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Abstract

Our goal is to learn a video representation that is useful
for downstream procedure understanding tasks in instruc-
tional videos. Due to the small amount of available an-
notations, a key challenge in procedure understanding is to
be able to extract from unlabeled videos the procedu-ral
knowledge such as the identity of the task (e.g., ‘make
latte’), its steps (e.g., ‘pour milk’), or the potential next
steps given partial progress in its execution. Our main in-
sight is that instructional videos depict sequences of steps
that repeat between instances of the same or different tasks,
and that this structure can be well represented by a Proce-
dural Knowledge Graph (PKG), where nodes are discrete
steps and edges connect steps that occur sequentially in
the instructional activities. This graph can then be used to
generate pseudo labels to train a video representation that
encodes the procedural knowledge in a more accessi-ble
form to generalize to multiple procedure understand-ing
tasks. We build a PKG by combining information from a
text-based procedural knowledge database and an unla-
beled instructional video corpus and then use it to gener-
ate training pseudo labels with four novel pre-training ob-
jectives. We call this PKG-based pre-training procedure
and the resulting model Pa p r i k a ,  Procedure-Aware PRe-
training for Instructional Knowledge Acquisition. We eval-
uate P a p r i k a  on COIN and CrossTask for procedure un-
derstanding tasks such as task recognition, step recogni-
tion, and step forecasting. P a p r i k a  yields a video rep-
resentation that improves over the state of the art: up to
11.23% gains in accuracy in 12 evaluation settings. Im-
plementation is available at h t t p s : / / g i t h u b . c o m /
s a l e s f o r c e / p a p r i k a .

1. Introduction

Instructional videos depict humans demonstrating how
to perform multi-step tasks such as cooking, making up
and embroidering, repairing, or creating new objects. For
a holistic instructional video understanding, an agent has to
acquire procedural knowledge: structural information about

Figure 1. Training a video representation for procedure un-
derstanding with supervision from a procedural knowledge
graph: the structure observed in instructions for procedures (from
text, from videos) corresponds to sequences of steps that repeat
between instances of the same or different tasks; this structure is
well represented by a Procedural Knowledge Graph (PKG). (a) We
build a PKG combining text instructions with unlabeled video data,
and (b) obtain a video representation by encoding the human pro-
cedural knowledge from the PKG into a more general procedure-
aware model (Papr ika)  generating pseudo labels with the PKG
for several procedure understanding objectives. P a p r i k a  can
then be easily applied to multiple downstream procedural tasks.

tasks such as the identification of the task, its steps, or fore-
casting the next steps. An agent that has acquired procedu-
ral knowledge is said to have gained procedure understand-
ing of instructional videos, which can be then exploited in
multiple real-world applications such as instructional video
labeling, video chapterization, process mining and, when
connected to a robot, robot task planning.

Our goal is to learn a novel video representation that can
be applicable to a variety of procedure understanding tasks
in instructional videos. Unfortunately, prior methods for
video representation learning are inadequate for this goal, as
they lack the ability to capture procedural knowledge. This
is because most of them are trained to learn the (weak) cor-
respondence between visual and text modalities, where the
text comes either from automatic-speech recognition (ASR)
on the audio [43, 77], which is noisy and error-prone, or
from a caption-like descriptive sentence (e.g., “a video of
a dog”) [33], which does not contain sufficient informa-
tion for fine-grained procedure understanding tasks such as
step recognition or anticipation. Others are pre-trained on
masked frame modeling [34], frame order modeling [34]
or video-audio matching [1], which gives them basic video

10727



spatial, temporal or multimodal understanding but is too
generic for procedure understanding tasks.

Closer to our goal, Lin et al. [38] propose a video foun-
dation model for procedure understanding of instructional
videos by matching the videos’ A S R  transcription (i.e., sub-
title/narration) to procedural steps from a text procedural
knowledge database (wikiHow [30]) and training the video-
representation-learning model to match each part of an in-
structional video to the corresponding step. Their method
only acquires isolated step knowledge in pre-training and is
not as suitable to gain sophisticated procedural knowledge.

We propose Pa p r i k a ,  from Procedure-Aware PRe-
training for Instructional Knowledge Acquisition, a method
to learn a novel video representation that encodes procedu-
ral knowledge (Fig. 1). Our main insight is that the structure
observed in instructional videos corresponds to sequences
of steps that repeat between instances of the same or differ-
ent tasks. This structure can be captured by a Procedural
Knowledge Graph (PKG) where nodes are discretized steps
annotated with features, and edges connect steps that occur
sequentially in the instructional activities. We build such a
graph by combining the text and step information from wik-
iHow and the visual and step information from unlabeled
instructional video datasets such as HowTo100M [45] auto-
matically. The resulting graph encodes procedural knowl-
edge about tasks and steps, and about the temporal order
and relation information of steps.

