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Robot Team Data Collection with Anywhere Communication

Matthew A. Schack®, John G. Rogersi, Qi Han', and Neil T. Dantam'

Abstract— Using robots to collect data is an effective way to
obtain information from the environment and communicate it to
a static base station. Furthermore, robots have the capability to
communicate with one another, potentially decreasing the time
for data to reach the base station. We present a Mixed Integer
Linear Program that reasons about discrete routing choices,
continuous robot paths, and their effect on the latency of the data
collection task. We analyze our formulation, discuss optimization
challenges inherent to the data collection problem, and propose a
factored formulation that finds optimal answers more efficiently.
Our work is able to find paths that reduce latency by up to
101% compared to treating all robots independently in our
tested scenarios.

I. INTRODUCTION

Robots teams are an effective way to collect and communi-
cate data from the environment—e.g., in disaster response [1]
or environmental monitoring [2]. Combining motion and
communication enables a robot team to collect data from
various sites, transmit data across areas not physically
traversable, and move to circumvent wireless interference
(see Fig. 1). Prior work has addressed robot data collection
for independent robots [3], [4], [5] or communication at
a priori locations [6], [7]. Generalizing such approaches
to communicate at arbitrary locations improves achievable
latency of robot data collection.

We develop a mixed-integer formulation for robot data
collection, analyze its complexity, and produce a more
efficiently solvable factored form. Optimal (minimum latency)
data collection may require cooperation and communication
between team members, and decisions about motion and
communication are coupled because wireless communication
depends on the team members’ positions. Our formulation
integrates network routing decisions with convex optimization
based path planning [8]. A key feature of many data collection
scenarios is the presence of multiple global optima, which
poses challenges for efficient optimization. We address the
optimization challenge of robot data collection with a factored
formulation that improves the tightness of the linear relaxation
and reduces the necessary work to resolve multiple optima.

This paper is organized as follows. Sec. II reviews related
work in robot data collection. Sec. III formally defines the
robot data collection problem. Sec. IV introduces our mixed-
integer formulation. Sec. V analyzes this formulation and
develops the efficient, factored form. Finally, we evaluate our
approach in Sec. VI and show up to 101% improved latency.
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Fig. 1: Lower latency data collection by considering robot-
to-robot communication. The robots start at the base station
(shown as the computer) and must collect the data from the
blue sites. Robot communication is impossible in the red
areas. One robot collects all the data from the sites and then
transmits it across the wall to another robot team member,
resulting in lower latency than robots acting independently.

II. RELATED WORK

We review related works in data collection and similar
problems in periodically and constantly connected networks.

In robot data collection, a robot must obtain data from
static sites and deliver it to a static base station. This problem
is a special class of the traveling salesman problem (TSP)
called TSP with neighborhoods (TSPN) where a mobile robot
must visit the areas around sites [9]. Leading approaches have
scaled to a large number of sites by combining sites whose
regions overlap [3], using heuristics and tangent graphs to
find paths that ensure a robot spends enough time at a site to
obtain all data [4], or assuming sites can transmit data and
only visiting specified sites [5]. These works focus on using a
single robot to collect the data, and extensions to use multiple
robots [4] create independent paths, rather than having robots
communicate with one another. [6] evaluates the effects of
robot-to-robot communication through discretization and finds
a latency-constrained path. Our work finds a minimum latency
path using multiple robots that can communicate with one
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another, expanding the possible solution set.

Previous approaches to create a constantly connected
network between robots and a static base station [10], [11],
[12], [13], [14], [15], [16] can accomplish many tasks,
including data collection. While a constantly connected
network between sites and the base station may sometimes
be optimal, enforcing constant communication as a constraint
limits the valid space the entire team can move, potentially
resulting in incomplete performance where some sites cannot
be visited. In this work, we do not consider communication
as a constraint; instead, we use periodic communication to
decrease latency.

Approaches for periodically connected robot networks have
the team perform a task with periodic connectivity guaran-
tees [17], [18] or introduce rendezvous points where robots
may communicate [7], [19]. Using a priori rendezvous points
can reduce latency compared to assuming robot independence,
but their effectiveness depends on the rendezvous points
chosen. We generalize such approaches by permitting robots
to communicate not only at a priori rendezvous points, but
anywhere within their communication range.

