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Abstract. We study few-shot semantic segmentation that aims to seg-
ment a target object from a query image when provided with a few
annotated support images of the target class. Several recent methods
resort to a feature masking (FM) technique to discard irrelevant feature
activations which eventually facilitates the reliable prediction of segmen-
tation mask. A fundamental limitation of FM is the inability to preserve
the fine-grained spatial details that affect the accuracy of segmentation
mask, especially for small target objects. In this paper, we develop a sim-
ple, effective, and efficient approach to enhance feature masking (FM).
We dub the enhanced FM as hybrid masking (HM). Specifically, we
compensate for the loss of fine-grained spatial details in FM technique
by investigating and leveraging a complementary basic input mask-
ing method. Experiments have been conducted on three publicly avail-
able benchmarks with strong few-shot segmentation (FSS) baselines. We
empirically show improved performance against the current state-of-the-
art methods by visible margins across different benchmarks. Our code
and trained models are available at: https://github.com/moonsh/HM-
Hybrid-Masking

Keywords: Few-shot segmentation - Semantic segmentation -
Few-shot learning

1 Introduction

Deep convolutional neural networks (DCNNs) have enabled remarkable progress
in various important computer vision (CV) tasks, such as image recognition [8,
10,13,31], object detection [17,27,28], and semantic segmentation [3,20,43].
Despite proving effective for various CV tasks, DCNNs require a large amount
of labeled training data, which is quite cumbersome and costly to acquire for
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dense prediction tasks, such as semantic segmentation. Furthermore, these mod-
els often fail to segment novel (unseen) objects when provided with very few
annotated training images. To counter the aforementioned problems, few shot
segmentation (FSS) methods, that rely on a few annotated support images, have
been actively studied [1,14,18,22,24-26,30,33,35-38,40,42].

After the pioneering work of OSLSM [29], many few-shot segmentation meth-
ods have been proposed in recent years [1,14,18,22,24-26,30,33,35-38,40,42].
Among others, an important challenge in few-shot segmentation is how to
use support images towards capturing more meaningful information. Many
recent state-of-the-art methods [9,11,24,33,36,39,40,42] rely on feature mask-
ing (FM) [42] to discard irrelevant feature activations for reliable segmentation
mask prediction. However, when masking a feature map, some crucial informa-
tion in support images, such as the target object boundary, is partially lost.
In particular, when the size of the target object is relatively small, this lost
fine-grained spatial information renders it rather difficult to obtain accurate
segmentation (see Fig. 1).

In this paper, we propose a simple, effective, and efficient technique to
enhance feature masking (FM) [42]. We dub the enhanced FM as hybrid mask-
ing (HM). In particular, we compensate for the loss of target object details in
FM technique through leveraging a simple input masking (IM) technique [29].
We note that IM is capable of preserving the fine details, especially around
object boundaries, however, it lacks discriminative information, as such, after
the removal of background information. To this end, we investigate the possibil-
ity of transferring object details in the IM to enrich FM technique. We instantiate
the proposed hybrid masking (HM) into two recent strong baselines: HSNet [24]
and VAT [9]. Results reveal more accurate segmentation masks by recovering the
fine-grained details, such as target boundaries and target textures (see Fig.1).
Following are the main contributions of this paper:

— We propose a simple, effective, and efficient way to enhance a de-facto feature
masking technique (FM) in several recent few-shot segmentation methods.

— We perform extensive experiments to validate the effectiveness of proposed
hybrid masking across two strong FSS baselines, namely HSNet [24] and
VAT [9] on three publicly available datasets: Pascal-5 [29], COCO-20¢ [16],
and FSS-1000 [15]. Results show notable improvements against the state-of-
the-art methods in all datasets.

— We note that our HM facilitates improving the training efficiency. When inte-
grated into HSNet [24] with ResNet101 [8], it speeds up its training conver-
gence by around 11x times on average on COCO-20° [16].
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Fig. 1. Our HM allows generation of more accurate segmentation masks by recovering
the fine-grained details (marked in cyan ellipse) when integrated into the current state-
of-the-art methods, HSNet [24] and VAT [9] on COCO-20" [16].

