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Abstract—Deep neural networks (DNNs) are increasingly pop-
ular owing to their ability to solve complex problems such as
image recognition, autonomous driving, and natural language
processing. Their growing complexity coupled with the use of
larger volumes of training data (to achieve acceptable accuracy)
has warranted the use of GPUs and other accelerators. Such
accelerators are typically expensive, with users having to pay a
high upfront cost to acquire them. For infrequent use, users can,
instead, leverage the public cloud to mitigate the high acquisition
cost. However, with the wide diversity of hardware instances
(particularly GPU instances) available in public cloud, it becomes
challenging for a user to make an appropriate choice from a
cost/performance standpoint.

In this work, we try to address this problem by (i) introducing
a comprehensive distributed deep learning (DDL) profiler Stash,
which determines the various execution stalls that DDL suffers
from, and (ii) using Stash to extensively characterize various
public cloud GPU instances by running popular DNN models
on them. Specifically, it estimates two types of communication
stalls, namely, interconnect and network stalls, that play a
dominant role in DDL execution time. Stash is implemented
on top of prior work, DS-analyzer, that computes only the
CPU and disk stalls. Using our detailed stall characterization,
we list the advantages and shortcomings of public cloud GPU
instances for users to help them make an informed decision(s).
Our characterization results indicate that the more expensive
GPU instances may not be the most performant for all DNN
models and that AWS can sometimes sub-optimally allocate
hardware interconnect resources. Specifically, the intra-machine
interconnect can introduce communication overheads of up to
90% of DNN training time and the network-connected instances
can suffer from up to 5× slowdown compared to training on a
single instance. Furthermore, (iii) we also model the impact of
DNN macroscopic features such as the number of layers and the
number of gradients on communication stalls, and finally, (iv)
we briefly discuss a cost comparison with existing work.

I. INTRODUCTION

The continual growth of Deep Learning (DL) has fuelled

many facets of Artificial Intelligence such as machine vision

[37], natural language processing [9], neuromorphic comput-

ing [44], [45] etc. The advancements in DL have mainly been

driven by the availability of large amounts of training data

as well as powerful compute platforms such as CPU or GPU

clusters, TPUs, NPUs and other accelerators that can handle

increasingly complex/heavy Deep Neural Network (DNN)

computations. However, the ever-growing DNN-model and

training data sizes accompanied by the increasing ubiquity of

DNNs place a higher demand on compute resources for faster

processing speeds and shorter overall training time. Although

current accelerators enable faster training, they are typically

expensive to maintain, owing to their power-hungry nature.

This potentially renders them cost-ineffective, especially in

intermittent training scenarios. To avoid the prohibitively high

upfront cost of purchasing a GPU machine/cluster, users

employ public cloud GPU resources to run their workloads.

Public cloud providers such as AWS, Azure, and GCP

provide a gamut of GPU instance offerings. These offerings

vary in their hardware configurations and pricing. Cloud

providers typically do not allow any flexibility in changing

the CPU vCores, memory or GPUs of an instance, thereby

limiting users to select from pre-configured instances. Note

that the choice of instance type(s) drives the total cost of

training a model [7] and users may rely on benchmarks such

as DawnBench [7], NVIDIA examples [35], etc. or on their

intuition to choose the best instance(s) for their needs.

To address this problem, we introduce a Distributed Deep

Learning (DDL) profiler Stash, which can measure the various

execution stalls (on network, CPU and disk) that a typical

DDL pipeline experiences. Using our profiler, we characterize

various public cloud GPU instances from both a cost and

performance perspective with emphasis on communication-

related stalls. This characterization provides novel insights into

public cloud GPUs and its network, which can be used by

tenants to make an informed decision vis-a-vis choosing the

right DDL cluster configuration for their specific model.

Stash is built by extending existing profiler DS-analyzer [31]

which characterizes single-node DNN jobs in a private Mi-

crosoft cluster with emphasis on the bottlenecks (stalls) caused

due to CPU pre-processing and storage I/O latency. However,

it has a key omission of not profiling communication-related

stalls. Compared to the single-node scenario, where the pri-

mary stalls were observed to be CPU and/or disk I/O stalls

in the DS-Analyzer work, we observe communication stalls

to be the primary bottleneck in both single and multi-node

DDL (which is also corroborated by prior works [33], [48]). In

fact, storage-related stalls can (at least partially) be eliminated

through DRAM caching in early epoch(s) but communication
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stalls hamper every iteration of a typical DDL, thus proving

to be a more pressing concern.
Motivated by this, we propose novel techniques to profile

the communication-related stalls of DDL and implement it

as part of Stash. Next, using the profiler, we extensively

characterize public cloud GPU instances for the various stalls

they suffer from while executing a typical DDL pipeline.

