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We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly in-
teracting qudit systems. Specifically, we present a geometric formalism that significantly simplifies qudit pulse
sequence design while incorporating the necessary robustness conditions. We experimentally demonstrate these
techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers, achieving over an
order of magnitude improvement in coherence time over existing pulse sequences. We further describe how
our techniques enable the engineering of exotic many-body phenomena such as quantum many-body scars, and
allow enhanced sensitivities for quantum metrology. These results enable the engineering of a whole new class
of complex qudit Hamiltonians, with wide-reaching applications in dynamical decoupling, many-body physics
and quantum metrology.

I. INTRODUCTION

The design and implementation of novel Hamiltonians
opens up a wide range of opportunities in quantum science
and technology. Examples range from one-axis twisting
Hamiltonians for entanglement-enhanced quantum metrol-
ogy [1–3], the toric code Hamiltonian for quantum compu-
tation [4–6], to various XXZ spin chain models for quantum
many-body physics [7–9]. One approach to the experimental
implementation of such models is to build specific quantum
simulator systems, where the desired Hamiltonian is directly
realized in the system [10–12]. An alternative approach is to
start with the native Hamiltonian of a system, and employ so-
called Hamiltonian engineering techniques to transform this
native Hamiltonian into a desired form [13, 14]. Such meth-
ods broadly fall under the moniker of Floquet engineering,
and have emerged as a powerful way to turn a quantum simu-
lator of one specific Hamiltonian into a simulator of many de-
sired systems [15–18]. As a special case of Hamiltonian engi-
neering, dynamical decoupling of interactions [19–23] plays a
particularly important role, both in preserving the state of the
system when needed, and as a key step towards the engineer-
ing of more complex interaction Hamiltonians.

Until now, the majority of existing Hamiltonian engineer-
ing methods for spin systems have focused on qubits, due to
their ease of manipulation, the availability of geometric intu-
ition from the Bloch sphere, relevance to many experimen-
tal systems, as well as maturity of control techniques orig-
inally developed in the nuclear magnetic resonance (NMR)
community [19, 22–27]. Extending these techniques to qudit
systems with more than two states, however, presents several
new opportunities [21]. For quantum many-body physics, qu-
dits enable a richer landscape of Hamiltonians, allowing for
new explorations of quantum many-body scars [28], quantum
chaos [29], and additional spin-exchange channels [30, 31]. In
quantum metrology, the larger spin results in a larger dipole
moment for enhanced sensitivity [32–34], and may also al-
low time-reversal operations that are not readily accessible
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FIG. 1. Problem overview. (a) Overview of the robust Hamiltonian
engineering problem. Our goal is to transform the interaction and
on-site disorder in a desired way, while also being insensitive to the
effect of various control errors. (b) Challenges in the qudit case,
including the lack of a Bloch sphere picture, more independent types
of on-site disorder that require simultaneous cancellation, and a more
complicated trajectory of the transformed Sz operator during pulses
(color gradient represents time during pulses, see Sec. III.3 and SI
Sec. S2.D for discussions).

with two levels [21, 35, 36]. Moreover, such techniques will
also be relevant for a large number of experimental platforms,
including nitrogen-vacancy centers in diamond (spin-1) [32–
34, 37], quadrupolar NMR (2H, 14N have nuclear spin-1) [38–
40], cold molecules [41, 42], and nuclear spins or hyperfine
states in trapped atoms and ions [43–47].

Designing qudit Hamiltonian engineering sequences, how-
ever, is challenging (see Fig. 1(b)). The significantly larger
Hilbert space leads to many more types of interactions, dis-
order and error channels, and control is often available only
on a subset of transitions due to selection rules. At the same
time, the lack of a simple Bloch sphere picture makes the de-
sign procedure much less intuitive [48–53]. Moreover, even if
it were possible to design sequences to engineer Hamiltonians
in the case of ideal pulses, it is not clear whether they could
be made robust to experimental imperfections such as finite
pulse durations and other pulse errors. Indeed, prior propos-
als for qudit Hamiltonian engineering and interaction decou-
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pling [21, 54] do not take any practical robustness consider-
ations into account, making their practical applications chal-
lenging (see e.g. Fig. 8). Consequently, while there has been
work on single qudit dynamical decoupling [38–40, 55, 56],
up to now there have been no experimental demonstrations of
full disorder and interaction decoupling for interacting spin
systems with more than two levels.

In this work, we develop a general formalism for qudit
Hamiltonian engineering, and use this to design and, for
the first time, experimentally demonstrate practical decou-
pling of spin-1 dipolar interactions. At the same time, our
sequence also decouples on-site disorder, and achieves ro-
bustness against control errors and disorder during pulses
(Fig. 1(a)). More specifically, motivated by recent advances
in the robust Hamiltonian engineering of disordered and inter-
acting qubit systems [16], we devise a representation of qudit
Hamiltonian transformations based on the interaction picture
transformations of the Sz operator, for any secular interac-
tion Hamiltonian satisfying the rotating wave approximation
(RWA). We find that the implementation of such transforma-
tions and corresponding analysis of finite pulse duration ef-
fects and other imperfections can be easily achieved with a
graphical representation of the desired transformations, where
pulse sequences represent a walk through the graph that starts
and ends at the same node (Fig. 2(d-e)). Using these insights,
we focus on the challenge of designing robust disorder and
interaction decoupling sequences for an ensemble of interact-
ing spin-1 nitrogen vacancy (NV) centers in diamond, where
only magnetically-allowed transitions can be driven. We de-
sign several classes of such pulse sequences, and experimen-
tally realize a significant improvement in coherence time over
qutrit pulse sequences that only decouple disorder, represent-
ing the first demonstration of full disorder and interaction de-
coupling in a qudit system.

The ability to robustly engineer qudit Hamiltonians repre-
sents an important step towards the realization of complex in-
teraction Hamiltonians for quantum many-body physics and
quantum metrology, and we describe how our techniques can
be employed in these applications. As a demonstration of
the rich landscape of Hamiltonians now accessible in qudit
systems, we devise pulse sequences that transform the native
NV-NV interaction between two groups of NVs with differ-
ent lattice orientations into a spin-1 XY Hamiltonian, real-
izing an exotic bipartite quantum many-body scar [28]. For
quantum metrology, we discuss how higher spin systems nat-
urally lead to an enhanced effective dipole moment for mag-
netic field sensing, and how to maximize sensitivity given the
complicated transformations enacted by the Hamiltonian en-
gineering [57].

This paper is organized as follows: In Sec. II, we sum-
marize the main achievements and key techniques developed
in this work. In Sec. III, we introduce our general formal-
ism for designing robust sequences in qudit systems, focus-
ing on three key insights that enable robust sequence design.
In Sec. IV, we analyse a specific example of qutrit decou-
pling sequence design, and in Sec. V we demonstrate experi-
mentally significant improvements in decoupling performance
over existing pulse sequences. We then apply these techniques

to quantum many-body physics and quantum metrology in
Sec. VI and Sec. VII, and conclude in Sec. VIII with an out-
look for future directions.

II. MAIN RESULTS

The most important result in this work is the design and re-
alization of a robust disorder and interaction decoupling pulse
sequence for an interacting qudit ensemble. By building in
robustness against various control imperfections, we exper-
imentally demonstrate an order of magnitude improve-
ment in the decoupling timescale compared to existing se-
quences [21, 58]. This improvement is shown in Fig. 2(a) and
the pulse sequence we designed is plotted in Fig. 2(f).

In order to design these qudit pulse sequences, we exam-
ine the transformed Hamiltonian in the interaction picture
H̃ = U †HU with respect to the control unitaries U(t). We
will now describe two key ideas behind our systematic de-
sign approach. First, to overcome the lack of a Bloch sphere
intuition in the qudit case, we propose a new graphical repre-
sentation that generalizes the Bloch sphere representation for
qubit pulse sequences. Specifically, in this approach:

• The Bloch sphere is generalized into a new concept
that we call the “decoupling frame graph” (Fig. 2(b-
e)), in which each vertex represents a distinct frame
(defined as the transformed higher spin Sz operator
S̃z = U †SzU ), leading to a distinct transformed Hamil-
tonian, and each edge represents an experimentally im-
plementable pulse connecting the two frames on its
ends.

• A pulse sequence is equivalent to a path on the graph
that traverses a set of vertices and edges.

• This representation only keeps track of S̃z , which we
show to be sufficient to describe the transformed Hamil-
tonian as long as the native Hamiltonian is secular (i.e.
satisfies the RWA approximation, see Theorem III.1).

Second, for practical experimental implementations, it is
crucial that the pulse sequence is robust against undesired dy-
namics during the pulses [16, 59]. We achieve this by identi-
fying particularly simple trajectories for the transformed S̃z ,
such that we can easily analyze the frames during pulses as
well. Specifically,

• We focus on pulses that transform Sz along geodesics
on the generalized Bloch sphere [21, 60], since these
trajectories can be decomposed as a linear combination
of the frames before and after the pulse (see Fig. 4(b)).
This property simplifies the robustness condition from
a property of the whole trajectory into a property of a
few discrete frames. Moreover, it allows us to elegantly
cancel certain terms by simply going through pairs of
antipodal points on the generalized Bloch sphere, as we
discuss in more detail in Sec. IV. This is also the key
property that enabled the design of robust qubit pulse
sequences in previous work [16].
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FIG. 2. Summary of main results. (a) Experimental demonstration of an order of magnitude improvement in decoupling timescale compared
to existing sequences. The plotted curve is the measured average decay trace for different pulse sequences, where the average is taken over
all three coherent superposition initial states ∣0⟩+∣−1⟩√

2
, ∣0⟩+∣+1⟩√

2
, and ∣+1⟩+∣−1⟩√

2
. (b-c) After trivially replacing all arcs in a qubit Bloch sphere by

straight lines, we get an octahedron, which is a special example of our new concept “decoupling frame graphs”. (d) A generic decoupling frame
graph, where each vertex represents a distinct frame and each edge represents a pair of frames connected by an experimentally implementable
pulse. (e) A pulse sequence is then represented by a walk traversing all the vertices. The color gradient indicates the order of the walk,
and the walk is translated into a pulse sequence that can be implemented in experiments. (f) Plot of our current best qutrit decoupling
sequence “DROID-C3PO” (i.e. Disorder-RObust Interaction Decoupling - Coherent 3-level Pulse Optimization). All pulses in this pulse
sequence simultaneously drive the two transitions with equal amplitude. The thin lines represent spin-1 π/2 pulses (i.e. rotation of the spin-1
generalized Bloch sphere by an angle π/2, experimentally implemented by simultaneously driving the two transitions with two π√

2
pulses)

and the thick lines represent spin-1 π pulses. The color of the pulses represent the pulse axis (X or Y), and the direction of the pulses (up or
down) represent the two opposite rotation directions (e.g. +π/2 pulse and −π/2 pulse). The proportions of this plot are drawn consistently
with actual time durations. The ellipsis in the plot indicates that the two rows are connected.

• In the qutrit case, geodesic trajectories can be guar-
anteed by using balanced double driving pulses (i.e.
pulses that drive the ∣0⟩ ↔ ∣+1⟩ and ∣0⟩ ↔ ∣−1⟩ transi-
tions simultaneously with equal amplitude), generaliz-
ing the “great arc” trajectory on a spin-1/2 Bloch sphere
during π/2 pulses.

• We exploit additional similarities between the qutrit and
qubit cases, including related structures of the decou-
pling frame graphs (see Fig. 6), and similarities between
cancelling (Sz)2 disorder in the spin-1 case and can-
celling the spin- 1

2
Ising interaction.

Combining these insights and exploiting certain structures
from higher-order qubit sequences [61], we construct a qutrit
decoupling sequence which is not only robust, but also natu-
rally inherits further higher-order performance improvements.

This enables the significant extensions in coherence time ex-
perimentally demonstrated in Sec. V and Fig. 2(a). Finally,
we also show that our formalism can be utilized to engineer a
quantum many-body scar Hamiltonian (Sec. VI), as well as to
design sensing sequences for higher spin sensors that promise
enhanced sensitivity (Sec. VII).

