
Efficient Key Recovery for All HFE
Signature Variants

Chengdong Tao2, Albrecht Petzoldt3, and Jintai Ding1,2(B)

1 Yau Mathematical Center, Tsinghua University, Beijing, China
2 Ding Lab, Beijing Institute of Mathematical Science and Applications,

Beijing, China
3 FAU Erlangen-Nuremberg, Nuremberg, Germany

Abstract. The HFE cryptosystem is one of the most popular multi-
variate schemes. Especially in the area of digital signatures, the HFEv-
variant offers short signatures and high performance. Recently, an
instance of the HFEv- signature scheme called GeMSS was selected as
one of the alternative candidates for signature schemes in the third round
of the NIST Post-Quantum Crypto (PQC) Standardization Project.

In this paper, we propose a new key recovery attack on the HFEv-
signature scheme. Our attack shows that both the Minus and the Vine-
gar modification do not enhance the security of the basic HFE scheme
significantly. This shows that it is very difficult to build a secure and
efficient signature scheme on the basis of HFE. In particular, we use our
attack to show that the proposed parameters of the GeMSS scheme are
not as secure as claimed.

Keywords: Multivariate cryptography · HFEv- · Key recovery ·
MinRank · NIST standardization process

1 Introduction

Cryptographic techniques such as encryption and digital signatures are an indis-
pensable part of modern communication systems. However, the currently used
schemes RSA and ECDSA become insecure as soon as large quantum computers
arrive. Due to recent progress in the development of such computers, there is
an urgent need for alternatives to these classical schemes which are resistant
against attacks with quantum computers. These are known as post-quantum
cryptosystems [4,6].

One of the main candidates for such schemes are multivariate public key
crypto- systems [15]. Especially in the area of digital signatures, there exist
many promising multivariate schemes. In fact, the multivariate signature scheme
Rainbow is among the three signature schemes in the third round of the NIST
standardization process of post-quantum cryptosystems [8]. Another multivari-
ate signature scheme, GeMMS, is one of the alternative candidates. GeMMS is
a special instance of the well known HFEv- signature scheme, which was first
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proposed by Patarin et al. in [26]. The principle idea of HFEv- is to combine
the Minus and the Vinegar modifications with the HFE cryptosystem of [25].
Since the resulting multivariate quadratic system contains more variables than
equations, HFEv- can only be used for digital signatures.

Attacks Against HFEv- and Related Work. There exist many attack meth-
ods on HFEv-, such as the direct attack [9,27], the distinguishing attack [13],
the differential attack [7], and the MinRank attack [13]. The most studied attack
against HFEv- is the MinRank attack, which was first proposed by Kipnis and
Shamir in [23]. Later, many variants of this technique have been proposed to
increase its efficiency. The most prominent examples of this are the minors mod-
eling of Bettale, Faugére and Perret [3] as well as the support minors modelling
of Bardet, Bros, Cabarcas, Gaborit, Perlner, Smith-Tone, Tillich and Verbel [1].
Another recent paper closely related to our work is that of Beullens [2]. The main
difference to our paper is that Beullens studies MinRank type attacks against
SingleField schemes such as Rainbow, while we are interested in applying this
attack to BigField schemes.

In this paper, we mainly consider the MinRank attack using minors modeling
as a reference. According to [3], the complexity of this attack is given as

O
((

n + d + a + v + 1
d + a + v + 1

)ω)
,

where n is the degree of the field extension, d = �logq(D)�, where D is the degree
bound on the HFE central polynomial, a is the number of Minus equations, v is
the number of Vinegar variables and 2 < ω ≤ 3 is the linear algebra constant.
More information about the different strategies to solve the MinRank problem
can be found in Sect. 3.2.

Our Contribution. In this paper, we present an improved MinRank type key
recovery attack on the HFEv- signature scheme. The complexity of our new
attack on HFEv- using minors modeling is

O
((

n + d + v + 1
d + 1

)ω)
.

This shows that the Minus modification does not enhance the security of HFE
type cryptosystems, while the Vinegar modification increases the complexity
of our attack only by a polynomial factor. This shows that the currently used
techniques are insufficient to transform HFE into a secure signature scheme. In
particular, we use our attack to show that the parameters of GeMSS which were
submitted to the NIST Post-Quantum Crypto Standardization Project are not
as secure as claimed.

The remainder of this paper is organized as follows. Section 2 gives a short
introduction into multivariate cryptography and introduces the HFEv- signature
scheme, while Sect. 3 repeats some cryptanalytic concepts used in the further
parts of the paper. In Sect. 4 we present our attack against the HFEv- signature
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scheme and analyze its complexity. Section 5 discusses a possible speed up of our
attack by solving the MinRank problem using the support minors modeling and
Sect. 6 analyzes the importance of our attack on the NIST alternative candidate
GeMMS. Finally, Sect. 7 concludes the paper.

2 Multivariate Cryptography

The public key of a multivariate public key cryptosystem is a system of quadratic
polynomials in several variables over a finite field Fq of q elements, i.e.

p(1)(x1, . . . , xn) =
∑

1≤i≤j≤n

α
(1)
ij xixj +

∑
1≤i≤n

β
(1)
i xi + γ(1),

...
p(m)(x1, . . . , xn) =

∑
1≤i≤j≤n

α
(m)
ij xixj +

∑
1≤i≤n

β
(m)
i xi + γ(m).

The problem of inverting such a system is known as the MQ problem and was
proven to be NP hard [20].

In order to construct a digital signature scheme on the basis of the MQ
problem, one starts with an easily invertible quadratic map F : Fn

q → F
m
q (central

map). To hide the structure of this map in the public key, one combines F with
two randomly chosen invertible affine maps T : Fm

q → F
m
q and S : Fn

q → F
n
q .

The public key of a multivariate signature scheme is therefore given as

P = T ◦ F ◦ S : Fn
q → F

m
q ,

the private key of the scheme consists of the three maps T , F and S.
In order to generate a signature for a document d ∈ {0, 1}�, the owner of the

private key performs the following steps.

1. Use a hash function H to compute the hash value h = H(d) ∈ F
m
q .

2. Compute x = T −1(h) ∈ F
m
q .

3. Find a pre-image y ∈ F
n
q of x under the central map F .

4. Compute the signature z ∈ F
n
q of the document d as z = S−1(y).

To check the correctness of a message/signature pair (d, z), one simply computes
h = H(d) and h′ = P(z). The signature is accepted, if and only if h = h′ holds.
The process of signature generation and verification is illustrated by Fig. 1.

2.1 The HFEv- Signature Scheme

The HFEv- signature scheme is an example of a multivariate BigField scheme. In
such a scheme, the central map F is a univariate map over a degree n extension
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Fig. 1. Signature generation and verification process for multivariate signature schemes

field Fqn of Fq. Using an isomorphism φ between the field Fqn and the vector
space F

n
q , we can transform the univariate polynomial map F into a quadratic

map F̄ = φ ◦ F ◦ φ−1 over the vector space F
n
q (see Fig. 2).

Fig. 2. Construction of the central map for multivariate BigField schemes

The HFEv- signature scheme uses three integer parameters D, a and v. The
three algorithms for key generation, signature generation and signature verifica-
tion can be described as follows.