We then train our P a p r i k a  model on multiple pre-
training objectives using the PKG to obtain the training la-
bels. The proposed four pre-training objectives (Sec. 3.3)
respectively focuses on procedural knowledge about the
step of a video, tasks that a step may belong to, steps that
a task would require, and the general order of steps. These
pre-training objectives are designed to allow a model to an-
swer questions about the subgraph of the PKG that a video
segment may belong to. The PKG produces pseudo labels
for these questions as supervisory signals to adapt video
representations produced by a video foundation model [9]
for robust and generalizable procedure understanding.

Our contributions are summarized as follows:
(i) We propose a Procedural Knowledge Graph (PKG) that
encodes human procedural knowledge from collectively
leveraging a text procedural knowledge database (wikiHow)
and an unlabeled instructional video corpus (HowTo100M).
(ii) We propose to elicit the knowledge in the PKG into
Pa p r i k a ,  a procedure-aware model, using four pre-
training objectives. To that end, we produce pseudo lables
with the PKG that serve as supervisory signals to train
P a p r i k a  to learn to answer multiple questions about the
subgraph of the PKG that a video segment may belong to.
(iii) We evaluate our method on the challenging COIN and
CrossTask datasets on downstream procedure understand-
ing tasks: task recognition, step recognition, and step fore-

casting. Regardless of the capacity of the downstream
model (from simple MLP to the powerful Transformer), our
method yields a representation that outperforms the state of
the art – up to 11.23% gains in accuracy out of 12 evalua-
tion settings.

2. Related Work
We focus on learning a novel video representation that

can be easily adapted to downstream instructional video
procedure understanding tasks [35, 38] such as procedural
task recognition [20], step recognition [27, 47, 88], antic-
ipation [21, 36, 44, 53, 80], localization [13, 15, 65, 85] or
segmentation [19, 25, 40, 41, 55, 56, 68, 86], procedure plan-
ing [8, 10, 62], and so on [2, 12, 14, 23, 26, 58, 72, 73, 75, 78].

Our goal is related to self-supervised learning of video
representations [51, 52]. Self-supervised pre-training ob-
jectives include predicting the video pace [6, 70], future
frame [39, 59, 67], future A S R  [54] or the context [50],
motion and appearance statistics [69], solving space or/and
time jigsaw puzzles [28, 31, 34, 74, 82], and identifying the
odd video segment [16] – all exploiting the temporal sig-
nals. Masking has also gained popularity where signals of
one or multiple modalities (frame/text/audio) are masked
and required to be predicted [24, 32–34, 42, 61, 76, 81, 82].
Other pre-training objectives are based on spatiotemporal
data augmentation [48, 81], cross-modality clustering [11]
matching [1,4,5,33,37,42,43,46,77,81,82], as well as fine-
grained noun/object-level or verb-level objectives [17, 33].

DS [38], MIL-NCE [43], VAT T  [1], VideoCLIP [77],
VLM  [76], MCN [11], MMV [4], Hero [34] and C B T  [60]
have utilized HowTo100M – a large-scale instructional
video dataset [45] for pre-training. Except DS, they have
utilized strictly or weakly temporally overlapped A S R  with
video frames as the source for contrastive learning or
masked based modeling. DS [38] argued that A S R  is a
suboptimal source to describe procedural videos. They uti-
lized a pre-trained language foundation model to match step
headlines in wikiHow [30, 79, 83, 84, 87] to A S R  sentences
of video segments. The matched step headlines were then
used to replace A S R  sentences to learn a video represen-
tation learning model. On procedure understanding down-
stream tasks, DS outperforms models including S3D pre-
trained with MIL-NCE [43] (MIL-NCE for short in the rest
of the paper), Cl ipBERT [32] and VideoCLIP [77].

