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ABSTRACT

Experience replay is crucial for off-policy reinforcement learning
(RL) methods. By remembering and reusing the experiences from
past different policies, experience replay significantly improves the
training efficiency and stability of RL algorithms. Many decision-
making problems in practice naturally involve multiple agents and
require multi-agent reinforcement learning (MARL) under cen-
tralized training decentralized execution paradigm. Nevertheless,
existing MARL algorithms often adopt standard experience replay
where the transitions are uniformly sampled regardless of their im-
portance. Finding prioritized sampling weights that are optimized
for MARL experience replay has yet to be explored. To this end,
we propose MAC-PO, which formulates optimal prioritized experi-
ence replay for multi-agent problems as a regret minimization over
the sampling weights of transitions. Such optimization is relaxed
and solved using the Lagrangian multiplier approach to obtain the
close-form optimal sampling weights. By minimizing the resulting
policy regret, we can narrow the gap between the current policy
and a nominal optimal policy, thus acquiring an improved prior-
itization scheme for multi-agent tasks. Our experimental results
on Predator-Prey and StarCraft Multi-Agent Challenge environ-
ments demonstrate the effectiveness of our method, having a better
ability to replay important transitions and outperforming other
state-of-the-art baselines.
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1 INTRODUCTION

Reinforcement learning (RL) has demonstrated great success in
solving challenging problems [24, 48]. For off-policy RL, experience
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replay mechanism [29, 38] allows utilizing history experiences in
the replay buffer that stores the most recently collected transitions
for training. It has been shown to significantly improve policy
learning and RL algorithms’ stability. Due to these benefits, various
approaches [47, 49, 64] for computing priority scores of experiences
have been proposed for single-agent RL. For instance, prioritized
experience replay (PER) [47] leverages predefined metrics for pri-
oritizing experience based on the temporal-difference (TD) error
related to the loss of the critic network. It calculates the sampling
probabilities proportional to the magnitude of TD error, resulting in
a non-uniform sampling/prioritization scheme in Q-learning [63].

In practice, we often face RL tasks involving multiple agents shar-
ing the same environment, e.g., in autonomous driving [7, 20] and
robotics and planning [21, 28, 33]. To coordinate multiple agents
and learn desired joint behavior from their collective experiences,
we require multi-agent reinforcement learning (MARL) [2, 23, 58],
such as value-based methods QMIX [44] and QPLEX [59], or policy-
based methods COMA [12] and MADDPG [32]. These approaches
leverage centralized training decentralized execution (CTDE) [25]
and often employ standard memory replay buffers with a uniform
sampling of transition history. However, in MARL problems, such
a standard sampling strategy of the replay buffer cannot reflect
the dynamics in the environment caused by multi-agent interac-
tions. Therefore, indiscriminately training from past experiences
will make agents less capable of using experiences optimally. Al-
though we can impart existing single-agent prioritization schemes
directly to the joint action-value function of MARL, such a naive ap-
plication is oblivious to the interaction between multiple agents in
the shared environment and may lead to sub-optimal performance.
Thus, priority optimization for experience replay in MARL is still
an open problem.

To this end, we propose MAC-PO, which formulates MARL pri-
oritized experience replay problems as a regret minimization over
the sampling weights of different state-action values. Specifically,
we define policy regret as the difference between the expected dis-
counted reward of a nominal optimal policy and that of the current
policy under given sampling weights. By minimizing such a pol-
icy regret by considering its upper bound, we can narrow the gap
between the optimal and current policies with respect to the sam-
pling weights, leading to an optimal solution of sampling weights
with minimum regret. We note that similar regret minimization
techniques have been employed in single-agent RL settings [31].



Our paper expands it to analyze multi-agent prioritized experience
replay and develops new solutions, e.g., to handle joint actions of
multiple agents and to analyze concurrent optimality constraints. It
turns out that the optimal sampling weights in MARL now depend
on the collective policies of decentralized agents. To the best of
our knowledge, this is the first proposal for optimizing prioritized
experience replay in cooperative MARL.

In particular, we show that the proposed optimization can be
solved via the Lagrangian multiplier method [4] considering an
upper bound of the regret. Since we focus on multi-agent prioritized
experience replay problems, the optimization objective is defined
by the joint policy of all agents. Therefore, when we further analyze
the Lagrangian conditions for optimality, the agents’ conditions
depend on each other and become a vector form. Further, by ex-
amining a weighted Bellman equation, we leverage the implicit
function theorem [26] for multiple agents and apply a group of
Karush—-Kuhn-Tucker (KKT) [14] conditions to find the optimal
sampling weights in closed form.