2 Related Work

Few-Shot Segmentation. The work of Shaban et al. [29] is believed to intro-
duce the few shot segmentation task to the community. It generated segmen-
tation parameters by using the conditioning branch on the support set. Later,
we observe steady progress in this task, and so several methods were proposed
[1,14,18,22,24-26,30,33,35-38,40,42]. CANet [40] modified the cosine similarity
with the additive alignment module and enhanced the performance by perform-
ing various iterations. To improve segmentation quality, PFENet [33] designed a
pyramid module and used a prior map. Inspired by prototypical networks [32],
PANet [36] leveraged novel prototype alignment network. Along similar lines,
PPNet [19] utilized part-aware prototypes to get the detailed object features
and PMM [38] used the expectation-maximization (EM) algorithm to gener-
ate multiple prototypes. ASGNet [14] proposed two modules, superpixel-guided
clustering (SGC) and guided prototype allocation (GPC) to extract and allo-
cate multiple prototypes. In pursuit of improving correspondence between sup-
port and query images, DAN [35] democratized graph attention. Yang et al. [39]
introduced a method to mine latent classes in the background, and CWT [22]
designed a simple classifier with transformer. CyCTR [41] mined information
from the whole support image using transformer. ASNet [11] proposed the inte-
grative few-shot learning framework (iFSL) overcoming limitations of few-shot
classification and few-shot segmentation. HSNet [24] utilized efficient 4D con-
volution to analyze deeply accumulated features and achieved remarkable per-
formance. Recently, VAT [9] proposed a cost aggregation network, based on
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transformers, to model dense semantic correspondence between images and cap-
ture intra-class variations. We validate the effectiveness of our hybrid masking
approach by instantiating it in two strong FSS baselines: HSNet [24] and VAT [9].

Feature Masking. Zhang et al. [42] proposed Masked Average Pooling (MAP)
to eliminate irrelevant feature activations which facilitates reliable mask predic-
tion. In MAP, feature masking (FM) was introduced and utilized before average
pooling. Afterward, FM was widely adopted as the de-facto technique to achieve
feature masking [9,11,24,33,36,39,40,42]. We note that the FM method loses
information about the target object in the process of feature masking. Specifi-
cally, it is prone to losing the fine-grained spatial details, which can be crucial
for generating a precise segmentation mask. In this work, we compensate for
the loss of target object details in FM technique via leveraging a simple input
masking (IM) technique [29].
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Fig. 2. The overall architecture when our proposed hybrid masking (HM)
approach is integrated into F'SS baselines. At its core, it contains a feature back-
bone, a feature masking (FM) technique. After extracting support and query features,
the feature masking suppresses irrelevant activations in the support features. We intro-
duce a simple, effective, and efficient way to enhance feature masking (FM), termed as
hybrid masking (HM). It compensates for the loss of target object details in the FM
technique by leveraging a simple input masking (IM) technique [29].

Input Masking. Input masking (IM) [29] is a technique to eliminate back-
ground pixels by multiplying the support image with its corresponding support
mask. There were two key motivations behind erasing the background pixels.
First, the largest object in the image has a tendency to dominate the network.
Second, the variance of the output parameters increased when the background
information was included in the input. We observe that IM can preserve the
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fine details, however, it lacks target discriminative information, important for
distinguishing between the foreground and the background. In this work, we
investigate the possibility of transferring object details present in the IM to
enrich the FM technique, thereby exploiting the complementary strengths of
both.

3 Methodology

Figure2 displays the overall architecture when our proposed hybrid masking
(HM) approach is introduced into the F'SS baselines, such as HSNet [24] and
VAT [9]. Fundamentally, it comprises of a feature backbone for extracting sup-
port and query features, a feature masking (FM) technique for suppressing irrel-
evant support activations, and FSS model (i.e. HSNet/VAT) for predicting the
segmentation mask from the relevant activations. In this work, we propose a
simple, effective, and efficient way to enhance feature masking (FM), termed as
hybrid masking (HM). It compensates for the loss of target object details in the
FM technique by leveraging a simple input masking (IM) technique [29]. In what
follows, we first lay out the problem setting (sect.3.1), next we describe feature
masking technique (sect. 3.2), and finally we detail the proposed hybrid masking
for few-shot segmentation (sect. 3.3).

3.1 Problem Setting

Few-shot segmentation’s objective is to train a model that can recognize the
target object in a query image given a small sample of annotated images from
the target class. We tackle this problem using the widely adopted episodic train-
ing scheme [9,24,34,36], which has been shown to reduce overfitting. We have
the disjoint sets of training classes Cyrqin and testing classes Ciess. The train-
ing data Diyqin belongs to Cirein and the testing data Dieg is from Chegs.
Multiple episodes are constructed using the Dipqin and Diegs:. A support set,
S = (I, M?®), and a query set, Q = (I?,M1?), are the two components that
make up each episode. I and M represent an image and its mask. We have
Nirain episodes for training Diyqin = {(Si,Qi)}zNZ‘{“” and Nyest episodes for
testing Dyest = {(S:, Qi)}f\i‘is‘. Sampled episodes from Dy, are used to train
a model to predict query mask M4?. Afterward, the learned model is evaluated
by randomly sampling episodes from the testing data Dyes in the same manner
and comparing the predicted query masks to the ground truth.
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3.2 Feature Masking

