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Abstract. Group Activity Recognition detects the activity collectively
performed by a group of actors, which requires compositional reasoning of
actors and objects. We approach the task by modeling the video as tokens
that represent the multi-scale semantic concepts in the video. We propose
COMPOSER, a Multiscale Transformer based architecture that performs
attention-based reasoning over tokens at each scale and learns group
activity compositionally. In addition, prior works suffer from scene biases
with privacy and ethical concerns. We only use the keypoint modality
which reduces scene biases and prevents acquiring detailed visual data
that may contain private or biased information of users. We improve the
multiscale representations in COMPOSER by clustering the intermediate
scale representations, while maintaining consistent cluster assignments
between scales. Finally, we use techniques such as auxiliary prediction
and data augmentations tailored to the keypoint signals to aid model
training. We demonstrate the model’s strength and interpretability on
two widely-used datasets (Volleyball and Collective Activity). COMPOSER
achieves up to +5.4% improvement with just the keypoint modality
(Code is available at https://github.com/hongluzhou/composer.).
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1 Introduction

Group Activity Recognition (GAR) detects the activity collectively performed
by a group of actors in a short video clip [11,48]. GAR has widespread societal
implications in a variety of domains including security, surveillance, kinesiology,
sports analysis, robot-human interaction, and rehabilitation [15,16,38,55].

Fig. 1. (a) The keypoint-only setup generalizes better for GAR. The Volley-
ball Olympic split [44] ensures videos having vastly different scene background between
training and testing, which can examine GAR model’s scene generalization ability.
RGB-based methods severely suffer from scene biases and have poor model generaliz-
ability. (b) Main idea. We propose COMPOSER that uses keypoint only modality for
GAR by modeling a video as tokens that represent the multiscale semantic concepts in
the video, which include keypoint, person, person-to-person interaction, person group,
object if present, and the clip. Four scales are formed by grouping actor-related tokens
according to their semantic hierarchy. Representations of tokens in coarser scales are
learned and aggregated from tokens of the finer scales. COMPOSER (Fig. 3) facilitates
compositional reasoning of group activity in videos

The task requires addressing two challenges. First, GAR requires a composi-
tional understanding of the scene [2]. Because of the crowded scene, it is chal-
lenging to learn meaningful representations for GAR over the entire scene [48].
Since group activity often consists of sub-group(s) of actors and scene objects,
the final action label depends on a compositional understanding of these enti-
ties [48,54]. Second, GAR benefits from relational reasoning over scene elements
to understand the relative importance of entities and their interactions [19,52].
For example, in a volleyball game, persons around the ball performing the jump-
ing action are more important than others standing in the scene.

Existing work has proposed to jointly learn the group activity with indi-
vidual actions [4,5,22,23,39,40] or person sub-groups [15,29,33] for a composi-
tional understanding of the group activity. Meanwhile, graph [19,22,47,55] and
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transformer [16,29] based models have been proposed for relational reasoning
over scene entities. However, these methods do not sufficiently make use of the
multiscale scene elements in the GAR task by modeling over entities at either
one semantic scale (e.g., person [16,19,47,55]) or two scales (person and person
group [15,29,33], or keypoint and person [37]). More importantly, explicit mul-
tiscale modeling is neglected, lacking consistent compositional representations
for the group action tasks. Furthermore, majority of the prior GAR methods
rely on the RGB modality (see Table 3), which causes the model more likely to
have privacy and ethical issues when deployed in real-world applications [18].
Last but not least, the RGB input hinders the model’s robustness to changes
in background, lighting conditions or textures, and often results in poor model
generalizability due to scene biases (see Fig. 1 (a)) [10,42].

In this paper, we present COMPOSER that addresses compositional learning of
entities in the video and relational reasoning about these entities. Inspired by
how humans are particularly adept at representing objects in different granular-
ities meanwhile reasoning their interactions to turn sensory signals into a high-
level knowledge [21,28], we approach GAR by modeling a video as tokens that
represent the multi-scale semantic concepts in the video (Fig. 1 (b)). Compared
to the aforementioned prior works, we consider more fine-grained scene entities
that are grouped into four scales. By combining the scales together with Mul-
tiscale Transformer (Fig. 4), COMPOSER provides attention-based reasoning over
tokens at each scale, which makes the higher-level understanding of the group
activity possible. Moreover, COMPOSER uses only the keypoint modality. Using
only the 2D (or 3D) keypoints as input, our method can prevent the sensor
camera from acquiring detailed visual data that may contain private or biased
information of users1. Keypoints also allow the model to focus on the action-
specific cues, and help the model be more invariant to the scene biases. COMPOSER
generalizes much better to testing data with different scene backgrounds (see the
Volleyball Olympic split results in Table 1).

