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Abstract
The structure mapping task is a simple method to test people’s mental representations of spatial
relationships, and has recently been particularly useful in the study of volumetric spatial cognition
such as the spatial memory for locations in multilevel buildings. However, there does not exist
a standardised method to analyse such data and structure mapping tasks are typically analysed
by human raters, based on criteria defined by the researchers. In this article, we introduce a
computational method to assess spatial relationships of objects in the vertical and horizontal
domains, which are realized through the structure mapping task. Here, we reanalyse participants’
digitised structure maps from an earlier study (N=41) using the proposed computational methodology.
Our results show that the new method successfully distinguishes between different types of structure
map representations, and is sensitive to learning order effects. This method can be useful to advance
the study of volumetric spatial cognition.
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1 Introduction

For many species, navigation entails movement not only in the horizontal plane, but also, to
some extent, in the vertical domain. Aerial species need to coordinate flight to find their nest
or food on trees. Underwater species coordinate movement in different depths to seek shelter
and resources. Terrestrial species may traverse undulating terrain or climb atop objects and
surfaces. As humans, we also climb surfaces, live in multi-storey structures, and routinely
organise objects and other information in vertical space.
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Previous research in spatial cognition has shown that people organise spatial information
hierarchically [13], grouping objects based on proximity, visual, or semantic salience [3]. This
process is also called “regionalisation”, and people use the resulting hierarchies, or regions,
to plan spatial behaviour [13]. While extensive research has focused on the cognition of 2D
surfaces (layout rooms, buildings, or neighbourhoods), recently research has turned to how
people perceive, form mental representations of, and reason about 3D and volumetric spaces;
here we are particularly interested in navigating through buildings.

Various methods have been developed to access and assess mental representations of space.
These include onsite and offsite pointing, identifying novel shortcuts, sketch-mapping, and
others [7]. To assess how people perceive, understand, and utilise 3D spatial relationships,
previous research in volumetric spatial cognition has relied mostly on 3D pointing tasks [16, 9]
or navigational tasks [6, 8, 4]. One limitation of pointing tasks is that they examine pairwise
(or triplewise in the case of judgements of relative direction) spatial relationships; the overall
spatial organisation of multiple locations is only indirectly assessed through the accuracy in
multiple trials between separate locations. Similarly a limitation of multilevel navigation
tasks is that the mental representation is confounded with the immediate spatial information
available to the individual, e.g., the visibility of spaces, decision points, landmarks, and signs.

An alternative approach that captures in an abstract manner the spatial organisation
of multiple objects is the structure mapping task (SMT). In the SMT, as it has been
applied to study volumetric spatial cognition [1, 10], individuals are provided with a set of
representations for physical locations (e.g. a small card or object) and are asked to place
them on a two-dimensional (2D) surface in a manner that represents how these locations are
organised in space.

In this study, we seek to develop a new, computational approach to analyse 2D represent-
ations of 3D spatial information. This approach is motivated by and applied to the analysis
of structure mapping tasks. In the following sections we describe the analytical framework
developed to distinguish between horizontally-biased and vertically-biased representations,
and we apply this to behavioural data obtained from a previous study. Below, we summarise
key aspects of the previous study, articulate in detail the mathematical description of the
new metrics, and use them to assess the representations produced by human participants.

2 Methods

2.1 Data collection
Data collection was conducted as part of a larger experiment which is presented in more
detail in [10]; here we include relevant information to assist readers understand the structure
mapping task analysis. Participants (N = 41) learned the layout and the location of twelve
goal locations (shops) spread across four floors of a large, complex, multilevel building
(Figure 1).

Participants were randomly assigned in two spatial learning groups. The horizontal
training group learned the locations by walking to all locations in a floor before moving to the
next floor. By contrast, the vertical training group walked to the locations by first visiting all
locations of a vertical cluster (using the escalators) before moving to the locations of the next
cluster (Figure 1). This allowed us to test the effect of spatial knowledge acquisition mode
(learning) on mental representation structure. After the training phase, they completed a
structure mapping task which is the focus of this paper, and then proceeded with the rest of
the experiment [10].
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For the structure mapping task, 12 cards representing each goal were shuffled and given
to them, with theinstruction “how do you think they are arranged in space” without at time
limit. Later, they self-reported their sense of direction using SBSOD [5], prior familiarity
with the building, as well as demographic information.