ActionCLIP [71] and Bridge-Prompt [35] are prompt-
based models inspired by CLIP [49]; ActionCLIP focuses
on atomic action recognition [18] (i.e., recognizing an
atomic action such as “falling” from a short clip ), whereas
Bridge-Prompt is for ordinal action understanding related
downstream applications. They are related to our work but
both require action annotations for training. Instead, we fo-
cus on more effective pre-training methods for a procedure
understanding model that encodes the procedural knowl-
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Figure 2. Overview. We encode procedural knowledge in a Procedural Knowledge Graph (PKG): nodes are (clustered) steps from wikiHow
that are annotated with features, and edges connect steps that occur sequentially in the instructional activities from wikiHow or an unlabeled
instructional video corpus. Four pre-training objectives elicit the knowledge in the PKG to P a p r i k a ,  a procedure-aware model. We achieve
this by querying the PKG to produce pseudo labels for pre-training as supervisory signals. P a p r i k a  learns a video representation that
encodes procedural knowledge and thus lead to improved performance on multiple downstream procedure understanding tasks.

edge and avoids laborious annotations on step class and
time boundary of instructional videos. This enables train-
ing on rich but unlabeled web data.

DS [38] leveraged wikiHow for instructional video un-
derstanding. This is similar to our goal of building the PKG
from wikiHow and instructional videos. However, DS does
not focus on encoding procedural knowledge during pre-
training beyond video segment and text matching. For ex-
ample, DS does not encode relationships between steps in
the pre-trained video representation. This is in part due to
multiple challenges that need to be addressed: (1) the order
of steps to execute a task follows certain temporal or causal
constraints, (2) the execution order of steps of the task in
another video instance can be different from the order that is
demonstrated in the current video instance, and (3) some
steps may belong to tasks that are not demonstrated in the
current video instance (i.e., the cross-task characteristics of
steps). We propose the PKG to address these challenges.
A  model trained using our method can acquire the higher-
level prior human procedural knowledge instead of just the
isolated step knowledge that DS provides.

3. Methodology
3.1. Problem Formulation

Technically, video representation learning methods learn
to represent a long video as a sequence of segment em-
beddings [1, 38, 43]. A  video is viewed as a sequence of
L  segments [x1, . . . , xl , .., xL ], where x l  2  RH⇥W ⇥3⇥F ,
H  and W denote the spatial resolution height and width,
and F  is # R G B  frames of the video segment (“#”  de-
notes “the number of”). A  model is pre-trained to learn the
mapping x l  !  zl 2  Rd. Downstream models are applied
on the (whole or partial) sequence of segment embeddings
[z1, . . . , zl, .., zL] to perform various tasks.

Our goal is to learn zl that encodes procedural knowl-

edge for downstream procedure understanding tasks for in-
structional videos. However, pre-training a new (or fine-
tuning a pre-trained) video model becomes impractical for
real-world settings as the model size grows rapidly [9, 51].
We propose instead a practical framework that trains a
light-weight procedure-aware model f ( ·)  that refines the
video segment feature extracted from a frozen general-
purpose video foundation model e(·), i.e., zl : =  f (e(x l ) )
(Fig. 2 (b)). Our framework exploits the success of existing
large foundation models [9] and enables parameter-efficient
transfer learning (similar practices used in [3, 33]). f ( · )
serves as a feature adapter [22,63] to allow the refined video
feature to encode the previously missing procedural knowl-
edge for a stronger downstream procedure understanding
capability. We coin our trained f (· )  as P a p r i k a .

Our key insight is that a text procedural knowledge
database combined with unlabeled instructional videos can
be utilized to build a Procedural Knowledge Graph (PKG)
(Fig. 2 (a)) to encode procedural knowledge. The PKG can
provide supervisory signals for training a procedure-aware
model. We now describe how to build the PKG from wik-
iHow and unlabeled procedural videos (Sec. 3.2), and then
introduce four pre-training objectives (Sec. 3.3) that allow
P a p r i k a  to learn zl infused with procedural knowledge
by mining the PKG.

3.2. Procedural Knowledge Graph
The PKG is a homogeneous graph G =  (V , E ) with ver-

tex set V and edge set E. Nodes represent steps (e.g., ‘add
milk’) from a wide variety of tasks (e.g., ‘how to make
latte’), and edges represent directed step transitions. That
is, edge ( i , j )  indicates that a transition between steps in
nodes i  and j  that was observed in real-life procedural data.
Step 1: Obtain nodes of the PKG. V contains steps of
tasks that may appear in instructional videos. Pre-training
uses unlabeled videos, thus, there are no step annotations
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provided by the pre-training video corpus that can be di-
rectly used to form the discrete node entities. Inspired by
DS [38], we resort to the step headlines in wikiHow [30].

wikiHow is a text-based procedural knowledge database
B that contains articles describing the sequence of steps
needed for the completion of a wide range of tasks. B =

[s ( 1 ) ,  .  .  .  ,  s ( 1 ) ] ,  .  .  .  ,  [ s ( t ) ,  .  .  .  ,  s ( t ) ] ,  .  .  .  ,  [ s ( T ) ,  .  .  .  ,  s ( T ) ]       where T

is #tasks, the subscript bt is #steps of task t, and s(t)  rep-
resents the natural language based summary (i.e., step head-
line) of i-th step for task t. Examples of wikiHow task arti-
cles are available in Fig. 4 and 5.