Our results illuminate the key principles contributing to opti-
mal sampling weights in multi-agent prioritized experience replay.
The optimal sampling weights can be interpreted to consist of four
components: Bellman error, value enhancement, on-policiness of
available transitions, and a new term depending on joint action
probabilities. While the first three have been identified in single
agent settings [27, 31], our paper shed light on a new term - as a
function of joint action probabilities - to reveal that optimal sam-
pling weights of multi-agent prioritized experience replay should
depend on the interaction among all the agents within an envi-
ronment. More specifically, we should assign the highest sampling
weights to transitions only if one agent’s action probability is small
in the transition while all other agents’ action probabilities are
large. The result — slightly counter-intuitive since higher weights
are assigned to transitions with more differentiated action probabil-
ities (rather than similar ones) — is quantified and formalized as a
new theorem in our paper. Based on this result, we also present an
approximated solution for estimating sampling weights in problems
involving many agents or having limited information for an exact
solution.

Following the theoretical analysis, we propose a MARL algo-
rithm, MAC-PO, for multi-agent prioritized experience replay via re-
gret minimization. Like existing methods, MAC-PO can be plugged
into any MARL algorithms with a memory replay buffer. We vali-
date the effectiveness of MAC-PO in StarCraft Multi-Agent Chal-
lenge (SMAC) [46] and Predator-Prey [5] through comparison with
other single-agent experience replay methods (adapted to MARL
problems by considering all agents as a conceptual agent). Moreover,
we also compared MAC-PO with state-of-the-art MARL algorithms.
In the experiments, MAC-PO demonstrates improved convergence
and superior empirical performance.

The main contributions of our work are as follows:

e We propose a novel method, MAC-PO, which formulates
multi-agent experience replay as a policy regret minimiza-
tion and solves the optimal sampling weights in closed form.

e The theoretical results illuminate a new factor in optimal
sampling weights and motivate the design of new MARL

experience replay algorithms with both exact and approxi-
mated weights.

e Experiment results of MAC-PO in SMAC and Predator-Prey
environments demonstrate superior convergence and empiri-
cal performance over various baselines, including experience
replay and state-of-the-art MARL methods.

2 BACKGROUND

2.1 Partially Observable Markov Decision
Process

In this work, we consider a multi-agent sequential decision-making
task as a decentralized partially observable Markov decision process
(Dec-POMDP) [42] consisting of a tuple G = (S,U,P,R, Z, 0, n, y),
where s € S describes the global state of the environment. At each
time step, each agent a € A = {1,..., n} selects an action u, € U,
and all selected actions combine and form a joint actionu € U = U™.
Such a process leads to a transition in the environment based on
the state transition function P(s’[s,u) : Sx U Xx S — [0,1]. All
agents share the same reward function r(s,u) : SXU — R with a
discount factor y € [0, 1).

In the partially observable environment, the agents’ individual
observations z € Z are generated by the observation function
O(s,u) : S X A — Z. Each agent has an action-observation history
7q € T = (ZxU)*. Conditioning on the history, the policy becomes
7% (ug|tg) : T XU — [0, 1]. The joint policy s has a joint action-
value function: Q7 (s¢, us) = Eg,, ;. ussre [Relss, ug], where t is the
timestep and R; = Z;’io yirt+i is the discounted return. In this
paper, we adopt the CTDE mechanism. The learning algorithm has
access to all local action-observation histories 7 and global state
s during training, yet every agent can only access its individual
history in execution. Although we compute individual policy based
on histories in practice, following the existing work [52], we will
use 7%(uq|s) in analysis and proofs for simplicity.

2.2 Policy Regret

In MARL, we aim to find a joint policy s that can maximize the
expected return: 7() = Ex[X72, yiresi]. For a fixed policy, the
Markov decision process becomes a Markov reward process, where
the discounted state distribution is defined as d”(s). Similarly,
the discounted state-action distribution is defined as d” (s,u) =
d” (s)m(uls). Then, we will have the expected return rewritten as
n(m) = ﬁEdn(s,u) [r(s,w)].

We assume a nominal optimal joint policy 7™ such that n* =
arg max,; 1(sr). The regret of the joint policy 7 is the difference be-
tween the expected discounted reward of an optimal policy and that
of the current policy as regret(s) = n(*)—n(sr). The policy regret
measures the expected loss when following the current policy
instead of optimal policy z*. Since (™) is a constant, minimizing
the regret is consistent with maximizing of expected return 5 ().
In this paper, we use regret as an alternative optimization objective
for finding the optimal sampling weight in MARL tasks, along with
multiple constraints, such as the Bellman equation. By minimizing
the regret, the current joint policy 7 of all agents’ actions will
approach the optimum z*.