3 Analysis

Each goal location (landmark) from the structure mapping task corresponds to a recalled
2D position in each participant’s representation of the building. The same landmark is
also associated with a real 3D position computed from the digital floorplan of the building.
However, the relationships between the recalled positions and real positions learned by
participants remain unknown, e.g., whether their representations were tied to a particular
perspective of the building. In order to uncover these relationships and assess their accuracy,
we propose two analysis techniques catered to the structure mapping task.

Morphological analysis uses recalled positions to determine how well a participant’s
representation conforms to canonical organisations of real landmark positions, e.g., by the
floor of the building. This requires that an experimenter make assumptions about which
landmarks should be canonically grouped. On the other hand, functional analysis uses
clustering algorithms to group a participant’s recalled positions and determines what type of
information the clusters are useful for distinguishing about real positions. This technique
requires the experimenter to make assumptions about the utility of clusters instead of the
clusters themselves, making it complimentary to morphological analysis.

3.1 Morphological Analysis

A canonical organisation of landmarks is defined as a set of clusters. For multilevel buildings,
we consider two types of canonical clusters based on the floors of the building (labeled 1-4)
and corridors (labeled A-D), which in our case are consistent between floors. Henceforth,
we refer to floor-based clusters as horizontal clusters CH and corridor-based clusters as
vertical clusters CV . For a given participant, we encoder their clusters C ∈ {CV , CH} as a
sequence of m clusters and each cluster Ci as a sequence of recalled 2D positions Ci,k. The
morphological analysis quantifies two characteristics of a participant’s representation for each
type of canonical clustering C: the distinctiveness D(C) and the alignment A(C).

3.1.1 Distinctiveness

The distinctiveness metric D(C) measures the separateness between clusters by considering
them as polygons (Eq. 1). In particular, we represent each cluster as a convex hull, i.e., the
smallest convex polygon that encompasses all of its recalled positions. The separateness
between clusters can then be computed using function ∆(Ci, Cj), which outputs 0 when the
convex hulls of clusters Ci and Cj are intersecting and 1 otherwise. This means that two
clusters are only considered separate when their recalled positions are visually separable
by a line. The distinctiveness metric D(C) ∈ [0, 1] encodes the probability that a cluster is
visually separable from all other clusters.

D(C) = 1
m

m∑
i=1

m∏
j=1

∆(Ci, Cj)
∣∣∣ i ̸= j (1)
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A. Axonometric view B. Top-view

Volumetric spatial configuration (3D)
Locations on a multi-level building

Structure Mapping Task Archetypes (2D)
Location cards on a A3 paper

Level 4

Level 3

Level 2

Level 4

Level 3

Level 2

Level 1

C1. Latticed
(Horizontal & Vertical)

C2. Aligned
(Horizontal-only)

C3. Unaligned 
(Vertical-only)

D. SMT example
Level 1

Main corridors

Goal locations (shops), colour coded by vertical region

Building outline

Vertical regions (clusters)

Figure 1 Schematic diagrams of the physical volumetric space, a large multilevel building, in
axonometric-view (A) and top-view (B). There were 2 goal locations on level 1 (ground-floor), 4 on
level 2, 4 on level 3, and 2 on level 4. (C) Three major archetypes of structure mapping task products
(C1–3) that capture horizontal and vertical rationalisations of the same 3D spatial configuration.

3.1.2 Alignment
The alignment metric A(C) averages two terms: the eccentricity of clusters and the similarity
between their orientations (Eq. 2). Both terms rely on Principal Component Analysis
(PCA) [15] to compute the principal components Ψ(Ci) and eigenvalues Λ(Ci) of each cluster
Ci using the distribution of its recalled positions. The first principal component Ψ(Ci)1 for
cluster Ci is the axis or unit vector along which the variance in recalled position Λ(Ci)1

is maximized. The second principal component Ψ(Ci)2 is orthogonal to the first, and it
accounts for the next highest variance Λ(Ci)2. In effect, the principal components act as the
major and minor axes of an ellipse fitted to the cluster [14].