III. GENERAL FORMALISM FOR QUDIT
HAMILTONIAN ENGINEERING

In this section, we will introduce our general formalism
for robust qudit Hamiltonian engineering. Key to our for-
malism are insights into compact algebraic and graphical rep-
resentations of the engineered Hamiltonian, combined with
judicious choices of pulse families to satisfy real-world con-
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straints and achieve robustness. Many of these observations
are inspired by methods for robust qubit sequence design, yet
require viewing the results from a new perspective and making
substantial generalizations. For a more detailed description of
robust qubit sequence design, we refer the reader to Ref. [16].

In each subsection below, we will first illustrate the intu-
itions behind key insights using simple examples with qubits,
and then generalize the statements to the qudit case. As
we shall see, this is a nontrivial extension, and requires de-
veloping new geometric intuitions and understandings of the
Hamiltonian engineering constraints.

III.1. Hamiltonian Representation and Decoupling Frame Set

The setting we are interested in is a generic qudit Hamilto-
nian

H =∑
i

Hdis
i +∑

i≠jH
int
ij , (1)

where the first term describes an on-site disorder, and the sec-
ond term describes a symmetric two-body interaction that sat-
isfies the rotating wave approximation (i.e. the secular ap-
proximation). We focus on the case where we only have
global control over the spin system, consisting of pulses al-
lowed by the selection rules of the system. Going into the in-
teraction picture with respect to the ideal pulses, we can write
the interaction picture Hamiltonian as H̃k = U †

k−1HUk−1 with
Uk−1 = Pk−1⋯P1. In average Hamiltonian theory, the evolu-
tion of the system can be described by an effective Hamilto-
nian Heff, which is the average of H̃k weighted by the corre-
sponding evolution times τk [24], Heff = ∑k τkH̃k/T , T being
the Floquet period. The goal of Hamiltonian engineering is
then to design a pulse sequence {Pk} that leads to the desired
form of Heff.

The key insight that significantly simplifies the pulse se-
quence design problem is that the Hamiltonian transformation
H̃ = U †HU is uniquely determined by the transformations of
the higher spin Sz operator, S̃z = U †SzU . This observation
allows us to keep track of only the Sz transformation, instead
of the whole unitary U or the pulse sequence history, which
contain unnecessary information about the transformations of
Sx and Sy . As an example of this observation, let us examine
the example of a dipolar-interacting spin-1

2
system:

H =∑
i

hiS
z
i +∑

ij

Jij (Sx
i S

x
j + Sy

i S
y
j − 2Sz

i S
z
j ) . (2)

Because the on-site disorder term is proportional to Sz , it is
obvious that its transformation is determined by S̃z . To see
that this is also the case for the interaction term, notice that
the interaction term can be rewritten as S⃗i ⋅ S⃗j −3Sz

i S
z
j , where

the first term is spherically-symmetric and therefore invariant
under global qubit rotations Û , and the second term is mani-
festly determined by S̃z .

The fundamental reason for this insight is the rotating wave
approximation (i.e. secular approximation). Intuitively, when
there is a strong quantizing field that separates the two en-
ergy levels, the Hamiltonian rapidly rotates around the z axis.

Therefore, any part of the Hamiltonian that is not rotationally
invariant rapidly averages out, and the resulting Hamiltonian
(e.g. Eq. (2)) must be invariant under z rotations. Because of
this, the rotation of x and y axes in the plane perpendicular
to the z axis does not matter, as they are equivalent, and the
transformation of z axis determines everything.

The observation that S̃z uniquely determines H̃ can be di-
rectly generalized into the higher spin case, and we formulate
this statement precisely as the following theorem:

Theorem III.1. For two unitaries U1, U2, such that
S̃z = U †

1S
zU1 = U †

2S
zU2, we have (U †

1)⊗nHU⊗n
1 =(U †

2)⊗nHU⊗n
2 , where n is the number of spins in the system

and H is a qudit Hamiltonian satisfying the secular approxi-
mation on each transition.

The full proof is given in SI Sec. S1.C, but the basic intu-
ition is similar to the spin- 1

2
case: the rotating wave approxi-

mation causes operators other than diagonal ones to drop out,
leaving S̃z as the only relevant information.

Since transformations of the Sz operator alone are suffi-
cient to describe the Hamiltonian transformations, we only
need to keep track of them for the Hamiltonian engineering
problem. From now on, we will refer to the transformation
of the Sz operator as a “frame” or “frame transformation”.
Compared to prior approaches that did not utilize the secu-
larity of the Hamiltonian [21, 54], Theorem III.1 reduces the
information we need to keep track of, and makes it possible to
extract physical insights from the frames S̃z themselves that
help inform sequence design, as we shall see in Sec. IV.

The proof in SI Sec. S1.C does not provide an explicit con-
struction of the transformed Hamiltonian as a function of S̃z ,
although it is easy to show that the final result will be a poly-
nomial in the decomposition coefficients of S̃z in the Gell-
Mann basis, as we describe in SI Sec. S1.D. Using the rep-
resentation theory of Lie groups, such expressions can in fact
also be directly constructed, as we show in complementary
work [62].

III.2. Graphical Representation of Qudit Decoupling

In this section, we will introduce a new graphical represen-
tation, which we call the “decoupling frame graph”, to de-
scribe the frame set we use to decouple the interaction and
the pulses connecting them. In these graphs (e.g. Fig. 3(a,d)),
the vertices represent the frames we use for decoupling and
the edges represent the pulses connecting these frames. As
we will discuss in this section, this graphical representation
significantly simplifies the inclusion of connectivity require-
ments, while also providing a simple visualization of the pulse
sequence.

To make Hamiltonian engineering techniques relevant to
real-world experiments, it is key to ensure that the desired
transformations can indeed be experimentally implemented
given the constraints of selection rules. To build in robust-
ness into a pulse sequence, the pulses connecting neighbor-
ing frames must further be simple enough that we can easily
analyze the effects of disorder and interaction during them.
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FIG. 3. Decoupling frame graphs. Geometric representation of decoupling pulse sequences. Vertices indicate transformed Sz frames and
edges indicate physically-implementable pulses that connect different frames. (a-c) Representative qubit decoupling sequence. Subplot (a)
shows the decoupling frame graph for the qubit case, and a walk on it (b, walk ordering given by color gradient) produces a pulse sequence
consisting of π/2 pulses (c). (d-f) Corresponding results for a qutrit decoupling sequence. These plots are only for high level illustration of our
methods; the details of qutrit decoupling sequence design are discussed in Sec. IV, and the precise definition of the frame set in (d) is given in
Eq. (9).

Therefore, we require neighboring frames to be connected by
simple and experimentally implementable pulses.

For qubit systems, this requirement is automatically
achieved through the Bloch sphere picture Fig. 2(b), where
the frames ±Sx,±Sy,±Sz are connected by simple π

2
pulses.

For qudits, however, existing linear programming techniques
described in Ref. [21, 54] only consider the Hamiltonian trans-
formations H̃k at each frame, but ignore the ordering of the
frames and the pulses connecting them. This often results in
complicated composite pulses in the derived pulse sequence,
which require cumbersome and structure-less algebraic sim-
plifications and have no clear way to build in robustness. Ad-
dressing this challenge for qudits thus requires developing
new geometric approaches and intuitions, as we now describe.

Our approach is motivated by the observation that the sim-
plicity in the qubit case comes in large part from our choice of
frame sets. Indeed, one important reason to choose the frames±Sx,±Sy,±Sz , as opposed to e.g. a tetrahedral or icosahe-
dral basis [63], is that they are connected by simple π

2
pulses.

The direct generalization of this to the qudit case thus starts
with a simple pulse set motivated by selection rules and easy
analysis of robustness (Sec. III.3), and searches for subsets of
frames (which we will call the “decoupling frame set”) that
achieve decoupling among the frames accessible using pulses
in this pulse set. Crucially, one should also keep track of how

the different frames are connected by accessible pulses while
building up the decoupling frame set. In this way, the con-
nectivity between the frames by simple pulses is guaranteed
beforehand.

Motivated by the fact that the Bloch sphere picture in
Fig. 2(b) can be viewed as a connectivity graph if the arcs
are replaced by straight lines (see Fig. 2(c)), we illustrate
the frame set and the connectivity between frames by a new
graphical representation, which we refer to as the “decoupling
frame graph”, as shown in Fig. 2(d). In these graphs, each ver-
tex represents a different transformed S̃z frame, and each edge
between two vertices represents a single pulse in our chosen
pulse set that connects the two frames. Using this represen-
tation, the decoupling requirement Heff = ∑k H̃kτk = 0 be-
comes a requirement on the frame set and the time τk spent at
each vertex, and a pulse sequence that achieves such decou-
pling can be represented as a path on this graph (see Fig. 2(e)),
which walks along the edges to visit the desired vertices, and
spends the requisite amount of time on each vertex.

A few comments are in order: first, a natural question one
might have is whether the feasibility of a given edge to be
experimentally implemented depends on the history of pulses
applied, which could change the orientation of other opera-
tors such as Sx, while leaving Sz invariant; we prove in SI
Sec. S1.E that the only effect of this is to change the phase of
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the pulse to be applied, without changing which transitions are
involved, thus not affecting the implementability of the pulses.
Second, it is usually more favorable to design graphs where all
vertices used are connected in a single patch; this eliminates
the need for intermediate nodes to connect frames, which
could complicate the cancellation of finite-pulse-duration ef-
fects. Similarly, well connected graphs are preferred because
they support more ways to traverse the vertices. This extra
degree of freedom can be utilized to satisfy robustness condi-
tions. Third, the choice of a well-motivated, implementable
set of pulses is very important, as it determines the frames we
consider and the connectivity between them. As we will see in
Sec. III.3, balanced double driving pulses (i.e. pulses that si-
multaneously drive both ∣0⟩↔ ∣+1⟩ and ∣0⟩↔ ∣−1⟩ transitions
with equal amplitude) are usually good choices in spin-1 sys-
tems, due to their simple transformations of disorder during
pulses and their ease of implementation and calibration.

Let us now provide a few concrete examples of the decou-
pling frame graph to gain a bit more intuition.

First, consider the qubit case, where we would like to
spend equal time along each of the 6 cardinal directions.
The vertices thus correspond to ±Sx, ±Sy , ±Sz frames, and
the connecting edges, corresponding to π/2 pulses, organize
the decoupling frame graph into an octahedron, as shown in
Fig. 3(a). A representative path on this graph, as illustrated in
Fig. 3(b), can be directly translated into the decoupling pulse
sequence shown in Fig. 3(c). This sequence is a variant of the
spin-1/2 WAHUHA sequence that decouples interactions and
disorder [19].

Another decoupling frame graph, which we use for qutrit
disorder and interaction decoupling, is shown in Fig. 3(d). The
definition of the frames and why it decouples disorder and
interactions is discussed in Sec. IV; but for now, it is just an
illustration of a generic qudit decoupling frame graph. Similar
to the qubit case, we can easily draw a path through all vertices
in a simply-connected fashion, as illustrated in Fig. 3(e). The
pulse sequence corresponding to the path is shown in Fig. 3(f),
and consists of balanced double driving pulses with different
phases on each transition.

III.3. Robust Qudit Decoupling

In order to incorporate robustness into sequence design, we
have to analyze the transformation of the Hamiltonian during
pulses. For qudit systems, the transformation trajectory can
be much more complex than the qubit case (see below and SI
Sec. S2.D), complicating robustness analysis. Nevertheless,
we will show that by carefully choosing the pulses that con-
stitute the sequence, we can recover the favorable properties
of the qubit case.