Key Generation. In order to generate a key pair for the HFEv- signature
scheme, one randomly generates a polynomial (the central map) of the form

F(X,xn+1, . . . , xn+v) =
qi+qj≤D∑

i,j∈N

αijX
qi+qj

+
qi≤D∑
i∈N

βi(xn+1, . . . , xn+v)Xqi

+ γ(xn+1, . . . , xn+v).

So, F is a map from Fqn × F
v
q to Fqn , where the αi,j are randomly chosen

elements of the field Fqn , the βi : Fv
q → Fqn are linear maps from the vector

space F
v
q to the field Fqn and γ : Fv

q → Fqn is a quadratic map in the Vinegar
variables xn+1, xn+2, . . . , xn+v.

Due to the special structure of it, the central map F corresponds to a
quadratic map F̄ = φ ◦ F ◦ φ−1 : Fn+v

q → F
n
q . Furthermore, in order to hide

the structure of the central map F in the public key, one randomly chooses two
affine transformations T : Fn

q → F
n−a
q and S : Fn+v

q → F
n+v
q of maximal rank.



74 C. Tao et al.

Therefore, the public key of the scheme is the quadratic map

P = T ◦ F̄ ◦ S = T ◦ φ ◦ F ◦ (φ−1 × idv) ◦ S : Fn+v
q → F

n−a
q .

The private key of the HFEv- scheme consists of the three maps T , F and
S, the public key is given by P.

Signature Generation. Let d ∈ {0, 1}� be a document to be signed. The
process of signature generation works as follows:

1. Use a hash function H : {0, 1}� → F
n−a
q to compute the hash value h =

(h1, . . . , hn−a) ∈ F
n−a
q of the document d.

2. Compute a pre-image x ∈ F
n
q of h under the affine transformation T : Fn

q →
F

n−a
q and lift it to the extension field, obtaining X = φ−1(x) ∈ Fqn .

3. Choose random values for the Vinegar variables (yn+1, . . . , yn+v) ∈ F
v
q and

substitute them into the central map F to obtain a univariate polynomial
map FV (Z) : Fqn → Fqn .

4. Find a solution to the equation FV (Z) = X using Berlekamps algorithm. If
this equation has no solution, go back to step 2, and randomly choose another
vector (yn+1, . . . , yn+v) ∈ F

v
q until we can find a solution. Let Y ∈ Fqn be one

of the solutions and set y′ = φ(Y ) = (y1, · · · , yn) ∈ F
n
q . Append the Vinegar

variables of step 2 to it, obtaining y = (y′, yn+1, · · · , yn+v) ∈ F
n+v
q .

5. Compute z = S−1(y). Then z ∈ F
n+v
q is the signature of the document d.

Signature Verification. To check if z ∈ F
n+v
q is indeed a valid signature for

the document d ∈ {0, 1}�, the receiver simply computes

– h = H(d) ∈ F
n−a
q and

– h′ = P(z).

If h′ = h holds, the signature is accepted, otherwise it is rejected.

Efficiency. The most costly step during the signature generation of HFEv- is
the solution of the polynomial equation FV (Z) = X by Berlekamps algorithm.
The complexity of this algorithm is given as

O(Dω + Dn(log(D)log(log(D))log(q))),

(see [15]) where D is the degree of the HFE polynomial, n is the degree of the
extension field Fqn and q is the cardinality of the base field.

A higher value of D therefore slows down the signature generation process
of HFEv- drastically.

One important strategy for the design of HFE based signature schemes was
therefore to choose D small and to compensate for this fact by increasing a
and v.
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2.2 Previous Attacks on HFE

Historically, the most efficient attacks against signature schemes of the HFE
type are the direct and the MinRank attack. With regard to the direct attack,
it was discovered that the public systems of HFE and its variants can be solved
much more efficiently than random systems. This phenomenon was analyzed in
a series of papers [11,12,16]. The authors of these papers found that the degree
of regularity of a public HFEv- system is bounded from above by

{
(q−1)(d+v+a−1)

2 + 2 if q is even and d + a is odd,
(q−1)(d+v+a)

2 + 2 otherwise.

Regarding attacks of the MinRank type, many researchers considered the so
called min-Q-rank of the HFE system, which can be seen as the rank of the
quadratic form P lifted to the extension field Fqn . Similar to the degree of reg-
ularity, the min-Q-rank of the HFE system is bounded by the HFE parameters.

However, in our attack, we don’t consider the min-Q-rank of the HFE system,
but perform a MinRank attack over the base field Fq. While it is clear that the
complexity of a direct attack on a system of the HFE type is exponential in
d, a and v [10], our attack shows that this is not the case for MinRank. We
take a closer look at the MinRank problem and different strategies to solve it in
Sect. 3.2.

3 Preliminaries

For simplification, in the following sections of this paper, we assume that T and
S are linear transformations and q is an odd prime. Our attack method can be
easily extended to the case of affine maps T and S and even characteristic.

3.1 Equivalent Keys

An important notion in this paper is that of equivalent keys. For a multivariate
public key cryptosystem, the concept of equivalent keys is defined as follows.

Definition 1. Let ((T ,F ,S),P) be a key pair of a multivariate public key
crypto- system. A tuple (T ′,F ′,S ′) is called an equivalent private key if and
only if

P = T ◦ F ◦ S = T ′ ◦ F ′ ◦ S ′

and F ′ is a valid central map of the cryptosystem, i.e. F ′ has the same algebraic
structure as F .

We have
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Theorem 1 (Theorem 4.13 in [28]). Let P be a public key of the HFEv-
scheme over Fq. Let v be the number of Vinegar variables, a be the number of
Minus equations and n be the degree of the field extension. Then there exist

nqa+2n+vn(qn − 1)2
v−1∏
i=0

(qv − qi)
n−1∏

i=n−a−1

(qn − qi)

equivalent private keys for the public key P.

Given an HFEv- public key P, our attack finds one of the equivalent private
keys.

3.2 The MinRank Problem

The search version of the MinRank problem is defined as follows.

Definition 2 (MinRank problem). Given a positive number r and nx matri-
ces M1,M2, . . . , Mnx

with m rows and n columns over a field Fq, find a nonzero

vector (x1, x2, . . . , xnx
) ∈ F

nx
q , such that the linear combination M =

nx∑
i=1

xiMi

has rank at most r.

The MinRank problem is an NP-complete problem [5]. The main methods
for solving the MinRank problem are linear algebra search [21], Kipnis-Shamir
modeling [23], minors modeling [19] and support minors modeling [1].

In this paper, we mostly consider the minors modeling of the MinRank attack.
The main idea of this modeling is that the r + 1 minors of the low rank matrix
M are all zero. Since there are

(
n

r+1

)
minors and nx variables x1, . . . , xnx

, this
gives us a highly overdetermined system of equations of degree r + 1, which can
be solved by e.g. Gröbner basis techniques. The complexity of this process can
be estimated as

complexityminors modelling = O
((

n + r + 1
r + 1

)ω)
,

where, for previous attacks against HFEv-, r was given as d + v + a. We show,
how this value can be dropped to d.

In Sect. 5 of this paper we show how our attack might be speed up using
the support minors modeling approach. However, since we don’t have a full
theoretical understanding of the outcome of our experiments yet, we leave a
complete analysis of our attack using support minors modeling as a future work.

3.3 Matrix Representation of HFEv- Keys

Similar to [3], we represent the HFEv- central map in matrix form.
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Proposition 1. Let

F ∗0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α00 α01 · · · α0,n−1 γ00 γ01 · · · γ0,v−1

α10 α11 · · · α1,n−1 γ10 γ11 · · · γ1,v−1

...
...