A stall analysis on public cloud (AWS in our experiments)

is particularly useful, since instances differ not just in their

hardware offering, but also in the QoS they provide, as

discussed in later sections. Moreover, a systematic study of the

communication overhead of public cloud instances for DDL

is lacking, partly due to the lack of publicly-available tools or

profiling methodologies to measure such an overhead.
Prior DDL profiling related work such as [28] and [55]

only describe methodologies to estimate and simulate com-

munication overheads. While Srifty [28] characterizes some

AWS GPU instances, they do not provide an analysis of the

various slowdowns instances may experience. Instead, they

only provide the DDL throughput offered by instance type (and

cost incurred) without explaining possible causes. Further, they

do not dive into the hardware characteristics of each instance

type, including the interconnect, and the various idiosyncrasies

that may degrade performance. Thus, they simply suggest that

preferring larger GPU instances is always beneficial and that

instance throughput scales near linearly with added GPUs.

However, our analysis suggests that this is not always true.

Also, though they analyse the variance of the AWS network

bandwidth, we note here that network QoS is subject to

high temporal (up to months) and spatial (availability zones,

regions) variations and is hard to definitively characterize,

unlike intra-node hardware. On the other hand, DS-Analyzer

[31] studies DDL ‘fetch’ and ‘prep’ stalls (see next section),

but does not study network stalls.
Hence, we conduct an extensive stall-based characterization

of various GPU-accelerated instances of a public cloud using

Stash. Furthermore, using this profiler, we analyze a number

of DNN architectures to understand which architectural prop-

erties (such as the number and sizes of layers) drive commu-

nication stall behavior. This work attempts to understand and

introspect the peculiarities of DL on public cloud VMs to help

advance systems research.

Our main contributions in this paper can be summarized as

follows:

• We introduce Stash, a profiling tool which can measure

communication stalls (in addition to CPU and disk stalls)

of DDL running on both single and multiple nodes.

• We perform stall-centric characterization of various AWS

GPU instances, using a number of popular DNN mod-

els. The estimated communication overheads from intra-

machine interconnect are found to be up to 90% of the

training time and network-connected instances are found

to be slowed down by up to 5× compared to a single

node instance. Our profiling has led us to some surprising

discoveries regarding the communication overhead expe-

rienced by AWS GPU instances.

• We identify the limitations of each instance type. Specif-

ically, our results indicate that higher capacity GPU

instances do not always lead to better performance and

that AWS hardware interconnects may have various short-

comings.

• We identify architectural features in DNN models that

influence communication stall behavior, namely, the num-

ber of layers as well as the total number of parameters

(size of the DNN model).

The rest of this paper is organized as follows. In Section II,

we discuss the background pertinent to AWS GPU instances

and DS-Analyzer. In Section III, we motivate our problem and

discuss related work. Our characterization scheme is described

in Section IV. The results from our characterizations are

presented in Sections V and VI. And finally, Section VIII

summarizes our major observations and findings.

II. BACKGROUND

In this section, we provide an overview of the GPU instance

family of AWS, along with background on prior work.

A. Public Cloud Offerings

Hardware capabilities, both in terms of compute and inter-

connects, are particularly significant in the context of DDL on

the public cloud, as the GPU instances offered by providers

(such as AWS) have fixed configurations [3], thereby limiting

user choice of a custom single-node training solution. Table I

lists the P family GPU instance types offered by AWS along

with their hardware specifications and pricing. The P4 in-

stances have the most powerful GPUs (NVIDIA A100 Tensor

core GPUs), while the P3 and P2 instances respectively have

the less powerful, yet quite capable, NVIDIA V100 and K80

GPUs. The P3 and P2 instances are of particular interest to

us, as they offer the most variety in terms of the number of

GPUs available per node amongst all GPU instances viable

for DNN training.1

Apart from the GPUs used, the interconnects and network

links available to these instance types also have a significant

impact on the end-to-end training time as they dictate data

transfer speeds during various training steps. Specifically,

interconnect links are utilized during gradient communication

among workers (GPUs) present on the same physical node,

whereas network links are used when the communication is

between workers on different nodes. The interconnect archi-

tecture for the AWS p3.16xlarge and p3.24xlarge instances

[19] is depicted in Figure 1.

