another depending on the attempted problem definition.
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Figure 3. The design space, brute force sampling, and data filtering

There is one key difference in the optimization strategy compared to traditional structural
optimization. Most applications of structural optimization intend to return a single best design. In
this problem, many solutions exist with the same number of UFPs that possess secondary
characteristics, both quantitative and qualitative, that require further consideration by engineers.
Thus, in this project, the optimization algorithms are used to extract any acceptable solutions while
they run that achieve the filtering criteria from the brute force approach. This strategy has some
conceptual similarities to an isoperformance design methodology (de Weck & Jones, 2006),
although the implementation is different. It should also be noted that while number of UFPs is the
main objective in the optimization process, it is also part of initial variables that define the
OpenSeesPy model in first place. However, since it is affected by other variables such as width
and thickness of UPFs, the automated process can find solutions that navigate the tradeoffs
between all variables to find designs that meet all constraints.
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Figure 4. Design variables, constraints, and objectives for the optimization approaches
RESULT AND DISCUSSION

Data Filtering and Qualified Designs. For brute-force sampling, the simulations were first
completed for the MPP walls, and then CLT was added to expand the range of design inputs. More
than 400,000 models (200,000 each) were simulated in Python in consecutive order. The data was
then filtered to make sure the difference between the initial moment distribution factor and
calculated one after the analysis was less than 5%, and to check if the DC ratio is less than 1. The
designs with 9 or fewer UFPs, which is a physical restriction on the 6-story specimen, that meet
the above criteria were extracted for further design investigation. Figure 5 is a sample result of
filtered data for MPP, highlighting 18 eligible designs—results for CLT were similar. The DDBD
thus produced qualified designs for further qualitative evaluation and nonlinear analysis.

NUFP b_ufp t_uvfp factor beta input D beta real DC error
7.5 8 1 1 0.77 0.76 0.98 0.96 0.03 0.01
4 8.5 8.5 0.5 1 1.125 0.75 0.78 0.96 0.96 0.01 0.05
9 9 1 1.125 0.74 0.77 0.96 0.96 0.02 0.03
6 6.5 1 1 0.77 0.76 0.98 0.96 0.03 0.01
5 + 0.5
7 7 1 1.125 0.74 0.78 0.96 0.96 0.01 0.04
0.2 075
8 8.5 1 1 0.77 0.76 0.99 0.97 0.03 0.01
7 3 t 0.375 i + i t
9 9 1 1.125 0.75 0.78 0.96 0.95 0.01 0.04
8 7 7.5 0.375 1 0.77 0.76 0.99 0.97 0.03 0.01
9 6.5 9 0.375 03125 | 1 | 0.76 0.77 0.98 1 0.02 0.03

Figure 5. Qualified MPP design prototypes extracted by brute-forcing different design
alternatives and filtering the data based on specific criteria.

Optimization. To begin, several evolutionary optimization algorithms were tested on the model
for two different scenarios: constraints plus single objective (all five algorithms) and multi-
objective considering constraints as objectives (NSGA-II). Monitoring the optimization process,
the constrained optimization procedure was the most effective at extracting qualified solutions



based on DDBD. However, a few of the algorithms (NSGA-II, NSGA3, SRES) generated a single
output that best managed the tradeoffs. Genetic Algorithm and Differential Evolution were able to
extract several qualified designs meeting all criteria (Figure 6). The setup was defined so that the
optimization process stopped either based on the algorithm’s stopping criteria or once it had
extracted 18 qualified designs, to make the comparison between optimization and brute-force.
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10 9 0.25 0.88 0.87 0.99 | 0.01

Figure 6. Qualified design prototypes extracted from optimization process; the wall
material (CLT or MPP) considered as one of the variables in optimization.

Discussion: brute-force versus optimization. The brute-force approach can eventually provide
satisfactory results, but optimization generally ran with less computational cost. The best
optimization algorithm (differential evolution) yielded the same number of acceptable answers
using 15% of the iterations (Table 1). The ~23,000 iterations for differential evolution optimization
took ~3 minutes on a professional-grade desktop computer to generate same number of results (18)
as brute-force. Cutting the number of evaluations by ~90% would save significant time on a full
building analysis. However, the optimization process needed to be monitored and occasionally
modified to achieve diverse, qualified solutions, as not every algorithm produced desirable results.
For example, the Genetic Algorithm produced limited results and required adjustments to the
hyperparameter population size. In summary, optimization can reduce computational costs, but
some experimentation with different algorithms and hyperparameter settings may be necessary.

Table 1. Brute-force sampling and optimization approach results

Algorithm Number of evaluations Number of feasible designs generated
Brute-force Search 201,810 18
Optimization Genetic Algorithm 22,800 (11%) 6
Differential Evolution 31,800 (15%) 18
CONCLUSION

Numerical analyses and optimization can facilitate design exploration, but optimization can be
challenging to implement even for simplified direct displacement-based design. This paper
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presents a comparison of optimization approaches for designing mass timber lateral force resisting
systems and found the differential evolution algorithm to be the most efficient and robust approach,
saving a significant amount of computational cost compared to brute-force sampling. Overall, this
study demonstrates the importance of carefully formulating the problem, selecting the appropriate
algorithm, and monitoring extracted data to achieve quality optimization results in the local
optimization of structural components for the design of mass timber lateral force-resisting systems.
Future work, more optimization algorithms can be tested, and the analysis can be expanded to the
full building scale, where computational savings are likely even more important.
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