COMPOSER learns consistent multiscale representations which boost the perfor-
mance for GAR (Fig. 2). This is achieved by contrastive clustering assignments of
clips. Intuitively, a model can recognize the group activity using representations
of entities at just one particular scale. Hence, we consider representations of the
clip token learned across scales as representations of different views of the clip.
Such perspective allows us to cluster clip representations learned at all scales
while enforcing consistency between cluster assignments produced from differ-
ent scales of the same clip. In order to enforce this consistency, we follow [7] and
use a swapped prediction mechanism where we predict the cluster assignment of
a scale from the representation of another scale. However, distinct from related
works [3,7,9], which use information from multiple augmentations or modalities
for self-supervised learning from unlabelled images or videos, we use informa-
tion from multiple scales for the task of group activity recognition. Contrasting
clustering assignments enhance our intermediate representations and the overall

1 Even for the keypoint extraction backbone which our method is agnostic to, there
are existing works [18] that perform privacy-preserving keypoint estimation.
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Fig. 2. Embedding space learned by COMPOSER. COMPOSER exploits a contrastive
clustering objective (Sect. 3.3) to learn consistent multiscale representations for GAR.
This is achieved by clustering clip representations learned at all scales. The cluster-
ing objective encourages an “agreement” between scales on the high-level knowledge
learned (‘Pull Close’ representations of the same clip). Contrastive learning is per-
formed on the clusters, which also helps the model to discriminate between clips
with different semantic characteristics (‘Pull Close’ representations of the semantically-
similar clips and ‘Push Apart’ those that are semantically-different). In the illustration,
we use subscript to denote the scale and use superscript to indicate different clips

performance. Finally, we use techniques such as auxiliary prediction at each scale
and data augmentation methods such as Actor Dropout to aid training.

Our contributions are three-fold:

1. We present COMPOSER for compositional reasoning of group activity in videos.
COMPOSER can distill and convey high-level semantic knowledge from the ele-
mentary elements of the human-centered videos. We learn contrastive clus-
tering assignment to improve the multiscale representations. By maintaining
a consistent cluster assignment across the multiple scales of the same clip,
an agreement between scales on the high-level knowledge learned can be pro-
moted to optimize the representations across scales.

2. We use only the keypoint modality that allows COMPOSER to address the
privacy and ethical concerns and to be robust to changes in background,
with auxiliary prediction and data augmentation methods tailored to learn-
ing group activity from the keypoint modality.

3. We demonstrate the model’s strength and interpretability on two commonly-
used datasets (Volleyball and Collective Activity) and COMPOSER achieves up
to +5.4% improvement using just the keypoint modality.

2 Related Work

Much of the recent research on GAR explores how to capture the actor rela-
tions [4,19,22,38,47]. Several works tackle this problem from a graph-based per-
spective [22,31,51,52]. Some utilize attention modeling [31,39,49,54] including
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Fig. 3. COMPOSER. Given tokens that represent the multiscale semantic concepts (Fig. 1)
in the human-centered video, COMPOSER jointly learns group activity, individual actions
and contrastive clustering assignments of clips. Auxiliary predictions are enforced to
aid training (Sect. 3.5)

using Transformers [16,29]. Existing works have primarily used RGB- and/or
optical-flow-based features with RoIAlign [17] to represent actors [5,39,47,51].
A few recent works replace or augment these features with keypoints/poses of
the actors [16,37,44,54]. In this paper, we use only the light-weight coordinate-
based keypoint representation. We propose a Multiscale Transformer block to
hierarchically reason about entities at different semantic scales and we aid learn-
ing group activities by improving the musicale representations. Please see an
in-depth discussion on related works in Appendix G.

3 Methodology

We present COMPOSER (Fig. 3), a novel Multiscale Transformer based architecture
for GAR. In Sect. 3.1, we describe the multi-scale semantic tokens representing a
video with group activities. We introduce COMPOSER and especially its reasoning
module Multiscale Transformer in Sect. 3.2. We describe data augmentations in
Sect. 3.4 and the exact formulation of auxiliary prediction in Sect. 3.5.

3.1 Tokenizing a Video as Hierarchical Semantic Entities

We model a video as semantic tokens that allow our method easily adaptable to
understanding any videos with multi-actor multi-object interactions [32].
• Person Keypoint. We define a person keypoint token, kj

p ∈ R
d that repre-

sents a keypoint joint j (j = 1, . . . , j′) of person p (p = 1, . . . , p′) in all times-
tamps, where j′ is the number of joint types and p′ is the number of actors. The
initial d-dimensional person keypoint token is learned by encoding the numerical
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coordinates (in the image space) of a certain keypoint track2. The procedure of
encoding includes coordinate embedding, time positional embedding, keypoint
type embedding, and OKS-based feature embedding [43] to mitigate the issue of
noisy estimated keypoints. Details are available in Appendix.
• Person. A person token is defined as pp ∈ R

d, initially obtained by aggre-
gating the standardized keypoint coordinates of person p over time through
concatenation and FFN-based transformation.
• Person-to-Person Interaction. Modeling the person-to-person interactions
is critical for GAR [48]. Unlike existing works that typically consider an inter-
action as an edge connecting two person nodes and learn a scalar to depict its
importance [52], we model interaction as nodes (tokens) to allow for the model-
ing of complex higher-order interactions [32]. The person-to-person interaction
token is defined as ii ∈ R

d where i = 1, . . . , p′×(p′−1) (bi-directed interactions).
Initial representation of the interaction between person p and q is learned from
concatenation of pp and pq, followed by FFN-based transformation.
• Person Group. We define the group token gg ∈ R