B. DS-Analyzer: Stall Characterization

Among the studies that characterize the private cloud DS-

Analyzer [31] is of particular significance to us as it also aims

to identify DNN training bottlenecks, specifically with regards

to ‘fetch’ and ‘prep’ stalls. These stalls refer to the time spent

fetching mini-batches of data from the disk (fetch stall) and

pre-processing it prior to training with it (prep stall).

1P4 is a dedicated offering not considered herein.
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Instance type(s) GPU(s) VCPUs Interconnect GPU Memory (GB) Main Memory (GB)
Network
Bandwidth
(Gbps)

Price/hr

P4 8×A100 96 NVSwitch 320 1152 400 $32.7726

P3

p3.2xlarge 1×V100 8 PCIe 16 61 up to 10 $3.06
p3.8xlarge 4×V100 32 PCIe + NVLink 64 244 10 $12.24

p3.16xlarge 8×V100 64 PCIe + NVLink 128 488 25 $24.48
p3.24xlarge 8×V100 96 PCIe + NVLink 256 768 100 $31.218

P2
p2.xlarge 1×K80 4 PCIe 12 61 ¡ 10 $0.90
p2.8xlarge 8×K80 32 PCIe 96 488 10 $7.20

p2.16xlarge 16×K80 64 PCIe 192 732 25 $14.40

TABLE I: AWS GPU instance types with prices (N. Virginia).
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Fig. 1: P3.16xlarge interconnect architecture.

DS-Analyzer uses three steps to calculate prep and fetch

stalls (refer to Figure 2). Step 2 pre-populates synthetic

data in the GPUs and runs training to measure the maximum

ingestion rate of the system. This is followed by step 3 which

runs training on actual data but with all OS caches cleared2.

Finally, in step 4 , training is run over actual data such that the

entire data is cached in main memory (from the previous step).

The prep stall is calculated by finding the difference between

4 and 2 . This is because there is no disk I/O involved in

step 4 and any difference in training time after deducting

the time spent in GPU processing of 2 will yield the time

spent in pre-processing at CPU. After this, the fetch stall is

calculated by finding the difference of 3 and 4 , since any

increase in time over 4 would be due to disk I/O.

III. DDL STALL ANALYSIS IN PUBLIC CLOUD

In this section, we highlight the novelty of this work

over prior work and discuss related work. We also motivate

the importance of “profiling communication stalls” in DDL,

especially on the public cloud.

Are there prior works which analyze communication
overhead in DDL?
In [33], the authors measure the communication overhead of

training to be 80% of the entire training time. However, they

do not specify any general methodology to measure the actual

overhead. In comparison, [48] characterizes DDL workloads

on Alibaba PAI [6] and observes the communication overhead

to be 62% with the use of parameter server (PS) [24] (whose

communication performance is strictly less than all-reduce

[23], [48]). Moreover, the said work is specific to a private

cluster and specific hardware details of the machines running

2In the original paper, this step is described to be after the next step but
we observed from the DS-analyzer open source code that that is not the case.

the workload are not available. Although they have released a

general profiling methodology using TensorFlow [1] internal

tooling and manual feature extraction, it is limited to Ten-

sorFlow and the PS communication architecture. They build

a general framework for measuring the DDL performance,

specifically for transient cloud instances which are frequently

revoked. This work, too, does not account for communication

stalls. Finally, tools such as nsight [34], nvprof [36] etc. are

incapable of measuring communication stalls as this requires

instrumenting the model and/or framework.

Why should a communication profiler for DDL be intro-
duced?
A communication stall profiler can potentially help in the end

goal of reducing it. In the past, several distributed DNN algo-

rithms have been proposed [8], [11], [13], [24], [26], [53], [54]

to reduce communication overhead of DDL. However, there is

a lack of a profiling tool to measure the real world efficacy with

regards to the communication overhead for various algorithms.

While [55] aims to predict the efficacy of optimizations intro-

duced in DNNs, it only estimates the communication overhead

through simulations based on the available bandwidth and

size of the communicated gradients. A similar strategy is

employed in [28]. Both these works do not measure the actual

communication overhead in the real world, which depends

on a complicated asynchronous communication pattern and,

consequently, suffers from varying bandwidth availability.

Another question that can be asked here is: why not instrument

the framework directly to measure communication overhead?

The problem with instrumenting the framework is that every

layer needs to be instrumented separately since the compute

and communication is overlapped. The instrumentation would

need to measure when computation ends and communication

begins. This requires additional CUDA synchronization calls

for each layer, since GPU kernels are launched asynchronously

and communication is run concurrently. Such synchronizations

might severely alter the execution runtime [55].