Zhang et al. [42] argued that IM
greatly increases the variance of the
input data for a unified network, and
according to Long et al. [21], the rel-
ative positions of input pixels can
be preserved by fully convolutional
networks. These two ideas motivated
Masked Average Pooling (MAP),
which ideally extracts the features
of a target object while eliminat-
ing the background content. Although
MAP falls short of this in practice, Fig. 3. Impact of growing receptive field
it remains helpful for learning bet- o, feature masking. The input image’s ele-
ter object features [3] while keeping phant isa target object and the other pixels
the input structure of the network are background. One pixel at the feature
unchanged. In particular, the feature is generated from lots of pixels’ informa-
masking part is still widely used. tion from previous layer. The background
Given a support RGB image I® ¢ and target object information both can be
R3Xwxh 4nd a support mask M* € present in one feature map pixel.
{0,1}**" where w and h are the width and height of the image, the support
feature maps of I° are F'* € RCX“’/”‘/, where c is the number of channels, w’ and
h' are the width and height of the feature maps. Feature masking is performed
after matching the mask to the feature size using the bilinear interpolation. We
denote a function resizing the mask as 7(-) : R®*h — Rexw'>h"  Then the
feature masking features FFMe Rexw' *h" are computed according to Eq. 1,

Feature map

Convolution
Layer 2

Convolution
Layer 1

Receptive Field

Input image

FFM = ps o 7(M?), (1)

where ® denotes the Hadamard product. Zhang et al. [42] fit the feature size to
the mask size, but we conversely fit the mask to the feature size.

Feature masking (FM), which forms the core part of Masked Average Pool-
ing (MAP) [42], is utilized to eliminate background information from support fea-
tures and has become the de facto technique for masking feature maps, appearing
in several recent few-shot segmentation methods [33,36,39,40,42] even in current
state-of-the-art [24]. However, FM inadvertently eliminates both the background
and the target object information because one pixel from the last layer’s feature
map corresponds to many pixels in the input image.

Figure 3 shows that one pixel of the feature map could contain background
and target object information together [23]. This is further analyzed in Fig.5,
which clearly shows that FM loses useful information through its masking and
progressively worsens with deeper layers. If a target object in the support set
appears very small, the segmentation of the query image becomes even more
challenging because the features are fed into network with relatively large pro-
portion of undesired background features. Figure 4 shows the limitation of FM.
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3.3 Hybrid Masking for Few-shot Segmentation (HM)

We aim to maximize target information from the support set so that the network
can efficiently learn to provide more accurate segmentation of a target object.

The overall architecture when our proposed HM is integrated into a FSS
baseline is shown in Fig.2. We obtain two feature maps, F'M and F¥M  using
IM and FM respectively. These two feature maps are merged by hybrid mask-
ing (Algorithm 1) to generate HM feature map F#*. This HM feature map will
be used as input for HSNet and VAT, which takes full advantage of the given
features to predict the target object mask.

Input Masking (IM). IM [29] eliminates background pixels by multiplying
the support image with its corresponding support mask because of two empirical
reasons. (1) The network has a tendency to favor the largest object in the image,
which is not the object we want to segment. (2) The background information
will result in an increase in the variance of the output parameters.

Suppose we have the RGB support image I° € R3***" and a support mask
M? € {0,1}“*" in the image space, where w and h are the width and height of
the image. IM, computed as

¥ =I° o (M%), (2)

contains the target object alone. We use the function 7(-) for resizing the mask
M?# to fit the image I°.

Hybrid Masking (HM). We propose an alternative masking approach, which
takes advantage of the features generated by both FM and IM. First, FM and IM
features are computed according to the existing methods. The unactivated values
in the FM features are then replaced with IM features. Other activated values
remain without replacing to maintain FM features. We name this process as
hybrid masking (Algorithm 1). HM prioritizes the information from FM features
and supplements the lacking information, such as the precise target boundaries
and fine-grained texture information, from IM features, which is superior for
delineating the boundaries of target objects and the missing texture information.
The method is as follows even if feature maps are stacked to have a sequence of
intermediate feature maps. Only one more loop is needed for the deep feature
maps.
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Algorithm 1: Hybrid Masking

Input : IM feature maps F'™ and FM features maps F&™
Each channel 4, f{™ € FIM and ffM ¢ pf'M
for i =1, ..., cdo
Set leM — 7‘_FIVI
for Entire pizels € fM do
Find an inactive pixel, p € f7M
if p < 0 then
| Replace the pixel, p, with corresponding pixel € ff™
end
end

end

Output: HM feature maps F7M

The generated HM feature maps are used as inputs to two strong FSS mod-
els (HSNet and VAT'). These two models are best-suited for fully utilizing the
features generated by hybrid masking, because they build multi-level correla-
tion maps taking advantage of the rich semantics that are provided at different
feature levels.