d where g = 1, . . . , g′

for videos where sub-groups are often separable. g′ denotes the num. of sub-
groups in the video. Given the person-to-group mapping which can be obtained
through various mechanisms (e.g., heuristics [37], k-means [29], etc. [15,26].),
representation of a group is an aggregate over representations of persons in the
group similarly through concatenation and FFN.
• Clip. The special [CLS] token (∈ R

d) is a learnable embedding vector and is
considered as the clip representation. CLS stands for classification and is often
used in Transformers to “summarize” the task-related representative information
from all tokens in the input sequence [14].
• Object. Scene objects can play a crucial role in videos where human(s) inter-
act with object(s). E.g., in a volleyball game where one person is spiking and
multiple nearby actors are all jumping with arms up, it can be difficult to tell
which person is the key person with information of just the person keypoints
due to their similar poses. The ball keypoints can help to distinguish the key
person. Object keypoints can be used to represent an object in the scene with
similar benefits of person keypoints (e.g., to boost model robustness [24]). Object
keypoint detection [6,30] benefits downstream tasks such as human action recog-
nition [20], object detection [24,53], tracking [34], etc. [27]. Thus, we use object
keypoints to represent each object for GAR. We denote object token ee ∈ R

d

where e = 1, . . . , e′ and e′ is the maximal number of objects a video might have.
Similar to person tokens, the initial object tokens are learned from aggregating
the coordinate-represented object keypoints.

3.2 Multiscale Transformer

Multiscale Transformer takes a sequence of multiple-scale tokens as input, and
refines representations of these tokens. Specifically, tokens of the four scales are:

2 We use track-based representations [16,29,44,56] to represent each token.
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Fig. 4. Multiscale Transformer performs relational reasoning with four Transformer
Encoders to operate self-attention on tokens of each scale, while stringing tokens of the
four scales together with FFNs and Skip Connections to learn hierarchical representa-
tions that make a high-level understanding of group activity possible

Scale 1:
{

[CLS] , e1, · · · , ee′ ,k1
1, · · · ,kj′

p′

}
,

Scale 2: {[CLS] , e1, · · · , ee′ ,p1, · · · ,pp′} ,

Scale 3:
{
[CLS] , e1, · · · , ee′ , i1, · · · , ip′×(p′−1)

}
,

Scale 4: {[CLS] , e1, · · · , ee′ ,g1, · · · ,gg′} .

(1)

We utilize a Transformer encoder [45] at each scale to perform relational reason-
ing of tokens in that scale. We review details of Transformer in the Appendix.

Hierarchical representations of tokens are maintained in an elaborately
designed Multiscale Transformer block (Fig. 4). In the Multiscale Transformer
block, operations in the four scales are the same (but with different parame-
ters) to maintain simplicity. Specifically, given a sequence of tokens of scale s
(Eq. 1), Transformer encoder outputs refined representations of these tokens.
Then, concatenation and FFN are used to aggregate refined representations of
actor-related tokens, in order to form representations of actor-related tokens
in the subsequent coarser scale s+1. Such learned representations are summed
with their initial representations (input to the Multiscale Transformer) (i.e. Skip
Connection). The resulting actor-related tokens, as well as scale s updated [CLS]
token and object token(s) form the input sequence of the Transformer encoder
in the scale s+1 (see wiring in Fig. 4).

COMPOSER uses the initial representations of the multi-scale semantic tokens
(Sect. 3.1) as input, and utilizes multiple blocks of Multiscale Transformer to per-
form relational reasoning over these tokens. With refined token representations,



256 H. Zhou et al.

COMPOSER jointly learns group activity, individual actions and contrastive cluster-
ing of clips (the multitask-learning details are in Sect. 3.5).

3.3 Contrastive Clustering for Scale Agreement

We consider the clip tokens learned at different scales as representations of dif-
ferent views of the clip instance. Then, we cluster clip representations learned in
all scales while enforcing consistency between cluster assignments produced from
different scales of the clip. This can act as regularization of the embedding space
during training (Fig. 2). To enforce consistency, we use a swapped prediction mech-
anism [7] where we predict the cluster assignment of a scale from the representa-
tion of another scale. COMPOSER jointly learns GAR and the swapped prediction
task to capture an agreement of the common semantic information hidden across
the scales.

Preliminaries. Suppose vn,s ∈ R
d represents the learned representation of clip

n in scale s, where s ∈ {1, 2, 3, 4}. Following prior works [7,25], we first project the
representation to the unit sphere. We then compute a code (i.e., cluster assign-
ment) qn,s ∈ R

K by mapping vn,s to a set of K trainable prototype vectors,
{c1, . . . , cK}. We denote by C ∈ R

K×d the matrix whose rows are the c1, . . . , cK .