Since two step headlines in B can represent the same step
but are described slightly differently, e.g., “jack up the car”
and “jack the car up”, we perform step deduplication by
clustering similar step headlines. The resulting clusters are
step nodes that constitute V. We list the largest step nodes in
Supplementary Material. We find cross-task characteristics
of steps, i.e., one step may belong to multiple tasks.
Step 2: Add edges to the PKG. E is the set of direct tran-
sitions observed in data between any two step nodes. How-
ever, most tasks in B  have only one article, which provides
only one way to complete the task through a sequence of
steps. How to encode the different ways to complete a task
t that involve different execution order of steps or new steps
that are absent in the article of task t, becomes a challenge.

Our solution is to additionally leverage an unlabeled in-
structional video corpus to provide more step transition ob-
servations. In practice, we use MIL-NCE [43], a pre-trained
video-language model, to compute the matching score be-
tween a segment x l  and a step headline s(t) . MIL-NCE was
trained to learn video and text embeddings with high match-
ing scores on co-occurring frames and A S R  subtitles.

We then use a thresholding criterion and the correspon-
dence between step headlines and step nodes obtained from
Step 1 to match step nodes to video segments and obtain
step node transitions given the temporal order of segments
in videos. The step node transitions from wikiHow or the
video corpus constitute E. Please refer to Supplementary
Material for implementation details on graph construction.

E encodes the structure observed in instructional videos
as it encompasses multiple sequences of steps that repeat
between video instances of the same or different tasks. In
addition, E captures the relations of steps; the type of rela-
tion is not strictly defined – the steps could be temporal or
causal related – because the step transitions that form E are
observed from human-provided real-life demonstrations.
Step 3: Populate graph attributes. It is possible to col-
lect various forms of attributes for the PKG depending on
the desired use cases of the PKG. For example, node at-
tributes can be the step headline texts, task names associ-
ated with the step headlines of the node, video segments
matched to the node, the distribution of timestamps of the
matched segments, the aggregated multimodal features of

the matched segments, and so on. Edge attributes can be
the source of the step node transition (from wikiHow or the
video corpus), task occurrence, distribution of timestamps
of the transition, etc. We describe the graph attributes we
used and how we used them in Sec. 3.3.

3.3. Training P a p r i k a

The PKG is a rich source of supervision for training
models for procedure understanding. We propose four pre-
training objectives as exemplars to show the possible ways
in which the PKG can provide supervisory signals to train
f (·)  to learn good video representations using unlabeled in-
structional videos.
Video-Node Matching (VNM) aims at answering: what
are the step nodes of the PKG that are likely to be matched
to the input video segment x  ? This pre-training objec-
tive leverages the node identity information of the PKG, and it
resembles the downstream application of independently
recognizing steps of video segments. Formally,

a(f (e(x l ) ) )  !  VVNM (1)

where a(·) denotes the answer head model that performs
the pre-training objective given the refined video segment
feature z produced by f ( ·)  as input, and V ✓ V.
Video-Task Matching (VTM) aims at answering: what are
the tasks of the matched step nodes of the input video seg-
ment x  ? This pre-training objective leverages the node’s
task attribute in the PKG. VTM focuses on inferring the
cross-task knowledge of the step nodes without the video
context. Formally,

a(f (e(x l ) ) )  !  TVTM (2)

where TVTM ✓ T , and T is the set of tasks (kT k : =  T ).
Since HowTo100M provides task names of the long videos,
we experiment with using the task names from wikiHow
and/or from HowTo100M (Sec. 4.4). When task names
from both sources are used, VNM leads to 2 answer heads.
Task Context Learning ( T C L )  aims at answering: for
tasks the input video segment may belong to (produced by
VTM), what are the step nodes that the tasks would typ-
ically need? T C L  also leverages the node’s task attribute
in the PKG, but it focuses on inferring step nodes that may
co-occur with the matched step node of the video segment
in demonstrations. T C L  learns the task’s step context that
is commonly observed in data, without the context of the
current video segment. Formally,