4 Experiment

4.1 Setup

Datasets. We evaluate the efficacy of our hybrid masking technique on three
publicly available segmentation benchmarks: PASCAL-5" [29] , COCO-20¢ [16],
and FSS-1000 [15]. PASCAL-5¢ was produced from PASCAL VOC 2012 [6] with
additional mask annotations [7]. PASCAL-5' contains 20 types of object classes,
COCO-20° contains 80 classes, and FSS-1000 contains 1000 classes. The PAS-
CAL and COCO data sets were divided into four folds following the training and
evaluation methods of other works [9,11,19,24,25,33,35,38], where each fold of
PASCAL-5* consisted of 5 classes, and each fold of COCO-20¢ had 20. We con-
duct cross-validation using these four folds. When evaluating a model on fold’,
all other classes not belonging to fold® are used for training. 1000 episodes are
sampled from the other fold® to evaluate the trained model. For FSS-1000, the
training, validation, and test datasets are divided into 520, 240, and 240 classes.

Implementation Details. We integrate our hybrid masking technique into two
F'SS baselines: HSNet [24] and VAT [9], and the resulting methods are denoted by
HSNet-HM and VAT-HM. We use ResNet50 [8] and ResNet101 [8] backbone net-
works pre-trained on ImageNet [5] with their weights frozen to extract features,
following HSNet [24] and VAT [9]. From conv3x to convb_x of ResNet (i.e.,
the three layers before global average pooling), the features in the bottleneck
part before the ReLLU activation of each layer were stacked up to create deep
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features. We follow the HSNet [24] and the VAT [9] default settings for opti-
mizer [12] and learning rate. A batch size of 20 is used for HSNet-HM training
for all benchmarks. For VAT-HM training, 8, 4, and 4 batch sizes are utilized
for COCO-20?, PASCAL-5" and FSS-1000 respectively. We used data augmen-
tation for HSNet-HM training on PASCAL-5" following [2,4,9]. For COCO-20¢
and FSS-1000 benchmarks, no data augmentation was employed when training
HSNet-HM.

Evaluation Metrics. Following [9,24,33,35], we adopt two evaluation met-
rics, mean intersection over union (mloU) and foreground-background IoU (FB-
ToU) for model evaluation. The mlIoU averages the IoU values for all classes in
each fold. FB-IoU calculates the foreground and background IoU values ignoring
object classes and averages them. Note that, mIoU is a better indicator of model
generalization than FB-IoU [24].

4.2 Comparison with the State-of-the-Art (SOTA)

PASCAL-5'. Table1 compares our methods, HSNet-HM and VAT-HM, with
other methods on PASCAL-5° datasets. In the 1-shot test, HSNet-HM provides
a gain of 0.7% mloU compared to HSNet [24] with ResNet50 backbone and
performs on par with HSNet [24] using ReNet101 backbone. In the 5-shot test,
HSNet-HM shows slightly inferior performance in mloU and FB-IoU. VAT-HM
shows a similar pattern to HSNet-HM. In the 1-shot test, VAT-HM shows a gain
of 0.5% mlIoU with ResNet50 and a gain of 0.3% mloU with ResNet101. In the
5-shot test, VAT-HM provides an improvement of 0.8% mlIoU with ResNet50.

COCO-20°. Table?2 reports results on the COCO-20* dataset. In 1-shot test,
HSNet-HM, VAT-HM, and ASNet-HM show a significant improvement over
HSNet [24], VAT [9], and ASNet [11]. HSNet-HM delivers a gain of 5.1% and
5.3% in mloU with ResNet50 and ResNet101 backbones, respectively. VAT-
HM provides a gain of 2.9% mloU with ResNet50. ASNet-HM provides a gain
of 2.5% and 2.8% mloU with ResNet50 and ResNet101. Similarly, in 5-shot
test, HSNet-HM outperforms HSNet [24] by 3.5% and 1.1% with ResNet50 and
ResNet101 backbones, respectively. VAT-HM provides 0.4% mloU improvement
with ResNet50 in 5-shot test. ASNet-HM shows slightly worse performance with
ResNet50 but ASNet-HM delivers a gain of 1.1% with ResNet101. Figure 1 draws
visual comparison with HSNet [24] and VAT [9] under several challenging seg-
mentation instances. Note that, compared to HSNet and VAT, HSNet-HM and
VAT-HM produce more accurate segmentation masks that recover fine-grained
details under appearance variations and complex backgrounds.
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Table 1. Performance comparison with the existing methods on Pascal-5° [6]. Super-
script asterisk denotes that data augmentation was applied during training. Best results
are bold-faced and the second best are underlined.