Swapped Prediction. Suppose s and w denote 2 different scales from the four
representation scales. The swapped prediction problem aims to predict the code
qn,s from vn,w, and qn,w from vn,s, with the following loss function:

Lswap (vn,w,vn,s) = � (vn,w,qn,s) + � (vn,s,qn,w) (2)

where � (vn,w,qn,s) measures the fit between vn,w and qn,s. � (vn,w,qn,s) is the
cross entropy loss between qn,s and the probability obtained by taking a softmax
of the dot products of vn,w and prototypes in C:

� (vn,w,qn,s) = −
K∑

k=1

q(k)
n,s log

exp
(
1
τ vn,wc�

k

)
∑K

k′=1 exp
(
1
τ vn,wc�

k′
) (3)

where τ is a temperature parameter. The total loss of the swapped prediction
problem is taking Eq. (2) computed over all pairs of scales and all N clips,

Lcluster =
1
N

N∑
n=1

⎛
⎝ ∑

w,s∈{1,2,3,4}&w �=s

Lswap (vn,w,vn,s)

⎞
⎠ (4)

Online Clustering. This step produces the cluster assignments using the
learned prototypes C and the learned clip representations only within a batch,
V ∈ R

B×d where B denotes the batch size. We perform the clustering in an
online fashion for faster training and use the method proposed in [7]. Specifi-
cally, online clustering yields the codes Q ∈ R

B×K . We compute codes Q such
that all examples in a batch are equally partitioned by the prototypes (which
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prevents the trivial solution where every clip has the same code). Q is opti-
mized to maximize the similarity between the learned clip representations and
the prototypes,

max
Q∈Q

Tr
(
QCV �)

+ εH(Q), (5)

Q =
{

Q ∈ R
B×K
+ | 1BQ =

1
K

1K , Q1�
K =

1
B
1�

B

}

where the trace Tr is the sum of the elements on the main diagonal, H is the
entropy function, and ε is a parameter that controls the smoothness of the map-
ping. 1K ∈ R

K and 1B ∈ R
B are a vector of ones to enforce the equipartition

constraint. The continuous solution Q∗ of Eq. (5) is computed with the iterative
Sinkhorn-Knopp algorithm [7,13].

3.4 Data Augmentation for Keypoint Modality

We use the following data augmentations to aid training and improve general-
ization ability of the model learned from the keypoint modality.

Actor Dropout is performed by removing a random actor in a random frame,
inspired by [35] that masks agents with probabilities to predict agent behaviors
for autonomous driving. We remove actors by replacing the representation of the
actor with a zero vector.

Horizontal Flip is often used by existing GAR methods [37,44,56], which is
performed on the video frame level. This augmentation causes the pose of each
person and positions of (left and right) sub-groups flipped horizontally. We add
a small random perturbation on each flipped keypoint.

Horizontal Move means we horizontally move all keypoints in the clip by a
certain number of pixel locations, which is randomly determined per video and
bounded by a pre-defined number (i.e., 10). Similarly, afterwards a small random
perturbation is applied on each keypoint.

Vertical Move is done similar to the Horizontal Move, except we move the
keypoints in the vertical direction.

Novel practices like Actor Dropout, Horizontal/Vertical Move and random
perturbations help the model to perform GAR from noisy estimated keypoints.

3.5 Auxiliary Prediction and Multitask Learning

We take the learned representation of the clip at each scale of each Multiscale
Transformer block, and perform auxiliary group activity predictions (Fig. 3).
Specifically, each of the clip representations learned at each scale of each block
is sent as input to the group activity classifier to produce one GAR result. In
addition, person representation from the last Multiscale Transformer block is the
input to a person action classifier. Meanwhile, the loss of the swapped prediction
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problem is computed given the learned representations of the clip of all 4 scales
from the last Multiscale Transformer block. The total loss is:

Ltotal =
M−1∑
m=1

LgroupAux + λ (LgroupLast + Lperson + Lcluster) (6)

where LgroupAux represents the loss from Auxiliary Prediction incurred by clip
representations at different scales and early blocks of the Multiscale Transformer,
LgroupLast is from the last Multiscale Transformer block, Lperson is the person
action classification loss, and Lcluster is the contrastive clustering loss (Eq. 4). m
denotes the index of the Multiscale Transformer block, M is the total number
of the Multiscale Transformer blocks, and λ is a hyper-parameter that weights
the importance of predictions from the last block. For metric evaluation, we use
the clip token from the last scale in the last Multiscale Transformer as input to
the group activity classifier.

4 Experimental Evaluation

4.1 Dataset

The Volleyball dataset [23] (VD) comprises 4, 830 clips from 55 videos. The
group activity labels include 8 activities: 4 main activities (set, spike, pass, win-
point) which are divided into two subgroups, left and right. Each player can
perform one of the 9 actions: blocking, digging, falling, jumping, moving, setting,
spiking, standing and waiting. The dataset has a default ‘Original’ split in which
train/test videos were randomly splitted (39 train and 16 test videos). A skewed
‘Olympic’ split [44] was later released in which train/test videos are splitted
according to the match venues: 29 train videos are from the same 2012 London
Olympics venue, while the rest 26 test videos are from numerous venues, and
thus largely differs from the train videos w.r.t. the scene background.

The Collective Activity Dataset. [12] (CAD) is a dataset with 44 real-life
videos [48]. The group activity labels are crossing, waiting, queueing, walking
and talking (person action labels have an additional ‘N/A’ class). We follow
prior works to merge the class crossing and walking into moving [46,50,51,55],
and use the same train-test split [39,47,55] and actor tracklets [5,55]. Please
refer to Appendix for implementation details on both datasets.