a(f (e(x l ) ) )  !  VTCL (3)

where VT C L  ✓ V. When task names from both wikiHow
and HowTo100M are used, T C L  leads to 2 answer heads.
Node Relation Learning (NRL) aims at answering: what
are the k-hop in-neighbors and out-neighbors of the
matched step nodes of the input video segment x  ? k ranges
from 1 to a pre-defined integer K ,  and thus NRL leads to
2 K  sub-questions (2K  answer heads). NRL  leverages the
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edge information of the PKG, and it focuses on learning the
local multi-scale graph structure of the matched nodes of x  .
Predicting the in-neighbors resembles predicting the histor-
ical steps, whereas predicting the out-neighbors resembles
forecasting the next steps of x  . Note that the answer to
NRL can be steps that come from other tasks different from
the task of the current video. Formally,

a(f (e(x l ) ) )  !  VNRL (4)

where VNRL ✓ V.

4. Experiments

4.1. Pre-training Dataset
HowTo100M [45] is a large-scale video dataset that con-

tains over 1M long instructional videos (videos can be over
30 minutes) and is commonly used for video model pre-
training. Videos were collected from YouTube using wik-
iHow article titles as search keywords [45]. To reduce the
computational cost, most of our experiments, including the
construction of the PKG, only use the HowTo100M subset
of size 85K videos from [7].

4.2. Evaluation Settings
We study the transfer learning ability of our P a p r i k a

model trained using the PKG on 12 evaluation settings: 3
downstream tasks ⇥2 downstream datasets ⇥2 downstream
models. The output of the trained procedure-aware model
f (· )  is the input to the downstream model t(·). Note that
the PKG is only used for pre-training and it is discarded at
the downstream evaluation time (test time for f (·)).

4.2.3     Downstream Task Models
Segment features from the trained frozen f ( ·)  are the input
to downstream task model t(·). t(·) is trained and evaluated
on the smaller-scale downstream dataset to perform down-
stream tasks. We experiment with two options for t(·).
MLP. MLP with only 1 hidden layer is the classifier of the
downstream tasks, given the input of mean aggregated se-
quence features. Since a shallow MLP has a limited capac-
ity, performance of a MLP downstream task model heavily
relies on the quality of the input segment features.
Transformer. Since context and temporal reasoning is cru-
cial for the downstream T R  and SF tasks, we follow [38] to
use a one-layer Transformer [66] to allow the downstream
task model the capability to automatically learn to reason
about segment and step relations. Transformer is a rela-
tively stronger downstream task model compared to MLP.

4.3. Implementation Details
We used the version of B that has 10, 588 step headlines

from T =1, 053 task articles. We used Agglomerative Clus-
tering given the features of step headlines, which resulted
in 10, 038 step nodes. Length of segments was set to be 9.6
seconds. The pre-trained MIL-NCE [43] was used as e(·).
f ( · )  was a MLP with a bottleneck layer that has a dimension
of 128 as the only hidden layer. The refined segment feature
shares the same dimension as the input segment feature (i.e.,
512). Our pre-training objectives were cast to a multi-label
classification problem with Binary Cross Entropy as the loss
function. We used the Adam optimizer [29], a batch size of
256, and 8 NVIDIA A100 GPUs. Interested readers may
refer to Supplementary Material for more details.

4.2.1     Downstream Procedure Understanding Tasks 4.4. Quantitative Results

Long-Term Activity/Task Recognition (TR) aims to clas-
sify the activity/task given all segments from a video.
Step Recognition (SR) recognizes the step class given as
input the segments of a step in a video.
Future Step Forecasting (SF) predicts the class of the next
step given the past video segments. Such input contains
the historical steps before the step to predict happens. As
in [38], we set the history to contain at least one step.

4.2.2     Downstream Datasets
We use COIN [64, 65] and CrossTask [88] as the down-
stream datasets because the two cover a wide range of pro-
cedural tasks in human daily activities.
COIN contains 11K instructional videos covering 778 indi-
vidual steps from 180 tasks in various domains. The aver-
age number of steps per video is 3.9.
CrossTask has 4.7K instructional videos annotated with
task name for each video spanning 83 tasks with 105 unique
steps. 2.7K videos have steps’ class and temporal boundary
annotations; these videos are used for the SR  and SF tasks.
8 steps per video on average.

4.4.1     Ablation Studies
We train P a p r i k a  utilizing each of our pre-training objec-
tives from Sec. 3.3; the results are in Table 1. We also com-
pute a performance matrix with color-based visualization
(Fig. 3) to compare the overall performance of the different
pre-training objectives more easily.