III. PROBLEM DEFINITION

We address robot team data collection. Robots must obtain
data from multiple sites in the environment, e.g., by using
sensors on the robot or downloading from a statically placed
sensor at that site. Then, the robots must transfer all collected
data to a static base station through a combination of motion
and wireless communication, considering both obstacles for
motion and wireless interference. We seek a sequence of
sites to visit, transmissions between team members, and
accompanying paths to route all data to the base station
with minimum latency.

Definition 1: A robot data collection problem is the tuple
Y=(X,R,S,0,9,b,c,u,q).

e X C SE(2) is the environment.

e R is a finite set of homogeneous robots.

o S is a set of sites containing data. Each site s € S
has associated (1) a convex region (X; C X’) which the
robot occupies to collect data, (2) an amount of data
(algO> € R1), and (3) a data collection rate (p; € RT).

e O C X is a set of obstacles.

e WU is a set of interfering transmitters. Each interfering
transmitter @) € ¥ has an interference range c,.

e b is the static base station with location x; € X.

e ¢ € RT is the communication range of the robots.

e u € RT is the robot velocity.

e g € RT is the wireless data transfer rate.

Space X consists of disjoint valid X,,;9 and invalid and
Ninvatia sSpaces. Invalid space Xjnyaiqg is obstacle region O, and
valid space X4 consists of all other points in X.

Similar to other data collection works, we assume that
wireless communication within ¢ happens with certainty [3],
[4], [5] and that the environments have enough clearance that
a robot cannot block a path—i.e., robot-to-robot collision
avoidance will not affect the optimality of a robot’s path [4]. In
addition, we assume communication is blocked with certainty

if either the sender or receiver is inside interference. Finally,
we account for the limited bandwidth by restricting a robot
to only be able to send and receive from a single source at
any time, which is equivalent to sharing equal bandwidth.

We seek a trour for each robot which routes all data to
the base station—i.e., the sequence of sites s € S to visit
and team members r € R U {b} to exchange data with—as
well as the continuous path to accomplish the tour. We call
each discrete step of each robot’s tour a four leg and seek
to minimize the largest ending time of any robot’s last tour
leg—i.e., the robot’s latency, I/ € R™T.

. !
min vaez%( L (D

Def. 1 is a generalization of the traveling salesman problem
with Neighborhoods (TSPN), which is NP-hard [9]. That is,
we may reduce TSPN to an instance of Def. | with only a
single robot. Thus, Def. 1 must also be NP-hard.

Instances of Def. | typically have multiple globally optimal
solutions to (1), which increases the challenge of efficiently
finding solutions. Two issues cause multiple global optima.
First, optima are not unique under reassignment of robots,
so given optimal trajectories, we may change which robot
follows which path without changing total latency. Second,
optimality is determined only by the maximum latency robot
in (1), so other robots may take other actions as long as
they are completed before the slowest robot. Widely used
branch-and-bound optimization techniques are less efficient
in the presence of multiple global optima. In particular,
such approaches prune sub-optimal variable assignments, but
additional global optima cannot be pruned and are instead
evaluated to completion.

I'V. MIXED INTEGER LINEAR PROGRAM FORMULATION

We first formulate a Mixed Integer Linear Program (MILP)
for robot data collection. Solving this MILP determines each
robot’s tour (i.e., a robot’s data collections, receptions, and
transmissions) as well as paths to accomplish the tour. Next,
in Sec. V, we will analyze this MILP and extend it to a more
efficiently solvable factored formulation.

We divide our program into three parts: robot tour con-
straints (Sec. IV-A); path planning constraints (Sec. [V-B);
and timing constraints that determine the latency for a robot
based on its path and data transfer times (Sec. [V-C).

Our MILP finds a tour that will route all data to the base
station. Each leg of the tour—i.e., a single data collection,
reception, or transmission—has an associated robot path to
move into communication range or visit a specific site’s
region. We consider each tour leg as a discrete timestep,
and constrain the robots performing the leg to end their
path either within communication range or within a site’s
region. We note that program timesteps are different from
actual time and impose only an ordering of actions for
associated robots. A timestep means the leg must complete
before associated robots can perform another leg with
greater timestep. This formulation enables concurrent motion,
communication, and collection, despite a solution with actions
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at different timesteps. Sec. ['V-C describes the rules for timing
and concurrency.