2.3 Connection of Prioritized Sampling and
Weighted Loss Function

The design of prioritized sampling methods is not isolated from
the loss function. Instead, the expected gradient of a loss function
with non-uniform sampling is equivalent to that of a weighted loss
function with uniform sampling, which facilitates the design of
prioritized sampling algorithms [13]. Given a data sample set D of
size d, a regular loss function L; where we use a specific priority
scheme pr(-) to sample the transitions, and another loss function
Ly whose transitions are sampled uniformly, the two approaches
are equivalent if we have the following requisition satisfied:
X
VQLl = p—rVQLz,

where y = —Zi}:;(i) and i € D is the uniformly sampled instance.

We can leverage such equivalence to analyze the correctness of
approaches using non-uniform sampling by transforming the loss
into the uniform-sampling equivalent or considering whether the
new loss is in line with the target objective. It also provides a recipe
for transforming a regular loss function L; with a non-uniform
sampling scheme into an equivalent weighted loss function Ly with
uniform sampling.

3 RELATED WORKS
3.1 MARL Algorithms

MARL algorithms have developed into neural-network-based meth-
ods that can cope with high-dimensional state and action spaces.
Early methods practice finding policies for a multi-agent system
by directly learning decentralized value functions or policies. For
example, independent Q-learning [55] trains independent action-
value functions for each agent via Q-learning. [54] extends this
technique to DQN [38]. Recently, approaches for CTDE have come
up as centralized learning of joint actions that can conveniently
solve coordination problems without introducing non-stationary.
COMA [12] uses a centralized critic to train decentralized actors
to estimate a counterfactual advantage function for every agent.
Similar works [17, 32] are also proposed based on such analysis.
Under CTDE manner, value decomposition approaches [8, 16] are
widely used in value-based MARL. Such methods integrate each
agent’s local action-value functions through a learnable mixing
function to generate global action values. For instance, QMIX [44]
estimates the optimal joint action-value function by combining
mentioned utilities via a continuous state-dependent monotonic
function generated by a feed-forward mixing network with non-
negative weights. QTRAN [50] and QPLEX [59] further extend
the class of value functions that can be represented. ReMIX [37]
provides a factorization weighting scheme to find the optimal pro-
jection of an unrestricted mixing function onto monotonic function
classes. PAC[67] and LAS-SAC[68] proposes to use latent assisted
information [36] as extra-state information for better value fac-
torization. Aside from methods focusing on tackling cooperative
problems, other mechanisms can also solve competitive problems
or mixed problems. MADDPG [32] utilizes the ensemble of poli-
cies for each agent that leads to more robust multi-agent policies,
showing strength in cooperative and competitive scenarios. Beyond
that, the extensions [15, 22, 51] of MADDPG have been proposed

to realize further optimization towards the original algorithm. In
this paper, we focus on the cooperative setting and leverage a
standard QMIX with a monotonic mixing network, along with an
unrestricted QMIX [43] without a monotonic function for retrieving
the optimal joint policy.

3.2 Single-Agent Experience Replay

Many RL algorithms adopt prioritization to increase the learning
speed, initially originating from prioritized sweeping for value
iteration [39, 57]. Besides, they have also been used in other modern
applications, such as learning from demonstrations [18]. Prioritized
experience replay [47] is one of several popular improvements to the
DON algorithms [56, 62] and has been included in many algorithms
combining multiple improvements [3, 19]. Variations of PER have
been proposed for considering sequences of transitions [6, 9] or
optimizing the prioritization function [64]. Furthermore, to favor
recent transitions without explicit prioritization, alternate replay
buffers have been raised [40]. [10, 65] studied the composition
and size of the replay buffer, and [30] looked into prioritization
in simple environments. Other important sampling approaches
also greatly improved the performance. [27] re-weights updates
to reduce variance. [31] uses the regret minimization method to
design the prioritized experience replay scheme for the only agent
in the environment. MaPER [41] employs model learning to improve
experience replay by using a model-augmented critic network and
modifying the rule of priority. Also, new loss function designs
can help develop prioritization schemes [53]. So far, most works
about experience replay are designed for single-agent reinforcement
learning, and a limited number of works [1, 11, 61] investigate
the possible extensions. In this paper, we proposed MAC-PO for
MARL tasks by considering the interaction among multiple agents
through collective priority optimization to seek an optimal multi-
agent prioritization mechanism.