The performance ranking of the pre-training objectives is
NRL >  T C L  >  VTM >  VNM. VNM is the least powerful
because it only focus on learning the simpler knowledge of
matching single video segments to step nodes.

VTM (w+h) >  VTM (w) >  VTM (h) where ‘w’ denotes
wikiHow and ‘h’ for HowTo100M. This ranking suggests
that if the pre-training video corpus has the annotation of
video’s task name, our method can well utilize such annota-
tion to further improve performance. Utilizing the wikiHow
task names is better than HowTo100M because the mapping
between step headlines and HowTo100M tasks would not
be as clean as the mapping between step headlines and wik-
iHow tasks, because the former depends on the quality of
the matching between a video segment to a step headline.
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P a p r i k a  (ours)⇤

Downstream Transformer Downstream MLP
Pre-training Method COIN CrossTask COIN CrossTask

S F S R T R S F S R T R S F S R T R S F S R T R
MIL-NCE⇤  [43] (e(·)) 36.55 41.98 76.62 57.96 59.90 61.71 3.16      1.17       21.06     27.71 24.98 5.27
DS [38] 38.13 42.54 79.94 56.29 57.11 59.49 32.54 34.07     72.65     49.95 50.23 57.28
DS⇤ [38] 39.54 45.97 82.66 61.23 61.91 64.24 30.88 32.74     77.66     52.97 53.69 61.08
VSM 39.29 44.37 82.23 57.94 58.92 62.24 31.45 32.66     76.51     49.59 50.01 58.76

VNM 41.98 49.80 82.88 59.45 61.00 64.77 37.56 42.32     82.23     57.08 58.23 64.14 VTM
(wikiHow) 42.05 49.89 84.45 60.27 61.26 66.25 38.13 42.56     82.41     58.48 59.02 65.82 VTM
(HT100M) 41.97 48.59 83.44 60.19 60.64 65.08 36.87 40.07     81.52     56.45 57.42 65.61 VTM
(wikiHow +  HT100M) 42.10 50.02 84.73 60.63 61.14 66.14 38.12 42.68     82.77     58.87 59.30 66.14 T C L
(wikiHow) 42.42 50.12 84.48 60.27 61.40 66.67 39.04 44.16     82.84     58.48 59.59 65.93

P a p r i k a  (ours)     T C L  (HT100M) 42.05 48.68 83.20 60.49 61.86 66.03 38.86 43.56     82.55     58.38 58.63 64.66
T C L  (wikiHow +  HT100M)      42.53 49.79 83.95 60.19 61.67 66.14 38.61 43.27     82.95     58.40 59.26 65.08
N R L  (1 hop) 42.60 50.23 84.66 60.68 61.36 66.67 39.58 45.38 83.45 59.12 59.59 65.95
N R L  (2 hops) 42.53 50.13 84.31 60.68 61.60 66.67 40.55 45.82 83.84 60.13 60.23 66.98
VNM + VTM + T C L  + N R L  42.65 50.48 85.31 61.42 62.38 67.09 39.82 44.78 83.88 59.53 60.16 67.41
Gains to DS [38] +4.52 +7.94 +5.37 +5.13 +5.27 +7.60 +7.28 +10.71 +11.23 +9.58 +9.93 +10.13
VNM + VTM + T C L  + N R L  43.22 50.99 85.84 62.63 63.53 68.35 38.38 42.95     83.41     60.38 61.21 68.35
Gains to DS⇤ [38] +3.68 +5.02 +3.18 +1.40 +1.62 +4.11 +7.50 +10.21 +5.75     +7.41 +7.52 +7.27

SF: Step Forecasting; SR:  Step Recognition; T R :  Task Recognition.
The top 3 performance scores of each downstream evaluation setting are highlighted with green cells (the darker green, the better).
⇤ denotes the model was pre-trained on the full HowTo100M (HT100M) dataset; otherwise, a subset of HowTo100M containing 85K videos was used.
“VNM + VTM + T C L  + NRL”  represents “VNM + VTM (wikiHow +  HT100M) + T C L  (wikiHow) + N R L  (1 hop)”. Please see Supplementary Material for results when K =2.
DS⇤ [38] reported results on COIN are SF: 38.2 (39.4 from ‘Transformer w/ K B  Transfer’), SR: 54.1 , and TR: 88.9 (90.0 from ‘Transformer w/ K B  Transfer’). Our
downstream experimental configurations are different from that in [38] (e.g., w.r.t. temporal length of segments, downstream Transformer model – ours has less parameters, etc.).