Backbone feature | Methods 1-shot 5-shot
50 5 |5 |mloU|FB-IoU |5° 52 [5° |mloU|FB-IoU

1
5 5

ResNet50 [8] PANet [36] [44.0 |57.5 |50.8 [44.0 [49.1 |- 553 |67.2 |61.3 [53.2 |59.3 |-
PFENet [33] | 61.7 |69.5 |55.4 |56.3 |60.8 |73.3 |63.1 |70.7 |55.8 |57.9 |61.9 |73.9
ASGNet [14] [58.8 [67.9 |56.8 |53.7 |59.3 [69.2 |63.4 |70.6 |64.2 |57.4 |63.9 |74.2
CWT [22] |56.3 |62.0 |59.9 47.2 [56.4 |- 61.3 |68.5 685 |56.6 63.7 |—
RePRI [1] [59.8 |68.3 |62.1 |48.5 |59.7 |- 64.6 |71.4 |71.1]59.3 [66.6 |-
CyCTR [41] |67.8 |72.8]58.0 |58.0 |64.2 |- 711 [73.2 | 60.5 [57.5 65.6 |-
HSNet [24] |64.3 |70.7 |60.3 |60.5 |64.0 |76.7 |70.3 |73.2 |67.4 | 67.1|69.5 |80.6
HSNet” 63.5 |70.9 | 61.2 |60.6 |64.3 |78.2 |70.9 |73.1 |68.4 65.9 |69.6 |80.6
VAT [9] 67.6 |71.2 |62.3]60.1 |65.3 |77.4 |72.4 |73.6 68.6 |65.7 |70.0 |80.9
HSNet-HM | 69.0 70.9 |59.3 |61.0 |65.0 |76.5 |69.9 72.0 |63.4 633 |67.1 |77.7
VAT-HM | 68.9 |70.7 |61.0 | 62.5 65.8 |77.1 | 71.1|72.5 |62.6 |66.5 |68.2 |78.5
ResNet101 [8] | FWB [25] |51.3 |64.5 |56.7 |52.2 |56.2 |— 54.8 |67.4 | 62.2 [55.3 | 59.9 |—
DAN [35]  |54.7 |68.6 |57.8 |51.6 |58.2 |71.9 |57.9 |69.0 |60.1 |54.9 |60.5 |72.3
PFENet [33] |60.5 |69.4 |54.4 |55.9 |60.1 |72.9 [62.8 |70.4 |54.9 |57.6 |61.4 |73.5
ASGNet [14][59.8 [67.4 |55.6 |54.4 |59.3 |71.7  |64.6 |71.3 |64.2 |57.3 |64.4 |75.2
CWT [22] [56.9 |65.2 |61.2 |48.8 [58.0 |- 62.6 |70.2 | 68.8|57.2 | 64.7 |-
RePRI[1] |59.6 |68.6 |62.2 |47.2 59.4 |- 66.2 |71.4 |67.0 |57.7 |65.6 |-
CyCTR [41] [69.3 |72.7|56.5 |58.6 |64.3 |72.9 |73.5 |74.0 |58.6 |60.2 |66.6 |75.0
HSNet [24] |67.3 [72.3 [62.0 |63.1 [66.2 |77.6 |71.8 |74.4 |67.0 |68.3 |70.4 |80.6
HSNet” 67.5 |72.763.5 |63.2 |66.7 |77.7 |71.7 |74.8 682 |68.7 |70.8 |80.9
VAT [9] 68.4 |72.5 | 64.8(64.2 |67.5 788 |73.3 |752 |68.4 |69.5 71.6 |82.0
HSNet-HM |69.8 |72.1 |60.4 |64.3 |66.7 |77.8 |72.2 |73.3 |64.0 |67.9 |69.3 |79.7
VAT-HM  [71.2|72.7|62.7 | 64.5|67.8 |79.4 |74.0 75.5|65.4 68.6|70.9 |8L5

FSS-1000. Table 3 compares HSNet-HM, VAT-HM, and competing methods on
the FSS-1000 dataset [15]. In the 1-shot test, HSNet-HM yields a gain of 1.6% and
1.3% in mIoU over [24] with ResNet50 and ResNet101 backbones, respectively.
In the 5-shot test, we observe an improvement of 0.2% in mIoU over [24] with the
ResNetb0 backbone. In the 1-shot test, VAT-HM shows slightly inferior mloU
compared to VAT [9] with ResNet50 but it performs a little better than VAT [9]
with ResNet101.