4 METHODOLOGY

4.1 Problem Formulation

Let Q denote the action-value function at iteration k. We lever-
age B*Q_ as the target with a Bellman operator 8* and up-
date Q. in tandem using a weighted Bellman equation: Q. =
argminge g By [wi (s, u)(Q— B*Qr_1)?(s,u)], where wi (s, u) rep-
resent non-negative sampling weights for different transitions that
need to be optimized for the experience replay.

To formulate the policy regret with respect to the joint action-
value function, we consider a Boltzmann policy s; corresponding
to each agent’s individual utilities QZ, ie, m =[x, ..., nZ]T and
7'[,? = eQZ(Ta’ua)/ZTmu; Qi (Tata) Our objective is to minimize
the policy regret n(s*) — () over non-negative sampling weights
under relevant constraints, i.e.,

min  n(7") - n(m)
Wi
. 2
st O = arg min By [wi(s 0 (Q - B0 (W (1)
Ey[we(s,w)] =1, wi(s,u) 20,

where s and th* are Boltzmann policies for the current and nom-
inal optimal policy, and the latter can be obtained from another



network. The sampling weights must sum up to 1, and y is the dis-
tribution that we uniformly sample data from the replay buffer. An
additional table to summarize and explain the common notations
is provided in Appendix A.

4.2 Solving Optimal Sampling Weights for
Experience Replay

Our goal is to seek the optimal priority by minimizing the regret at
every iteration k, with respect to the weight w used for Bellman
error minimization at iteration k. For this purpose, we consider
an upper bound of the relaxed regret objective and formulate its
Lagrangian by introducing Lagrangian multipliers regarding the
constraints. It allows us to solve the proposed regret-minimization
problem and obtain optimal projection weights in closed form (al-
beit with a normalization factor Z*).

THEOREM 1 (OPTIMAL SAMPLING WEIGHT). The optimal weight
wi (s, 1) to a relaxation of the regret minimization problem in Equa-
tion (1) with discrete action space is given by:

we(s,0) = 2 (B (5 0) + 6 (5.w), @)
where we have:
d7k (s, «
Ee(s,0) :ﬁlgk 80|
P B
-exp(—|Qk — Q%)) 1+Zl—lﬂi _n]—lﬂllc ,
=1 j=1 i=1
j#i

where Z* is the normalization factor, and €x (s, u) is a negligible term
when the probability of reversing back to the visited state is small or
the number of steps agents take to revisit a previous state is large.

Proor (SKETCH). We give a sketch of the steps involved for com-
pleteness below. The complete proof is provided in the Appendix B.
The derivation of optimal weights consists of the following major
steps: (i) Use a relaxation and Jensen’s inequality to obtain a more
tractable upper bound of the regret objective for minimization. (ii)
Formulate the Lagrangian for the new optimization problem and
analyze its KKT conditions. (iii) Compute various terms in the KKT
condition and, in particular, analyze the gradient of Q. with respect
to weights py (defined through the weighted Bellman equation)
by leveraging the implicit function theorem (IFT). (iv) Derive the
optimal projection weights in closed form by setting the Lagrangian
gradient to zero and applying KKT and its slackness conditions.

Step 1: Relaxing the objective and using Jensen’s Inequality. To
begin with, we replace the original optimization objective function,
the policy regret, with a relaxed upper bound. This replacement
can be achieved through the following inequality:

(") = n(m) < Egme (s,u) [1Qk = Q"I(s, w)]. ©)

The proof of this result is given in the appendix. The key idea
is to rewrite the regret using the expectation of the action-value
functions with respect to discounted state distribution d”*. Af-
ter that, we adopt Jensen’s inequality [34] to continue relaxing
the intermediate objective function. Consider a convex function

g(x) = exp(—x), a new optimization objective relaxed via Jensen’s
inequality generated from Equation (4) becomes:

min  —log Bym (s.u) [exp(~1Qk = Q) (s, w)], ©)

(3

where the constraints still hold for the new optimization objective.
Step 2: Computing the Lagrangian. In this step, we leverage the
Lagrangian multiplier method to solve the new optimization prob-
lem in Equation (5). For simplicity, we use py that absorbs the data
distribution p into wg. The constructed Lagrangian is:

L(prs A Y) = = log Egme (s [exp(=10k = 0 1) (s, )]
+AQ P =1~

where py is the weight wy multiplied by the data distribution g,
and A, ¥ are the Lagrange multipliers.

Step 3: Computing the Gradients Required in the Lagrangian. Ac-
cording to the first constraint in Equation (1), the gradient ZT%’: can

be computed via IFT given by:

0%~ [diag(pe)] [diagl Ok ~ B' Q11
Pk

We also derive the gradient %f:’u)
The derivation details are given in the appendix.