Table 1. Accuracies (% ") of the downstream procedure understanding tasks under the 12 evaluation settings. P a p r i k a  that
exploits the PKG outperforms the SOTA methods. Among our pre-training objectives, NRL  is the most effective one, because it exploits the
structural information of the PKG and elicits the procedural knowledge on the order and relation of cross-task steps to P a p r i k a .

Figure 3. Overall Performance Comparison. This matrix com-
pares the overall performance of our proposed pre-training objec-
tives. The value in entry (i, j) is the ratio of evaluation settings in
which the accuracy of method i   the accuracy of method j.
Here, 1 indicates method i outperforms method j in all 12 evalua-
tion settings. The more green entries in the row of a method, the
better its overall performance. NRL is the most effective method.

Comparing the three variants of TCL ,  T C L  (w) >  T C L
(w+h) >  T C L  (h). Overall, T C L  (w+h) is worse than T C L
(w) because T C L  depends on the quality of the pseudo la-
bels of VTM. As utilizing the HowTo100M task names al-
ready leads to probably problematic matched tasks, asking
f (·)  to further identify the step nodes that these matched
tasks need would introduce additional noise, which eventu-
ally undermines the overall downstream performance.

NRL (2 hops) >  NRL (1 hop) overall. NRL  (2 hops)
has a worse or close performance than NRL (1 hop) only
when the downstream task model t(·) is Transformer (Ta-
ble 1). When t(·) is MLP, NRL (2 hops) is always clearly
better. This is because when the capacity of t(·) is limited,
it desires the input video representations to encode more
comprehensive information. NRL  with more hops indicates
a larger exploration on the local graph structure of the PKG
that a video segment belongs to; it can provide more related
neighboring node/step information, and allow the learned
video representations to excel at the downstream tasks.

We train P a p r i k a  using all pre-training objectives
without tuning coefficient of each loss term. P a p r i k a
trained using all pre-training objectives yields the best re-
sult on 8 out of 12 evaluation settings, which suggests the
four pre-training objectives can collaborate to lead to bet-
ter results. Compared with NRL (1 hop), the performance
gains brought by VNM, VTM and T C L  are relatively small.
This variant also fails to outperform NRL (2 hops) on the
SF and SR tasks when t(·) is MLP. These results highlight
the superiority of NRL.

We also experiment with the full HowTo100M data. In-
creasing the size of the pre-training dataset, for both DS
and Pa p r i k a ,  accuracies are dropped on the COIN dataset
when t(·) is MLP (due to MLP’s limited capacity to exploit
the features pre-trained on the large dataset and scale well),
but we observe performance improvement of P a p r i k a  on
the rest 9 out of 12 evaluation settings.
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Figure 4. Pseudo labels generated by the PKG of one video (title is “Grilling A  Tri-Tip ...”). Frames and temporally overlapped subtitles of
four segments sampled from this video were shown. For a succinct visualization, for each pre-training objective, we only show the result of the
most confident pseudo label. T C L  and NRL provide more procedure-level context information than VNM and VTM. Our pseudo labels
entail a much higher relevance to each segment than the subtitle and allow P a p r i k a  to leverage cross-task information sharing.

4.4.2     Comparison to the State of the Art (SOTA)
We have kept the model architectures and experimental se-
tups the same between P a p r i k a  and the SOTA baselines.
MIL-NCE [43] is a pre-training objective based on video-
subtitle matching, and the subtitle can be weakly aligned
to the video segment. This pre-training objective is widely
used by video foundation models. We use the frozen S3D
model released by the authors as e(·) in our framework (and
to build the PKG). Our reported MIL-NCE results can be in-
terpreted as the results of removing f (· )  in our framework.
DS [38] proposes to match a video segment’s subtitle to a
step headline in wikiHow by leveraging a pre-trained lan-
guage model, i.e., MPNet [57]; and the matching results are
used as the pre-training supervisory signals. We use their
proposed objective to train f (·)–the same MLP-based ar-
chitecture used by Papr ika– in  our experiments.