4.2 Comparison with State-of-the-Arts

Scene Generalization for Keypoint-only Setup. To support the keypoint-
only setup for GAR, we first compare the generalization capability of models
using either RGB or the keypoint modality. In Table 1, I3D and VGG-16 are
two commonly-used image backbone by prior RGB-based GAR methods; the
rest are all GAR models (all use VGG-16 as the backbone).
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Table 1. Test accuracy on VD under
different train/test splits. Yellow
shaded rows highlight the methods use
RGB input, and blue for keypoint

Model VD Acc. (%) ↑
Olympic Original

I3D [8] 73.9 84.6

VGG-16 [41] 76.4 91.6

PCTDM [50] 75.2 91.7

SACRF [38] 71.1 91.8

AT [16] 76.9 93.0

ARG [47] 77.8 93.3

TCE-STBiP [54] 78.5 93.5

DIN [55] 79.1 93.6

POGARS [44] 89.7 93.2

COMPOSER (ours) 95.1 93.7

Improvement +5.4% +0.1%

Note: Keypoint-based methods do NOT use
ball keypoint in this table in order to have a
rigorous comparison because RGB-based
methods are unaware of such info.

Table 2. Comparisons with state-of-
the-art (SOTA) methods that leverage
only keypoint information on the VD
Original split. COMPOSER outperforms
existing methods and achieves a new high-
est record (+0.7% improvement)

Model Keypoint Acc.

Actor Object

Zappardino et al. [56] � 91.0

GIRN [37] � 88.4

� � 92.2

AT [16] � 92.3

� � 92.8

POGARS [44] � 93.2

� � 93.9

COMPOSER (ours) � 93.7

� � 94.6

On VD Olympic split, the best prior RGB-based method is DIN [55] in
Table 1. We substitute DIN with a COMPOSER variant3 (Sect. 1) that also con-
sumes RGB input instead of keypoint, and the result is 81.1% which is 2%
higher than DIN, suggesting the stronger reasoning strength of COMPOSER, but
the accuracy is still low due to the RGB signals. POGARS [44] uses the keypoint
modality and has an accuracy of 89.7%, higher than all RGB-based methods.
COMPOSER with the keypoint-only modality obtains 95.1% accuracy and signifi-
cantly outperforms prior methods, yielding +5.4% improvement. These results
imply that the keypoint-only setup can reduce scene biases, and generalize bet-
ter than approaches relying on the RGB modality to testing data with different
visual characteristics from training.

We also report the results of these methods that we obtained on VD Original
split in Table 1. From this side-by-side comparison, the difference between the
Olympic and Original split is vivid. Current GAR methods have quite saturated
performances on the Original split of VD and the results are all very high (more
evidence later). Therefore, we recommend readers using the more challenging
VD Olympic split for future research on GAR. Note that the COMPOSER that
outperforms prior methods in Table 1 is only an ablated version of ours in that
not using the object token(s). In addition, GroupFormer [29] is currently the
best-performing method (Table 4 in Appendix) and its RGB-only variant has
the result of 94.1% accuracy on VD Original split. However, GroupFormer uses
additional scene features with the Inception-v3 backbone.

3 This COMPOSER variant consumes RGB-based ROI-aligned person features as input,
and thus only models 3 scales: person, interaction, and the group scale.
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Table 3. Comparisons with SOTA methods that use a single or multiple modalities
on the original split of VD and CAD. “Flow” denotes optical flow input, and “Scene”
denotes features of the entire frames. Fewer modalities indicates a stronger capability of
the model itself (fewer checks are better). The top 3 performance scores are highlighted
as: First, Second∗, Third. COMPOSER outperforms the latest GAR methods that use a
single modality (+0.7% improvement on VD and +2.8% improvement on CAD), and
performs favorably compared with methods that exploit multiple expensive modalities

Model Modality Dataset

Keypoint RGB Flow Scene VD CAD

HDTM [23] � 81.9 81.5

CERN [40] � 83.3 87.2

stagNet [39] � 89.3 89.1

RCRG [22] � 89.5 N/A

SSU [5] � 90.6 N/A

PRL [19] � 91.4 N/A

ARG [47] � 92.5 91.0

HiGCIN [51] � 91.5 93.4

DIN [55] � 93.6 N/A

Zappardino et al. [56] � 91.0 N/A

GIRN [37] � 92.2 N/A

AT [16] � 92.3 N/A

POGARS [44] � 93.9 N/A

CRM [4] � � 93.0 85.8

AT [16] � � 93.0 92.8

Ehsanpour et al. [15] � � 93.1 89.4

GIRN [37] � � � 94.0 N/A

TCE+STBiP [54] � � � 94.7 N/A

SACRF [38] � � � � 95.0∗ 95.2

GroupFormer [29] � � � � 95.7 96.3

COMPOSER (ours) � 94.6 96.2∗
∗ Note: The best results of each method that were reported
by the method authors are listed in the table in order to
be compared with ours most rigidly. ‘N/A’ stands for ‘not
available’. Yellow shaded rows highlight that the methods use
just the RGB-based input, whereas blue for just keypoint.