Step 4: Deriving the Optimal Weight. After having the equation
for two gradients and an expression of the Lagrangian, we can
compute the optimal py via an application of the KKT conditions,
which needs to set the partial derivative of the Lagrangian equaling

to zero, as:

for solving the Lagrangian.

2L(pis 1Y) _
Pk
where the optimal weight wy can be acquired from the py.

0,

O

The theoretical results shed light on the key factors determining
an optimal sampling weight for experience replay. Specifically, the
optimal weights consist of four components relating to the Bellman
error, the value enhancement, the joint action probability, and the
on-policiness of available transitions. We will interpret these four
components next, provide the analyses of some special cases in
which the transitions will be assigned with higher weights, and
develop a deep MARL algorithm through approximations of the
optimal sampling weights.

Bellman error |Qy — B*Qj_1|: is the estimation of the action
value function after the Bellman update. This term measures the
distance between the estimation and the Bellman target. A signifi-
cant difference in this term means higher hindsight Bellman error
and will lead to higher sampling weight assignment. This character
is also similar to the prioritization criterion used in PER, which nev-
ertheless considers more about the Bellman error in the previous
iterations, i.e., |Qg_1 — B*Ok_s|-

Value enhancement exp(—|Qx —Q*|): As we compute the absolute
value between the current and optimal action-value function, the
value enhancement term indicates that any transitions with less
accurate action values compared to the optimal value estimation
(i-e., a wider gap between Qy and Q) after the Bellman update
should be assigned with lower weights. Conversely, a high sampling



weight will be given if the current action value is approaching the
optimal one.

Joint action probability 1 + X1 ;'I:I,j#:i ﬂl]c -nllL, ﬂlic: The
agent policies determine the probabilities of choosing certain ac-
tions. This result turns out that the optimal sampling weights de-
pend on the individual policy of each agent as well, which is unique
in the MARL task. According to this term, higher sampling weights
will be assigned to transitions only if one agent’s action probability
is small in the transition while all other agents’ action probabilities
are large. This is a little counter-intuitive because we give higher
weights to transitions with more differentiated action probabilities
rather than similar ones. We will provide a thorough analysis in
section 4.3 regarding studying the condition for the highest weight
assignment in the general multi-agent scenario.
d:’zs%;‘): The efficient up-
date of the joint action value function can be achieved by focusing
on transitions that are more possibly to be visited by the current
policy, i.e., with a higher d” (s, u). Such strategy has been empiri-
cally studied in existing works [49]. Adding this term can speed up
the search for the optimal Qy close to Q*.

Measurement of on-policy transitions

4.3 Approximated Weights via Joint Action
Probability Studies

Theorem 1 shows terms determining the sampling weights needed
for transitions, where a function of the joint action probability is
the new result for MARL tasks. Although numerical calculation for
the joint action probability is available, to lower the computational
complexity when the environment has many agents involved, we
develop an approximated weighting scheme that can determine the
joint action probability via action probabilities and action-value
functions of agents. For this purpose, we present a new theorem
indicating the condition for obtaining maximum probability and
several special case studies.

For the environment, we consider a general MARL scenario with
agent space of n, where we have a € A = {1,...,n}. Every step,
each agent a selects an action from its action space U¢, following
ub € U% = {u},..,ul'*}, where m, is the size of action space of
agent a. Let the @1, € U“ denote the selected action of agent a
at the step k from the action space. Due to the CTDE manner of
MARL algorithms, the joint action value function space Q contains
the combinations of u, (i ranges from 1 to mg) for each agent a.
For simplicity, we use Q; to be the shorthand of Q(s, uil, .. u;{’)
which represent a random action value function from Q space.
In particular, considering one selected action combination @ =
(i1, ..., 1), the joint action-value function is O = Q(s, @). Since
we use Boltzmann policy to compute the action probability, for one
agent a € A with the action iy, its individual policy is:

. o o)
B, _,Qsiaul,)

eZa Z; pQ(s,ttaul,)
s Bt Qs yMa (T B pQ(suitra)
i=

where —a represents all the agents except for target agent a, and p

a e

T[k:

(©)

is short for u(s, uil, ey uf{i) representing the data distribution.
Under the general environmental setting, the state s will be fixed

at each iteration, and the size of the action value function space

Q is [17_, mq with the dimension of n. Let the following function

denotes the joint action probability:

def n n n
e j i
f=1+zn”k_nn”’l<’ ™)
i=1 j=1 i=1
J#i
and we will provide another theorem indicating the conditions
where we can acquire the maximum value of joint probability f in

Equation (3).