A(C) = 1
2m

m∑
i=1

√
1 − Λ(Ci)22

Λ(Ci)21
+

1
m(m − 1)

m∑
i=1

m∑
j=i+1

∣∣Ψ(Ci)1 · Ψ(Cj)1
∣∣ (2)

The eccentricity term measures the average elongatedness of a cluster using the formula
for the eccentricity of an ellipse [12]. For cluster Ci, this is computed as the square root of 1
minus the ratio between Λ(Ci)2

2 and Λ(Ci)2
1. This can be thought of as the ratio between

the major and minor axes of an ellipse. The similarity term computes the average angular
similarity between all unique pairs of clusters. The angular similarity between clusters Ci

and Cj is formulated as the absolute value of the dot product between their first principal
components, Ψ(Ci)1 and Ψ(Cj)1. The absolute value ensures that vectors facing in opposite
directions are considered equal. Since alignment A(C) averages the eccentricity and similarity
terms, it is maximized when clusters are both linear and parallel to each other.

3.1.3 Structure Mapping Task Archetypes
Distinctiveness is first measured for both horizontal and vertical clusters to assess whether
participants are cognizant of them. For participants with distinctive representations, align-
ment is then measured to classify the appearance of the representation. When only one
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canonical type is distinctive, an aligned representation configures the clusters into either rows
or columns, and an unaligned representation separates clusters into regions independent of
any axis. It is possible for a representation to be aligned with respect to multiple canonical
types. When these types have very little in common between their clusters, e.g. horizontal
and vertical clusters, their axes of alignment can become orthogonal to each other. This
causes horizontal clusters to become rows and vertical clusters to become columns or vice
versa. We consider this special case as a latticed representation. We consider a non-canonical
representation to be nondistinctive (D(C) < 1) with respect to all canonical types. These
archetypes align with the manual classification of structure maps done by Mavros et al. [10].

3.2 Functional Analysis
For participants with non-canonical representations according to the morphological analysis,
functional analysis can offer an explanation. First, clusters are extracted from a participant’s
representation using a set of methods chosen by the experimenter. In our case, the methods
are all instances of HDBSCAN [2] using different distance functions based on archetypes
from the morphological analysis: Euclidean distance for clustering unaligned representations,
Manhattan distance for latticed representations, and two variants of Manhattan distance for
aligned representations, which weight the distances along the x- and y-axes with ⟨0.8, 0.2⟩
and ⟨0.2, 0.8⟩ before summing them. Manually annotated clusters by either the experimenter
or participants can also be used as a method.

I(C, Φ) = 1
m

m∑
i=1

m∏
j=1

Φ(Ci, Cj)
∣∣∣ i ̸= j (3)

The clusters C of each method are then judged by an informativeness metric I(C, Φ)
(Eq. 3) with respect to a function Φ, and only the best method is considered. Φ(Ci, Cj) is
defined as any function that outputs 1 when two clusters Ci and Cj are separable according to
a metric over real landmark positions (not recalled positions) and outputs 0 otherwise. This
means that I(C, Φ) evaluates the probability that a cluster can be distinguished from all other
clusters according to function Φ, which is comparable to the formulation of distinctiveness
D(C). We consider two metrics for Φ: the horizontal Euclidean distance along the xy-plane
(used by ΦH) and the vertical distance along the z-axis (used by ΦV ). Both functions ΦH

and ΦV first compute the real centroid (i.e., the average real position) of landmarks in Ci and
then compute whether all landmarks in Ci are closer to the centroid than those in Cj using
the respective metric. With more data about the landmarks and the building, more metrics
can be explored, e.g., the metabolic energy used when travelling between landmarks [11].
However, some complex metrics may be better suited for morphological analysis, because they
are difficult to formulate computationally, e.g., the visual or semantic saliency of landmarks.