Comparisons of Methods Using Keypoint-only Modality In Table 2,
we compare COMPOSER with more GAR methods that use only the keypoint
modality on VD Original split following conventions. COMPOSER achieves a new
SOTA 94.6% accuracy with +0.7% improvement.

Among these methods, Zappardino et al. [56] use CNNs to learn group activ-
ity in Volleyball games, given sequence of person keypoint coordinates, their
temporal differences, and keypoint differences from each actor to the pivot-actor
that is selected by the model. The model does not model human-object interac-
tions. AT [16] does not consider human-object interactions either, but because
AT is also a Transformer-based model like ours, we can easily improve it by
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Fig. 5. Qualitative results of COMPOSER on VD – showcasing attention matrices of
an instance in the “right pass” class (key actor is actor 0)

feeding our object tokens as additional inputs to AT. Moreoever, GIRN [37]
and POGARS [44] are designed to leverage ball trajectory for learning group
activity in videos of Volleyball games. As shown in Table 2, the object keypoint
information can greatly boost the performance by providing additional context.
GIRN models interactions between joints within an actor and across actors, as
well as joint-object interactions. POGARS uses 1D CNNs to learn spatiotem-
poral dynamics of actors. AT, GIRN, and POGARS all use dot-product-based
attention mechanisms similar to ours, however, they fail to fully model the hier-
archical entities in the video (e.g., they all only use attention to learn person-wise
importance, and at most consider two scales: keypoint and person), and more
importantly, they lack explicit strategy to improve the multiscale representations
in order to aid the compositional reasoning of group activity recognition.

Comparisons of Methods Using Other Modalities We compare results of
COMPOSERwith the best reported results of SOTA methods that use a single or mul-
tiple modalities in Table 3 on both VD and CAD. COMPOSER still achieves compet-
itive performance – outperforming methods that use only RGB signals, obtaining
+0.7% improvement on VD and +2.8% improvement on CAD if compared with
methods that use a single modality (RGB or keypoint), and performing favorably
compared with methods that exploit multiple expensive input modalities.
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Fig. 6. Qualitative results on CAD (video ID ‘10’). COMPOSER successfully predicts
‘Queueing’ even when the input keypoints are partially noisy due to occlusion

GroupFormer [29] has the highest accuracy on VD and CAD due to learning
the representations of the multiscale scene entities (person and person group)
with a Clustered Spatial-Temporal Transformer, and leveraging scene context
and multiple expensive modalities (FLOPs: GroupFormer 595M v.s. COMPOSER
297M; details are in Appendix).

4.3 Qualitative Results

We visualize the attention weights in Fig. 5. We highlight the tokens that the
model has mostly attended to at each scale (e.g., wrists of actor 0 at the person
keypoint scale). COMPOSER is able to attend to relevant information across dif-
ferent scales, and it can produce interpretable results. In Fig. 6, we visualize the
keypoint input to COMPOSER on a CAD instance. COMPOSER implicitly learns the
human motion patterns from the keypoint features to handle partial occlusions.

Please check Appendix for more analyses including ablation studies, confu-
sion matrices, parameter sensitivity analyses w.r.t. the number of scales and the
number of prototypes, more qualitative results including failure cases, etc.

5 Conclusion

We propose COMPOSER that uses a Multiscale Transformer to learn compositional
reasoning at different scales for group activity recognition. We also improve the
intermediate representations using contrastive clustering, auxiliary prediction,
and data augmentation techniques. We demonstrate the model’s strength and
interpretability on two widely-used datasets (Volleyball and Collective Activity).
COMPOSER achieves up to +5.4% improvement with just the keypoint modality.

One limitation is that videos with severe occlusions remain challenging for
COMPOSER like other existing methods, due to errors from detecting keypoints.
Adopting 3D keypoints or stronger backbones that estimate keypoints directly
from the video [1,36] can help to address the issue. Possible future directions
include 1) expanding our methods to more complex scenarios, such as crowd
understanding that may require modeling additional hierarchical scales; and 2)
exploring effective multimodal fusion methods in order to use additional modal-
ities like RGB but without suffering from scene biases, since RGB can be benefi-
cial for activities that involve significant interaction with the background scene.



Compositional Reasoning of Group Activity in Videos 263

Acknowledgments. The research was supported in part by NSF awards: IIS-1703883,
IIS-1955404, IIS-1955365, RETTL-2119265, and EAGER-2122119. This material is
based upon work supported by the U.S. Department of Homeland Security under Grant
Award Number 22STESE00001 01 01. Disclaimer: The views and conclusions contained
in this document are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the U.S. Department
of Homeland Security.