. . .
...

...
...

. . .
...

αn−1,0 αn−1,1 · · · αn−1,n−1 γn−1,0 γn−1,1 · · · γn−1,v−1

β00 β01 · · · β0,n−1 δ00 δ01 · · · δ0,v−1

β10 β11 · · · β1,n−1 δ10 δ11 · · · δ1,v−1

...
...

. . .
...

...
...

. . .
...

βv−1,0 βv−1,1 · · · βv−1,n−1 δv−1,0 δv−1,1 · · · δv−1,v−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be an (n + v) × (n + v) matrix over the field Fqn and

F (X,x1, . . . , xv) = (X,Xq , . . . , Xqn−1
, x1, . . . , xv)F

∗0(X,Xq , . . . , Xqn−1
, x1, . . . , xv)

t

be a polynomial in the quotient ring Fqn [X,x1, . . . , xv]/〈xq
1 − x1, . . . , x

q
v − xv〉.

Then we have for all 0 ≤ k < n

F qk
(X,x1, . . . , xv) = (X,Xq , . . . , Xqn−1

, x1, . . . , xv)F
∗k(X,Xq , . . . , Xqn−1

, x1, . . . , xv)
t,

where F ∗k ∈ M(n+v)×(n+v)(Fqn), the (i, j)-th entry of F ∗k is αqk

i−k,j−k for all

0 ≤ i, j, k < n, the (i, n + j)-th entry of F ∗k is γqk

j−k,i for all 0 ≤ j, k < n,

0 ≤ i < v, the (n + i, j)-th entry of F ∗k is βqk

i,j−k for all 0 ≤ i < v, 0 ≤ j, k < n,

and the (n + i, n + j)-th entry is δqk

ij for all 0 ≤ i < v, 0 ≤ j < v, 0 ≤ k < n.

Proof. If k = 0, we have obviously F qk

(X,x1, · · · , xv) = F (X,x1, · · · , xv). Now
we consider the case of 1 ≤ k < n. Since xqk

i = xi for all 1 ≤ i ≤ v, we have

F qk =
n−1∑

i=0

n−1∑

j=0
αqk

ij Xqi+k+qj+k
+

v−1∑

i=0

n−1∑

j=0
(βqk

ij + γqk

ji )xiX
qj+k

+
v−1∑

i=0

v−1∑

j=0
δqk

ij xixj

=
n−1+k∑

i=k

n−1+k∑

j=k

αqk

i−k,j−kXqi+qj +
v−1∑

i=0

n−1+k∑

j=k

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj

Then it can be divided as follows

F qk =
n−1∑

i=k

(
n−1+k∑

j=k

αqk

i−k,j−kXqi+qj

)

+
n−1+k∑

i=n

(
n−1+k∑

j=k

αqk

i−k,j−kXqi+qj

)

+
v−1∑

i=0

n−1∑

j=k

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

n−1+k∑

j=n
(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj .

That is

F qk =
n−1∑

i=k

(
n−1∑

j=k

αqk

i−k,j−kXqi+qj +
n−1+k∑

j=n

αqk

i−k,j−kXqi+qj

)

+
n−1+k∑

i=n

(
n−1∑

j=k

αqk

i−k,j−kXqi+qj +
n−1+k∑

j=n

αqk

i−k,j−kXqi+qj

)

+
v−1∑

i=0

n−1∑

j=k

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

n−1+k∑

j=n

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj .
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Thus we have

Fqk =
n−1∑

i=k

(
n−1∑

j=k
α
qk

i−k,j−k
Xqi+qj +

k−1∑

j=0
α
qk

i−k,j−k+n
Xqi+qj+n

)

+
k−1∑

i=0

(
n−1∑

j=k
α
qk

i−k+n,j−k
Xqi+n+qj +

k−1∑

j=0
α
qk

i−k+n,j−k+n
Xqi+n+qj+n

)

+
v−1∑

i=0

n−1∑

j=k
(β

qk

i,j−k
+ γ

qk

j−k,i
)xiXqj +

v−1∑

i=0

k−1∑

j=0
(β

qk

i,j−k+n
+γ

qk

j−k+n,i
)xiXqj+n

+
v−1∑

i=0

v−1∑

j=0
δ
qk

ij xixj .

Since Xqn

= X we obtain by reducing the index of coefficients modulo n

F qk =
n−1∑

i=k

(
n−1∑

j=k

αqk

i−k,j−kXqi+qj +
k−1∑

j=0
αqk

i−k,j−kXqi+qj

)

+
k−1∑

i=0

(
n−1∑

j=k

αqk

i−k,j−kXqi+qj +
k−1∑

j=0
αqk

i−k,j−kXqi+qj

)

+
v−1∑

i=0

n−1∑

j=k

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

k−1∑

j=0
(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj .

Grouping the sums back together, we get

F qk =
n−1∑

i=0

n−1∑

j=0
aqk

i−k,j−kXqi+qj +
v−1∑

i=0

n−1∑

j=0
(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj

= (X, Xq, · · · , Xqn−1
, x1, · · · , xv)F

∗k(X, Xq, · · · , Xqn−1
, x1, · · · , xv)

t,

where F ∗k ∈ M(n+v)×(n+v)(Fqn), the (i, j)-th entry of F ∗k is αqk

i−k,j−k for all

0 ≤ i, j, k < n, the (i, n+j)-th entry of F ∗k is γqk

j−k,i for all 0 ≤ j, k < n, 0 ≤ i < v,

the (n + i, j)-th entry of F ∗k is βqk

i,j−k for all 0 ≤ i < v, 0 ≤ j, k < n, and the

(n + i, n + j)-th entry is δqk

ij for all 0 ≤ i < v, 0 ≤ j < v, 0 ≤ k < n. 
�

Proposition 2 (Proposition 2.1 in [3]). Let (θ1, θ2, · · · , θn) ∈ F
n
qn be a vector

basis of Fqn over Fq and

M =

⎛
⎜⎜⎜⎜⎝

θ1 θq
1 · · · θqn−1

1

θ2 θq
2 · · · θqn−1

2
...

...
. . .

...
θn θq

n · · · θqn−1

n

⎞
⎟⎟⎟⎟⎠

be the matrix whose columns are the Frobenius powers of the basis elements. We
can express the morphism φ : Fqn → F

n
q as

V �→ (V, V q, · · · , V qn−1
)M−1.

Its inverse φ−1 : Fn
q → Fqn is given as

(v1, v2, · · · , vn) �→ V,
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where V is the first component of the vector (v1, v2, · · · , vn)M . More generally,
we have

(v1, v2, · · · , vn) · M = (V, V q, · · · , V qn−1
).

In this paper, we choose

M =

⎛
⎜⎜⎜⎝

1 1 · · · 1
θ θq · · · θqn−1

...
...

. . .
...

θn−1 (θn−1)q · · · (θn−1)qn−1

⎞
⎟⎟⎟⎠ , (1)

where θ is a generator of Fqn . Define

M̃ =
(

M 0
0 Iv

)
∈ M(n+v)×(n+v)(Fqn), (2)

where Iv is the v × v identity matrix. According to Proposition 2, we have

(v1, v2, · · · , vn, x1, · · · , xv) · M̃ = (V, V q, · · · , V qn−1
, x1, · · · , xv),

where vi, xj ∈ Fq, 1 ≤ i ≤ n, 1 ≤ j ≤ v and V ∈ Fqn .