Before diving into the more complicated case of qudits, let
us first briefly review how disorder during pulses is cancelled
in the qubit case, to remind readers about the key properties
that simplify the analysis. Because the on-site disorder is pro-
portional to Sz , we need to analyze the transformation of the
Sz operator during pulses. In the qubit case, the transforma-
tion of the Sz operator during pulses is a continuous rotation

Fig: Geodesic and Center of Mass

𝑂
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𝑆2

𝐶

(a) (b) +𝑆𝑧

−𝑆𝑧

FIG. 4. Disorder during pulses. (a) In the qubit case, the disor-
der during pulses is a continuous rotation from the frame before the
pulse S1 to the frame after the pulse S2, as represented by the red
arc. Therefore, its average effect, which is represented by the center
of mass “C” of the red arc, can be written as a scaled average of S1

and S2. The factor 4
π

in Eq. (3) comes from the fact that the center
of mass “C” is slightly further from the origin compared to the mid-
point of S1 and S2. (b) Illustration of geodesics. If the trajectory
of Sz during the pulse follows a geodesic, as in the case of the red
curve, then the whole curve lives in the 2 dimensional subspace (i.e.
the shaded plane) spanned by the frame before and after the pulse,
and therefore the average effect of disorder during the pulse can nat-
urally be decomposed as an average before and after the pulse. If
the trajectory of Sz does not follow a geodesic, as in the case of the
blue curve, then the center of mass of the curve no longer lives in the
shaded plane and no such decomposition is possible.

along a geodesic on the Bloch sphere from the frame before
the pulse S1 to the frame after the pulse S2. If we focus on
the 2 dimensional subspace that contains the trajectory of S̃z

during the pulse, this trajectory is represented by the red arc
in Fig. 4(a). Therefore, the average effect of disorder during
the pulse, which is represented by the center of mass of the
red arc, can be decomposed as a simple average of S1 and S2.
Indeed, by integrating over the pulse explicitly, one finds that
the average effect of disorder during a π/2 pulse is:

S̄ = 4

π
[S1 + S2

2
] . (3)

The contributions of these terms can be easily incorporated
into the effective Hamiltonian by treating it as extra time spent
in the frames before and after the pulse, with minimal changes
to the decoupling conditions otherwise. Thus, in the qubit
case, this decomposition significantly simplifies the incorpo-
ration of robustness into the sequence design problem. For
more details on qubit robust sequence design and a similar
analysis of other contributions, we refer readers to Ref. [16].

However, this decomposition of disorder during pulses as a
simple average before and after the pulse no longer holds for
generic pulses in qudit case. A concrete counterexample is
the transformation of the spin-1 Sz operator during a π

2
pulse

applied on a single transition, which is discussed in more de-
tail in SI Sec. S2.D. A geometric picture that explains why
this decomposition (i.e. Eq. (3)) no longer holds is that the
trajectory of the Sz transformation during pulses is no longer
a geodesic on the generalized Bloch sphere for generic higher
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spin pulses. To see this, examine Fig. 4(b), where the red
curve represents a trajectory of S̃z that follows a geodesic, and
the blue curve is a trajectory that does not follow a geodesic.
For the red curve, since it lives entirely in the two dimensional
subspace spanned by S̃z before and after the pulse (i.e. the
shaded plane), the averaged S̃z during the pulse can always
be decomposed as a scaled average of S̃z before and after the
pulse. However, for the blue curve, since its center of mass
does not live in the shaded plane, there is no way to perform
this decomposition.

One way to overcome this challenge is to find pulses that
transform Sz along geodesics, and use them to build the de-
coupling sequence. For the case of a spin-1 system, we found
that balanced double driving pulses (i.e. pulses that simulta-
neous drive both ∣0⟩ ↔ ∣+1⟩ and ∣0⟩ ↔ ∣−1⟩ transitions with
equal amplitude) satisfy this condition. For concreteness, let
us write down the form of the Hamiltonian for balanced dou-
ble driving pulses:

Hp ∝ ⎛⎜⎝
0 e−iθ1 0

eiθ1 0 e−iθ2
0 eiθ2 0

⎞⎟⎠ . (4)

To see that balanced double driving pulses transform Sz along
geodesics, notice that the Hamiltonian of balanced double
driving pulses can be related to the spin-1 Sx operator by a
simple conjugation Hp = U †SxU , where the unitary

U = ⎛⎜⎝
eiθ1 0 0
0 1 0
0 0 e−iθ2

⎞⎟⎠ (5)

is a phase operator that conjugates the Sz operator trivially
(i.e. U †SzU = Sz). Then, the transformation of the Sz oper-
ator during the pulse is:

S̃z(t) = eiHptSze−iHpt

= U † [eiSxtSze−iSxt]U. (6)

Notice that the term e−iSxt is a spin-1 spatial rotation opera-
tor, so its conjugation on Sz transforms Sz along the geodesic
cos t Sz + sin t Sy . This property still holds after conjugation
by U , and we find that for arbitrary balanced double driving
pulses that rotate the spin by π

2
, the transformation of Sz dur-

ing the pulse is a geodesic:

S̃z(θ) = cos θS1 + sin θS2, (7)

where S1,2 are the frames before and after the pulse, and θ is
the angle rotated from S1. We remark that the above construc-
tions and proof can be generalized to qudits with arbitrary d,
where the balanced double driving is generalized to a phase
conjugated higher spin Sx operator. Furthermore, such pulses
are implementable in most experimental systems because they
only require driving between neighboring ∣mS⟩ states.

Equation (7) shows that by using pulses that transform Sz

along geodesics in qudit sequence design, we achieve exactly
the same transformation of Sz as in the qubit case. This sig-
nificantly simplifies the robustness condition analysis, and as

we will discuss in Sec. IV, allows cancelling other terms, in-
cluding disorder that is proportional to (Sz)2, rotation angle
errors, and dominant higher-order contributions, by analogies
with the qubit case. For more detailed analysis of robustness
conditions, see SI Sec. S2.(D,E).

III.4. General Recipe for Robust Qudit Sequence Design

Combining the preceding insights, we arrive at the follow-
ing prescription for designing qudit robust Hamiltonian engi-
neering sequences:

1. Choose a fixed set of physically-implementable pulses;
ideally ones that cause frame trajectories along
geodesics.

2. Apply the pulses a few layers deep to build a decoupling
frame graph, where edges correspond to the pulses cho-
sen above, and vertices are frames S̃z accessible using
pulses in the chosen pulse set.

3. Apply linear programming techniques described in
Ref. [21] to identify a subset of frames and weights that
achieve decoupling.

4. Identify a path on the decoupling frame graph that
walks through all desired frames, spends the required
time at each vertex, and cancels the evolution during
pulses. This is usually achievable if we choose a pulse
set that transforms Sz along simple trajectories (e.g.
geodesics) in step 1.

The end result will be an experimentally implementable de-
coupling sequence that decouples both disorder and interac-
tions, and is robust to various control imperfections. We note
that some of these conditions can be relaxed. For example,
even if the pulses do not exclusively result in geodesic preces-
sions, we can still perform robust Hamiltonian engineering
through careful design, as described in SI Sec. S2.G.

IV. DESIGNING A GOOD QUTRIT DECOUPLING
SEQUENCE

In this section, we will use the general recipe described in
Sec. III.4 to design a robust disorder and interaction decou-
pling sequence for a dipolar interacting spin-1 ensemble. The
Hamiltonian of the system we are considering is:

H =∑
i

[hiS
z
i +Di (Sz

i )2]
+∑

ij

Jij [Sz
i S

z
j − 1

2
HXY,0+

ij − 1

2
HXY,0−

ij ] , (8)

where the first term describes two independent modes of the
on-site disorder, which we will call “Sz disorder” and “(Sz)2
disorder” from now on, and the second term is the dipole-
dipole interaction after applying RWA. The symbol HXY,0+

ij in
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the second term is a shorthand for the flip-flop term HXY,0+
ij ≡∣+1,0⟩ ⟨0,+1∣ + h.c. between ∣0⟩ and ∣+1⟩, and the symbol

HXY,0−
ij is the similar flip-flop term between ∣0⟩ and ∣−1⟩.
Now let us design a robust disorder and interaction de-

coupling sequence using this general recipe. We choose to
work with balanced double driving pulses, because they trans-
form Sz along geodesics. By a linear programming search
on the accessible frames, which is described in more detail
in Ref. [21] and SI Sec. S2.A, we find that the 12 frames in
Fig. 3(d) constitute a decoupling frame set when we spend
equal time on each vertex. The explicit expressions of these
frames are:

±Sx = ± 1√
2

⎛⎜⎝
0 1 0
1 0 1
0 1 0

⎞⎟⎠ , ±Sx̃ = ± 1√
2

⎛⎜⎝
0 1 0
1 0 −1
0 −1 0

⎞⎟⎠ ,

±Sy = ± 1√
2

⎛⎜⎝
0 −i 0
i 0 −i
0 i 0

⎞⎟⎠ , ±Sỹ = ± 1√
2

⎛⎜⎝
0 −i 0
i 0 i
0 −i 0

⎞⎟⎠ ,

±Sz = ±⎛⎜⎝
1 0 0
0 0 0
0 0 −1

⎞⎟⎠ , ±S z̃ = ±⎛⎜⎝
0 0 −i
0 0 0
i 0 0

⎞⎟⎠ . (9)

The next step is to build in robustness by choosing a good
path on the decoupling frame graph. In order to build a high-
performance decoupling sequence, in addition to the robust-
ness conditions, it is also crucial for the dominant terms in
the Hamiltonian to be cancelled as locally as possible to avoid
generating a large higher order contribution in the Magnus ex-
pansion [64]. Therefore, the overall design principle involves
a hierarchical structure: shorter sequences are designed to ro-
bustly cancel the dominant terms in the Hamiltonian, and they
are used as building blocks for longer sequences that cancel
the subdominant terms.

In our experimental platform consisting of a dense NV
ensemble, the ordering of energy scales in the Hamiltonian
(from large to small) is magnetic noise (∝ Sz), electric field
noise and strain inhomogeneities (∝ (Sz)2), and the dipole-
dipole interaction, and we will also aim to cancel them in this
order in our pulse sequence. We note that different exper-
imental platforms can have different relative magnitudes of
these terms, and the hierarchical design method we discuss in
this section should still lead to good pulse sequences in those
cases.

Let us now describe the hierarchies from the lowest level to
the highest level.

1. Cancel magnetic noise Sz

Since magnetic noise is the dominant term in our platform,
it is cancelled on the lowest level in the pulse sequence hierar-
chy. The basic structure to cancel the magnetic noise is shown
in Fig. 5(a). In these plots, we represent the pulse sequence
by a frame matrix, where each column describes a frame and
each row represents a basis vector we use to decompose the
frames. The frames are represented by their decomposition
coefficients in this basis; for example, a “+1” in the row cor-
responding to S2 denotes the frame +S2 and a “-1” in the

Fig2: Hierarchy of pulse sequences
(a) (b)

(c)

FIG. 5. Hierarchy of sequences. (a) The basic building block we use
to cancel Sz disorder. S1 and S2 represent two generic frames con-
nected by microwave pulses and yellow/green represent +S1,2/−S1,2

respectively. The large square blocks indicate free evolution between
pulses and the thin lines indicate intermediate frames during pulses
(e.g. the thin green line in the S1 row indicates a π pulse from S2

to −S2 that goes through −S1). Notice that disorder during both free
evolution and pulses are cancelled. (b) A WAHUHA-like sequence
built by the building blocks in (a) cancels the (Sz)2 disorder. (c) A
sequence that decouples both disorder and interactions is obtained by
applying the WAHUHA sequence in (b) on each block in Fig. 6.

S1 row denotes the frame −S1. The square blocks in these
plots represent free evolution periods between pulses, and the
thin lines represent intermediate frames we go through during
pulses. For a more detailed description of these plots in the
qubit case, see Ref. [16]. In Fig. 5(a), there is a pair of square
blocks +S2 and −S2, so the Sz disorder during free evolution
is cancelled; there is also a pair of thin lines −S1 and +S1, so
the Sz disorder during pulses is also cancelled. Therefore, this
basic structure cancels Sz disorder robustly, and we will use
it as the building block for higher level sequences that cancel
other terms in the Hamiltonian.