Our P a p r i k a  outperforms the SOTA (Table 1). The
large performance improvement of ours compared to MIL-
NCE highlights the ability of our P a p r i k a  model in adapt-
ing the inferior video features to be instead competent at
the procedure understanding tasks.     P a p r i k a  also out-
performs DS. Among our proposed pre-training objectives,
VNM has the closest results to DS because both focus on
learning step knowledge; the better results of VNM attribute
to multimodal matching – matching the video frames to the
step nodes that summarize and unite different step headlines

in the same action. We perform ablation to match video
frames to the wikiHow step headlines (VSM). VSM has a
slightly better overall performance than DS, but worse than
VNM. VTM, T C L  and NRL learn more advanced procedu-
ral knowledge from the PKG, and therefore their gains over
DS are even more obvious.

P a p r i k a  pre-trained with all four pre-training objec-
tives obtains the highest gain over DS, which is 11.23%
improvement in accuracy on the COIN task recognition task
when t(·) is MLP and the HowTo100M subset is the pre-
training dataset. Overall, the gains are larger when t(·) is
MLP than Transformer. A  shallow MLP downstream
model, learned with features from P a p r i k a  pre-trained
using our full pre-training objectives, even outperforms the
Transformer downstream model learned with input features
from the SOTA pre-trained models. This is because our pro-
posed method allows the video feature to early encode rela-
tion information to address the limitation of a MLP model
in lacking the relational reasoning capability.

4.5. Qualitative Results
We present the pseudo labels generated by the PKG of

one long video in Fig. 4. Compared to the subtitles, the
source of information that prior pre-training methods often
use for supervision, pseudo labels generated by the PKG en-
tail a higher relevance to each segment. Subtitles are noisy
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Figure 5. Pseudo labels of one segment and the subgraph of the PKG that this segment belongs to. The PKG encodes the procedural
knowledge of the general order and relation of steps from multiple tasks. This is because a node’s k-hop neighbors can come from multiple
tasks, and the edge direction encodes the general execution order of steps (the order that was observed in data – not in one specific video).

because the narrator may not directly describe the step. E.g.,
in the 1st segment, the narrator only mentions “this is a phe-
nomenal seasoning” without explicitly describing the step
“seasoning the tri-tip”. When the camera records how a nar-
rator is performing a step, the narrator may omit verbally or
formally describing the step. Out of this observation, we
leverage a multimodal matching function.

Assigning wikiHow steps to a video, allows one video
to leverage cross-task information sharing. As shown in
the pseudo labels of VNM, the matched step headlines can
come from another task. E.g., “Season the tenderloin” and
“Add the wood ...” are step headlines of the task “Smoke
Pork Tenderloin”, but the task of the video is “Grill Tri-
Tip”. In the wikiHow article of the task “Grill Tri-Tip”
(shown in the T C L  blocks of the 3rd and 4th segments),
the step headline corresponds to the action “seasoning” is
“Prep the roast”, which is vague, and no step headlines de-
scribe the action “adding wood”. Instead, “seasoning” and
“adding wood” have a clearer step headlines to describe
them in the wikiHow article of “Smoke Pork Tenderloin”.

T C L  and NRL provide more procedure-level context in-
formation as shown in Fig. 4. The procedural knowledge
conveyed by T C L  and NRL is the general prior knowl-
edge about the step and task of the current segment, and
the knowledge is not constrained to the current step, task,
or video. In other words, steps shown in the T C L  or the
NRL blocks can be absent in this video demonstration.

In Fig. 5, we show pseudo labels of one video segment
and the subgraph of the PKG that the segment belongs to.
The top 3 matched nodes’s step headlines come from dif-

ferent tasks, and especially the top 2 well describe the step
of the video segment. NRL allows P a p r i k a  to learn the
knowledge on order and relation of cross-task steps because
pseudo labels of NRL are led by the structure of the PKG.

5. Conclusion
We show how to learn a video representation for pro-

cedure understanding in instructional videos that encodes
procedural knowledge. The key is to leverage a Procedu-
ral Knowledge Graph (PKG) to inject procedural knowledge
into the video representation, which improves the state-of-
the-art performance on several tasks.
Limitations &  Future Directions: Our model is built on
top of frozen video and language encoders. Future work
should explore jointly updating these deep visual and text
representations while also learning the procedural knowl-
edge model. Future work should also extend our methodol-
ogy beyond the existing downstream tasks to more complex
procedure understanding benchmarks.
Social Impact: The final models may also be limited to per-
form video understanding on tasks not represented in train-
ing. These datasets primarily reflect the culture of only a
portion of the world’s population, and may contain that cul-
ture’s socioeconomic biases on gender, race, ethnicity, or
other features. These biases may be present in the generated
pseudo labels, subgraphs, and/or overall video understand-
ing capabilities of the resulting system.
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