Why characterize GPU instances of public clouds?
The gamut of public cloud GPU-based instances available (see

Section II-A) makes the task of choosing the most performant

configuration a non-trivial one for end-users. This is due to the

presence of various stalls in the DDL pipeline as well as the

lack of a good scientific study that characterizes these stalls

in the various public cloud GPU instances. Prior works on

DL characterization such as [2], [14], [17], [20], [28], [31],

[32], [48] do not characterize the instances of the public cloud

for their QoS; consequently, users cannot use these works to
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choose the appropriate instance type(s). To further complicate

matters, cloud providers offer different types of interconnects

for their GPU-accelerated instance type(s). Apart from the

interconnect type, the user can also ”tie” various instances

through a computer network. These communication options

introduce further complexity to the choice of instance(s) for

DDL. Without a good characterization study to identify what

slowdowns various hardware of the public cloud induce,

existing work on selecting an appropriate cloud configuration

may fall well short of an optimal solution.

How do existing cloud configuration management systems
fall short?
Prior work such as [28], [51] attempt to find the best VM

configuration to run DL while satisfying user constraints. Al-

though the end objective is met in their respective experiments,

these works require extensive characterization and profiling to

accomplish it. With poor characterization, such works may

not predict the “true” throughput of a VM for a given model.

For instance, none of them consider contention in intra-node

network in their performance estimation models. Moreover, the

cost of profiling itself is high and is not considered in the cost

savings shown in their experiments. Our work too incurred cost

in running the characterization experiments but the users can

use the takeaways without running any further experiments.

Essentially, the cost of automating a recommendation system

for cloud configuration is often not considered. However, our

work can be used by users to find an optimal VM configuration

(albeit manually) without any extra cost to them.

IV. METHODOLOGY

In this work, we use the AWS public cloud to run all

experiments. Specifically, we run DDL experiments in the

AWS N. Virginia region using P type instances, which are

AWS’s recommended instance type for DL. All DDL models

are run using PyTorch distributed in synchronized data parallel
setup [25] with collective allreduce [10], [38] for gradient

exchange. This setup is known to have better reproducability,

convergence and performance [28]. We do not focus on the

parameter server [24] communication protocol as its perfor-

mance has been shown to be strictly less than allreduce.
Using our profiler Stash, we characterized various AWS

P type instances (instance family recommended for training)

with reference to four stall parameters, namely, (i) interconnect

stall, (ii) network stall, (iii) CPU stall (prep stall), and (iv)

disk stall (fetch stall). While these stalls provide important

insights into the hardware characteristics of AWS instances,

we also provide a training time and monetary cost compar-

ison of running DDL on various AWS instance types. Our

characterization exploits the repetitive nature of DL, and is

able to calculate the various stalls from a single epoch. This

is possible since the stall characteristics of a single epoch are

representative of that of the entire training time (which scales

linearly with the number of epochs).

A. Characterization
We conduct two types of characterizations, macro and

micro, on AWS instances as explained below.

Macro Characterization: We run DDL using the models

listed in Table II to characterize relevant GPU instances.

We use two types of DNN models in this work: convo-

lutional (CNNs) and transformer-based. Image classification

with CNNs is the most common task used for evaluating ML-

system performance [30]. A more recent work [28] uses CNNs

for their characterization study. Transformers are growing in

popularity and use cases, especially for NLP. We do not

characterize much larger models such as DLRM as cheaper

VMs from the public cloud are infeasible for them. Such large

models may best be run on large dedicated instances such

as the AWS P4 equipped with A100 GPUs and NVswitch

interconnect. The P4 family has only a single type of instance

and hence, a characterization study is not necessary. Large

DNN models often do not fit on a single GPU’s memory,

thereby forcing users to employ techniques such as model and

hybrid parallelism to train the model with multiple GPUs. Our

profiling tool currently supports only data parallelism as stalls

can be fully expressed through it.

Domain Type Name Gradient
size Input Dataset

Vision
Small

AlexNet [21] 9.63M

Imagenet1k [16] (133 GB)

MobileNet-v2 [40] 3.4M
SqueezeNet [15] 0.73M
ShuffleNet [29] 1.8M
ResNet18 [12] 11.18M

Large
ResNet50 [12] 23.59M
VGG11 [43] 132.8M

NLP BERT-large [9] 345M SQuAD 2.0 [39] (45 MB)

TABLE II: DDL models used.