Proposition 3. Let pi ∈ Fq[x1, x2, · · · , xn+v] be the public key polynomials of
HFEv- and Pi be the matrix representing the quadratic form of pi, 0 ≤ i < n−a.
Let the central map of HFEv- be

F = (X,Xq, · · · ,Xqn−1
, x1, · · · , xv)F ∗0(X,Xq, · · · ,Xqn−1

, x1, · · · , xv)t,

where F ∗0 ∈ M(n+v)×(n+v)(Fqn). Let S ∈ M(n+v)×(n+v)(Fq) and T ∈
Mn×(n−a)(Fq) be the matrices representing the linear parts of S and T . Then

(
M̃−1S−1P0(S−1)t(M̃−1)t, · · · , M̃−1S−1Pn−a−1(S−1)t(M̃−1)t

)

=
(
F ∗0, · · · , F ∗n−1

)
M−1T (3)

Proof. Similar to Lemma 2 in [3].

Denote U = M̃−1S−1 ∈ M(n+v)×(n+v)(Fqn) and W = M−1T ∈
Mn×(n−a)(Fqn), then Eq. (3) can be rewritten as

(
UP0U

t, · · · , UPn−a−1U
t
)

=
(
F ∗0, · · · , F ∗n−1

)
W. (4)
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4 Our Key Recovery Attack on HFEv-

In this section we describe our key recovery attack on the HFEv- signature
scheme. Our attack is very much motivated by the basic idea that the best
attack on any cryptosystem should make full use of information available for
attack. In this sense, our attack follows a current trend in the cryptanalysis of
multivariate schemes, namely to utilize information provided by certain rows of
the public matrices (see also [1,2]).

Let q, n, v,D, a be the parameters of HFEv- and denote d = �logq(D)�. In
this paper, we assume that 0 ≤ a < n − 2d − 1. Note that this condition is
fulfilled for all practical parameter sets for HFEv-.1

Our attack consists of two steps. In the first step, we recover an equivalent
linear transformation S by solving a MinRank problem over the base field Fq.
In the second step, we use this equivalent linear map to recover equivalent maps
F and T . By doing so, we obtain an equivalent HFEv- private key which allows
us to generate signatures for arbitrary messages.

4.1 Recovering an Equivalent Linear Transformation S

In this subsection, we will present our technique of finding an equivalent map S.
We first show that the right hand side of (4) is a matrix of rank ≤ d and then
show how to recover S by solving a MinRank problem.

Proposition 4. Let F ∗0, · · · , F ∗n−1 and W = [wij ] be the matrices of Eq. (4)
and ai be the first row of matrix F ∗i (i = 0, 1, . . . , n − 1). Let Q be the matrix

given as Q = W t ·

⎛
⎜⎝

a0

...
an−1

⎞
⎟⎠. Then the rank of Q is at most d = �logq(D)�.

Proof. We have

Q =

⎛
⎜⎜⎝

w11a0 + w21a1 + · · · + wn1an−1

w12a0 + w22a1 + · · · + wn2an−1

· · ·
w1,n−aa0 + w2,n−aa1 + · · · + wn,n−aan−1

⎞
⎟⎟⎠ = W t ·

⎛
⎜⎜⎝

a0

a1

· · ·
an−1

⎞
⎟⎟⎠

Due to the construction of the matrices F ∗i(i = 0, 1, . . . , n − 1), we have
⎛
⎜⎜⎝

a0

a1

· · ·
an−1

⎞
⎟⎟⎠ =

⎛
⎝A1

0
A2

⎞
⎠ ,

1 Indeed, a ≥ n−2d+1 implies that the number n−a of equations in the public system
is bounded from above by 2d + 1. Defending the scheme against brute force attacks
would therefore require a high value of d which would make the scheme completely
impractical.
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where A1 is an 1 × (n + v) matrix and A2 is a (d − 1) × (n + v) matrix. That is,
this matrix has only d non-zero rows, therefore its rank is at most d. Therefore
the rank of Q is at most d. 
�

Theorem 2. Let P0, P1, . . . , Pn−a−1 and U be the matrices of Eq. (4), the vector
u = (u0, u1, · · · , un+v−1) be the first row of U and bi = (u0, u1, . . . , un+v−1)Pi,
(i = 0, 1, . . . , n − a). Define Z ∈ M(n−a)×(n+v)(Fqn) as the matrix whose row
vectors are the bi. Then the rank of Z is at most d.

Proof. From Eq. (4) and Proposition 4, we know that the rank of ZU t is not
more than d. Thus the rank of Z is at most d. 
�

Proposition 5. Let A = [aij ] be an n×m matrix over Fq, B = M−1A = [bij ] ∈
Mn×m(Fqn). Then

bij = bq
i−1,j , for all i, j, with 0 ≤ i < n, 0 ≤ j < m.

That is, each row is obtained from the previous one using a Frobenius application.
Therefore, the whole matrix B is completely defined by any of its rows.

Proof. Let (ε1, ε2, · · · , εn) be a dual basis of (θ1, θ2, · · · , θn) of Fqn over Fq, then
we have

M−1 =

⎛
⎜⎜⎜⎝

ε1 ε2 · · · εn

εq
1 εq

2 · · · εq
n

...
...

. . .
...

εqn−1

1 εqn−1

2 · · · εqn−1

n

⎞
⎟⎟⎟⎠ .

Thus bij =
n−1∑
k=0

akjε
qi

k+1 for all i, j, 0 ≤ i < n, 0 ≤ j < m. Since aq
ij = aij and the

linearity of Frobenius, we have

bq
i−1,j =

(
n−1∑
k=0

akjε
qi−1

k+1

)q

=
n−1∑
k=0

aq
kj(ε

qi−1

k+1 )q =
n−1∑
k=0

akjε
qi

k+1 = bij

for all i, j, 0 < i ≤ n, 0 ≤ j < m. 
�

Proposition 5 implies that we only need to find one row of matrix U =
M̃−1S−1 to recover the first n rows of U . Let u0, u1, · · · , un+v−1 be the first
row of U . We assume that u0, u1, · · · , un+v−1 are unknowns. Since we need to
find only one of the equivalent HFEv- private keys, we can fix u0 = 1 [22]. Since
the rank of Z is at most d, we can find the ui (i = 1, . . . , n + v − 1) by solving
a MinRank Problem over the base field. This can be done by using any of the
methods presented in Sect. 3. Our method to recover S can be summarized as
shown in Algorithm 1.
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Algorithm 1. Recovering an Equivalent Linear Transformation S

Input: HFEv- parameters (q, n, v,D, a), matrices (P0, · · · , Pn−a−1) representing the

quadratic forms of the public key polynomials, matrix ˜M (see Eq. (2)).
Output: Equivalent linear transformation S.

1. Set bi = (1, u1, · · · , un+v−1)Pi, 0 ≤ i < n − a, where (u1, · · · , un+v−1) are
unknowns.

2. Construct a matrix Z whose row vectors are bi, 0 ≤ i < n − a. According to
Theorem 2, the rank of Z is at most d.

3. Solve the MinRank Problem with matrix Z using one of the methods described
in Section 3. Denote the solution by u0, u1, · · · , un+v−1.