2. Cancel electric field and strain noise (Sz)2
The next level in the hierarchy is cancelling electric field

noise and strain inhomogeneities. An important observa-
tion here is that the WAHUHA sequence [19], which is de-
signed to cancel spin- 1

2
XXZ interactions, can also cancel the

spin-1 (Sz)2 disorder. Specifically, consider a spin-1 ver-
sion of the WAHUHA sequence that goes through the frames
Sx, Sy , and Sz , where Sx,y,z are conventional spin-1 op-
erators (see above). The reason that this sequence cancels
the (Sz)2 disorder is because it transforms the disorder into(Ŝx)2+(Ŝy)2+(Ŝz)2 = Ŝ2 = S(S+1)1 ∝ 1, which is a triv-

ial constant. Moreover, due to the similar structure of (Ŝz)2
and the spin- 1

2
interaction Ŝz⊗Ŝz , both being quadratic in Sz ,



9Fig3: Two blocks
𝑆𝑧

−𝑆𝑧

𝑆𝑥

𝑆𝑦−𝑆𝑥

−𝑆𝑦

𝑆 ෤𝑧

−𝑆 ෤𝑧

𝑆 ෤𝑥

−𝑆 ෤𝑥𝑆 ෤𝑦

−𝑆 ෤𝑦

FIG. 6. Dividing the 12 frames into two pseudo Bloch spheres.
The 6 frames in each pseudo Bloch sphere (±Ŝ1,±Ŝ2,±Ŝ3) satisfy
Ŝ2
1 + Ŝ2

2 + Ŝ2
3 ∝ 1; therefore, a WAHUHA sequence in each pseudo

Bloch sphere cancels the (Sz)2 disorder. Note that additional con-
nections from ±Sx to ±Sx̃ and from ±Sy to ±Sỹ are not drawn for
visual clarity. The illustrated way of dividing the 12 frames into two
pseudo-Bloch-spheres that satisfy the requirement Ŝ2

1 + Ŝ2
2 + Ŝ2

3 ∝ 1
is not unique. In fact, there are 4 such divisions and picking other
divisions will lead to similar pulse sequences.

their contribution during the finite pulse can be cancelled us-
ing the same method, as discussed in more detail in the fourth
level of the hierarchy and in Ref. [16]. In addition, we find
that the 12 frames in Fig. 3(d) can be divided into 2 blocks of 6
frames (as shown in Fig. 6), in which the frames in each block
(±Ŝ1,±Ŝ2,±Ŝ3) satisfy Ŝ2

1 + Ŝ2
2 + Ŝ2

3 ∝ 1, achieving the same
cancellation as above. Therefore, we can cancel the (Sz)2
disorder locally by applying a WAHUHA sequence on each
block, as shown in Fig. 5(b). Note however that a WAHUHA
sequence does not fully cancel the (Sz)2 disorder during the
finite pulse duration, and we postpone this cancellation to the
fourth level.

3. Cancel dipole-dipole interactions

The third level in the hierarchy is to cancel the dipole-
dipole interaction. As we found from our linear programming
analysis in Sec. III.2, this requires us to spend equal time in
all 12 frames in Fig. 6 and is achieved by concatenating the
WAHUHA sequences on the two blocks in Fig. 6. The frame
representation of this sequence is shown in Fig. 5(c).

4. Further improvements inspired by advanced qubit
sequence design

Inspired by recent advances in qubit higher-order sequence
design [61] and the similarity between certain terms in qutrit
decoupling and qubit decoupling, we can use the interaction
decoupling sequence shown in Fig. 5(c) as a building block,
and apply the higher order designs in Ref. [61] to further im-
prove its performance. The essence of these further improve-
ments is that we are flipping the signs and ordering of the
frames to cancel (Sz)2 disorder during the pulses, the Rabi

inhomogeneity effect, and the first order terms in the Magnus
expansion coming from commutators between various terms.

As an example, the (Sz)2 disorder during the pulses and the
Rabi inhomogeneity effect are cancelled by flipping the signs
of the intermediate frames (or the free evolution frames, but
not both) in the basic building block shown in Fig. 5(a). The
cancellation of (Sz)2 disorder during pulses relies on the fact
that it transforms in the same way as spin-1

2
Ising interactions.

Specifically, if we denote the frame before and after a spin-1
π
2

pulse by S1 and S2, and denote the angle rotated from S1

by θ, then the instantaneous frame is cos θS1 + sin θS2 (see
Sec. III.3 for the derivation). The (Sz)2 disorder is thus trans-
formed to cos2 θS2

1 +sin2 θS2
2 +sin θ cos θ(S1S2+S2S1). The

terms proportional to S2
1 and S2

2 can be viewed as additional
time spent in the frame right before and right after, and there-
fore get cancelled by the WAHUHA block itself. The cross
term S1S2 +S2S1 is cancelled here because one of S1 and S2

is an intermediate frame whose sign is flipped, in analogy to
the rule for interaction cross-terms in Ref. [16]. Meanwhile,
the Rabi inhomogeneity effect is cancelled because the rota-
tion direction changes when the sign of one frame in S1 and
S2 is flipped, leading to forward and backward rotations that
compensate each other. This is in direct analogy to the chi-
rality sum rule in Ref. [16]. Furthermore, by similar analysis,
one can show that the final sequence is not only robust to ro-
tation angle errors common to both transitions as discussed
above, but also robust to rotation angle errors on each individ-
ual transition (see SI Sec. S2.E for details). Similar analogies
to the qubit case also apply to higher-order contributions.

With the preceding hierarchical construction, we arrive at a
set of promising decoupling pulse sequences, as described in
full detail in the SI Sec. S2.B. For applications on other exper-
imental platforms, the ordering of level 1 to 3 in the hierarchy
can be changed based on the relative magnitude of disorder
and interactions; the symmetrizations in level 4 are optional
based on the trade off between better decoupling performance
versus shorter sequence length.

V. QUTRIT DECOUPLING EXPERIMENT

We now test the performance of the robust qutrit decoupling
sequence proposed in Sec. IV in a high density ensemble of
spin-1 NV centers in diamond [37, 59], resulting in the first
demonstration of full decoupling of qudit interactions. We
isolate NVs with the same lattice orientation with an exter-
nal magnetic field aligned with one group of NV centers. This
magnetic field also breaks the degeneracy between energy lev-
els ∣±1⟩, allowing us to address the transitions ∣0⟩ ↔ ∣+1⟩
and ∣0⟩ ↔ ∣−1⟩ separately, using microwave with frequencies
3.647 GHz and 2.092 GHz, respectively. The density of NV
centers along each lattice orientation in our sample is about
4 ppm, which corresponds to a typical interaction strength of
J = 2π × 35 kHz. The strength of the onsite Sz disorder and(Sz)2 disorder is about 2π × 4 MHz and 2π × 1 MHz respec-
tively (Gaussian standard deviation). In the experiment, we
optically initialize the state of NVs to be in ∣0⟩, apply mi-
crowave pulses to prepare various initial states, then apply the
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decoupling sequence, and finally reverse the preparation se-
quence before reading out the population in state ∣0⟩ via flu-
orescence differences (see Fig. 7 and Ref. [37] for more de-
tails).

The measured decay of the signal under various decoupling
sequences is plotted in Fig. 8(a). Sequences with numerical
labels are existing sequences from the literature, while the
ones with alphabetical labels are new sequences we designed.
Seq. 2 is the interaction decoupling sequence in Ref. [21]. Its
performance in our experiment is not good, because it does not
decouple the disorder, which is the dominant term in our sys-
tem. To cancel the disorder, we can use Seq. 1 from Ref. [58]
that directly generalizes the spin-1

2
spin-echo sequence to the

spin-1 case. Similar to the spin-echo sequence, Seq. 1 only
cancels disorder during the free evolution, but is not robust to
disorder during pulses.

To improve the performance, we designed Seq. A, which
is an enhanced version of Seq. 1 that is highly robust to dis-
order effects during pulses. This robust disorder decoupling
sequence shows a significant timescale extension compared to
its non-robust counterpart Seq. 1, highlighting the importance
of robust sequence design. Furthermore, since Seq. A does
not cancel interactions, it serves as a baseline for verifying in-
teraction decoupling in further sequences. To decouple both
disorder and interaction, we designed Seq. B, which is the se-
quence shown in Fig. 3(e,f). Although this sequence further
decouples interaction, its performance in experiment is worse
than Seq. A, because it has no robustness built in. For more
detailed description of these sequences, see SI Sec. S2.(B,C).

Most importantly, after integrating all robustness consid-
erations into the sequence design, we arrive at our current
best sequence Seq. C, which we call “DROID-C3PO” (i.e.
Disorder-RObust Interaction Decoupling - Coherent 3-level
Pulse Optimization). This sequence decouples both disorder
and interactions, and is robust to disorder during pulses, rota-
tion angle errors, and dominant higher order contributions. In
the experiment, this sequence shows significant improvement
over Seq. A, constituting the first demonstration of full disor-
der and interaction decoupling in a qudit system, and achieves
a ten-fold improvement over the existing sequences. In ad-
dition, we verify in Fig. 8(b) that the decay timescales of all
initial states are extended under Seq. C, confirming that this
sequence is a true decoupling sequence that preserves an ar-
bitrary quantum state. The complete plot of Seq. C is shown
in Fig. 2(f), and its frame matrix representation is shown in
Fig. S3(a).

VI. MANY-BODY PHYSICS: QUANTUM MANY-BODY
SCARS

The same techniques developed above can also be used to
engineer a rich family of interesting many-body Hamiltoni-
ans, which enables new phenomena not accessible in spin- 1

2
systems. As a specific example, we will discuss the engi-
neering of a Hamiltonian that supports quantum many-body
scars—exotic non-thermalizing eigenstates embedded in an
otherwise thermal spectra, which constitute a new class of

Fig4: Experiment Procedure

෡𝑈 ෡𝑈†
×𝑚

0 ⨂𝑁

𝑡

FIG. 7. The decoupling experiment. In the experiment, we first
initialize the NVs to state ∣0⟩ by shining a 532 nm green laser to our
sample, then apply the initialization microwave pulse Û to prepare
the initial state whose decay curve we want to measure. After that,
the decoupling pulse sequence is applied, and finally the preparation
pulse is reversed before measuring the population in state ∣0⟩.

thermalization phenomena in between thermalizing systems
and many-body localized systems [28, 65–73].

A recent paper [28] proposed that the bipartite spin-1 XY
model naturally realizes quantum many-body scars. Specifi-
cally, the model contains two groups of spin-1 particles with
no intragroup interactions but with intergroup XX + Y Y in-
teractions. The Hamiltonian for this model is given by

H = ∑
i∈A,j∈B Jij (Sx

i S
x
j + Sy

i S
y
j ) + h ∑

i∈A,B

Sz
i , (10)

where spins i and j reside in different groups A and B in the
first term, and h is an external magnetic field coupled to Sz .

In this particular example, the scar subspace is formed by
acting with raising operators which act only on the ∣+1⟩ , ∣−1⟩
subspace. More concretely, for the bipartite spin-1 XY model
we are considering, we can define the SU(2) algebra opera-
tors:

J± = 1

2
∑
i

ai (S±
i )2 , Jz = 1

2
∑
i

Sz
i , (11)

where ai = 1/−1 for spins in group A/B, and S±
i , S

z
i are spin-

1 raising, lowering, and Sz operators. With this notation, the
following eigenstates

∣Sn⟩∝ (J+)n ∣−1⟩N (12)

form the non-thermalizing scar manifold according to
Ref. [28], where ∣−1⟩N is the state with all spins fully po-
larized into ∣−1⟩, and N is the total number of spins in the
two groups. At the same time, the Hamiltonian itself does
not commute with the subspace SU(2) generator J±, indicat-
ing that it is not integrable. Indeed, one can verify that this
Hamiltonian has a thermal spectrum [28], where generic ini-
tial states thermalize. Thus, the spin-1 XY model constitutes
a quantum many-body scar.