THEOREM 2 (MAXIMUM PROBABILITY CONDITIONS). Considering
a selected action value Q with action combination @ of the step k, the
Jjoint action probability function reaches its maximum fmax if and
only if the value of each action probability 7'[,’C is on the boundary (i.e.,
either 0 or 1) as well as at least one probability s} equals to 0.

Proor. See Appendix C. O

Based on Theorem 2, a higher joint action probability will be
assigned to Q whose agents’ action probabilities are on the bound-
ary of the interval [0,1] and at least one of the agents have its
probability equaling 0. This conclusion casts light on determining
the approximated sampling weights for MARL tasks. To better il-
lustrate such an idea, we introduce several special case studies with
respect to the selected Q at step k.

Case 1: single large value Q. In this case, we assume only one
action value Q out of the action value function space Q is large,
and values Q; of other action combinations elsewhere are negli-
gibly small, represented by v. These small values obey v ~ 0 and
v < Q. Therefore, according to Equation (6) and Theorem 2, the
joint action probability for the selected action combination of Q
is lower since the action probability n]? for each agent is similarly
large. In contrast, the action combinations with only one action
difference (e.g., Q(s, U—q,, ufh ) will be given with high weights a;,.
The remaining position, such as the action combinations with two
or more different actions, along with Q, will be assigned with low
weight a;.

Case 2: dual large values Q, Q. We propose only two large values
Q ~ Q' under this setting. Other positions are filled with negli-
gible value v. Q' is the very same as Q except that one agent’s
action is different, ie., QO = Q(s,0) and Q' = Q(s, ﬁ_a],uél).
Since two large values equally share the importance over the action
value space, based on given equations/conditions, we can drive
those action combinations with only one different agent’s action
other than agent a will be assigned with medium weights a,, e.g.,
Q(s,0_(g,,a5)> ufll,u{lz). The positions where action combination
with one action difference over agent a; will receive high weights
ay, e.g., Q(s,ﬁ_al,ugl). Besides, we will give low weight a; for
other locations.

Case 3: isolated large value Q" and Q. Apart from given Q, we
assume an isolated large value with two or more actions different
from Q,ie., Q" = Q(s, U (a,a) uél, “{12)> which ex_ists sqmewhere
in the action value function space, and satisfies Q ~ Q”’. Other
action values are v. In this situation, both two large values share
the same importance, and we will assign the medium weight o,
to O, Q”, and the action combinations having one action different
over agent a; or az, such as Q(s,0_ (g4, g,)» ugl, uéz). The rest of the
action combination values will be allocated with low weight ;.
This special case demonstrates that if one or more action values



are extraordinarily large, indicating another joint policy candidate
with latent high joint action probability, we should also heed such
equivalent competitor and its local search.

We can establish the approximation structure by studying from
mentioned special cases. The scaled weights a;, am,, and a, provide
an alternative solution that spares us from directly using the numer-
ically computed sampling weights to solve the latent computational
cost, yet the performance remains mainly impervious.

4.4 Proposed Algorithms

Our analytical results in Theorem 1 identify four key factors deter-
mining the optimal projection weights. The first term, relating to
the Bellman error, recovers the designs in classic prioritized expe-
rience replay. Specifically, when the Bellman error of a particular
transition is high, which indicates a wide hindsight gap between Qj
and the Bellman target, we may consider assigning a larger weight
to this transition. Besides, the value enhancement term selectively
emphasizes the importance of incoming transitions. Based on the
difference between current Qi and ideal Q*, it will compensate
the near-optimal Qy with larger importance while penalizing non-
optimal Q. with a smaller weighting modifier. Moreover, similar to
previous studies, the measurement of on-policy transitions in the
weighting expression underlines the useful information carried by
more current, on-policy transitions.

Our analysis also identifies a new term reflecting the interaction
among agents in the MARL scenario: the joint action probability
of multiple agents, which is crucial in obtaining optimal sampling
weights for specific transitions. We interpret the joint action proba-
bility term in optimal weights constrained by the given condition:
one agent’s action probability is small in the transition, while all
other agents’ action probabilities are large. We increase the weights
for transitions satisfying this condition. On the contrary, we de-
crease the weight if the condition fails to be satisfied.

Following these theoretical results, we propose a MARL algo-
rithm for collective priority optimization, MAC-PO, with regret-
minimizing joint policy in multi-agent environments. We consider
a new loss function with respect to the optimal sampling weights
wy. applied to the Bellman equation of, i.e.,

Wk(ss u)(Qk - yi)2 (S, ll), (8)

b
Lmac-po =

i=1

where b is the batch size, and y; = B*Qj_; is a fixed target that
can be obtained through a target network.