4. Set U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u0 u1 · · · un+v−1

uq
0 uq

1 · · · uq
n+v−1

...
...

. . .
...

uqn−1

0 uqn−1

1 · · · uqn−1

n+v−1

r00 r01 · · · r0,n+v−1

...
...

. . .
...

rv−1,0 rv−1,1 · · · rv−1,n+v−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, where rij , 0 ≤ i < v, 0 ≤ j < n + v

are randomly chosen from the finite field Fq such that U is invertible.

5. Compute S′ = (˜MU)−1.
6. Return S′.

4.2 Recovering Equivalent Maps F and T

In this subsection we show how, having found an equivalent linear transforma-
tion S, we can recover equivalent maps F and T by solving several systems of
(non)linear equations.

Proposition 6. Let (q, n, v,D, a) be the parameters of HFEv-, Pi (0 ≤ i <
n−a),M , U,W,F ∗j(0 ≤ j < n) be the matrices of Eq. (4). We set d = �log2 D�.
Assume that U is known, then F ∗0 can be recovered by solving a linear system
with n − a − 1 variables, (d + a) · (n + v) additional linear equations in at most
d + v variables, and

(
v+1
2

)
univariate polynomial equations of degree qd.

Proof. From Eq. (4) we know that W = M−1T ∈ Mn×(n−a)(Fqn). Let W =(
W1

W2

)
, where W1 ∈ Ma×(n−a)(Fqn) and W2 ∈ M(n−a)×(n−a)(Fqn). Since M is

invertible and the entries of T are randomly chosen from Fq , the probability of

W2 being singular is 1−
n−a∏
i=1

(1− 1
qi ). According to Theorem 1, there are at least

qn equivalent maps T , thus the probability that all matrices W2 associated to the

equivalent maps T are singular is approximately (1 −
n−a∏
i=1

(1 − 1
qi ))qn

. Therefore

we find an invertible matrix W2 with overwhelming probability. We multiply
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both sides of Eq. (4) by W−1
2 , obtaining

(
UP0U

t, · · · , UPn−a−1U
t
)
W−1

2 =
(
F ∗0, · · · , F ∗n−1

) (
W1W

−1
2

In−a

)
, (5)

where In−a is the (n− a)× (n− a) identity matrix. Let (w̃0, w̃1, . . . , w̃n−a−1) be
the first column of W−1

2 and (l̃0, l̃1, . . . , l̃a−1, 1, 0, . . . , 0) be the first column of(
W1W

−1
2

In−a

)
, then Eq. (5) yields

n−a−1∑
k=0

w̃kUPkU t =
a−1∑
i=0

l̃iF
∗k + F ∗a.

We multiply both sides by l̃−1
0 , obtaining

n−a−1∑
k=0

l̃−1
0 w̃kUPkU t = F ∗0 +

a−1∑
i=1

l̃−1
0 l̃iF

∗i + l̃−1
0 F ∗a.

Denoting wk = l̃−1
0 w̃k, (k = 0, 1, · · · , n−a−1), and li = l̃−1

0 l̃i, (i = 1, 2, · · · , a−1),
la = l̃−1

0 yields
n−a−1∑

k=0

wkUPkU t =
a∑

i=1

liF
∗i + F ∗0. (6)

Note that
a∑

i=1

liF
∗i+F ∗0 =

⎛
⎝ F ′

0 0 F ′
1

0 0 0
F

′t
1 0 F ′

2

⎞
⎠ ∈ M(n+v)×(n+v)(Fqn), where F ′

0 = [f ′
ij ]

is a (d + a) × (d + a) diagonal band symmetric matrix of width 2d − 1, that is
f ′

ij = 0, if |i−j| ≥ d, F ′
1 ∈ M(d+a)×v(Fqn), F

′t
1 ∈ Mv×(d+a)(Fqn) is the transpose

of F ′
1 , F ′

2 ∈ Mv×v(Fqn) is a symmetric matrix .
Assume that w0, w1, . . . , wn−a−1 are unknowns. Since we need to find only

one of the equivalent HFEv- private keys, we can fix w0 = 1 [28]. Due to the

fact that U is known and the special structure of the matrix
a∑

i=1

liF
∗i + F ∗0,

we obtain from Eq. (6) d(n − a − d) linear equations in the n − a − 1 vari-
ables w1, w2, · · · , wn−a−1. Since 0 < a < n − 2d − 1, we have d(n − a − d) ≥
n − a − 1. Therefore, by solving these linear equations, we get a solution
(w′

0, w
′
1, w

′
2, · · · , w′

n−a−1) with w′
0 = 1. Thus Eq. (6) can be rewritten as

n−a−1∑
k=0

w′
kUPkU t =

a∑
i=1

liF
∗i + F ∗0. (7)

Now we will find l1, · · · , la and F ∗0 from Eq. (7). We know that F ∗0 has the
form

F ∗0 =

⎛
⎝F0 0 F1

0 0 0
F t
1 0 F2

⎞
⎠ ,
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where F0 = [αij ] ∈ Md×d(Fqn) is a symmetric matrix, F1 = [γij ] ∈ Md×v(Fqn),
F t
1 ∈ Mv×d(Fqn) is the transpose of F1 and F2 = [δij ] ∈ Mv×v(Fqn) is a

symmetric matrix . According to Proposition 1 we can represent F ∗k (1 ≤ k ≤
n − 1) by the entries of F ∗0.

Assume that l1, . . . , la, αij (0 ≤ i ≤ j < d), γij(0 ≤ i < d, 0 ≤ j < v),
δij(0 ≤ i ≤ j < v) are unknowns. Then we can recover F ∗0 as follows.

– From the first row of matrix Eq. (7), we can find a linear system in the vari-
ables α0j (0 ≤ j < d) and γ0j (0 ≤ j < v) of the form

α00+θ00 = 0, · · · , α0,d−1+θ0,d−1 = 0, γ00+θ0,d = 0, · · · , γ0,v−1+θ0,d+v−1 = 0.

Thus we can obtain the first row of F ∗0 by solving this linear system.
– Once the first row of F ∗0 is known, we can obtain from the second row of

matrix Eq. (7) a linear system in the variables l1 and α1j(1 ≤ j < d) and
γ1j(0 ≤ j < v). By solving this linear system we can obtain the second row
of F ∗0 and l1.

– Similarly, if a ≤ d, we can obtain l1, · · · , la, F0 and F1 using the first d rows
of matrix Eq. (7). If a > d, we can obtain l1, · · · , ld, F0 and F1 by using the
first d rows of matrix Eq. (7) and ld+k(1 ≤ k ≤ a − d) by using the (d + k)-th
row of matrix Eq. (7). Thus we obtain l1, · · · , la, F0 and F1.

– Once l1, · · · , la, F0 and F1 are known, we get from the last v rows of matrix
Eq. (7),

(
v+1
2

)
univariate polynomial equations of the form

d∑
k=0

λijkδqk

ij + ηij = 0,

where λijk, ηij ∈ Fqn , 0 ≤ i ≤ j < v. Solving these equations we obtain δij

and then recover F ∗0.
– Once F ∗0 is known, we can obtain an equivalent central map as

F ′(X,x1, . . . , xv)

= (X,Xq, · · · ,Xqn−1
, x1, · · · , xv)F ∗0(X,Xq, · · · ,Xqn−1

, x1, · · · , xv)t.


