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Abstract

We measure the performance of separately characterized machine learning-based EDFA

models for predicting the optical power spectrum evolution in a 5-span system with six ROADM nodes
deployed in the COSMOS testbed, which achieve a mean absolute error of 0.6—0.7 dB after 10 EDFAs
under varying channel loading configurations. ©2022 The Author(s)

Introduction

Adaptive and scalable optical systems employ-
ing reconfigurable optical add-drop multiplexer
(ROADM) units and flex-grid dense wavelength-
division multiplexing (WDM) techniques have
been enabling various applications and services
that require high capacity and low latency in the
underlying optical network. The erbium-doped
fiber amplifier (EDFA) is a key hardware com-
ponent that has been widely deployed in optical
transmission systems, and can have a large im-
pact on the end-to-end system performance such
as the optical signal-to-noise ratio (OSNR) and
quality of transmission (QoT)M, which depends
on the power level of individual wavelength sig-
nals. Characterizing the gain spectrum profile
of an EDFA is challenging since it is not only a
complex function of many parameters such as the
gain setting, channel loading configurations, and
input power levels, but also a hardware-specific
property of individual EDFA components. Since
a reconfigurable end-to-end optical link through
a mesh ROADM network may include multiple
EDFAs of different types (e.g., preamp, booster,
and in-line), the multiplicity of system configura-
tions complicates the collection of corresponding
end-to-end datasets. Through the use of pre-
deployment lab data collection, component-level
EDFA gain spectrum modeling for use with QoT
estimation methods can provide potentially effi-
cient and scalable power evolution prediction in
such multi-span systems.

Recent work has focused on the gain spec-
trum modeling and optical channel power predic-
tion of EDFAs using both analytical models? and
machine learning (ML) approachesH4. It has
been shown that ML-based EDFA models using
neural networks trained on large measurement
datasets can achieve accurate component-level

modeling. Multi-span systems with multiple ED-
FAs have also been considered, with a focus on
power evolution and OSNR prediction(®Hel. In par-
ticular, recent work!® used end-to-end data col-
lection and showed that using separate amplifier
models can provide accurate end-to-end results.
However, this work did not consider separately
characterized EDFAs and used bench-top optical
spectrum analyzers (OSAs) to measure the spec-
trum. Separate data collection using the built-in
optical channel monitoring (OCM) capabilities of
the ROADM units would allow for flexible in or out
of system characterization and re-training without
the need of extra bench equipment. However,
built-in OCMs are less accurate and need to be
studied for use in this application.

In this paper, we study optical signal spec-
trum prediction of a multi-span system consisting
of ROADM nodes constructed using 95 channel,
separately characterized Lumentum ROADM-20
whitebox units, deployed in the programmable
COSMOS testbed!”l. For each EDFA in the multi-
span system, we collect a comprehensive set
of power spectrum measurements under diverse
channel loading configurations using the in-line
OCMs that are built into the ROADM-20 whitebox
units. Using the separately collected datasets,
we develop component-level EDFA gain spec-
trum models using deep neural networks (DNNSs),
which predict the output power spectrum based
on the channel loading configuration and input
power spectrum. Transferring such individual
models to a collective multi-span system, exten-
sive experiments with diverse channel configu-
rations show that the trained DNN-based EDFA
model can accurately predict the power spectrum
after 10 EDFAs with a mean absolute error (MAE)
of 0.73dB and 0.61dB with two 5-span metro-
scale configurations, respectively.
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Fig. 1: (Left) Block diagram of the Lumentum ROADM-20
whitebox unit with built-in optical power monitors, which are
used for the EDFA gain spectrum measurements. (Right) The
programmable optical network in the COSMOS testbed.

Data Collection and DNN-based EDFA Models

We focus on characterizing the gain spectrum of
EDFAs that are part of the commercial-grade Lu-
mentum ROADM-20 whitebox units deployed in
the COSMOS testbed. Each ROADM unit con-
sists of two optical amplifiers: a receive preamp
EDFA at line in and a transmit booster EDFA at
line out, and various OCMs, as shown in Fig. 1.
For the gain spectrum measurements for each
device under test (DUT) EDFA, a comb source
with 95x50 GHz channels is used to generate the
WDM spectrum in the C-band. In the case with a
DUT booster EDFA, the MUX wavelength selec-
tive switch (WSS) of the same DUT ROADM is
used for channel loading configuration and spec-
trum flattening. In the case with a DUT preamp
EDFA, channel loading configuration and spec-
trum flattening are performed using the DEMUX
WSS of an auxiliary ROADM with one drop port
connected to the line in port of the DUT ROADM.
We collect 31,680 signal power spectrum mea-
surements over 250 hours using 10 EDFAs (five
preamps and five boosters), each of which is con-
figured with the same setting of a target gain of
18 dB in the constant high-gain mode with no gain
tilt. For each EDFA, 3,168 pairs of input and out-
put power spectrum measurements, Si,(A;) and
Sout(Ai), are collected using the built-in OCMs
with diverse channel configurations. These in-
clude different numbers of loaded channels n €
{1,2,---,95} with varying power levels in each
channel. The total input and output power of each
EDFA, P, and P,,, are also recorded using the
built-in photodiodes (PDs). Note that the built-
in Lumentum ROADM-20 OCMs have a channel
power measurement resolution of only 0.1 dB.
One component-level DNN model is created for
each EDFA for its gain spectrum prediction using
the collected measurements with the following ar-
chitecture. Each DNN consists of six fully con-

nected layers: one input layer, four hidden layers
with 256/128/128/128 neurons, and one output
layer. The input features include S, ();) and a 95-
dimensional binary vector indicating the channel
loading configuration, and the output layer pre-
dicts Sout(A;). Each DNN model is trained us-
ing the mean square error (MSE) across loaded
channels as the loss function and the Adam opti-
mizer, with the ReLU activation function at all lay-
ers and a learning rate of 0.01 over 500 epochs.