References

1. Mediapipe pose: Ml solution for high-fidelity body pose tracking from rgb video
frames. www.google.github.io/mediapipe/solutions/pose.html

2. Abkenar, A.B., Loke, S.W., Zaslavsky, A., Rahayu, W.: Groupsense: recognizing
and understanding group physical activities using multi-device embedded sensing.
ACM Trans. Embedded Comput. Syst. (TECS) 17(6), 1–26 (2019)

3. Asano, Y.M., Patrick, M., Rupprecht, C., Vedaldi, A.: Labelling unlabelled videos
from scratch with multi-modal self-supervision. arXiv preprint arXiv:2006.13662
(2020)

4. Azar, S.M., Atigh, M.G., Nickabadi, A., Alahi, A.: Convolutional relational
machine for group activity recognition. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 7892–7901 (2019)

5. Bagautdinov, T., Alahi, A., Fleuret, F., Fua, P., Savarese, S.: Social scene under-
standing: End-to-end multi-person action localization and collective activity recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4315–4324 (2017)

6. Blomqvist, K., Chung, J.J., Ott, L., Siegwart, R.: Semi-automatic 3d object key-
point annotation and detection for the masses. arXiv preprint arXiv:2201.07665
(2022)

7. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. In: Thirty-fourth
Conference on Neural Information Processing Systems (NeurIPS) (2020)

8. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6299–6308 (2017)

9. Chen, B., et al.: Multimodal clustering networks for self-supervised learning from
unlabeled videos. arXiv preprint arXiv:2104.12671 (2021)

10. Choi, J., Gao, C., Messou, J.C., Huang, J.B.: Why can’t i dance in a mall? learning
to mitigate scene bias in action recognition. In: Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing Systems, pp. 853–865 (2019)

11. Choi, W., Savarese, S.: Understanding collective activities of people from videos.
IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1242–1257 (2013)

12. Choi, W., Shahid, K., Savarese, S.: What are they doing?: Collective activity clas-
sification using spatio-temporal relationship among people. In: 2009 IEEE 12th
international conference on computer vision workshops, ICCV Workshops, pp.
1282–1289. IEEE (2009)

13. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. Adv.
Neural. Inf. Process. Syst. 26, 2292–2300 (2013)

14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

www.google.github.io/mediapipe/solutions/pose.html
http://arxiv.org/abs/2006.13662
http://arxiv.org/abs/2201.07665
http://arxiv.org/abs/2104.12671
http://arxiv.org/abs/1810.04805


264 H. Zhou et al.

15. Ehsanpour, M., Abedin, A., Saleh, F., Shi, J., Reid, I., Rezatofighi, H.: Joint
learning of social groups, individuals action and sub-group activities in videos.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol.
12354, pp. 177–195. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58545-7 11

16. Gavrilyuk, K., Sanford, R., Javan, M., Snoek, C.G.: Actor-transformers for group
activity recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 839–848 (2020)

17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

18. Hinojosa, C., Niebles, J.C., Arguello, H.: Learning privacy-preserving optics for
human pose estimation. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 2573–2582 (2021)

19. Hu, G., Cui, B., He, Y., Yu, S.: Progressive relation learning for group activity
recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 980–989 (2020)

20. Huang, Y., Kadav, A., Lai, F., Patel, D., Graf, H.P.: Learning higher-order object
interactions for keypoint-based video understanding (2021)

21. Hudson, D., Manning, C.D.: Learning by abstraction: The neural state machine.
Adv. Neural. Inf. Process. Syst. 32, 5903–5916 (2019)

22. Ibrahim, M.S., Mori, G.: Hierarchical relational networks for group activity recog-
nition and retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11207, pp. 742–758. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01219-9 44

23. Ibrahim, M.S., Muralidharan, S., Deng, Z., Vahdat, A., Mori, G.: A hierarchical
deep temporal model for group activity recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1971–1980 (2016)

24. Jaiswal, A., Singh, S., Wu, Y., Natarajan, P., Natarajan, P.: Keypoints-aware
object detection. In: NeurIPS 2020 Workshop on Pre-registration in Machine
Learning, pp. 62–72. PMLR (2021)

25. Khosla, P., et al.: Supervised contrastive learning. arXiv preprint arXiv:2004.11362
(2020)

26. Koshkina, M., Pidaparthy, H., Elder, J.H.: Contrastive learning for sports video:
Unsupervised player classification. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4528–4536 (2021)

27. Kulkarni, T.D., et al.: Unsupervised learning of object keypoints for perception and
control. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

28. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines
that learn and think like people. Behav. Brain Sci. 40, e253 (2017)

29. Li, S., Cao, Q., Liu, L., Yang, K., Liu, S., Hou, J., Yi, S.: Groupformer: Group
activity recognition with clustered spatial-temporal transformer. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 13668–13677
(2021)

30. Lu, C., Koniusz, P.: Few-shot keypoint detection with uncertainty learning for
unseen species. arXiv preprint arXiv:2112.06183 (2021)

31. Lu, L., Lu, Y., Yu, R., Di, H., Zhang, L., Wang, S.: Gaim: Graph attention inter-
action model for collective activity recognition. IEEE Trans. Multimedia 22(2),
524–539 (2019)

32. Luo, Z., et al.: Moma: Multi-object multi-actor activity parsing. In: Advances in
Neural Information Processing Systems, vol. 34 (2021)

https://doi.org/10.1007/978-3-030-58545-7_11
https://doi.org/10.1007/978-3-030-58545-7_11
https://doi.org/10.1007/978-3-030-01219-9_44
https://doi.org/10.1007/978-3-030-01219-9_44
http://arxiv.org/abs/2004.11362
http://arxiv.org/abs/2112.06183