Micro Characterization: We conduct micro characterization

by running synthetic training experiments using two models –

ResNet and VGG. As part of this, we study various aspects

of the model architecture that influence the communication

stalls including the number of layers. We also modulate

certain model architecture features (such as ”residual” network

branches and batch normalization layers) to study their impact

on communication stalls.

B. Profiler Design
A schematic view of the Stash profiler is depicted in Figure

2(a). In the figure, step 1 and step 5 are our contribution

and steps 2 , 3 , and 4 are from the prior work, DS-

Analyzer. Note that Stash pre-populates the GPU memory with

synthetic training data as part of step 1 , 2 and 5 , and runs

training over it. Training over synthetically pre-populated data

has the advantage of eliminating all stalls (CPU, disk etc.)

in the DDL pipeline before the GPU. However, the training

still suffers from GPU related stalls such as communication.

Communication stalls can be categorized into two – (i) in-

terconnect stall (intra-machine), and (ii) network stall (inter-

machine). Below, we describe the methodology of determining

the communication stalls using step 1 , step 2 , and step 5 .
1) Interconnect (I/C) Stall: We define an interconnect stall

as the inter-GPU communication overhead of DDL in a single
machine that arises due to the communication among the
GPUs. This is a key indicator of the performance of the

underlying interconnect and is also indicative of the end-to-end

training time which is determined using two steps:
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(a) High level view of the Stash profiler
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(b) I/C stall (M: Mini-batches, batch size =
n/4
4

)

Fig. 2: Our Stash scheme.

1) Stash pre-populates synthetic data in the memory of a

single GPU only such that the number of samples the

GPU processes is the same as that in a single GPU in

a distributed training setup with multiple GPUs. Here,

the batch size for multi-GPU training is kept the same

as that of a single GPU. Stash then performs synthetic

training on just a single GPU (in a multi-GPU machine)

while keeping all other GPUs idle (see step 1 in Figure

2(a)). Since this is a single-GPU training, no inter-GPU

communication overhead is incurred.

2) Stash then runs distributed training, over all GPUs in

the machine, on synthetic data. The number of samples

each GPU processes and the per-GPU batch size is kept

the same as in step 1 .

Note that distributed training adds communication overhead

to the end-to-end training time as a consequence of gradient

synchronization. As a result, the difference in training time

between 2 and 1 essentially yields the interconnect stall

of the model for a particular machine. In essence, we are

comparing the throughput of a single GPU with multiple GPUs

by adjusting the batch size, but relieving the user of the manual

effort of doing so.

We now describe an example of determining interconnect

stalls using Figure 2(b). Suppose that, in a four GPU machine,

the total DNN training dataset consists of n samples and the

training must run over four mini-batches per epoch such that

the batch size per GPU is set to be
n/4
4 . Therefore, as part of

1 , Stash will pre-populate only one GPU with n/4 samples

and a training process will be launched for one epoch using

that particular GPU, keeping the other GPUs idle. This single-

GPU training epoch has no need for gradient synchronization

and hence, does not suffer from any communication overhead.

After step 1 , Stash will pre-populate all other GPUs with n/4
samples each as part of step 2 , and launch distributed training

over n samples (i.e., a DDL epoch). These four training

processes will suffer from communication overheads due to

the all-reduce (gradient synchronization) step, as depicted. The

difference between the elapsed time of training over n samples

with 4 GPUs and training over n/4 samples with a single GPU

is the ”communication overhead” (indicated in figure), which
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Fig. 3: Network stall calculation.

is essentially the interconnect stall.

2) Network (N/W) Stall: We define a network stall as the

inter-GPU communication overhead of DNN training over
multiple machines that arises due to the network link(s) be-
tween them. This type of stall occurs when DDL is performed

across multiple machines linked through a network. Since the

all-reduce step requires gradients to be sent via both the intra-

machine interconnect network as well as the inter-machine

computer network, the slowest link becomes a communication

bottleneck. Whenever the network link is the slowest link

(compared to intra-node interconnect), network stalls occur.

Stash determines network stalls as follows. Synthetic dis-

tributed training is run over multiple machines connected via

network such that the total number of GPUs is the same as in

the single machine training of 2 . This is step 5 in Figure 2.

The difference between the training times of 2 and 5 yields

the network stall of the model.

Again, Figure 3 depicts an example of determining network

stall. Suppose we run step 2 in an instance with 4 GPUs

over n data samples, as shown in the figure. As part of 5 ,

Stash now runs training over 2 instances with 2 GPUs each

but with n/2 samples per machine keeping the per GPU batch

size constant. When we train on 2 instances with a network

link between them, the communication is bottlenecked by

the network link if the link is slower than the hardware

interconnect (most cases). For most cases where the network

link is slower than the hardware interconnect, the network stall

is calculated as the time difference between 2 and 5 .