An optimal solution will minimize the maximum robot
latency (1); however, a MILP cannot directly minimize a
maximum. Instead, we define new variable, l;cay, representing
the team’s latency, and constrain lyea, to be greater or equal
to every robot’s latency.

lteam (2)
U™ <o Vremwr,

min

(h)

where I’)" is the latency of robot r at the final timestep h.

A. Tour Constraints

Tour constraints determine the sequence of data collections,
receptions, and transmissions. We model the tour as a max-
flow problem [20]. Later, in Sec. IV-B, we will address the
paths required to accomplish the tour.

We create a graph representing data flow between sites,
robots, and the base station. Graph vertices consist of all
robots, sites, and the base station ¥V = S U R U {b}. Graph
edges exist between every site and robot, every robot pair,
and every robot and the base station V, = {(s,7)Vs € S,r €
R} U{(r,7")Vr,r" € R}U{(r,b)Vr € R}, admitting any
possible tour. At each step ¢, each vertex v € V has data df, 2 s
which changes with the flow fm>, along edges. When we sum
over pairs of vertices if the pair is not an edge in V.—e.g.,
f g))Vs € S—we define the variable’s value as zero.

= dY 3)

A0 =0voeV\S,dM

seES
diitY = +Z( — 1) wevi<h @
v’ ey
S rl <al YoeV,i<h (5
v’ ey

We add a binary variable indicating the specific tour leg
happening at timestep ¢, allowing us to conditionally enforce
motion (described in Sec. [V-B) if the tour leg is a part of
the overall tour. Tour leg tffg, is true if and only if vertices v
and v’ transfer data at timestep 7. We disallow simultaneous
data transfers, since we only traverse one leg per timestep,
and force tf”z, to be true if fvv> is positive.

v,0" €V,
t,3 " al® > 1) V(0,0)) €Vesi < h (7)
seES

We allow for parallel motion and data transmissions even
though (6) limits the team to one tour leg per timestep since a
later timestep does not necessarily mean the leg happens later
in continuous time. We discuss the coupling between discrete
timesteps and the latency for every robot in Sec. IV-C.

We add to the classic max-flow problem constraints to
define the durations of data transfers, which will be used
in Sec. IV-C to determine latency. We represent a data

transfer’s duration as %ﬁ 9. Data transfer durations depend on

the amount of data ( jw,) the data transfer rate (q), or the
data collection rate (ps).

f<i>/ ) f<l>/
A0 > “",/ﬁ?z% VreR,r e RU{bLI<h (8)
_ (i)
’y,@E% VreR,s€S,i<h (9

B. Path Planning Constraints

We create constraints describing a robot’s path at each
timestep and conditionally constrain timestep ending position
if involved with a tour leg at that timestep. This conditional
constraint ensures each tour leg has the appropriate motion
to accomplish it. A robot on a tour leg must end its path
within either a site’s region or within communication range
(Sec. IV-B.1), and we additionally ensure that communication
occurs outside of interference in Sec. IV-B.2.

Optimization-based path planning is an established tech-
nique, and we adapt the approach of [8], which describes a
tight MILP formulation. However, our requirements differ
from this prior work in that the goal for a robot’s path at
timestep ¢ is not known a priori but instead, depends on
the decision variables for the tour leg ¢{*. Additionally, we
sequence multiple path planning problems where the starting
location at timestep ¢ is the ending location at 7 —1. We briefly
review the MILP formulation of [8] (equations (10) to (12))
and refer the reader to [8] for a more in-depth discussion
of the formulation. Then, we describe our extensions for
interaction between a robot’s tour and the corresponding
path.

The formulation in [8] requires the environment to be
decomposed into convex regions. Any environment’s valid
space—even non-convex environments—is decomposable into
convex shapes with space decomposition methods such as
Delaunay Triangulations [21] or Voronoi Diagrams [22].

Let the convex region decomposition be (2 where
UwGQ w = Xyaiid, the prospective cone of each region be Q,
the edge set between convex regions be &, = EXUE ™ Vw €
), binary variables describing what edges are traversed be
y§e>, and the auxiliary variables describing the location of the
robot be z$e> and 7' ( > . The robot may only move through
valid space accordmg to flow and inclusion constraints.