Compositional Reasoning of Group Activity in Videos 265

33. Nakatani, C., Sendo, K., Ukita, N.: Group activity recognition using joint learning
of individual action recognition and people grouping. In: 2021 17th International
Conference on Machine Vision and Applications (MVA), pp. 1–5. IEEE (2021)

34. Nebehay, G., Pflugfelder, R.: Consensus-based matching and tracking of keypoints
for object tracking. In: IEEE Winter Conference on Applications of Computer
Vision, pp. 862–869. IEEE (2014)

35. Ngiam, J., et al.: Scene transformer: A unified architecture for predicting multiple
agent trajectories. arXiv preprint arXiv:2106.08417 (2021)

36. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3d human pose estimation
in video with temporal convolutions and semi-supervised training. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7753–7762 (2019)

37. Perez, M., Liu, J., Kot, A.C.: Skeleton-based relational reasoning for group activity
analysis. Pattern Recogn. 122, 108360 (2021)

38. Pramono, R.R.A., Chen, Y.T., Fang, W.H.: Empowering relational network by
self-attention augmented conditional random fields for group activity recognition.
In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS,
vol. 12346, pp. 71–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58452-8 5

39. Qi, M., Qin, J., Li, A., Wang, Y., Luo, J., Van Gool, L.: stagNet: An attentive
semantic rnn for group activity recognition. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 104–120. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01249-6 7

40. Shu, T., Todorovic, S., Zhu, S.C.: Cern: confidence-energy recurrent network for
group activity recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5523–5531 (2017)

41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

42. Singh, K.K., Mahajan, D., Grauman, K., Lee, Y.J., Feiszli, M., Ghadiyaram, D.:
Don’t judge an object by its context: Learning to overcome contextual bias. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 11070–11078 (2020)

43. Snower, M., Kadav, A., Lai, F., Graf, H.P.: 15 keypoints is all you need. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6738–6748 (2020)

44. Thilakarathne, H., Nibali, A., He, Z., Morgan, S.: Pose is all you need: The pose
only group activity recognition system (pogars). arXiv preprint arXiv:2108.04186
(2021)

45. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

46. Wang, M., Ni, B., Yang, X.: Recurrent modeling of interaction context for collective
activity recognition. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3048–3056 (2017)

47. Wu, J., Wang, L., Wang, L., Guo, J., Wu, G.: Learning actor relation graphs
for group activity recognition. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9964–9974 (2019)

48. Wu, L.F., Wang, Q., Jian, M., Qiao, Y., Zhao, B.X.: A comprehensive review of
group activity recognition in videos. Int. J. Autom. Comput. 18, 1–17 (2021)

49. Xu, D., Fu, H., Wu, L., Jian, M., Wang, D., Liu, X.: Group activity recognition
by using effective multiple modality relation representation with temporal-spatial
attention. IEEE Access 8, 65689–65698 (2020)

http://arxiv.org/abs/2106.08417
https://doi.org/10.1007/978-3-030-58452-8_5
https://doi.org/10.1007/978-3-030-58452-8_5
https://doi.org/10.1007/978-3-030-01249-6_7
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2108.04186


266 H. Zhou et al.

50. Yan, R., Tang, J., Shu, X., Li, Z., Tian, Q.: Participation-contributed temporal
dynamic model for group activity recognition. In: Proceedings of the 26th ACM
international conference on Multimedia, pp. 1292–1300 (2018)

51. Yan, R., Xie, L., Tang, J., Shu, X., Tian, Q.: Higcin: hierarchical graph-based cross
inference network for group activity recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020)

52. Yan, R., Xie, L., Tang, J., Shu, X., Tian, Q.: Social adaptive module for weakly-
supervised group activity recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm,
J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 208–224. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58598-3 13

53. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation
for object detection. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9657–9666 (2019)

54. Yuan, H., Ni, D.: Learning visual context for group activity recognition. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3261–3269
(2021)

55. Yuan, H., Ni, D., Wang, M.: Spatio-temporal dynamic inference network for group
activity recognition. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7476–7485 (2021)

56. Zappardino, F., Uricchio, T., Seidenari, L., Del Bimbo, A.: Learning group activ-
ities from skeletons without individual action labels. In: 2020 25th International
Conference on Pattern Recognition (ICPR), pp. 10412–10417. IEEE (2021)

https://doi.org/10.1007/978-3-030-58598-3_13

	COMPOSER: Compositional Reasoning of Group Activity in Videos with Keypoint-Only Modality
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Tokenizing a Video as Hierarchical Semantic Entities
	3.2 Multiscale Transformer 
	3.3 Contrastive Clustering for Scale Agreement
	3.4 Data Augmentation for Keypoint Modality
	3.5 Auxiliary Prediction and Multitask Learning

	4 Experimental Evaluation
	4.1 Dataset
	4.2 Comparison with State-of-the-Arts
	4.3 Qualitative Results

	5 Conclusion
	References