V. MACRO CHARACTERIZATION

Our characterization aims to answer a fundamental question,

i.e., which instance type is the most cost-effective and/or

879



�
�
	


�
�


�

��
��
��

�

��
	�
��

�

	�
�


��

�
��

���

	�
��

��
�

��
��
��

�

��
	�
��

�

	�
�


��

�
��

���

	�
��

��
�

������	������ ������	����
��

��
��
��
�	
	�
 �	������� �	��������

�	���������	 �	��
������

(a) CPU stall % (CPUs are sufficient for pre-processing)
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(b) Disk stall % (Scales with #GPUs per instance.)

Fig. 4: CPU and disk stall % of total training time in P2.

performant? To answer this, we realize that further questions

need to be asked and hence, we begin our discussion by

asking a simple but specific question: How much stall does
a DDL job experience from spending time on CPU, disk,
interconnect, and network? We investigate this problem by

conducting a stall analysis on AWS P type instances with

representative DDL workloads, while keeping the GPU as the

first class resource. Although we use specific DNN models

as example workloads, the techniques used herein can be

generalized to all DDL workloads. We run our DDL work-

loads across four different mini-batch sizes (except BERT-

large), with the largest batch size being (approximately) the

maximum size that could fit in the GPU memory. For BERT,

we only run on batch size 4, as that is the maximum size

that allows the resultant data to fit in GPU memory (16

GB). Note that the batch sizes stated in the figures are per

GPU and the effective batch size can be obtained as the per-

GPU batch size times the number of GPUs. For brevity, we

only show the plots of the profiling with the smallest and

largest batch sizes used. The stall percentage is calculated as:

I/C stall% = ( I/C stall time
single GPU time ) × 100, N/W stall% =

( N/W stall time
single instance time ) × 100, where the I/C and N/W stalls

are calculated as described in the previous section.

A. Analysis on AWS P2

AWS P2 instances use the NVIDIA K80 GPU with PCIe

third generation interconnects. The P2 instances consist of

three instance types – p2.xlarge, p2.8xlarge and p2.16xlarge

as discussed in Section II. We profile P2 instances with small

models across four mini-batch sizes – 32, 64, 96 and 128.

Since K80 GPUs have limited compute and memory resources,

they are not very suitable for running large models, i.e. models

with a high parameter count. In practice, we observed very

high I/C stall and monetary cost of training large models on

P2. For e.g., for ResNet50, interconnect stall was observed to

be 750% and monetary cost was $41 to train for a single epoch
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(a) P2 (K80 GPU)
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(b) P3 (V100 GPU)

Fig. 5: I/C stall small models (p2.16xlarge has the worst stalls due
to PCIe contention, p3.8xlarge suffers from sub-optimal interconnect
allocation)
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(a) Training time (sec)
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(b) Training cost ($)

Fig. 6: Training Time and Cost for P2, Small Models. (16xlarge is
the least cost-optimal)

(the latter being 2000% more than P3). Hence, we employ the

smaller models to characterize stalls on the K80 GPUs.

1) Stall Analysis: Figure 4 shows the CPU and disk stalls

as a percentage of the total training time for mini-batch sizes

32 and 128. Unlike [31], we notice negligible CPU stalls in

AWS, pointing to the fact that vCPUs at AWS are sufficient

for most pre-processing needs of DL jobs. We further notice

the largest amount of disk stalls for the 16x type machine. This

is because there are 16 data loading workers running on the

16x machine to exploit the 16 GPUs of the machine. The 16

workers read from the attached SSD in parallel and create an

I/O contention. The AWS general purpose SSD used in our

experiments is unable to keep up with this demand and the

training spends a significant amount of time performing disk

I/O (only when data is not cached in DRAM).

We now discuss the interconnect and network stalls of P2

instances. We observe from Figure 6(a) that the 16x large runs

a slower training than two 8xlarge machines that are network-
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connected. This is true in all our batch runs. Furthermore, we

observe from Figure 5 that 16xlarge has a higher interconnect

stall time than both 8xlarge and 8xlarge*2 (two 8xlarge).