S (#2.00) = Y (a2.49)

ecEin ecgon
VweQreR,i<h (10)
Zy Zy =1 YreR,i<h (11)
ccEs,, ecEin,
(80.40) € 0, (0,482 € 8,
Ve = (u,v) €E,r€R (12)

We sequence paths from timestep to timestep, so the start
location of the robot’s i" path is the ending location of its
path at 7 — 1. We also enforce that the zero-th path starts at
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the base station.

zﬁ? _ beg) VreR,ee v, (13)
(3) _ (1)

r,(start,w) ~ “ r,(w,end) Vre R,UJ € Q? 1<i<h (14)

Next, we describe our extensions to [8] coupling ending
positions at each timestep and the tour obtained in Sec. [V-A.

1) Leg Completion Constraints: We conditionally constrain
a robot’s ending position if it is involved in a tour leg.

We do not initially know the tours when creating the
MILP, which means we do not know where robots will start
or end paths at each timestep. Therefore, we must have
edges £ and £, to every convex region of space in
Q, allowing the robot to start or end its path anywhere.
Rather, we add additional constraints limiting a robot’s final
position by introducing a big-M [23]. We use the big-M to
increase the size of all destinations—i.e., site regions or within
communication range—where a tour leg is not occurring to
the size of the entire space, leaving just the destination where
the tour leg is occurring at the proper size.

A robot must be within a site’s region &, s € S to receive
data from that site—i.e, té? = 1. We enforce this conditional
requirement by representing X in Az < b form—i.e., A,z <
bsVz € Xy N Asx £ bVa ¢ X, and adding the big-M to
conditionally enable the constraint. We note that due to (11)
there exists only one edge in £ for any robot and timestep
pair that is non-zero, so >~ ¢ cou: 2’ §2 is the robot’s position
at the end of the path.

AN 2 <b+ M (1 —th)

ecEM

end
VseS,reR,i<h (15)
The transmitter and receiver must be within the communi-
cation range c¢ for robot-to-robot or robot-to-base communi-
cation. We represent c to arbitrary precision using the same
linear decomposition as [24], which inscribes an N sided

equilateral polygon into a circle of radius c.

} : 7 (2)
Z,e —Xp
ecE

end

VreR,nel,2,...,N] (16)

e e€Eqd
vne[1,2,...,N],r,r' e Ryr#7",i<h (17)

Similar to before, the additional M (1 - tf,?,) expands the
communication range if no data is transmitted between r and
r’ at timestep 4, removing the constraint.

2) Interference Constraints: Environmental interference
prevents wireless transmission, so the final positions for robot-
to-robot and robot-to-base communication must be outside of
interference. A robot is outside the range of each interfering

. T
> 20- 3 20 b <erar(1-42)
N

transmitter 1) if there exists at least one n that satisfies:

o ) [ 2o
e€&qq

VreR,i<h3ne[l,2,...,N]. (18)

Unfortunately, we cannot directly evaluate a 3 operator
in MILP formulations, so we add a binary variable aszn
allowing us to turn off at most NV — 1 instances of (18) if
robot r is involved in a transmission at timestep .

Xj — Z Z'i? Eg; ((2]’\“]—”%] > ey — Maf;fnn,
ecEout N

end

- Y 20 [gg; gy)] > ey~ Mal),,
ecEout N

end

Vne[1,2,...,N], v e ¥ rr" e R,r#7'i <h, (19)
> ezl 3 all 2l
nefl,2,...,N] nefl,2,...,N]

Vne(l,...,Nl,ve¥ rreV,i<h (20)

When ti?, =0, all (’Yl(/i)"n can be one, removing (19) from the

MILP. When ti?, = 1, there must be at least one afﬁ,n =0
satisfying (18), meaning the robot is out of interference.
Finally, robot motion takes time, which affects the latency.
We define the time for robot r to move from the start region
to the goal region during timestep ¢ as 57@ and constrain it

by the distance and velocity w.

57@ _ Z \Z/ﬁz - sze)|
u

VreR,ec&i<h (21)

ec&
C. Timing Constraints

Timing constraints ensure that the required time is allotted
for robot motion and data transfer. These time requirements
determine each robot’s latency.

Robot r’s start and end times (ly> and I 7@) at step ¢ are

defined by motion time, 6,@, and data transfer time, 'yﬁw.