Generalization Test. Following previous works [1,24], we perform a domain
shift test to evaluate the generalization capability of the proposed method. We
trained HSNet-HM and VAT-HM on the COCO-20° dataset and tested this
model on the PASCAL-5° dataset. The training/testing folds were constructed
following [1,24]. The objects in training classes do not overlap with the object
in the testing classes. As shown in Table4, HSNet-HM outperforms the current
state-of-the-art approaches under both 1-shot and 5-shot tests. In 1-shot test,
it delivers a 2% mlIoU gain over RePRI [1] and a 2.4% mloU gain over HSNet
[24] with ResNet50 and ResNet101 backbones, respectively. In the 5-shot test,
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Table 2. Performance comparison on COCO-20° [16] in mIoU and FB-ToU. Best results
are bold-faced and the second best are underlined.

Backbone Methods 1-shot 5-shot
feature

200 [20! [202 [20% [mIoU|FB-1oU |20° |20 [20% [20° |mIoU|FB-loU

ResNet50 [8] [PMM [38] |29.3 |34.8 |27.1 [27.3 |29.6 |- 33.0 |40.6 [30.3 [33.3 [34.3 |-
RPMM [38] |29.5 36.8 |28.9 [27.0 |30.6 |— 33.8 [42.0 [33.0 (33.3 [35.5 |—
PFENet [33]|36.5 |38.6 |34.5 |33.8 [35.8 |- 36.5 |43.3 [37.8 [38.4 [39.0 |-
ASGNet [14]|—- |- |- |- 34.6 604 |- |- |- |- |42.5 [67.0
RePRI [1] [32.0 |38.7 |32.7 [33.1 [34.1 |- 39.3 |45.4 [39.7 |41.8 [41.6 |-
HSNet [24] |36.3 43.1 |38.7 [38.7 |39.2 |68.2 43.3 |51.3 |48.2 45.0 [46.9 |70.7
CyCTR [41] |38.9 |43.0 |39.6 |39.8 [40.3 |- 41.1 [48.9 [45.2 |47.0 [45.6 |-
VAT [9] 39.0 [43.8 [42.6 |39.7 [41.3 |68.8 44.1 [51.1 |50.2 |46.1 [47.9 |72.4

ASNet [11] [41.5 [44.1 [42.8 [40.6 [42.2 [69.4 |48.0|52.1 [49.7 [48.2 [49.5 [72.7
HSNet-HM |41.0 |45.7 |46.943.7 [44.3 |70.8 |45.3 |53.1|52.1|47.0 |49.4 |72.2
VAT-HM 42.2 [43.3 [45.0 [42.2 [43.2 [70.0 45.2 [51.0 [50.7 |46.4 [48.3 [71.8
ASNet-HM |42.8|46.0|44.8 |45.0(44.7 [70.4  |46.3 [50.2 |48.4 |48.648.4 |72.2
ResNet101 [8] FWB [25] |17.0 |18.0 |21.0 [28.9 |21.2 |- 19.1 |21.5 [23.9 [30.1 |23.7 |-
DAN [35] - - |- |- 244 (623 |- |- |- |- 29.6 |63.9
PFENet [33] |36.8 |41.8 |38.7 [36.7 |38.5 |63.0 40.4 |46.8 |43.2 |40.5 |42.7 |65.8
HSNet [24] [37.2 [44.1 [42.4 [41.3 [41.2 [69.1 45.9 |53.0 |51.8 |47.1 [49.5 |72.4
ASNet [11] |41.8 |45.4 |43.2 [41.9 [43.1 |69.4 48.0(52.1 [49.7 |48.2 [49.5 |72.7
HSNet-HM [41.2 |50.0|48.8(45.9 [46.5 |71.5 |46.5 |55.2|51.8 |48.9 |50.6 |72.9
ASNet-HM |43.546.4 [47.2 [46.4]45.9 [71.1  [47.7 [51.6 [52.1|50.8|50.6 [73.3

Table 3. Performance comparison with other methods on FSS-1000 [15] dataset. Best
results are bold-faced and the second best are underlined.

Backbone feature | Methods mlIoU Backbone feature | Methods mIoU
1-shot ‘ 5-shot 1-shot | 5-shot
ResNet50 [8] FSOT [18] | 82.5 83.8 ResNet101 [8] DAN [35] 85.2 88.1
HSNet [24] | 85.5 87.8 HSNet [24] | 86.5 88.5
VAT [9] 89.5 90.3 VAT [9] 90.0 90.6
HSNet-HM | 87.1 88.0 HSNet-HM | 87.8 88.5
VAT-HM 89.4 89.9 VAT-HM 90.2 90.5

Table 4. Comparison of generalization performance with domain shift test. A model
was trained on COCO-20" [16] and then evaluated on PASCAL-5" [6].