The Bellman error and joint action probability of all agents in
the environment can be directly computed using Theorem 1. To
compute the sampling weights for value enhancement term in prac-
tice, we use the backbone of the classical value factorization MARL
algorithm QMIX and leverage the unrestricted joint action-value
function Q* to compute the approximated optimal action-value
function quantitatively. Ideally, we could have included measure-
ment of on-policy transitions term in the computation, but it is not
readily available since the distribution d” (s, u) in the numerator
cannot be directly obtained. It is also worth mentioning that such
term can be dismissed and the other terms in the weight expression
are enough to provide a good estimate and lead to performance
improvements, as shown in existing work [27]. Furthermore, based

on our previous discussion, we designed an approximated counter-
part, MAC-PO Approximation, by setting the threshold and scaling
sampling weights values into low, medium, and high ones. The
pseudo-codes are provided in Appendix D.

5 EXPERIMENTS

In this section, we present our experimental results on Predator-
Prey and SMAC benchmarks and demonstrate the effectiveness
of MAC-PO by comparing the results with several state-of-the-art
MARL baselines. Additionally, we compare MAC-PO and MAC-PO
Approximation with other experience replay methods adapted from
single-agent RL to multi-agent environments. Each comparison is
implemented independently with fixed and optimized [35] hyper-
parameters. We also conduct the ablation experiments to discuss
the contribution of each term mentioned in Theorem 1. More imple-
mentation details are provided in Appendix E. The code has been
made available at: https://github.com/ysmei97/MAC-PO.

5.1 Comparison with Existing Experience
Replay Methods

In this experiment, we compare MAC-PO with other experience
replay methods in the multi-agent environment SMAC. Since exist-
ing experience replay methods are designed for the single-agent
scenario, we borrow their core designs and transplant them to multi-
agent environments by considering all agents as the conceptual
agent to match the single-agent target in their original settings.
Such transplanting will recover the most important ingredients
from RL to MARL to the greatest extent. It is worth mentioning
that many other algorithms are also introducing a variety of ex-
perience replay schemes. Some of them [41, 53] depend on new
components, and others [45] have different algorithm architectures.
Since the backbone MARL algorithm of our choice in this exper-
iment is QMIX, we do not expect a significant change over the
algorithm architecture (e.g., actor-network) or major components
(e.g., loss structure) as presented in other approaches to realize a
relatively fair comparison.

The first approach for comparing is PER [47]. Due to the equiv-
alence between loss functions and non-uniform sampling for ex-
perience replay [13], we reconstruct PER scheme by computing
weights only related to the current TD error regarding the joint
action-value function. We also compare our method with the one
mentioned in DisCor [27], where the weights are calculated from
the production of Bellman error and value enhancement terms,
and ReMERN [31], which has an additional term describing action
likelihood, and we extend it to the multi-agent case. Besides, we
transplanted the mechanism from PSER [6], which is another ex-
tension of PER, by applying an additional decay factor and window
size on the weights for coming transitions. For this experiment, we
set the decay factor as 0.4 and the window size as 5.

Figure 1 shows the performance comparison among MAC-PO
and other experience replay algorithms on three maps of SMAC
benchmark, which are 3s_vs_5z, 5m_vs_6m, and MMM2. Compared
to MAC-PO, other experience replay schemes underperform in im-
proving learning performance. DisCor and ReMERN have higher
final winning rates than the regular PER, demonstrating the ef-
fectiveness of additional terms. PSER also acts better than PER
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Figure 1: Comparison between MAC-PO, MAC-PO Approximation and other experience replay methods on three SMAC maps
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each map, respectively.
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Figure 2: Average reward per episode on the Predator-Prey tasks for MAC-PO and other MARL algorithms of two settings,
where MAC-PO shows the profoundly better convergence speed and pretty good results.

owing to its decaying mechanism for selecting history transitions.
All transplanted algorithms from single-agent scenario act unsta-
bly in the multi-agent environment, as we can notice the variance
reflected by the shaded area in Figure 1.

Besides, we also test our approximated sampling weight ap-
proach, shown as MAC-PO Approximation in Figure 1. We set the
higher weight ay, as 0.75, medium weight a;, as 0.5, and lower
weight a; as 0.25. The final result is almost identical to the original
MAC-PO with small nuance. For the original MAC-PO, the compu-
tational complexity of obtaining sampling weights will increase if
more agents get involved. Since the approximated MAC-PO uses
scaled weights instead of numerical results, it will improve the
computational efficiency of the original MAC-PO at the price of
slightly sacrificing the overall performance.