This begs the question, what is causing the slowdown in the
16xlarge?
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Fig. 7: Per GPU PCIe bandwidth mea-
sured in P2

The slowdown

in 16xlarge can be

attributed to the

limited bandwidth of

the PCIe buses of P2

instances used for

communication. In

case of the 16xlarge,

the PCIe bandwidth

is shared among 16

workers causing congestion and ”slicing” of the limited PCIe

bandwidth. We validate this claim by measuring the PCIe

bandwidth available per GPU using CUDA in xlarge, 8xlarge

and 16xlarge instances. All GPUs are used in parallel when

running the bandwidth test and we report the per device

bandwidth in Figure 7. The GPUs in 16xlarge instance receive

significantly less bandwidth than the GPUs of all other P2

instance types. This bandwidth is lower than the expected

network bandwidth and hence the training gets throttled on

the interconnect link, rather than on the network. As the

network is not the slowest link and the 8xlarge instance has

access to higher interconnect bandwidth than the 16xlarge,

the 8xlarge*2 configuration performs better than the 16xlarge.

This gives us an intuition that the 16xlarge instance is the

least cost-optimal and we test this empirically by observing

the monetary cost of running the workloads in Figure 6(b).

A linear increase in cost is observed as the size of the

P2 instance is increased. This confirms the intuition from

our study of interconnect stalls that the monetary cost of

executing a DDL workload is proportional to the observed

interconnect stall of that workload. The lowest cost of running

the training is on p2.xlarge, which has a single GPU and hence,

has no interconnect stalls. However, the DDL execution time

does not always decrease linearly from smaller instance to

larger instance. From Figure 6(a), we notice that there is no

significant improvement in training time on 16xlarge for a

2× increase in cost. In fact, we notice in most cases that

the running time in 16xlarge is more than that of 8xlarge,

even with the instance having twice the resources as that of

8xlarge. This is because although resources like CPU, GPU

and memory are doubled, the PCIe bus bandwidth remains the

same (as already demonstrated), thereby causing congestion

and significant slowdowns.

2) Recommendation: We observe both high interconnect

and disk stalls on the 16xlarge instance and accordingly,

believe the 16xlarge instance may not be the cost-optimal

choice. Even when more GPUs are needed than what the

8xlarge instance can provide, training time and cost are lower

when using a combination of 8xlarge instances connected via

network compared to using the 16xlarge instance.
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(a) CPU stall % (CPU stall is negligible)
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(b) Disk stall % (Disk stall highest for 16xlarge)

Fig. 8: CPU and disk stall for P3, small models.
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(a) CPU stall %
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(b) Disk stall %

Fig. 9: CPU and disk stall for P3, Large image models. (CPU stall
is negligible, disk stall high for experiments with 8 GPUs)

B. Analysis on AWS P3

AWS P3 instances use the NVIDIA V100 GPU with

NVLink interconnect as already described in Section II. The

P3 instances are high-performing instances capable of training

large DNN models in a cost-effective manner. We begin our

discussion with the stall analysis of P3 in the sequel.

1) Stall Analysis: We show CPU and disk stalls for small

models in Figure 8 and large models in Figure 9. The CPU
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(a) Training time (sec)
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(b) Training cost ($)

Fig. 10: Training Time and Cost for P3, Small Models. (16xlarge is
the most performant)
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(b) Large

Fig. 11: I/C stall for P3. (16xlarge has the lowest stall)
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(b) Training cost ($)

Fig. 12: Training Time and Cost for P3, Large Models. (16xlarge
and 24xlarge are equally performant)

and disk stalls follow the same pattern as in P2. The CPU

stalls are negligible and the disk stall is high for the 16xlarge

instance. Unlike p2.16xlarge, the p3.16xlarge has eight GPUs

and hence, eight workers perform I/O on the attached SSD.

However, the throughput of training is also high due to the

higher compute capacity (of both GPU and CPU) of the

instance, thus, leading to higher usage of the SSD and higher

disk stalls (data is not cached in DRAM).

The P3 instances use NVLink for communication between

the GPUs instead of the PCIe bus. As discussed in Section II,

NVLink offers significantly higher bandwidth compared to

traditional PCIe-based communication and hence, we expect

lower interconnect stalls while using NVLink. We measure

and show the actual interconnect stalls for P3 in Figure 11

and notice that they are lower than those of the P2 instances,

as expected. However, we also observe the 8xlarge (which has

half the number of GPUs as the 16xlarge) to have higher over-

all interconnect stalls than the 16xlarge, especially for smaller

models or while using smaller batch sizes. As the number of

GPUs decreases, the volume of gradients to be transferred

(as each GPU generates gradients) also decreases, thereby,

requiring lesser bandwidth from the underlying interconnect.