Backbone feature | Methods 1-shot 5-shot
50 [s0 [52 [5% [mioU|5® [s5' |52 [5% [mIoU
ResNet50 [8] RPMM [38] |36.3 | 55.0 | 52.5 | 54.6 |49.6 40.2 | 58.0 | 55.2 | 61.8 | 53.8
PFENet [33] | 43.2 | 65.1 | 66.5 | 69.7 | 61.1 45.1 | 66.8 | 68.5 | 73.1 | 63.4
RePRI [1] 52.2 | 64.3 | 64.8 | 71.6 | 63.2 56.5 | 68.2 | 70.0 | 76.2 | 67.7
HSNet [24] 45.4 1 61.2 | 63.4 | 75.9 | 61.6 56.9 | 65.9 | 71.3 | 80.8 | 68.7
VAT 52.1 | 64.1 | 67.4 | 74.2 | 64.5 58.5 | 68.0 | 72.5 | 79.9 | 69.7
HSNet-HM 43.4 | 68.2|169.4|79.9  65.2 | 50.7 | 71.4|73.4|83.1|69.7
VAT-HM 48.3 | 64.9 | 67.5 | 79.8 | 65.1 55.6 | 68.1 | 72.4 | 82.8 | 69.7
ResNet101 [8] HSNet [24] | 47.0 | 65.2 | 67.1 |77.1 | 64.1 |57.2|69.5 | 72.0 | 82.4 | 70.3
HSNet-HM 46.7 | 68.6 | 71.1 | 79.7 | 66.5 | 53.7 | 70.7 | 75.2 | 83.9 | 70.9
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HSNet-HM outperforms HSNet [24] by 1.0% and 0.6% in mIoU with ResNet50
and ResNet101 backbones, respectively.

4.3 Ablation Study and Analysis

Comparison of the Three Different Masking Approaches. We com-
pare all three masking approaches, IM [29], FM [42], and the proposed HM
after incorporating them into HSNet [24] and evaluate them on the COCO-20°
dataset (Table5). We can see that in both 1-shot and 5-shot tests, the pro-
posed HM approach provides noticeable gains over either individual FM and IM
techniques.

Table 5. Ablation study of the three different masking methods on COCO-20° [16].

Backbone Masking 1-shot 5-shot
feature methods
20° [201 [202 [20° |mIoU[FB-ToU[20° [20! [20? [20% |mIoU|[FB-ToU
ResNet50 [8] |HSNet- |36.3 [43.1 [38.7 [38.7 [39.2 [68.2  [43.3 |51.3 [48.2 [45.0 |46.9 |70.7
FM [24]
HSNet- |39.8 |45.0 |46.0 |43.2 |43.5 |70.0  |43.4 |50.9 |49.5 |48.0(47.6 |71.7
M
HSNet- |41.0/45.7 [46.9 |43.7/44.3 |70.8 [45.3[53.1 |52.1(47.0 [49.4 [72.2
HM
ResNet101 [8] HSNet- |37.2 [44.1 [42.4 [41.3 [41.2 [69.1  |45.9 |53.0 [51.8]47.1 |49.5 |72.4
FM [24]
HSNet- |41.0 |{48.3 |47.3 |44.5 |45.2 |70.9 46.6|54.5 |50.4 |47.7 |49.8 |72.7
M
HSNet- |41.2|50.0(48.8|45.9/46.5 [71.5 [46.5 [55.2/51.8(/48.9/50.6 [72.9
HM

Table 6. Ablation study of the three different Table 7. Run-time compar-
merging methods on COCO-20" ison at inference stage on
COCO-20" [16].

Feature |Methods 1-shot
backbone

Inference Time Additional

Secs/

20° 20" [20% [20° [mIoU

Image | Overhead in %
ResNet50 HSNet-HM (Simple Add.) 40.0 [43.5 [43.4 |43.2 |42.5 HSNet-FM ‘027 ‘,
HSNet-HM (Reverse) 39.4 145.2 |42.3 |41.6 |42.1 HSNet-HM ‘0'34 ‘25'9
HSNet-HM 41.0/45.7|46.9 43.7|44.3

Figure 4 shows the qualitative results from the three masking methods. The
blue objects in the support set are the target objects for segmentation. The
red pixels are the segmentation results. FM can coarsely segment the objects
from the background but fails to precisely recover target details, such as target
boundaries. IM is capable of recovering precise object boundaries, but struggles
in distinguishing objects from the background. The proposed approach, HM,
clearly distinguishes between the target objects and the background and also
recovers precise details such as, target boundaries.
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Support Set Query image FM Prediction IM prediction HM prediction Ground Truth

Fig. 4. Qualitative comparison of three different masking approaches on
COCO-20" [16] with HSNet. The blue objects in the support set are the target
objects for segmentation. The red pixels are the segmentation results. HSNet-FM can
coarsely segment the objects from the background but fails to precisely recover target
details, such as target boundaries. HSNet-IM is capable of recovering precise object
boundaries, but struggles in distinguishing objects from the background. The pro-
posed approach, HSNet-HM, clearly distinguishes between the target objects and the
background and also recovers precise details such as, target boundaries.