Using our techniques, the bipartite spin-1 XY model dis-
cussed above can be engineered from the native dipole-dipole
interaction in high density NV center samples. Here, the
two groups in the model can be realized as NV centers along
two lattice orientations, where the transition frequencies of
the two groups are spectrally resolved and the two groups
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(a)

(b)

Dis. Int. Robust

Seq. 1 ✘ ✘

Seq. 2 ✘ ✘

Seq. A ✘

Seq. B ✘

Seq. C

FIG. 8. Decoupling experiment results. (a) Measured average de-
cay trace for different pulse sequences, where the average is taken
over all three coherent superposition initial states ∣0⟩+∣−1⟩√

2
, ∣0⟩+∣+1⟩√

2
,

and ∣+1⟩+∣−1⟩√
2

. Among the sequences, Seq. 1,2 are existing sequences
in Ref. [58] and [21], respectively, while Seq. A,B,C are new se-
quences we designed. The inset table shows whether or not a
sequence decouples disorder, interaction, and achieves robustness
against disorder during pulses. For more details on these sequences,
see SI Sec. S2.(B,C). The measurement is performed with a differen-
tial readout, where we rotate the population in each of the three states∣+1⟩, ∣0⟩, and ∣−1⟩ to state ∣0⟩ before doing the fluorescence measure-
ment. Denoting the measured fluorescence by I+, I0, and I− respec-
tively, the signal on the vertical axis is defined as S = 3

2
2I0−I−−I+
I0+I−+I+ ,

which is proportional to P0 − 1
3

, where P0 is the population in state∣0⟩. The experimental parameters are (tπ/2 = 8 ns, τ = 25 ns), where
tπ/2 is the time duration of each spin-1 π

2
pulse and τ is the time

spent in each frame. (b) Decay curve of different initial states for our
best decoupling sequence DROID-C3PO (Seq. C), showing that the
sequence preserves arbitrary initial quantum state.

can be controlled independently. The intragroup interaction
can be cancelled by applying the robust interaction decou-
pling sequence in each group as discussed above. To engi-
neer the intergroup XY interaction, notice that the two groups
of NV centers along different lattice orientations are not on
resonance with each other when an external magnetic field
is applied. Therefore, the interaction between NVs residing

Fig6: Scar Sequence
Group 1:

+𝑍𝑍 −𝑍𝑍𝑋𝑋 + 𝑌𝑌 𝑋𝑋 + 𝑌𝑌

Group 2:

FIG. 9. The sequence engineering the scar Hamiltonian.
The whole sequence to engineer the scar Hamiltonian H =∑i∈A,j∈B Jij (Sx

i S
x
j + Sy

i S
y
j ) is plotted. Note that all intragroup in-

teractions are decoupled by applying a decoupling sequence on each
group individually, and that because of the sign flip in the second half
of the sequence for group 2, all intergroup interactions are cancelled
(see blue boxes) except the SxSx and SySy terms, which add up
(see red boxes) and give the desired bipartite spin-1 XY model.

in different groups is an Ising interaction Sz ⊗ Sz . A sim-
ple way to engineer the intergroup XY Hamiltonian is thus to
repeat the basic sequence twice, and in the second iteration
flip the signs of the frame pairs {±Sz,±Sx′

,±Sy′
,±Sz′} on

the second group of NVs while leaving the signs of the frame
pairs {±Sx,±Sy} unchanged (see Fig. 9). In this way, the−SzSz,−Sx′

Sx′
,−Sy′

Sy′
,−Sz′

Sz′
interactions in the second

iteration cancel with the +SzSz,+Sx′
Sx′

,+Sy′
Sy′

,+Sz′
Sz′

interactions in the first iteration; while the +SxSx,+SySy in-
teractions in both iterations add up and gives the desired XY
Hamiltonian. A frame representation of the pulse sequence
that engineers the scar Hamiltonian is shown in Fig. 9.

We simulated the dynamics of various initial states under
this pulse sequence. The simulated initial states include( ∣+1⟩+∣−1⟩√

2
, ∣+1⟩−∣−1⟩√

2
), (∣+1⟩ , ∣+1⟩), ( ∣+1⟩+∣−1⟩√

2
, ∣+1⟩+∣−1⟩√

2
),(∣+1⟩ , ∣−1⟩), (∣0⟩ , ∣0⟩), where the first state in the bracket

represents the initial state of the first group of spins and the
second state in the bracket represents the initial state of the
second group of spins. Based on the geometric intuition
discussed in SI Sec. S2.F (which states that the scar subspace∣Sn⟩ is the maximal spin subspace after rotating the second
group of spins by π around the z axis), the first two states live
in the scar subspace and therefore are not expected to thermal-
ize, while the last three states do not live in the scar subspace
and are expected to thermalize. The simulated dynamics of
these initial states is plotted in Fig. 10. In the plot, we see that
the initial states living in the scar subspace do not thermalize
(their signal either stays large or has persistent oscillations);
while the signals for other initial states quickly decay away.
These results show that exotic quantum many-body scar states
can be observed even in highly disordered, natural systems
such as randomly positions ensembles of NVs, in contrast
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Fig7: Scar Simulation

Scars

FIG. 10. Numerical simulation of the scar dynamics under the se-
quence in Fig. 9. We simulated the dynamics of various initial states
under the sequence that engineers the scar Hamiltonian (Eq. (10)).
The experiment we simulated is the same type of experiment (i.e.
initialize, evolve, readout) as in Fig. 7. The simulation parameters
are (∆ = 0, J = 2π × 35 kHz, h = 2π × 25 kHz, tπ/2 = 5 ns,
τ = 20 ns,N1 = N2 = 4), where ∆ is the disorder strength, tπ/2
is the time duration of each π

2
pulse, τ is the free evolution time

spent in each frame, and N1,N2 are the number of spins in the two
groups.

to the more regular, clean systems in which they have been
observed to date [65–67].

VII. ENHANCED QUANTUM SENSING WITH QUDIT
HAMILTONIAN ENGINEERING

In addition to a rich landscape of many-body Hamiltonians,
higher spin systems also give rise to interesting opportunities
in quantum sensing. First, the higher spin implies a larger ef-
fective dipolar moment, which can lead to a linear or quadratic
enhancement in magnetic field sensitivity, depending on the
nature of the signal [74]. A well-known example of this for
non-interacting spins is the use of double-quantum magne-
tometry for nitrogen-vacancy centers [32–34, 75], and inter-
acting spin systems present further challenges and opportuni-
ties for sensing sequence design [59, 76]. Second, the larger
Hamiltonian design space may also enable full time rever-
sal of the interaction Hamiltonian, useful for entanglement-
enhanced sensing [35, 77], which may not be otherwise ac-
cessible with a subset of levels [37]. For example, the spin-1
dipolar interaction Hamiltonian projected onto ∣0⟩ and ∣ + 1⟩
has a nonzero trace when expressed in the Pauli basis, result-
ing in a Heisenberg interaction component that cannot be re-
versed through global drives; but the full spin-1 dipolar inter-
action can nevertheless be fully cancelled. In this section, we
will provide a systematic understanding of how to evaluate the
sensitivity for a given sensing sequence, which is determined
by the difference between the largest and smallest eigenvalue

Fig. x: Sensing
(a) (b) (c)

≅ <

(d)

Find good way to illustrate
the corresponding thing for
spin-1

z

x

y

FIG. 11. Sensing with higher spin. (a) Sensing with spin- 1
2

par-
ticles involves preparing spins in an equal superposition of the two
basis states. Preparing the same initial state in a spin-1 system (b)
yields a worse sensitivity than preparing a superposition of maximal
and minimal eigenvalues in the spin-1 system (c). Number of arrows
in (a-c) represents the phase accumulation speed. (d) Preparing the
initial state to be a superposition of the largest and smallest eigenval-
ues maximizes precession. For the spin- 1

2
case, this is achieved by

preparing an initial state that is perpendicular to the effective field.

of the transformed toggling frame operator, and provide sim-
ple examples to illustrate this. We leave the systematic design
of sensing-oriented pulse sequences for higher spin systems
to future work.

In order to perform quantum sensing, we add to the Hamil-
tonian a term corresponding to the target sensing field:

H =Hdis +Hint +Hsense. (13)

We focus on the case of sensing time-dependent magnetic
fields, where Hsense(t) = ∑iB(t)Sz

i , although the same tech-
niques can be readily adapted to electric field or strain sens-
ing, among others. Note that the rotating wave approximation
implies that Hsense will be diagonal, regardless of the type of
target sensing field, and can thus be written as a polynomial
in Sz

i .
Under the Hamiltonian engineering transformations, the

sensing Hamiltonian will be transformed accordingly, and the
effective average Hamiltonian contribution becomes

H̄sense = 1

T
∫ T

0
dtB(t)S̃z

i (t). (14)

This can be readily evaluated based on the instantaneous tog-
gling frame transformations S̃z(t).

The sensitivity to an external magnetic field is generally
characterized by the quantum Fisher information (QFI) [3,
78]. In our case, since the sensing field only involves sin-
gle body operators, we can directly read off the optimal ini-
tial state and measurement axis that maximizes the QFI; we
simply prepare an equal superposition between the eigenstates
of H̄sense with the largest and smallest eigenvalues, and do a
Ramsey experiment within this two-level subspace. This will
maximize the amount of phase accumulation under a weak
perturbation, achieving the best possible magnetic field sensi-
tivity for a given pulse sequence.

Let us illustrate this with a few concrete examples. First,
consider the case of quantum sensing with interacting spin-
1
2

spin ensembles. As described in Ref. [19, 59], the condi-
tions for interaction decoupling transform the original target
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Sequence Name H̄sense λ ∆λ

WAHUHA[19] ( 1
6

1−i
6

1+i
6

− 1
6

) −0.289
0.289

0.577

CYL-6[21]
⎛⎜⎜⎝

1
6

√
2i
6

− i
6−√

2i
6

0 −√
2

6
i
6

−√
2

6
− 1

6

⎞⎟⎟⎠
−0.333−0.122
0.455

0.789

HoRD-qutrit-8[54]
⎛⎜⎝

1
3

0 0
0 0 0
0 0 − 1

3

⎞⎟⎠
−0.333

0
0.333

0.667

TABLE I. H̄sense and λ for three sensing sequences. We see a larger
∆λ for the two spin-1 sequences compared to the spin- 1

2
sequence,

indicating a higher-spin-enhanced sensitivity. By further comparing
the two spin-1 sequences, we see that their eigenvalue differences
∆λ are not the same, and CYL-6 has a larger eigenvalue difference
despite having smaller diagonal matrix elements.

sensing field BSz into an effective sensing field B(Sx +Sy +
Sz)/√3. The largest and smallest eigenvectors are spin states
aligned and anti-aligned with the sensing field direction, and
the optimal initial state will be a spin state prepared in the
plane orthogonal to the sensing field. This maximizes the pre-
cession around the sensing field, as illustrated in Fig. 11(d),
consistent with the results of Ref. [59].

We can also use the same technique to calculate the sen-
sitivity of existing pulse sequences in the literature to a DC
magnetic field. For simplicity, we assume ideal, infinitely
fast pulses, and consider the average Hamiltonian contribu-
tion from a DC magnetic field for both spin-1 pulse sequences
considered in Ref. [21] and Ref. [54], as well as the famous
spin- 1

2
WAHUHA sequence in Ref. [19]. The average Hamil-

tonian H̄sense and its eigenvalues λ are summarized in Table. I,
where we see a larger eigenvalue difference ∆λ for the two
spin-1 sequences compared to the spin-1

2
sequence, indicating

a higher spin enhanced sensitivity. We also find that contrary
to the suggestion in Ref. [54] that HoRD-qutrit-8 is better for
sensing, the sequence CYL-6 in Ref. [21] has a larger eigen-
value difference, implying a higher sensitivity when prepar-
ing the optimal initial state. This highlights the importance of
evaluating sensitivity using our approach of examining eigen-
value differences.

The two example sequences (CYL-6 and HoRD-qutrit-8)
are likely not optimal sensing sequences, but the physical pic-
ture we discussed here provides a convenient method to incor-
porate quantum sensing into the sequence design procedure.
We can follow the same procedure as described in the preced-
ing sections, but add in maximizing metrological sensitivity as
an additional design criteria in choosing the ordering of tog-
gling frames. We leave the detailed design of such sequences
to future work.

VIII. CONCLUSIONS

In this work, we introduced a graph-based framework for
the design of robust disorder and interaction decoupling se-

quences in qudit systems, and used this to experimentally
demonstrate the first full decoupling of qudit interactions.
In particular, our experiments demonstrate that our robust
qutrit disorder and interaction decoupling sequence “DROID-
C3PO” results in a ten-fold improvement in coherence time
over existing sequences, highlighting the power of our design
framework. This framework only requires tracking the trans-
formation of the Sz operator under pulses (i.e. “frames”),
significantly reducing the sequence search space compared
to prior approaches. Furthermore, by keeping track of all
experimentally-implementable connections between frames,
we reduced the sequence construction into a simple graph
traversal problem, avoiding the complicated, unstructured
algebraic simplifications in prior approaches. Finally, we
showed how pulses that transform Sz along geodesics lead
to the natural and elegant incorporation of robustness consid-
erations into our framework.