VI S 440 v e RU{BY i< b (22)
19 >0 450 vreR,1<i<h (23)
119 > 59 wvreRr 24)

10 > 189 — =)y, 18 >0 — 1 — ),
VreR,” e Ru{bl,r#ri<h (25)

Constraint (22) ensures that the robots spend the full
time collecting or transmitting data, (23) and (24) ensure
that robots finish their path before they start transmitting or
collecting data, and (25) ensures that both the transmitter and
receiver have arrived before any data transfer happens.

Constraints (22)-(25) allow for simultaneous data collection
or transfers by only constraining one robot’s start time to ac-
count for another robot’s start time if they are communicating
with one another. As a result, increasing timesteps may not
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be associated with later continuous time as robots work in
parallel and only wait for each other when they communicate.

We construct robot r’s tour by finding the sequence of
timesteps where 7 collects data or communicates—i.e., 7 €
(v,0") A tffg, = 1. We construct r’s path by finding the
sequence of edges traversed during a step (i.e., yﬁ,ﬁ =1)and
positions from z§e> and z’ < )

We have presented a MILP for tours and paths that transfers
all data to the base station (Sec. IV-A). Each tour leg
constrains the positions of associated robots (Sec. [V-B).
Using the motion and data transfer times, we compute the
latency for each robot and the team as a whole Sec. I'V-C.

V. ANALYSIS

We analyze our formulation from Sec. IV and discuss
challenges for efficient optimization. Furthermore, we show
that cyclic network routes are sometimes optimal, meaning
we cannot remove additional global optima by preventing
network cycles. We address these challenges with a factored
optimization approach that improves efficiency.

A. Optimization Challenges

The formulation in Sec. IV is challenging to solve for two
reasons: (1) multiple global optima and (2) a loose linear
relaxation. These issues increase the time for branch-and-
bound optimization due to increased variable assignments
that must be evaluated before pruning a branch.

Three situations cause multiple global optima: (1) robots
moving to different regions of space when they are not part
of a tour leg; (2) the team following the same paths, but
switching which robot follows which path; and (3) a team
following the same tour, but switching the discrete timesteps
where they perform tour legs. We remove the first cause with,

(@ <Zt§2+2t§2 Vre R,w,w € Q,

yT(w,w’) —
veEV veEV

(26)

which allows 7 to move to a different region only if part of
a leg. Unfortunately, the latter two causes of multiple optima
are more difficult to completely prune due to the different,
but still potentially uniquely optimal, permutations of .

Path planning using [8] produces a tight formulation, but
the tour constraints (Sec. I'V-A) have a comparatively loose
linear relaxation. The looseness is primarily due to indicator
constraint (7) which accomplishes data transfer in the linear
relaxation with low, but non-zero, . Removing this looseness
and the multiple global optima would yield a tight formulation
and a single optimum, which would be easier to solve.

B. Cyclic Network Routes

A common way to reduce multiple optima is to remove
cyclic network routes—e.g., 1 transmits to 7o and then later
on 7y transmits to 7;—which are always suboptimal for a
single robot or pair of robots. However, we show that with
three or more robots, cyclic routes could have the minimum
latency, meaning we cannot disallow tours with a cyclic route.

Optimal cyclic routes depend on robots being able to
transmit data when they would otherwise be idle, which may
reduce latency when data transfer times are non-negligible.

We give an example of such a data transfer in Fig. 2a to
prove that cyclic routes may be optimal.

Theorem 1: The minimum latency tour may include a
transmission from robot r to 7’ and later a transmission
from 1/ to r. That is, £\, == ) Vj > i

Proof: The optimal tour for environment Fig. 2a
with three robots contains a cycle. Environment Fig. 2a
has two sites, s; and s,. Robots r;, r,,, and r, follow
the top, middle, and bottom paths from the base station
respectively. The optimal tour and path to collect data
from just s; is tégit,tﬁg ,t<2>b, with r, and r,, traversing

m Uy
their respective paths then transmitting the data over walls.
Similarly, the optimal tour and path for data collection
from s, is té?)rm , tﬁfn , tﬁfib , t<3b with robots following each
path and then transmitting the data over the walls. By
environment design, 7; and 7, can route all the data in
s¢ to the base station and still arrive at their positions
to transmit the s,’s data before r, arrives. Furthermore,
if r; collects data and then attempts to follow any other
path, r;, will arrive last, increasing the latency. Therefore
the optimal tour is to route each site s data in sequence:

f0) 1 (2 3 )y ThlS route involves

StTts 7'{""7117 Tmb’ Sr'f"mv Tm7t) 7"t7"b7 Th b
a cycle (tnrm, Tmn) proving t<7> = -t Vj > 1. |
The potential for optima with cyclic network routes means
we cannot include constraints to remove additional optima due
to cycles. However, cyclic routes may only be optimal when
data transfer times are non-zero. Otherwise, there must always
exist another global optimum avoiding a cyclic network route
by removing the cycle’s first data transfer. Thus, when data
transfer times are negligible compared to robot motion time,
we may disallow cyclic network routes and retain optimality.

Algorithm 1: Our factored optimization algorithm.

Input: Y // Def. 1
Output: 7,0 // Robot tours and paths
o, T + NULL
ltean <— MAX_INT // latency
bnd < 0 // Lower bound
dist ¢« createDistanceBounds (X)
v < TourSelector (X)
while v.hasTour () do
T’ + v.getNextTour ()
bnd < lowerBound (X,7’,dist) // Alg. 2
if bnd > lean then break // Optimum found
0’ liean < optimize (3,77)

11 if l,/ceam < ltean then O, T, lteam 0/7 T/ l,/ceam

=T 7 I VR

—
<

12 return T, g

C. Factored Optimization

We improve optimization efficiency by factoring tour
generation—i.e., finding each tig, —from the MILP
in Sec. IV. Factoring avoids the expensive branching to
evaluate additional optima by instead checking for equivalent
tours before path planning. Additionally, the linear relaxation
given a tour is tighter than the relaxation without, implying

that branch-and-bound methods will be more efficient.

5of 7



IROS 2023

T — Method Routes Maze Non- Convex Outdoor
Algorithm 2: Our lower bound latency heuristic (Fig. 2a) | (Fig. 2b) (Fig. 2¢ (Fig. 2d)
Input: 32,7 ,dist // Def. 1, tour, min site distances LKH 1490 3782 842 5762

. LKH+Opt 1174 3135 760 4013

(3utput I} oan // Lower bound on latency MILP 889 3137 761 1015

1 1;.,d, < 0,0 Vr € R // Robot latency and data Factored 791 2062 628 2861
2 x < b Vr € R // Current robot positions Optimal 791 2062 [294,614] | [2060, 2842]

3 foreach tffg, € T do // Tterate in order

4 if v,v" € R then // robot-to-robot communication
1 oq/ d,

5 0,0, «—max (l,,l,) + =

6 dyr,dy — dy +dy, 0

7 else if v/ € R then // Robot visits site
’ ’ dist(z,s,v) dy

8 l'u’ < l'u’ + T + 3

9 dyr, 2y dy +d v

10 else // Robot delivers data to the base station
’ ’ dist(wv,v/) d,

12 dy, 2, < 0,0

[
w

return max (I Vr € R) // Maximum latency

Our factored approach finds the global optimum by
determining a lower bound on latency and terminating when
no tours exist with a lower bound less than the optimum. We
iterate through tours ordered by lower bound until we find a
tour with a lower bound exceeding the optimum (Alg. 1).

We find a lower bound on latency by simulating a tour
using per-leg lower bounds (Alg. 2). The robot with the
greatest latency bound determines the team’s bound. Initially,
we pre-compute minimum latency paths dist between all
pairs of sites and the base station, considering starting and
ending anywhere in each region. When a robot visits a site
(line 7) or the base station (line 10), the robot’s latency is
increased based on the minimum path and data transmitted.
When robots communicate with other robots, (line 4), each
robot’s latency is set to the pair’s maximum plus the data
transmission time. We return the greatest latency for any
robot, which is a lower bound on the team’s latency.

VI. EXPERIMENTS

We evaluate our MILP and factored approach to finding
minimum latency routes and trajectories for robot team
data collection. We compare against a state-of-the-art TSP
solver LKH [25], which assumes robot independence, and
we analyze the performance in a variety of environments.
Each environment captures a specific feature: Fig. 2a has
an optimum with a cyclic network route, Fig. 2b has many
walls and long paths, Fig. 2c has non-convex obstacles, and
Fig. 2d is based an actual outdoor environment.