5.2 Comparison with MARL Algorithms

5.2.1 Predator-Prey. We compare MAC-PO with MARL algorithms
on a complex partially-observable multi-agent cooperative envi-
ronment, Predator-Prey, that involves eight agents in cooperation
as predators to catch eight prey on a 10x10 grid. In this task, a
successful capture with the positive reward of 1 must include two
or more predator agents surrounding and catching the same prey

simultaneously, requiring a high level of cooperation. A failed coor-
dination between agents to capture the prey, which happens when
only one predator catches the prey, will receive a negative punish-
ment reward. We select multiple state-of-the-art MARL algorithms
for comparison, which include value-based factorization MARL al-
gorithm (i.e., QMIX, WQMIX [43], and QPLEX), decomposed policy
gradient method (i.e., VDAC [51]), and decomposed actor-critic
approaches (i.e., FOP [66] and DOP [60]). All mentioned baselines
have shown strength in handling MARL tasks in existing works.

Figure 2 shows the performance of seven algorithms with dif-
ferent punishments, where all results show the effectiveness of
MAC-PO. Besides, regarding efficiency, we can spot that MAC-PO
has the fastest convergence speed in seeking the best policy. In Fig-
ures 2b, MAC-PO significantly outperforms other state-of-the-art
algorithms in a hard setting requiring a higher level of coordination
among agents as learning the best policy. Most MARL algorithms
learn a sub-optimal policy where agents learn to work together with
limited coordination. Although the performance of MAC-PO and
WQMIX are similar, compared to the latter, MAC-PO converges
to the optimal policy profoundly faster, demonstrating that our
multi-agent optimal weighting scheme can efficiently learn from
specific existing transitions.
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Figure 3: Comparison between MAC-PO and other MARL algorithms on three SMAC maps (from hard to super hard). MAC-PO
achieves the best results with the optimal weighting scheme alone, outperforming the second best result by 11%, 4%, and 16% on

each map, respectively.

5.2.2 SMAC. Next, we evaluate MAC-PO on the SMAC bench-
mark. We report the experiments on three maps consisting of two
hard maps and one super-hard map. The selected baselines for this
experiment are consistent with those in the Predator-Prey environ-
ment. The empirical results are provided in Figure 3, demonstrating
that MAC-PO can effectively generate optimal weight transitions
on SMAC for achieving a higher win rate, especially when the
environment becomes substantially complicated and harder, such
as MMM?2. We can see that several state-of-the-art algorithms are
brittle when significant exploration is undergoing without finding
optimal sampling weights.

Specifically, MAC-PO performs well on hard maps, such as
3s_vs_5z, the best policy found by our optimal weighting approach
significantly outperforms the remaining baseline algorithms regard-
ing winning rate. For super-hard map MMM2, MAC-PO, along with
QMIX, WQMIX, and QPLEX, can learn a better policy than VDAC,
DOP, and FOP. We achieve the highest winning rate by adopting
our algorithm on MMM2, showing the superiority of the optimal
weighting scheme in utilizing past transitions.

5.3 Ablation Experiments

For ablations, we conduct experiments by disabling one term (men-
tioned in Theorem 1) every trial to investigate their contribution to
finding optimal sampling weights, respectively. The terms consid-
ered in these experiments are Bellman error, value enhancement,
and joint action probability. Figure 4 shows the results on MMM2.
Compared to the original result, missing any of the terms will be
detrimental to the performance, and the tests without joint action
probability have the lowest final winning rate, which is around
60%. Such a phenomenon demonstrates that the interaction among
agents is the critical factor in MARL tasks. The designing of the
optimal weighting scheme without taking joint action probability
into account will be less capable of achieving ideal results. Further-
more, the contributions of Bellman error and value enhancement
terms are similar according to the given trend in Figure 4.
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Figure 4: Ablations by disabling one term each for MAC-PO
on MMM2 (super hard). The final winning rates decrease by
18% for disabling the joint action probability term, 15% for
disabling the Bellman error term, and 10% for disabling the
value enhancement term.

6 CONCLUSION

In this paper, we formulate multi-agent experience replay as a re-
gret minimization problem and solve the optimal sampling weights
in close form. The theoretical results illustrate key ingredients for
an optimal experience replay in MARL settings. The results enable
us to propose MAC-PO (with both exact and approximated weights)
as a new MARL experience replay algorithm with optimized expe-
rience replay weights. Our experiment results in multiple MARL
environments show the effectiveness of MAC-PO by demonstrat-
ing superior convergence and empirical performance over other
experience replay solutions (adapted from single-agent RL) as well
as state-of-the-art MARL methods.
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