Our work also opens up new opportunities for future
studies. For quantum many-body physics, higher spins
enable new classes of Hamiltonians and phenomena, in-
cluding quantum many-body scars [28], new spin-exchange
channels [30, 31], lattice gauge theories [79, 80], and
SU(N)-magnetism [44, 45]. With larger Hilbert space
dimension, it also becomes possible to detect the Berry phase
on a subsystem by using the additional levels as a phase
reference. This may enable the study of interesting topo-
logical phenomenona in Floquet engineered systems [81].
In quantum metrology, the larger spin translates to a larger
dipole moment for enhanced sensing [32–34], and in our
experimental platform of interacting NV ensembles, using the
full spin-1 degree of freedom allows time-reversal operations
that are not readily accessible with two levels [21], crucial
for entanglement-enhanced metrology [35, 36] and measure-
ments of out-of-time-ordered-correlators (OTOCs) [82]. In
quantum computation, where the use of qudits may have
some advantages over qubits in gate complexity [83], our
decoupling sequence can be applied to preserve quantum
information for longer timescales [84] and allow for more
quantum operations within the coherence time. Finally, as
a generic framework, our method can be used to design
practical decoupling or Hamiltonian engineering sequences
for a wide range of experimental platforms, even if they
have different dominant decoherence channels or spin greater
than 1. These results may have wide-ranging implications
for a number of different experimental systems beyond
NV centers, including quadrupolar NMR [38–40], cold
molecules [41, 42], and nuclear spins or hyperfine states in
trapped atoms [43–47].
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ful discussions. This work was supported in part by CUA,
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[51] E. Serrano-Ensástiga and D. Braun, Physical Review A 101,
022332 (2020).

[52] P. Ribeiro, J. Vidal, and R. Mosseri, Physical Review Letters
99, 050402 (2007).

[53] O. Giraud, D. Braun, D. Baguette, T. Bastin, and J. Martin,
Physical Review Letters 114, 080401 (2015).

[54] M. F. O’Keeffe, L. Horesh, J. F. Barry, D. A. Braje, and I. L.
Chuang, New Journal of Physics 21, 023015 (2019).

[55] N. V. Vitanov, Physical Review A 92, 022314 (2015).
[56] X. Yuan, Y. Li, M. Zhang, C. Liu, M. Zhu, X. Qin, N. V.

Vitanov, Y. Lin, and J. Du, arXiv preprint arXiv:2203.00852
(2022), 10.48550/arxiv.2203.00852.

[57] S. Pang and A. N. Jordan, Nature Communications 2017 8:1 8,
1 (2017).

[58] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya,
F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyser-
lingk, N. Y. Yao, E. Demler, and M. D. Lukin, Nature 543, 221
(2017).

[59] H. Zhou, J. Choi, S. Choi, R. Landig, A. M. Douglas, J. Isoya,
F. Jelezko, S. Onoda, H. Sumiya, P. Cappellaro, H. S. Knowles,
H. Park, and M. D. Lukin, Physical Review X 10, 031003
(2020).

[60] A. J. Macfarlane, Communications in Mathematical Physics 11,
91 (1968).

[61] H. Zhou, L. S. Martin, M. Tyler, O. Makarova, N. Leitao,
H. Park, and M. D. Lukin, arXiv preprint arXiv:2303.07363
(2023).

[62] N. Leitao et al., in preparation.
[63] K. I. O. Ben ’Attar, D. Farfurnik, and N. Bar-Gill, Physical

Review Research 2, 013061 (2020).
[64] W. Magnus, Communications on Pure and Applied Mathemat-

ics 7, 649 (1954).
[65] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,

H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner,
V. Vuletic, M. D. Lukin, V. Vuletić, and M. D. Lukin, Nature
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S1. DEFINITIONS AND PROOFS

A. Convention for Gell-Mann Matrices

For qutrit Hamiltonians, we adopt the following convention for the Gell-Mann basis, where the basis elements are
defined as

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 , λ4 =




0 0 1
0 0 0
1 0 0


 ,

λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 ,

λ0 =

√
2

3




1 0 0
0 1 0
0 0 1


 , (S1)
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B. Constraints on Frame Matrices

Generically, we can decompose the transformed S̃z operator in the generalized Gell-Mann basis {λµ} as S̃zk =

U†k−1S
zUk−1 =

∑
µ Fµ,kλµ.

The frame matrices Fµ,k are required to satisfy certain constraints due to the frame transformation U†SzU being
unitary. For example, for qubit systems, we require

F 2
x,k + F 2

y,k + F 2
z,k = 1 (S2)

for all k.
For qudit systems, the constraint is that a unitary conjugation leaves the eigenvalues unchanged, such that

U†k−1S
zUk−1 =

∑
µ Fµ,kλµ should have the same set of eigenvalues as Sz. As an example, for qutrit systems,

this imposes the requirements

F 2
1 + F 2

2 + F 2
3 + F 2

4 + F 2
5 + F 2

6 + F 2
7 + F 2

8 = 1, (S3)

2F 3
8

3
√

3
− 2F 2

1F8√
3
− 2F 2

2F8√
3
− 2F 2

3F8√
3

+
F 2
4F8√

3
+
F 2
5F8√

3

+
F 2
6F8√

3
+
F 2
7F8√

3
− F3F

2
4 − F3F

2
5 + F3F

2
6 + F3F

2
7

− 2F1F4F6 − 2F2F5F6 + 2F2F4F7 − 2F1F5F7 = 0, (S4)

where we have dropped the k index for simplicity.

C. Proof of Theorem III.1

We can rewrite the condition U†1S
zU1 = U†2S

zU2 as [U1U
†
2 , S

z] = 0, which implies that Sz and U1U
†
2 are simul-

taneously diagonalizable. Since Sz has non-degenerate eigenvalues, this implies that the matrix U1U
†
2 must also be

diagonal. Moreover, the unitarity of U1 and U2 imply that U1U
†
2 is also unitary. Combined, these imply that U1U

†
2

is a composition of rotations around the ẑ-axis of individual transitions.
On the other hand, by definition, H is a qudit Hamiltonian satisfying the secular approximation on each transition,

i.e. for any spin rotation Uz formed by the composition of rotations around the ẑ-axis of individual transitions, we
have

(U†z )⊗nHU⊗nz = H. (S5)

Since U1U
†
2 belongs to the type of rotation Uz, we have

(U2U
†
1 )⊗nH(U1U

†
2 )⊗n = H, (S6)

which implies

(U†1 )⊗nHU⊗n1 = (U†2 )⊗nHU⊗n2 . (S7)

D. Proof of Polynomial Representation of Hamiltonian

In the case of spin- 12 particles with two-body interactions, we have shown that the transformed Hamiltonian is a

second-order polynomial in the coefficients of the Pauli decomposition of U†SzU . In the more general case, we can
generalize this as follows:

Theorem 1. For a spin-
(
d−1
2

)
(where d is the dimension of the local Hilbert space) secular Hamiltonian consisting

of at most k-body terms, if the Sz operator is transformed as U†SzU =
∑
µ aµλµ, then the transformed Hamiltonian

can be written as an order-k(d− 1) polynomial in aµ.

Proof. First, we note that if the transformation of the Sz operator is specified, then so are the transformations of all
powers of Sz, since U†(Sz)mU = (U†SzU)m. In addition, linear combinations of the zeroth to (d−1)-th powers of the
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spin-
(
d−1
2

)
operator Sz generate all diagonal matrices of dimension d. To generate off-diagonal matrices, we can make

use of the spin-
(
d−1
2

)
Sx operator and its powers: the product of diagonal matrices and Sx generates all matrices

containing only elements on the 1-diagonal (i.e. the diagonal that is 1 element offset from the main diagonal), the
product of diagonal matrices and (Sx)2 generates all matrices containing only elements on the 2-diagonal and so on.

Therefore, if we write the transformed spin operators as S̃z = U†SzU =
∑
µ aµλµ and S̃x = U†SxU =

∑
µ bµλµ,

then any other spin operator can be expressed as
∑
α fα(aµ, bµ)λα, with fα(aµ, bµ) being a multivariate polynomial

in aµ, bµ that is at most order (d− 1) in each aµ. The Hamiltonian, consisting of at most k-body terms, can in turn
be written as a polynomial

H̃ =
∑

α1···αk

gα1···αk
(aµ, bµ)λα1

⊗ · · · ⊗ λαk
, (S8)

where gα1···αk
(aµ, bµ) is a multivariate polynomial in aµ, bµ that is at most order k(d− 1) in each aµ.

At this point, our expression of the Hamiltonian still depends on both aµ and bµ. However, based on Theorem III.1,
we know that this can be simplified into a form that only contains aµ. The constraints that can be used to perform
this simplification are the preservation of eigenvalues (and thus the characteristic polynomial) under unitary transfor-
mations, e.g. |λI −∑µ aµλµ| = |λI − Sz|. This will give rise to polynomial constraint equations within aµ values as

well as between aµ and bµ. Crucially, the imposition of these to simplify gα1···αk
(aµ, bµ) can only lead to a reduction

of the order of the polynomial in aµ. Therefore, we see that the final expression for the Hamiltonian in terms of aµ
will be a polynomial of order at most k(d− 1).

Explicit expressions for the polynomial can be elegantly obtained using representation theory of Lie groups, as
described in more detail in an accompanying paper, Ref. [1].

E. Implementation of Rotations Regardless of Pulse History

The graphical representation we developed in Sec. III.2 of the main text uses edges to denote whether two S̃z frames
can be connected via a simple, physically implementable pulse in our given pulse set. This requires us to show that
regardless of the history of the pulses applied before, an appropriate unitary can still be found which implements the
rotation in the desired way. We rigorously show that this will always be the case with the following theorem:

Theorem 2. Given unitaries U1 and U2, if the frame S1 = U†1S
zU1 can be transformed into the frame S2 = U†2S

zU2

via some physically-implementable pulse P , i.e.

U†1P
†SzPU1 = U†2S

zU2, (S9)

then a transformation between S1 and S2 can always be implemented by a phase-shifted version of P , regardless of
how operators other than Sz (e.g. Sx) are transformed.

Proof. Any unitary operation that gives rise to the same Sz transformation can be expressed as U ′1 = UzU1, where Uz
is a diagonal rotation matrix, since S′1 = U†1U

†
zS

zUzU1 = S1. Note that this will modify how non-diagonal operators
(e.g. Sx) are transformed, and subsequently necessitate a different pulse P ′ to transform the frame from S1 to S2.

In order to transform the original pulse above into something that can also be implemented for this transverse
frame configuration, we require

U†1U
†
z (P ′)†SzP ′UzU1 = U†1P

†SzPU1, (S10)

which is satisfied when P ′ = UzPU
†
z .

Now, let us consider what this conjugation by a diagonal rotation matrix does to a pulsed rotation. Making use of
the fact that

U†z exp[−iHt]Uz =
∞∑

n=0

U†z
(−iHt)n

n!
Uz = exp

[
−i(U†zHUz)t

]
, (S11)

we see that in order to implement the rotation, we simply need to conjugate the rotation axis by the same diagonal
rotation matrix Uz. Importantly, the only effect of such a conjugation is to change the phase of the pulse applied on
each transition, without changing which transitions have nonzero amplitudes applied. This ensures that the resulting
pulse is still physically implementable.
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As a concrete example, for a spin-1 system, a generic rotation generator matrix is transformed by a diagonal rotation
matrix Uz = diag{eiθ1 , e−iθ1−iθ2 , eiθ2} as

Uz



a11 a12 a13
a21 a22 a23
a31 a32 a33


U†z

=




a11 a12e
−i(2θ1+θ2) a13e

i(θ2−θ1)

a21e
i(2θ1+θ2) a22 a23e

i(θ1+2θ2)

a31e
i(θ1−θ2) a32e

−i(θ1+2θ2) a33


 . (S12)

As one can see, the only effect is to change the phases of the drives applied on each transition, which does not change
the experimental implementability of the pulses.

S2. DETAILS OF PULSE SEQUENCES AND FRAME SETS

A. Details of Qutrit Decoupling Frame Sets

In this section, we utilize the linear programming formulation described in Ref. [2] to identify promising candidates
frame sets.