�
Proposition 7. Let (q, n, v,D, a) be the parameters of HFEv-, Pi (0 ≤ i <
n−a), S, T,M, F ∗j (0 ≤ j < n) be the matrices of Eq. (3). Assume that S, Pi(0 ≤
i < n − a),M, F ∗j(0 ≤ j < n) are known, then T can be recovered by solving
n − a linear systems in n variables.

Proof. Equation (3) can be rewritten as

(P0, · · · , Pn−a) =
(
SMF ∗0M tSt, · · · , SMF ∗n−1M tSt

)
M−1T. (8)

Let (t1k, t2k, · · · , tnk) be the entries of the k-th (k = 1, 2, · · · , n − a) column of
T . Since S, Pi (0 ≤ i < n − a),M, F ∗j(0 ≤ j < n) are known, we obtain from
Eq. (8) a linear system with n(n+1)

2 equations in the n variables (t1k, t2k, · · · , tnk)
for all (k = 1, 2, · · · , n − a). We can recover T by solving (n − a) of these linear
systems. 
�
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The process of recovering the maps F and T of our equivalent HFEv- key is
summarized in Algorithm 2 .

Algorithm 2. Recovering Equivalent Maps F and T
Input: HFEv- parameters (q, n, v,D, a), Frobenius matrix M (see (1)), matrices

(P0, · · · , Pn−a−1) representing the quadratic forms of the public key polynomials,
recovered linear map S.

Output: Equivalent private maps F and T .

1. Let w0, w1, · · · , wn−a−1 be unknowns and w0 = 1. Get a linear system with
d(n − d − a) equations in the n − a − 1 variables wi, (1 ≤ i < n − a − 1) from
matrix Eq. (6). as shown in the proof of Proposition 6. By solving this linear
system we obtain a solution w′

0, w
′
1, · · · , w′

n−a−1 with w′
0 = 1.

2. Let l1, · · · , la and the nonzero entries of F ∗0 be unknowns in matrix Eq. (7). We
get (d+a) · (n+v) bilinear equations from the first d+a rows of matrix Eq. (7)
and

(

v+1
2

)

univariate polynomial equations from the last v rows of matrix
Eq. (7). By solving these linear systems and univariate polynomial equations
we recover F ∗0 (see Proposition 6). Then we can obtain an equivalent central
map as

F ′ = (X,Xq, · · · , Xqn−1
, x1, · · · , xv)F ∗0(X,Xq, · · · , Xqn−1

, x1, · · · , xv)t.

3. Compute F ∗k 1 ≤ k < n according to Proposition 1.
4. Let (t1k, t2k, · · · , tnk) be the (unknown) entries of the k-th (k = 1, 2, · · · , n −

r) column of T . Get n − r linear systems from matrix Eq. (8) as shown in
Proposition 7. By solving these linear systems we can recover an equivalent
map T .

5. Return F ′, T .

4.3 Complexity of the Attack

The most complex step of our attack is step 3 of Algorithm 1. That is the step
of solving the MinRank problem on the matrix Z, which has rank at most d. For
this step, we can use the methods discussed in Sect. 3.2, in particular the minors
modeling or the support minors modeling.

If we solve the MinRank problem using minors modeling, the degree of reg-
ularity of solving the public system using the F4 algorithm is given as d+1 (c.f.
[3]). Therefore, the complexity of our attack using minors modeling is

O
((

n + v + d + 1
d + 1

)ω)
,

where 2 < ω ≤ 3 is the linear algebra constant.
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4.4 Discussion

The complexity of our attack is independent of the number a of Minus Equa-
tions and polynomial both in the parameter n and the number v of Vinegar
variables. So, for a fixed parameter D, we obtain a polynomial time attack on
all HFE signature variants. Therefore, the only way of enhancing the security
of the HFEv- scheme is by increasing the parameter d (i.e. the degree D of the
HFE polynomial). However, during the signature generation process, we have to
invert the HFE polynomial using for example Berlekamps algorithm. Since the
complexity of this algorithm grows with Dω or 2dω, this slows down the scheme
drastically.

Our attack therefore raises the question if it is possible at all to construct a
secure and efficient signature scheme on the basis of the HFE cryptosystem. An
alternative might be to use polynomials of degree >2 (see for example [24]).

5 Possible Speed up Using Support Minus Modeling

In [1] Bardet et al. proposed a new modeling for the MinRank attack called
support minors modeling. The main idea of this modeling is to write the low
rank matrix M as a product M = AC, where A is an m × r matrix and C is

an r × n matrix. For i = 1, 2, . . . ,m we define matrices of the form C̃i =
(

ri

C

)
,

where ri is the i-th row of M . Since ri lies in the space spanned by the rows of
C, the rank of the matrix C̃i (i = 1, 2, . . . ,m) is at most r. This implies that all
(r+1)×(r+1) minors of the matrices C̃i (i = 1, 2, . . . ,m) are 0. We view the r×r
minors of the matrix C as new variables which are called kernel variables and
are denoted as y1, y2, . . . , yny

, where ny =
(
n
r

)
. The (r+1)×(r+1) minors of the

matrices C̃i are therefore given as bilinear equations in the variables x1, . . . , xnx

and y1, . . . , yny
. Altogether, we obtain m

(
n

r+1

)
of these bilinear equations. The

total number of monomials of degree 2 in these bilinear equations is at most
nx

(
n
r

)
. If

m

(
n

r + 1

)
≥ nx

(
n

r

)
− 1,

holds, we can solve this system of bilinear equations using relinearization.
In practical applications, we can assume that C has the form (Ir, C0), where

Ir is an r × r identity matrix and C0 is an r × (n − r) matrix. Moreover, instead
of using all r×r minors of the matrix C as variables, we choose a positive integer
n′ ≤ n such that

m

(
n′

r + 1

)
≥ nx

(
n′

r

)
− 1 (9)

holds and restrict the computation of minors to the first n′ rows of the
matrices C̃i.
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If the MinRank problem has only one solution, the resulting linear system is
sparse, and we can solve it using the Wiedemann algorithm. The complexity of
solving this linear system is

O
((

nx

(
n′

r

))2

· nx(r + 1)

)

field operations. If the MinRank problem has no unique solution and Fq is a small
finite field, we can guess the values of some variables such that the resulting linear
system has a unique solution, and then solve it using the Wiedemann algorithm.
Otherwise, we solve the bilinear system using a Gröbner basis algorithm such as
F4 or F5 [17].

When applying the support minors modeling to our attack, we obtain an over-
determined bilinear system of nx +ny variables and (nx+ny)(nx+ny+1)

2 equations,
where nx = n + v and ny =

(
n′

d

)
, n′ = � (n−a)(d+1)

n+v � + d + 1, n′ < 2d + 2.
This bilinear system has at least n solutions. In fact, if (u0, u1, . . . , un+v−1) is a
solution of this bilinear system, (uqi−1

0 , uqi−1

1 , . . . , uqi−1

n+v−1) for all 1 ≤ i ≤ n are
also solutions of the bilinear system (see [22] for more details). Therefore, we
don’t longer have a unique solution as in the case of e.g. Rainbow, which makes
the use of the Wiedemann algorithm inefficient. Thus we use a Gröbner basis
technique such as the F4 or F5 algorithm to solve the system instead of using
the relinearization method and Wiedemann.