We use LKH [25] configured to solve the Vehicle Routing
Problem, which attempts to minimize the sum of every robot’s
path cost. LKH does not account for regions, so we used
the center-to-center path length between every static area
(sites and the base station) for the path cost. However, we
also compare against using LKH to find a robot tour and
optimizing that tour using our MILP (called “LKH+Opt”) to
show latency reduction from considering regions.

TABLE I: Latency for the team in seconds (lower is better).
Our factored approach quickly reasons about the effects of
robot-to-robot communication, resulting the least latency of
any method. The true optima are shown for comparison, and
the ones with intervals are the bounds on the optimum after
running the factored approach for 12 hours.

Method Routes Maze Non-Convex | Outdoor
(Fig. 2a) | (Fig. 2b) (Fig. 2¢) (Fig. 2d)
MILP 77.9% 100% 100% 100%
Factored 0% 18.4% 53.6% 28.1%
. : : solution—bound
TABLE II: The final optimality gap (=235 >%"%) (lower

number is better). Our factored method has a tighter bound
on optimality than the MILP. Neither baseline calculates a
bound, meaning they do not have an optimality gap.

We use A* to generate possible tours. States in the search
are locations of data at robots, sites, and the base station.
The goal is all data at the base station. We use the admissible
heuristic from Alg. 2, which is a lower bound on latency. A*
generates tours ordered by the lower bound on latency, so we
have found the optimum once the next tour’s lower bound
exceeds the current best result. Additionally, we calculate the
optimality gap (2etition—bound) 5 evaluate the tightness of
our lower bound—i.e., the quality of Alg. 2 as a heuristic
compared to the linear relaxation of Sec. V.

We performed all experiments on an Intel Xeon processor
at 3.70GHz and use a ten-minute timeout. All environments
used a three-robot team. The site regions and base station for
each environment are shown in Fig. 2. We used Gurobi [26]
for optimization. We decomposed space into greedily created
rectangles in Fig. 2a and Fig. 2b and used Triangle [27] to
perform spacial decomposition in all other environments.
We use unit velocities and data transfer times for each
environment. Additionally, we seeded our MILP with the
answer provided by LKH as an initially valid solution, and
we used a time horizon of (||R||+ 1) (||S]|), which is the
maximum number of time steps required for any possible
tour. We measure latency improvement as Surs—baseline

Table I shows the latency for each method. Our factored
method has up to a 101% improvement compared to methods
assuming robot independence, showing the importance of
robot-to-robot communication. Environments with many walls
(Fig. 2a, Fig. 2b, and Fig. 2d) saw a larger improvement in
latency from robot-to-robot communication than more open
environments (Fig. 2¢); transmitting data over walls saves time
robots would spend moving around walls, so the difference in
improvement is expected. Additionally, the large difference in
LKH+Opt and LKH in Fig. 2d is due to LKH+Opt optimizing
to reach any point in the goal area, rather than the center.

Table I shows the optimality gap of the factored approach
and MILP, which indicates the bound tightness. The factored
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(b) Maze
(4 sites, 1m range)

(a) Cyclic network routes
(2 sites, 2m range)

(d) Outdoor
(6 sites, 4m range)

(c) Non-convex Obstacles
(6 sites, 1m range)

Fig. 2: The different testing environments with the number of sites and robot communication ranges. The base station shares
the robot’s communication range and is shown as the computer, the site regions are shown as blue convex areas, the spatial
decomposition is shown by the purple lines, and areas with environmental interference are shown as red circles.

approach used the heuristic lower bound described in Sec. V-
C, while the MILP used the lower bound from branch-and-
bound. We improved the optimality gap by factoring tour
generation from the MILP, suggesting that separating data
collection problems into two sub-problems (tour generation
and path optimization) improves efficiency.

VII. CONCLUSION

We developed a Mixed Integer Linear Program (MILP) to
minimize latency for robot data collection, analyzed the MILP,
and created a more efficient factored form. Our approach
enables disconnected robots to rendezvous anywhere in the
environment, which reduces latency compared to approaches
based on the Traveling Salesman Problem (TSP). Our analysis
of the MILP yielded the factored approach, addressing the
MILP’s two main efficiency challenges: multiple global
optima and a loose linear relaxation. We compared our
approach against a state-of-the-art TSP solver and showed
up to 101% improved latency in our simulated experiments.
Our future work will focus on tour generation, which is the
current bottleneck for our factored approach.
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