Figure5 shows the visual comparison between the feature maps of IM and
FM features. The feature maps inside the red rectangles reveal that the two
features produced from the two masking approaches are different. Looking at
the area where activations occur in the IM feature map at layer 50, we can
see it is more indicative of the target object boundaries than the FM feature.
Additionally, looking at the IM feature map at layer 34, we observe that there
is a strong signal around the edge and even in side of the target object. This
happens because FM performs masking after extracting features, and so this
results in less precise target boundaries and loss of texture information.

Other Combination Proposals for Obtaining HM. We apply various
masking methods to create HM features. Various mask sizes are tested by apply-
ing dilation to the mask of the support set, but the most plausible result is
obtained with the IM masking method. Also, the method in [42] obtains a mask
using the bounding box and applies the average pooling method, but fails to
achieve better performance than FM. We provide two ablation studies to under-
stand the effectiveness of replacement operation (see Table6). First, we simply
add the corresponding feature maps of IM and FM, denoted as HM(Simple Add).
Second, we perform the reverse procedure of the proposed HM. We initialize the
HM by IM, and supplement the inactivated features with FM features, denoted
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ResNet-50 Original image

Input Image

1x1 conv. 64
3x3 conv. 64
1x1 conv. 256

FM Feature map @ layer 34

1x1 conv. 128

3x3 conv. 128 )
1x1 conv. 512 FM Feature map @ layer 50 Mask image

1x1 conv. 256
3x3 conv. 256
1x1 conv. 1024

1x1 conv. 512
3x3 conv. 512
1x1 conv. 2048

Fig. 5. Visual comparison between the feature maps of IM and FM. These are
from ResNet50 at layer34 and layer50. We visualize the first channel of the feature map
in grayscale. The feature maps inside the red rectangles reveal that the features from
the two feature masking methods are different. Observe activations in the IM feature
map at layer 50, it is more indicative of the target object boundaries than the FM
feature. Additionally, the IM feature map at layer 34 displays a strong signal around
the edge.

as HM(Reverse). Note that, our proposed HM is more effective for FSS compared
to HM(Simple Add) and HM(Reverse).

Training Efficiency. Figure6 shows the training profiles of HSNet-HM on
COCO-20%. We see that HM results in faster training convergence compared
to HSNet, reducing the training time by a factor of 11x on average. To reach
the best model with ResNet101 on COCO-203, 296.5 epochs are required for
HSNet [24] but HSNet-HM only needs 26.8 epochs on average. A similar trend
was observed in the PASCAL-5" and FSS-1000 datasets, for which the results
are reported in the supplementary material.

mioU on 20° mioU on 20* mloU on 202 mioU on 203
ss

Epochs Epochs Epochs Epochs

=== HSNet training curve e HSNet-HM training curve

===+ HSNet validation curve -« =+ HSNet-HM validation curve

Fig. 6. Training profiles of HSNet [24] and HSNet-HM on COCO-20%.
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Runtime Comparison. Hybrid masking takes an additional pass over the
pixel values to choose between FM and IM. We measure the computation
time of the HM method and other methods for comparison. IM/FM take 0.05
secs/image, and their throughput is 20 images/sec. Whereas HM takes 0.07
secs/image. Therefore, HM induces 40% more computational time when com-
pared to IM/FM. However, in terms of the model’s inference time, our HM adds
a relatively less extra overhead (25.9%) on top of HSNet (with FM) (see Table 7).

Limitations. We found that HSNet-HM performance in PASCAL-5" [6] was
inferior to the performance of the COCO-20° [16] dataset. A potential reason
is that HSNet-HM quickly enters the over-fitting phase due to abundance of
information about the target object. The following data augmentation method [2,
4,9] was able to alleviate this problem to some extent, but it did not solve the
problem completely. Further, we identify some failure cases for HM (Fig.7).
HM struggles when the target is occluded due to small objects. Also, when the
appearance/shape of the target image of the support set and the target image
of the query image are radically different.

Query image HSNet-HM VAT-HM Ground Truth

Support Set

Fig. 7. Although HSNet-HM/VAT-HM improves mloU compared to baselines on
COCO-20" [16], its performance can be further improved. We identify cases where
it struggles to produce accurate segmentation masks (shown as cyan ellipse).

5 Conclusion

We proposed a new effective masking approach, termed as hybrid masking. It
aims to enhance the feature masking (FM) technique, that is commonly used in
existing SOTA methods. We instantiate HM in strong baselines and the results
reveal that utilizing HM surpasses the existing SOTA by visible margins and
also improves training efficiency.

Acknowledgement. This work was supported in part by NSF IIS Grants #1955404
and #1955365.
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