Before discussing the details, let us first comment on the existence of some equivalence relations between distinct
frame sets, in close relation to the results in Appendix. S1 E. Consider the frames formed by conjugating by pulses
P1 and P2:

S1 = P †1S
zP1, S2 = P †1P

†
2S

zP2P1, (S13)

then a further conjugation by U would give rise to

S′1 = U†P †1S
zP1U, S′2 = U†P †1P

†
2S

zP2P1U. (S14)

However, physically speaking, we could regard U as an initial state preparation pulse. The subsequent decoupling
pulses will then be unaffected, and therefore from the perspective of the average Hamiltonian, the two sequences are
equivalent.

Given this equivalence, when performing calculations, it may be convenient to conjugate the whole pulse set by the

same unitary P †1 , in order to start with the frame Sz. This will also allow us to analyze different pulse sequences on
a more equal footing. Moreover, this helps to prevent potential confusions in analyzing pulse sequences related to the
order of conjugations when applying a pulse sequence. For example, it may appear that the Gell-Mann basis λ1 can
be transformed into λ4 by a cyclic echo pulse Pc (see S2 C for definition), in the sense that P †c λ1Pc = λ4; but in fact,

if one starts in the frame S1 = λ1 = P †1S
zP1, then the cyclic echo pulse Pc will not bring one to the frame λ4, i.e.

P †1P
†
c S

zPcP1 6= λ4, since the new pulse acts from the middle instead of being added at the ends.
After imposing that one starts with the frame Sz, there is still an additional degree of freedom to conjugate pulse

sequences, namely a conjugation of all frames by a diagonal phase rotation. This will give rise to a family of frame
configurations that are distinct, but can be related to each other. Moreover, if one member of this family can be
implemented with some set of elementary pulses composed of resonant driving on one or both magnetically-allowed
transitions, the pulses necessary to implement a different member of this family can be easily obtained by changing
the phase of the original pulses. This could be useful in performing additional symmetrization of a pulse sequence to
further improve its performance and cancel higher-order terms.

We now describe some of the promising frame sets that were found. By allowing π/2 driving pulses on all 3
transitions, including the magnetically-forbidden transition, we found the following 12 frames with equal time duration
achieves full disorder and interaction decoupling:




0 0 0
0 0 ±1
0 ±1 0


 ,




0 0 0
0 0 ±i
0 ∓i 0


 ,




0 0 ±1
0 0 0
±1 0 0


 ,




0 0 ±i
0 0 0
∓i 0 0


 ,




0 ±1 0
±1 0 0
0 0 0


 ,




0 ±i 0
∓i 0 0
0 0 0


 . (S15)
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This frame set does not contain Sz as an element. Therefore, based on the preceding discussion, we can perform a
global unitary rotation to bring this frame set into the following form (alternatively, this can also be directly found
by performing linear programming with a pulse set composed purely of balanced double-driving pulses):

±Sx = ± 1√
2




0 1 0
1 0 1
0 1 0


 , ±Sx̃ = ± 1√

2




0 1 0
1 0 −1
0 −1 0


 ,

±Sy = ± 1√
2




0 −i 0
i 0 −i
0 i 0


 , ±Sỹ = ± 1√

2




0 −i 0
i 0 i
0 −i 0


 ,

±Sz = ±




1 0 0
0 0 0
0 0 −1


 , ±S z̃ = ±




0 0 −i
0 0 0
i 0 0


 . (S16)

This is the basic frame set that we use for the majority of our qutrit decoupling pulse sequences. Note that by globally
changing the phases of all rotations, we can also generate other equivalent classes of frames. Also note that another
way to specify these frames is to specify them as commutators and anti-commutators of spin-1 operators:

S(x,y,z) ∝ [Sµ, Sν ] ,

S(x̃,ỹ,z̃) ∝ {Sµ, Sν} , (S17)

with µ, ν ∈ {x, y, z}, which generate the irreducible representations of SU(2) discussed in Ref. [1].
Another example frame set that was identified with these methods is:




0 1√
2

0
1√
2

0 − 1√
2

0 − 1√
2

0


 ,




0 i√
2

0

− i√
2

0 − i√
2

0 i√
2

0


 ,



− 1

2 0 − 1
2

0 1 0
− 1

2 0 − 1
2


 ,




0 i√
2

0

− i√
2

0 1√
2

0 1√
2

0


 ,




0 i√
2

0

− i√
2

0 − 1√
2

0 − 1√
2

0


 ,



− 1

2 0 − i
2

0 1 0
i
2 0 − 1

2


 ,




0 i√
2

0

− i√
2

0 i√
2

0 − i√
2

0


 ,




0 − i√
2

0
i√
2

0 i√
2

0 − i√
2

0


 ,




0 0 0
0 1 0
0 0 −1


 ,




0 − i√
2

0
i√
2

0 − 1√
2

0 − 1√
2

0


 ,




0 − i√
2

0
i√
2

0 1√
2

0 1√
2

0


 ,



−1 0 0
0 1 0
0 0 0


 , (S18)

but we do not use this frame set in practice because its graph connectivity is considerably worse.

B. Details of Qutrit Decoupling Pulse Sequences

In this section, we will describe in detail the sequences Seq. 2 (Interaction Decoupling), Seq. B (Non-Robust
Decoupling) and Seq. C (DROID-C3PO) we mentioned in Fig. 8(a).

Seq. 2 (Interaction Decoupling) is the interaction decoupling sequence designed in Ref. [2]. This sequence only
decouples interaction but not disorder, so its performance is not expected to be good in our experimental platform of
interacting NV ensembles, because our system is disorder-dominated. This pulse sequence is plotted in Fig. S1.

Seq. B (Non-Robust Decoupling) is the sequence plotted in Fig. 3(e-f), which go through the 12 frames in a
somewhat arbitrary fashion. When spending equal time in the 12 frames, it is a disorder and interaction decoupling
sequence that is not robust to finite pulse duration effects. The frame representation of this sequence is shown in
Fig. S2.

Seq. C (DROID-C3PO) is our current best sequence whose design is discussed in Sec. IV of the main text. The
sequence in plotted in Fig. 2(f), and its frame representation is shown in Fig. S3(a).



S6
SI Fig1: Soonwon’s Sequence

FIG. S1. The pulse sequence “Interaction Decoupling”. This sequence was proposed in Ref. [2].SI Fig2: Arbitrary Path Harry Frames

FIG. S2. The frame representation of Seq. B (Non-Robust Decoupling). This sequence is the sequence plotted in
Fig. 3(e-f), which is a non-robust disorder and interaction decoupling sequence.

One subtle point about Seq. C is that it has a net π rotation in each Floquet period. Namely, the unitary due to
the pulses in each Floquet period is

Û =



−1 0 0
0 1 0
0 0 −1


 . (S19)

This net rotation has the potential advantage that the frames in two neighboring Floquet periods are not exactly the
same and therefore allows further cancellation between Floquet periods, but it also requires one to be careful because
the net rotation changes the readout axis.

C. Robust Disorder Decoupling

In this section, we will describe the disorder decoupling sequences Seq. 1 (Cyclic Echo) and Seq. A (Robust Cyclic
Echo) we mentioned in Fig. 8(a).

Seq. 1 (Cyclic Echo) is the simplest sequence that allows one to decouple the on-site disorder. The sequence is
plotted in Fig. S4 and the way it works is to cyclically permutate the three states |+1〉, |0〉, and |−1〉 to average out
the disorder.

Seq. A (Robust Cyclic Echo) is a sequence built on “Cyclic Echo” that decouples disorder and is robust to finite
pulse effects and Rabi inhomogeneity. This sequence consists of two iterations of “Cyclic Echo” where the phase of
pulses in the second iteration is adjusted to

(
−π1

x, π
2
x, π

1
x,−π2

x,−π1
x, π

2
x

)
. The way this sequence cancels the disorder

during the pulses is by a simple one-to-one cancellation between the two iterations, which is not hard for the readers
to verify explicitly. For optimization of performance, we further symmetrized the sequence by adding a free evolution
time τ between the pairs of π pulses in Fig. S4(a), which changes the cyclic permutation of the three levels shown
in Fig. S4(b) into a full permutation. This sequence also shares the same net π rotation in each Floquet period as
discussed in Section. S2 B.
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SI Fig3: WAHUHA_13

…
X, Y

…
X, Y

(a)

(b)

FIG. S3. Plot of Seq. C (DROID-C3PO). This sequence is our current best disorder and interaction decoupling sequence.
It is robust to disorder during pulses, rotation angle errors in both transition, and also cancels some higher order terms in the
Magnus expansion. (a) The frame representation of this sequence. (b) The actual pulses constituting this sequence. All pulses
in this sequence are balanced double driving. The thin lines represent spin-1 π/2 pulses (i.e. rotation of the spin-1 generalized
Bloch sphere by an angle π/2, experimentally implemented by simultaneously driving the two transitions with two π√

2
pulses)

and the thick lines represent spin-1 π pulses. The color of the pulses represent the pulse axis (X or Y), and the direction of the
pulses (up or down) represent the two opposite rotation directions (e.g. +π/2 pulse and −π/2 pulse). The proportions of this
plot are drawn consistently with actual time durations. The ellipsis in the plot indicates that the two rows are connected. The
plot is identical to Fig. 2(f), repeated here for convenience.SI Fig4: CyclicEcho

(a)

𝜏

2

𝜏

2𝜏 𝜏

𝜋𝑥
1 𝜋𝑥

1 𝜋𝑥
1𝜋𝑥

2 𝜋𝑥
2 𝜋𝑥

2

(b)

|0⟩

|+1⟩

|−1⟩

FIG. S4. Plot of Cyclic Echo. (a) The cyclic Echo consists of three pairs of π pulses as shown in the plot. The pulses π1
x

and π2
x represent a π pulse around the x axis for the transition |0〉 ↔ |+1〉 and the transition |0〉 ↔ |−1〉, respectively. (b)

Each pair of π pulses in (a) causes a cyclic permutation of the three states (as shown by the green arrows) and therefore the
disorder is averaged out by this sequence.
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SI Fig6: Sz during pulses
𝜔𝑆𝑧

𝑆𝑓𝑖𝑥

𝑆𝑟𝑜𝑡

𝑂

𝑆1

𝑆2

𝐶

(a) (b)

FIG. S5. Transformation of Sz during pulses. (a) When the trajectory of Sz lives on a geodesic, its transformation during
the pulse is a simple rotation from its initial position S1 to its final position S2, as shown by the red arc. Then the averaged
Sz operator during the pulse is represented by the center of mass of the red arc. From the plot, we can see that the averaged
Sz operator can be decomposed as a simple average of S1 and S2, and the extra 4

π
factor in Eq. (S20) comes from the fact that

the center of mass of the red curve is slightly further from the origin O compared to the midpoint between S1 and S2. The
plot is identical to Fig. 4(a), repeated here for convenience. (b) When the trajectory of Sz lives in a 2 dimensional slice that

does not go through the origin (as shown by the black circle in the plot), S̃z (t) can be decomposed into an invariant part Sfix
during the pulse and a part Srot that rotates on a circle, with the latter’s averaged effect follows the same rule as in plot (a).

D. Derivation for Disorder Effects During Pulses

In this section, we will discuss how disorder transforms during pulses, which is essential to understand for designing
sequences robust to it.

Before going into the details for the spin-1 case, let us remind readers of the simple geometric picture in the spin-12
case. In the spin- 12 case, as we already discussed in the main text, an on-resonance pulse leads to a Sz operator
trajectory that transforms along a geodesic on the Bloch sphere (represented by the red arc in Fig. 4(a) and repeated
here in Fig. S5(a) for convenience). As a result, the averaged effect of disorder during the pulse, as represented by the
center of mass of the red arc in Fig. S5(a), can be decomposed as an average of the frames before and after the pulse:

S̄ =
4

π

[
S1 + S2

2

]
, (S20)

where the factor 4
π comes from the fact that the center of mass is slightly further from the origin than the midpoint

between S1 and S2.

Even if the pulse is not on resonance, the story does not change too much because the trajectory of the Sz operator
on the Bloch sphere is still a circle (the only difference is that now the circle is not a geodesic on the Bloch sphere).
In this case, the evolution of Sz operator can be decomposed into two parts as shown in Fig. S5(b): the first part is
the projection of Sz on the rotation axis, which is invariant during the pulse; and the second part is the remaining
part, which rotates on a circle perpendicular to the rotation axis and therefore whose effect during the pulse can be
decomposed as a linear combination before and after the pulse, similar to the case in Fig. S5(a).