To estimate the complexity of our attack using the support minors modeling,
we carried out a large number of experiments using the F4 algorithm included in
MAGMA. For these experiments, we created HFEv- public keys over base fields
of size q ∈ {2, 3, 5, 7} using the HFEv- parameters n ∈ {20, 30, 40}, a ∈ {0, 2, 4},
v ∈ {0, 2, 4, 6} and d ∈ {4, 5, 6}. We applied our attack on these instances solving
the MinRank problem for the matrix Z with target rank d using the support
minors modeling. The resulting bilinear system was solved using the F4 algorithm
included in MAGMA. We found that, independently of the HFEv- parameters
used in the experiments, the first degree fall occurs at degree 3. Therefore we
come up with the following

Conjecture: Independently of the HFEv- parameters, the bilinear systems
obtained by our attack and the support minors modeling, can be solved at
degree 3.

However, so far, we do not have theoretical arguments for the correctness of
our conjecture and therefore leave a proof of the conjecture as future work.

Since the total number of monomials in the bilinear system generated by the
support minors modeling is nxny + nx + ny + 1, the total number of monomials
of degree at most 3 is given as O(n2

xny + nxn2
y). Thus, assuming the correctness

of our conjecture, the complexity of our attack on HFEv- using support minors
modeling is O

(
n2

xny + nxn2
y

)ω or O
(
(n + v)2

(
2d+2

d

)
+ (n + v)

(
2d+2

d

)2)ω

. Here,
2 < ω ≤ 3 is again the linear algebra constant. However we note again that this
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formula only holds assuming the correctness of our conjecture about the first fall
degree.

6 Application to GeMSS

GeMSS is an HFEv- type signature scheme which is one of the alternative can-
didates in the third round of the NIST Post Quantum Crypto Standardization
Project [8]. The attack complexity on GeMSS using our key recovery attack
method can be estimated as shown in Table 1. The table shows:

Table 1. Complexity of our Attack on GeMMS (# of gates)

NIST required our attack using
security parameters security minors support minors
category (q, n, v,D, a) level modeling modeling

I
GeMSS128 (2,174,12,513,12)

143
139 118

BlueGeMSS128 (2,175,14,129,13) 119 99
RedGeMSS128 (2,177,15,17,15) 86 72

II
GeMSS192 (2,265,20,513,22)

207
154 120

BlueGeMSS192 (2,265,23,129,22) 132 101
RedGeMSS192 (2,266,25,17,23) 95 75

III
GeMSS256 (2,354,33,513,30)

272
166 121

BlueGeMSS256 (2,358,32,129,34) 141 103
RedGeMSS256 (2,358,35,17,34) 101 76

1. Especially for the higher security categories (NIST category II and III), the
proposed parameters for GeMMS don’t reach the required security levels.

2. Speeding up the signature generation process of GeMSS by decreasing D
while increasing a and v is, with regard to the security of the scheme, not
possible. This forbids the GeMSS variants BlueGeMMS and RedGeMMS.

3. In order to meet NIST security level III (272 gates), we would need an HFE
parameter d of at least 20, which corresponds to a degree D of the HFE
polynomial of at least 219 + 1 = 524.289. This would lead to a slow down
of the signature generation process by a factor of 1.4 · 107. Therefore, the
techniques used in GeMMS don’t suffice to reach high levels of security while
keeping the scheme efficient.

7 Conclusion

In this paper we proposed a new key recovery attack on the HFEv- signature
scheme. While most of the cryptanalysts tried to attack the HFEv- scheme by
solving a MinRank attack over the extension field Fqn , our attack works com-
pletely over the base field. The complexity of the attack is exponential in the
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parameter d = �logq(D)�, but polynomial in n. Therefore, the complexity of our
attack behaves asymptotically exactly as the complexity of the signing process
of HFEv-. Our attack shows that the Minus modifications does not enhance
the security of the HFEv- scheme, while the Vinegar modification only adds a
polynomial factor. Therefore, in order to meet the NIST security requirements,
a very large value of D is needed. However, this makes the signature genera-
tion process of HFEv- very inefficient. We therefore conclude that the currently
existing techniques are not sufficient to transform the HFE scheme into a secure
and efficient signature scheme.
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A Example of the Attack

To illustrate our new attack method, we present a complete key recovery for a toy
example of the HFEv- scheme over a small field. Let the parameters of our HFEv-
instance be (q, n, v,D, a) = (7, 7, 2, 14, 2). Then we have d = �logq(D)� = 2. We
construct the degree n extension field Fqn = Fq[x]/〈x7 + 6x + 4〉. Let θ be a
primitive root of the irreducible polynomial p(x) = x7 + 6x + 4.

We randomly generate central map F = θ176932X14+θ461287X8+θ199902X2+
(θ270502x1 + θ358630x2)X + (θ65557x1 + θ2597x2)X7 + θ811326x2

1 + θ14415x1x2 +
θ151050x2

2. The linear transformations S and T are given by the matrices

S =

⎛
⎜⎜⎝

3 1 1 6 4 2 0 1 6
6 2 4 5 3 3 2 6 0
6 1 3 4 4 2 4 5 3
0 1 4 6 4 2 2 3 1
2 0 0 5 2 4 2 1 3
0 5 1 2 4 2 1 4 3
3 3 5 0 2 6 4 6 6
5 2 0 2 5 6 3 1 2
6 2 5 5 5 4 3 6 1

⎞
⎟⎟⎠ and T =

⎛
⎜⎝

1 4 4 6 5
0 6 5 3 2
0 2 0 2 2
1 3 1 0 1
2 4 2 5 3
3 4 1 0 6
6 5 6 5 0

⎞
⎟⎠ .

We compute the public key as P = T ◦ F ◦ S. The quadratic forms repre-
senting the public key polynomials are given as

P0 =

⎛
⎜⎜⎝

1 2 0 3 3 6 1 3 3
2 6 0 4 4 3 4 4 3
0 0 3 5 4 4 4 5 3
3 4 5 2 1 1 3 2 1
3 4 4 1 0 2 1 6 2
6 3 4 1 2 5 0 5 1
1 4 4 3 1 0 6 0 0
3 4 5 2 6 5 0 3 2
3 3 3 1 2 1 0 2 1

⎞
⎟⎟⎠ , P1 =

⎛
⎜⎜⎝

4 0 3 3 5 6 6 3 2
0 3 0 6 1 1 0 4 4
3 0 3 3 5 4 5 5 4
3 6 3 1 6 6 2 3 5
5 1 5 6 1 6 3 6 4
6 1 4 6 6 5 3 3 1
6 0 5 2 3 3 0 0 5
3 4 5 3 6 3 0 2 1
2 4 4 5 4 1 5 1 6

⎞
⎟⎟⎠ , P2 =

⎛
⎜⎜⎝

3 2 6 4 5 2 6 6 2
2 5 1 0 6 4 1 5 4
6 1 6 0 0 5 0 3 3
4 0 0 5 5 5 5 2 2
5 6 0 5 1 2 1 6 0
2 4 5 5 2 4 1 5 0
6 1 0 5 1 1 4 4 5
6 5 3 2 6 5 4 4 4
2 4 3 2 0 0 5 4 0