4 Results

Morphological analysis revealed that among the 41 participants, 7 people (17.1%) had aligned
representations (A(C) ≥ 0.9), 5 people (12.2%) had unaligned representations (A(C) < 0.9),
3 people (7.3%) had latticed representations, and 26 people (63.4%) had non-canonical
representations (D(CH) < 1 and D(CV ) < 1). For non-canonical representations, we
apply functional analysis and compare D(CH) with I(C, ΦH) and D(CV ) with I(C, ΦV ).
On average, the probability increased from distinctiveness to informativeness by 9.0%
for horizontal and vertical comparisons, meaning that functional analysis offers a better

COSIT 2022
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explanation for non-canonical representations than morphological analysis. Furthermore,
9 people (22.0%) had a gain of at least 50% for one of the two comparisons, and 4 people
(9.8%) had perfectly informative representations (I(C, Φ) = 1), which morphological analysis
could not account for. Between aligned and informative representations, 7 people (17.1%)
respected horizontal regionalisation and 6 people (14.6%) respected vertical regionalisation.

Figure 2 Scatter-plots of the morphological (A) and functional (B; i.e. bottom-up) analysis of
the structure mapping task data, as a function of spatial ability (normalised SBSOD score). We
observe that morphological analysis is sensitive to individual differences with regards to percep-
tion/externalisation of vertical relationships.

Figure 2 shows scatter plots of the 6 metrics (on the y-axis) from both analyses compared
against the standardised spatial ability (SBSOD, on the x-axis) of participants. We observe
an interaction between training and spatial ability, with respect to horizontal distinctive-
ness. Participants high in spatial ability trained horizontally (floor-by-floor) produced more
horizontally distinctive structure maps; whereas high-spatial participants trained vertically
had low horizontal distinctiveness. However, these participants produced higher vertical
distinctiveness than high-spatial participants with horizontal training.

5 Discussion and Conclusion

In this article, we sought to establish a mathematical framework to capture spatial rela-
tionships from 2D structure maps. More specifically to measure spatial regionalisation of
multilevel (i.e. 3D) environments. Our proposed method captures vertical versus horizontal
alignment and distinctiveness of groups of objects —here landmarks in a building. We first
demonstrated that this method can capture key aspects of structure mapping tasks, such as
horizontal and vertical clustering (regionalisation). We then applied this methodology on
human structure mapping task data, which helped identify a relationship between spatial
abilities and the comprehension of horizontal and vertical spatial relationships.
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Various objective methods have been developed to analyse externalisations (products) of
mental representations of 2D space, e.g., measuring the angular error in a pointing task, or
performing bi-dimensional regression to analyse configurational tasks like sketch maps [7].
Structure mapping tasks can also be analysed in similar terms when they represent two-
dimensional configurations, such as objects on a table or locations on a city. To the best of
our knowledge, the analysis of structure mapping data from 3D spatial configurations has
not been sufficiently studied. As our example illustrates, 3D spatial configurations can be
organised in both horizontal and vertical regions (or hierarchies) based on building floors,
staircases, and other vertical spatial features. When people produce structure maps of such
configurations, they have to perform a series of mental transformations, e.g., adopting an
elevation-, top-, or other viewpoint and decoding spatial relationships in 3D space.

To conclude, in the present work we have proposed a novel mathematical framework to
capture 3D spatial relationships from 2D structure maps. We applied this methodology on
a set of human structure mapping task data, which helped identify a relationship between
spatial abilities and the comprehension of vertical spatial relationships. Our results suggest
that we can mathematically analyse the spatial configuration of 3D locations, by decomposing
the two-dimensional structure maps into top-down as well as bottom-up spatial hierarchies
that capture 3D spatial relationships (such as vertical columns and planes). This method
provides a complementary approach to previously used classification by human raters [1, 10].
Further work will seek to compare how this method performs in comparison to human ratings.
This method can be useful to advance the study of volumetric spatial cognition.
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