Although the geometric picture in the spin-12 case is very simple (the trajectory of the Sz operator is always a
circle), the trajectory of the Sz operator in the spin-1 case can be much more complicated. To see this, let us consider
the trajectory of the Sz operator transformed by a generic Hamiltonian H:

S̃z (t) = eiHtSze−iHt. (S21)

Generically, the conjugation of the SU(3) operator e−iHt on Sz leads to a rotation on an 8 dimensional sphere
which is the spin-1 generalization of the Bloch sphere (the coordinates on the 8 dimensional sphere are the expansion

coefficients of S̃z in Gell-mann basis, see Ref. [2, 3] for more details). In order to analyze the trajectory of S̃z (t) on
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this 8-dimensional sphere, let us calculate its time derivatives at t = 0:

S̃z|t=0 = Sz

d

dt
S̃z|t=0 = [iH, Sz]

d2

dt2
S̃z|t=0 = [iH, [iH, Sz]] (S22)

...

From the above expression, we know that the trajectory of S̃z (t) lives in a subspace spanned by {[iH, Sz], [iH, [iH, Sz]],
...}. Therefore, the number of linearly independent matrices in the set {[iH, Sz], [iH, [iH, Sz]], ...} is the dimension

of the subspace that the trajectory of S̃z (t) lives in.
By calculating the rank of the above set for randomly chosen H, we know that for generic pulses, the dimension

of the subspace is 6. Even when we restrict the pulses to be on resonance, the dimension is still 4. Therefore, the
trajectory of S̃z (t) is very complicated in the generic case and there is no simple expression for the disorder during
pulses. However, we can still get useful results in certain special cases:

• Most importantly, as we already discussed in the main text, when the pulse is a balanced double driving pulse
(i.e. simultaneously driving the two magnetically allowed transitions with equal amplitude), the trajectory of
Sz operator becomes a geodesic, and therefore all nice properties in the spin-12 case are recovered. This is the
key insight that allows us to elegantly cancel the disorder during pulses.

• When the pulse is a resonant driving on a single transition, the trajectory of Sz can be decomposed into a fixed
part and a rotating part similar to Fig. S5(b). To see this, consider a pulse applied on the |0〉 ↔ |−1〉 transition.
In this case, we can explicitly decompose Sz as:

Sz =




1 0 0
0 0 0
0 0 −1


 =




1 0 0
0 − 1

2 0
0 0 − 1

2


+




0 0 0
0 1

2 0
0 0 − 1

2


 , (S23)

where the first term is invariant under the rotation, and the second term rotates as a spin-12 S
z operator during

the pulse. If the pulse is a π
2 pulse, then the average effect of the second term during the pulse is given by

Eq. (S20), and the average effect of the first term is simply itself. Because of the extra coefficient 4
π that only

appears for the second term, when the two terms are summed together, their average effect is no longer a simple
average before and after the pulse. This is a concrete example that shows the complication in the qudit case
compared to qubit case.

• Although the trajectory of S̃z is very complicated for generic on-resonance pulses, the trajectory of
(
S̃z
)2

always

lives in a 2 dimensional space (i.e. looks like the trajectory in Fig. S5(b)). To see this, notice that when |0〉
is coupled to |+1〉 and |−1〉 by on resonant pulses, it can also be viewed that |0〉 is coupled to a bright state
|B〉, while leaving a dark state |D〉 not coupled to anything. For convenience, we can do a basis transformation

from {|0〉 , |+1〉 , |−1〉} to {|0〉 , |B〉 , |D〉}. Since (Sz)
2

is identity in the {|+1〉 , |−1〉} subspace, it is invariant
under this basis transformation. Working in this bright and dark state basis, since |0〉 is only coupled to |B〉,
the transformation of (Sz)

2
is kept block diagonal, with one block (correspond to |D〉) invariant and the other

block (correspond to {|0〉 , |B〉}) transforming as a two-level-system. Because of this, the trajectory of
(
S̃z
)2

can be decomposed into a fixed part and a rotating part, as shown in Fig. S5(b)). As a specific example, for a
spin-1 π

2 pulse

Up = exp[−i




0 θ1 + iθ2 0
θ1 − iθ2 0 θ3 + iθ4

0 θ3 − iθ4 0


], (S24)

with θ21 + θ22 + θ23 + θ24 = θ2tot = π2/4, the averaged (Sz)
2

operator during this pulse is

S̄ =
4

π

[(
S2
1 − Sfix

)
+
(
S2
2 − Sfix

)

2

]
+ Sfix, (S25)

where S1 and S2 are the frames before and after the pulse, and Sfix = 1
2π

∫ 2π

0
dθU†p (θ) (Sz)

2
Up (θ) is the

invariant part of (Sz)
2

during the pulse.
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E. Analysis of Rotation Angle Error

In this section, we will show that the robust qutrit decoupling sequence we designed (see Fig. S3(a) for its frame
representation) is not only robust to rotation angle errors common to both transitions, as discussed in the main text,
but also robust to rotation angle errors on each individual transition.

To see this, examine Fig. S3(a) and see what we exactly did in the “Further improvement” level in the hierarchy
described in the main text. In the whole sequence “DROID-C3PO”, there are 8 iterations of the basic disorder and
interaction decoupling sequence shown in Fig. 5(c). The difference between the first 4 iterations is that signs of free
evolution frames and intermediate frames are flipped. For two neighboring frames A and B, their signs go over all
four possibilities (A,B), (A,−B), (−A,B), and (−A,−B). The second 4 iterations are obtained by flipping both
the signs and the ordering of the frames in the first 4 iterations [4]. Due to the structure discussed above, for any
neighboring frames (A,B) in the first 4 iterations, there is a pair of frames (−A,−B) in the first 4 iterations, and
therefore there is a pair of frames (B,A) in the second 4 iterations. Because the rotation from frame B to frame A is
exactly the reverse rotation from A to B, the rotation angle error on each individual transition is cancelled between
frame pairs (A,B) in the first 4 iterations and (B,A) in the second 4 iterations. This is how rotation angle errors on
each individual transition get cancelled in the sequence.

F. Geometric Intuition of Scar Subspace

In this section, we will discuss the geometric structure of the scar subspace |Sn〉 as defined in Eq. (12) of the main

text. When restricted to the subspace spanned by |+1〉 and |−1〉, the operator 1
2

(
S+
i

)2
becomes the spin- 12 raising

operator. If we further rotate the spins in the second group by π around the z axis, this raising operator will flip its
sign (because the signs of Sx and Sy are flipped) and the operator J+ will become exactly the many-body raising
operator. Since the state |Ω〉 is the state

∣∣S = N
2 ,mS = −N2

〉
, the states |Sn〉 will be

∣∣S = N
2 ,mS = −N2 + n

〉
after

rotating the spins in the second group by π around the z axis. Therefore, the subspace spanned by |Sn〉 is the maximal
spin subspace after rotating the second group by π around the z axis.

G. Decoupling with Non-Geodesic Pulses

In this section, we will show another robust qutrit disorder and interaction decoupling sequence whose frame set
is different from the 12 frames shown in Fig. 3(d) and whose pulses do not lead to a geodesic trajectory of S̃z (see
Sec. III.3 of the main text for the context of geodesics).

The basic idea of this sequence is also a hierarchical design: since disorder is much stronger than interactions in
our experimental platform, we want to robustly decouple disorder first, and then decouple interactions on top of
that. Therefore, we can use Seq. A (Robust Cyclic Echo) (see Sec. S2 C for descriptions) as the inner layer to robustly
decouple the disorder, and on top of that, design sequences to decouple the interaction transformed by “Robust Cyclic
Echo”.

Because the sequence “Robust Cyclic Echo” cyclically permutes the three energy levels, the form of the interaction
is symmetrized under the transformation of this sequence. More concretely, the original interaction Hamiltonian,
which only contains flip-flop terms between |0〉 ↔ |+1〉 and between |0〉 ↔ |−1〉, is transformed to

H ′int =
1

2
Sz ⊗ Sz +

1

2
Sz⊥ ⊗ Sz⊥

− 1

3
HXY,+0 − 1

3
HXY,0− − 1

3
HXY,+−, (S26)

where HXY,ij = 1
2

(
Xij ⊗Xij + Y ij ⊗ Y ij

)
is the flip-flop term between state |i〉 and state |j〉, and Sz⊥ is defined as

Sz⊥ ≡
1√
3




1 0 0
0 −2 0
0 0 1


 . (S27)

Using the framework we proposed in this paper, we found the following 12 frames with equal time duration decouple
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the symmetrized interaction Eq. (S26):

S1 =




0 1 0
1 0 0
0 0 0


 , S2 =




0 0 0
0 0 1
0 1 0


 , S3 =




0 −i 0
i 0 0
0 0 0


 , S4 =




0 0 0
0 0 −i
0 i 0


 ,

S5 =
1√
2




0 1 0
1 0 1
0 1 0


 , S6 =

1√
2




0 1 0
1 0 −1
0 −1 0


 , S7 =

1√
2




0 −i 0
i 0 −i
0 i 0


 , S8 =

1√
2




0 −i 0
i 0 i
0 −i 0


 ,

S9 =
1√
2




0 −i 0
i 0 1
0 1 0


 , S10 =

1√
2




0 −i 0
i 0 −1
0 −1 0


 , S11 =

1√
2




0 1 0
1 0 −i
0 i 0


 , S12 =

1√
2




0 1 0
1 0 i
0 −i 0


 . (S28)

The connectivity of these 12 frames by experimental pulses is shown in Fig. S6. As the figure shows, these 12 frames
can be connected by balanced double driving (i.e. equal driving amplitude on the two allowed transitions) π

4 pulses,
which is easily implementable in experiments. The whole disorder and interaction decoupling sequence is made of 12
iterations of “Robust Cyclic Echo”, with the double driving π

4 pulses connecting the above 12 frames inserted between
neighboring iterations. A concrete example of such a sequence is given in Fig. S7. The sequence in Fig. S7 is nearly
robust to disorder during pulses because the disorder during the pulses in each iteration of the “Robust Cyclic Echo”
is cancelled. Although the disorder during the π

4 pulses connecting the above 12 frames are not cancelled, it does not
matter too much because these pulses take only a very small fraction of time in the whole sequence. Finally, we note
that there are at least three ways to further improve the performance of the sequence in Fig. S7:

• We can further symmetrize the “Robust Cyclic Echo” by adding a free evolution time τ between the pair of π
pulses consist the cyclic echo, just as in Seq. A.

• The sequence can in fact be made fully robust to disorder during pulses: we can compensate for disorder during
the balanced double driving π

4 pulses by slightly adjusting the free evolution times inside neighboring iterations
of “Robust Cyclic Echo”.

• Nearly all pulses in the sequence in Fig. S7 are along the X axis, so there is potential space for further improve-
ments by utilizing pulses along Y axis.
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SI Fig7: Four Geodesics
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FIG. S6. The connectivity graph of the 12 frames in Eq. (S28). Each vertex represent one frame and each segment
represent a balanced double driving π

4
pulse. The four straight lines represent four geodesics on which frames can be transformed

to each other by repeating the same spin-1 π
4

pulse. Notice that vertices with the same label represent the same frame. For
convenience of readers, 4 pairs of identical frames are connected by blue arcs.

SI Fig8: CyclicEcho_Based

…
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…

FIG. S7. A Non-geodesic decoupling pulse sequence. There are two different types of pulses in this pulse sequence.
One type of pulses are π pulses on a single transition, represented by the taller pulses in the plot; these pulses constitute the
“Robust Cyclic Echo”, which decouples disorder robustly and locally. The other type of pulses are balanced double driving
π/4 or π/2 pulses connecting the frames in Fig. S6, represented by the shorter pulses in the plot; these pulses further decouple
interactions on top of disorder decoupling building blocks. The color of the pulses represent the pulse axis (X or Y), and the
direction of the pulses (up or down) represent the two opposite rotation directions (e.g. +π/2 pulse and −π/2 pulse). The
proportion of this plot is drawn consistently with actual time duration. The ellipsis in the plot represent that the two rows are
connected.