⎞
⎟⎟⎠ ,

P3 =

⎛
⎜⎜⎝

2 6 4 5 4 1 6 0 1
6 6 6 1 2 1 0 6 3
4 6 2 6 1 5 0 4 6
5 1 6 0 0 0 0 3 5
4 2 1 0 6 1 6 0 4
1 1 5 0 1 2 6 3 5
6 0 0 0 6 6 5 6 1
0 6 4 3 0 3 6 2 0
1 3 6 5 4 5 1 0 1

⎞
⎟⎟⎠ P4 =

⎛
⎜⎜⎝

3 0 5 4 5 6 0 5 2
0 3 0 3 3 5 4 2 2
5 0 4 2 4 6 1 1 3
4 3 2 3 4 3 2 6 1
5 3 4 4 1 2 3 3 6
6 5 6 3 2 4 0 0 2
0 4 1 2 3 0 6 5 1
5 2 1 6 3 0 5 5 0
2 2 3 1 6 2 1 0 3

⎞
⎟⎟⎠ ,
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Let M =

⎛
⎜⎜⎝

1 1 1 1 1 1 1
θ θ7 θ49 θ343 θ2401 θ16807 θ117649

θ2 θ14 θ98 θ686 θ4802 θ33614 θ235298

θ3 θ21 θ147 θ1029 θ7203 θ50421 θ352947

θ4 θ28 θ196 θ1372 θ9604 θ67228 θ470596

θ5 θ35 θ245 θ1715 θ12005 θ84035 θ588245

θ6 θ42 θ294 θ2058 θ14406 θ100842 θ705894

⎞
⎟⎟⎠ and M̃ =

(
M 0
0 Iv

)
In the following

we demonstrate our method to recover the private key from P.

A.1 Recovering S

Let the first row of matrix U = M̃−1S−1 be (u0, u1, · · · , un+v−1). Fix u0 = 1
and let u1, · · · , un+v−1 be unknowns. Set bi = (1, u1, · · · , un+v−1)Pi, i =
0, 1, · · · , n − a − 1. Let bi be the i-th row of the matrix Z. Then
the rank of Z is 2. This implies that all minors of order 3 are 0.
Solving the MinRank Problem for matrix Z gives us a solution u =
(1, θ2689, θ240750, θ393451, θ682468, θ184068, θ218176, θ85224, θ760002). Then we have

U =

⎛
⎜⎜⎜⎜⎝

1 θ2689 θ240750 θ393451 θ682468 θ184068 θ218176 θ85224 θ760002

1 θ18823 θ38166 θ283531 θ659566 θ464934 θ703690 θ596568 θ378762

1 θ131761 θ267162 θ337633 θ499252 θ783912 θ808120 θ58266 θ180708

1 θ98785 θ223050 θ716347 θ200596 θ546132 θ715588 θ407862 θ441414

1 θ691495 θ737808 θ73177 θ580630 θ528756 θ67864 θ384408 θ619272

1 θ722755 θ223404 θ512239 θ770242 θ407124 θ475048 θ220230 θ217194

1 θ118033 θ740286 θ291505 θ450442 θ379242 θ31168 θ718068 θ696816

1 5 1 0 1 3 0 3 2
4 6 1 5 4 5 5 6 6

⎞
⎟⎟⎟⎟⎠ ,

where the last v rows of U are randomly chosen from Fq, such that U is invertible.
Thus we can recover an equivalent linear transformation S as

S′ = U−1M̃−1 =

⎛
⎜⎜⎝

0 1 1 2 3 6 6 0 6
1 4 5 3 1 6 0 4 6
4 5 3 1 5 6 0 6 4
5 0 1 2 5 6 0 2 0
2 3 1 3 5 6 0 3 1
1 6 5 0 4 1 0 4 1
0 4 6 4 2 2 0 6 2
2 1 5 2 5 1 2 1 2
6 0 2 6 4 6 1 5 6

⎞
⎟⎟⎠ .

Recovering F and T . Step 1. Once S is known, let w0, w1, · · · , wn−a−1 be
unknowns and w0 = 1. We generate a linear system with d(n − d − a) equations
in the n−a−1 variables wi, (1 ≤ i < n−a−1) using the matrix Eq. (6). By solving
this linear system we obtain a solution (1, θ558954, θ326166, θ142979, θ806014).

Step 2. Let l1, · · · , la and the nonzero entries of F ∗0 be variables in matrix
Eq. (7). By using the first d + a rows of matrix Eq. (7) we get (d + a) · (n + v)
bilinear equations as follows:

α00+θ599798 α01+θ499519 0 0 0 0 0 γ00+θ424284 γ01+θ665059

α10+θ499519 α7
00l1+α11+θ381840 α7

01l1+θ349085 0 0 0 0 γ7
00l1+γ10+θ228693 γ7

01l1+γ11+θ396254

0 α7
10l1+θ349085 α49

00l2+α7
11l1+θ622586 α49

01l2+θ524551 0 0 0 γ49
00 l2+γ7

10l1+θ475138 γ49
01 l2+γ7

11l1+θ2659

0 0 α49
10l2+θ524551 α49

11l2+θ32832 0 0 0 γ49
10 l2+θ9738 γ49

11 l2+θ392135

= 0(d+a)×(n+v).

From the first row, we obtain α00 = θ188027, α01 = θ87748, γ00 = θ12513, γ01 =
θ253288. Once α00, α01 are known, we get from the second row α10 = θ87748, α11 =
θ10485, γ10 = θ581451, γ11 = θ606062, l1 = θ146620. From the third row we can
obtain l2 = θ754380.
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Once l1, l2 are known, we get from the last v rows of matrix Eq. (7),
(
v+1
2

)
univariate polynomial equations as follows:

θ754380δ4900 + θ146620δ700 + δ00 + θ81317 = 0,
θ754380δ4901 + θ146620δ701 + δ01 + θ689914 = 0,
θ754380δ4911 + θ146620δ711 + δ11 + θ162754 = 0.

Each of these equations has 49 solutions. We choose one of them as the value of
δij . Thus we have δ00 = θ27191, δ01 = δ10 = θ19044, δ11 = θ9718 and

F ∗0 =

⎛
⎜⎜⎜⎜⎝

θ188027 θ87748 0 0 0 0 0 θ12513 θ253288

θ87748 θ10485 0 0 0 0 0 θ581451 θ606062

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

θ12513 θ581451 0 0 0 0 0 θ27191 θ19044

θ253288 θ606062 0 0 0 0 0 θ19044 θ9718

⎞
⎟⎟⎟⎟⎠

Therefore we get an equivalent central map as F ′ = θ10485X14 + θ362262X8 +
θ188027X2 + (θ287027x1 + θ527802x2)X + (θ32423x1 + θ57034x2)X7 + θ27191x2

1 +
θ293558x1x2 + θ9718x2

2 for F .
Let (t1k, t2k, · · · , tnk) be entries of the k-th (k = 1, 2, · · · , n − a) column of

T . Get n − a linear systems from matrix Eq. (8) as shown by Proposition 7. By
solving these linear systems we can recover a equivalent key of T as follows

T ′ =

⎛
⎜⎝

1 1 6 0 5
3 3 2 0 2
1 3 2 5 6
6 6 6 0 2
2 2 3 3 6
2 2 1 0 5
0 5 1 3 0

⎞
⎟⎠ .

It is easy to check that P = T ◦ F ◦ S = T ′ ◦ F ′ ◦ S ′. Therefore the adversary
can use the three maps T ′, F ′ and S ′ to forge signatures for arbitrary messages.
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