The collected power spectrum dataset for each
EDFA under varying channel configurations and
input power levels is divided to training and testing
sets with a split ratio of 80%—20%. Evaluation of
the DNN model performance shows that 80% and
97% of the test dataset has a mean absolute error
(MAE) on the output power spectrum prediction
that is within 0.1 dB and 0.2dB, respectively.

Experimental Setup and Results

We conduct experiments using the open-access
COSMOS testbed!”! that is being deployed in
West Harlem, New York City. The testbed is de-
signed to facilitate research and experimentation
with advanced wireless and optical technologies
in real-world scenarios. Fig. 1 shows the main
components of COSMOS’ programmable x-haul
optical network at Columbia University!®l, which
include a Calient S320 320x320 space switch,
a DiCon 16x16 space switch, eight Lumentum
ROADM-20 whitebox units, a spooled fiber plant,
and dark fiber connections to the colocation site
at 32 Avenue of the Americas (32 AoA).

Fig. 2 depicts the experimental setup in the pro-
grammable COSMOS testbed, which consists of
six ROADM nodes and five fiber spans. Each
ROADM node is constructed using two Lumen-
tum ROADM-20 whitebox units with one through
port between the east-west WSS pairs. All fiber
spools and dark fiber pairs are connected to
the space switches, which support programmable
connections to each ROADM unit for forming dif-
ferent network topologies. We consider two 5-
span configurations with different lengths: 10-25-
25-10-10 km and 10-40-50-32-32 km, where each
32km span corresponds to one dark fiber link. A
shaped comb source with different channel load-
ing configurations is added to the first ROADM
node and flattened via the MUX WSS before the
first EDFA (S'). This signal then dropped at
the sixth ROADM node after passing through five
fiber spans. For each span configuration, we con-
sider a total number of 101 channel loading con-
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Fig. 2: (Left) The experimental setup consisting of six ROADM nodes and five fiber spans, where Si(j) (As) is a flattened

multi-channel signal source with varying channel configurations, and Sout(/\ ) is the predicted power spectrum at the output of
the k-th EDFA. (Right) Random (n € {2, 5, 10, 20, 40}) and WDM (n = 95) channel configurations used in the experiments.
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Fig. 3: Absolute error distribution of the power spectrum
prediction after each EDFA using the CM and DNN models.

Tab. 1: Distribution of per-channel absolute prediction error

of the output power spectrum after 10 EDFAs and five spans.
Percentile Error [dB] 50-th 99-th  Max
10-25-25-10-10 km, CM model 1.03 244 405
10-25-25-10-10 km, DNN model 0.41 2.16 3.50
10-40-50-32-32 km, CM model 0.96 231 286
10-40-50-32-32km, DNN model  0.43  2.37 3.39

figurations as shown in Fig. 2: (i) random chan-
nel configurations with n € {2,5,10,20,40} and
20 realizations for each value of n, and (ii)) WDM
channel configuration (n = 95).

The power spectrum evolution prediction
across 10 EDFAs is performed using the devel-
oped component-level DNN model as well as the
measured and calibrated passive loss of all fiber
spools, dark fiber connections, and the MUX/DE-
MUX WSS. For performance comparison, we also
implemented the analytical center of mass (CM)
model for each EDFA using the gain spectrum
measurements with single and WDM channel
configurationst?l. In particular, for each channel
configuration, the output power spectrum of each
EDFA is predicted using the CM and DNN mod-
els, and the (predicted) output power spectrum of
all previous EDFAs in the multi-span system. The
per-channel absolute prediction error and MAE
are calculated with respect to the ground truth
measurements recorded by the built-in OCMs.

Fig. 3 shows the absolute error distribution of
the output power spectrum prediction at each
EDFA using the CM and DNN models, with the
25-th, 50-th (median), and 75-th percentiles indi-
cated in the boxplot. The results show that for
both models, the absolute prediction error accu-
mulates across a larger number of EDFAs, and
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Fig. 4: MAE and standard deviation of the power spectrum
prediction after each EDFA using the CM and DNN models.
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the DNN model achieves lower median prediction
errors than the CM model. The distribution of per-
channel absolute prediction error of the final out-
put power spectrum after 10 EDFAs is summa-
rized in Tab. 1. These results are comparable with
the ML-based OSNR prediction results, which are
based on OSA measurements of 40 end-to-end
deployed channels on a 150 GHz grid!®.

Fig. 4 shows the MAE and standard devia-
tion of the predicted output power spectrum af-
ter each EDFA. Specifically, with the 10-25-25-
10-10km span configuration, the accumulated
MAE (standard deviation) across 10 EDFAs are
0.92dB (0.25dB) and 0.61dB (0.25dB) for the
CM and DNN models, respectively. With the 10-
40-50-32-32 km span configuration, the accumu-
lated MAE (standard deviation) across 10 EDFAs
are 0.81dB (0.30dB) and 0.73dB (0.30dB) for
the CM and DNN models, respectively.

Conclusions

DNN-based component-level EDFA models are
separately measured using built-in  ROADM
OCMs and evaluated for use in signal power
spectrum evolution prediction in a multi-span
ROADM system. The DNN models showed im-
proved accuracy over analytical models. In future
work, we will investigate methods to mitigate ac-
cumulated errors across multiple EDFAs.
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