This should ideally translate into lower interconnect stalls for

the 8xlarge. Therefore, we ask the question: why does the
p3.8xlarge instance not have strictly lower interconnect stalls
than the 16xlarge?

The reason for this anomaly is that although AWS provides

a highly connected crossbar architecture (refer Figure 1) for

communication via the NVLink, this may not be the case for

the 8xlarge. Ideally, AWS should split the 16xlarge instance

into two 8xlarge instances such that each instance gets an

entire crossbar as shown by the dotted line in Figure 1.

This would have provided the tenant/user with a highly-

connected, high bandwidth GPU interconnect, resulting in

lower interconnect stalls. However, we theorize that AWS is

not able to ”evenly slice” the physical interconnect so as to

give an entire crossbar to the 8xlarge instance. This may be

due to multiple single size GPU requests from several tenants

occupying GPUs in a crossbar. The 8xlarge instance loses

the benefit of the crossbar architecture due to this and ends

up being less performant with respect to interconnect stalls.

This ”trait” of AWS interconnects is essentially probabilistic

in nature and a tenant may indeed end up getting an entire

crossbar for their 8xlarge instance, thereby, resulting in lower

interconnect stalls.

Next, we compare the performance of p3.16xlarge with that

of the p3.24xlarge. The p3.24xlarge is a dedicated instance

offering which has the same number and type of GPUs as

the 16xlarge but with twice the memory. It also comes with

a dedicated local SSD storage along with more vCPUs and

DRAM than the 16xlarge (refer Table I). However, from our

stall analysis of the 24xlarge, we do not observe any significant

decrease in stalls or training time compared to the 16xlarge.

This is true even for our BERT large model which is both

compute and memory–intensive. We now ask: why is the
performance of 24xlarge not strictly better than the 16xlarge?
The answer to this question, again, lies in its GPU inter-

connect. From [19] we know that both the 16xlarge and the

24xlarge use the same NVlink interconnect hardware and

hence they also suffer from the same types of interconnect

stalls. Although the 24xlarge offers a better configuration for

each of its hardware components (GPU, DRAM, CPU, SSD

etc.), it misses out on improving its NVLink interconnect. The

DNN pipeline suffers from the same amount of communication

overhead as the 16xlarge and hence, is not able to exploit the

better hardware. This further lends credence to the importance

of communication overhead in DDL (missed by prior work).

However, there is a caveat to this. The 24xlarge instance

has twice the amount of per-GPU memory (32GB) than the

16xlarge. This allows users to run training with larger batch

sizes thereby reducing time per epoch. However, we can’t

conduct a cost analysis between 16xlarge and 24xlarge by

increasing the batch size of training on 24xlarge due to two

reasons: (i) single epoch with different batch sizes is not

representative of the same end-to-end training, and (ii) large

batch sizes tend to converge to sharp minimizers which leads
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to poor generalization [18]. But for comprehensiveness, we

run our BERT model on the 24xlarge after doubling the batch

size to 8. This resulted in about 12.8% improvement in training

time and costing about $2.37. This is more than the $2.1 cost

of running the model on 16xlarge with half the batch size.

Finally, we ask: what happens when the instances are con-
nected via the network? To answer this question, we calculate

the network stall of two p3.8xlarge instances connected via the

network (p3.8xlarge*2) in Figure 13 as part of step 5 of Stash

and notice network stalls as high as 500%. This is because

as soon as the ”all-reduce” ring contains a network link, the

training gets throttled on this slow network link. Compared

to the NVLink interconnect, which has a sufficiently large

bandwidth to accommodate fast data transfers, the network

link introduces higher slowdowns. This discourages us to run

training over network links.
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Fig. 13: Network Stall of two p3.8xlarge
instances. (Network stall is as high as
500%)

Note that we do

observe large models

like VGG to have

low interconnect

stall (but high

network stall). The

reasoning for this

will be discussed in

Section VI-A.

2) Cost Analysis:
We show the cost

and time analysis of P3 instances in Figures 10 and 12. The

cost analysis follows the same pattern as that in P2 instances

but the performance of the instances differs. We find that the

smallest P3 instance, the 2xlarge is the most cost optimal

followed by the 8xlarge and the 16xlarge. The 24xlarge is the

least cost-optimal in most experiments. An immediate question

that can be asked here is: how is 8xlarge more cost optimal
than both 16xlarge and the 24xlarge?
The answer to this question is that although 16x/24xlarge

instances have lower interconnect stalls than the 8xlarge, they

still suffer from higher disk stalls (due to more number of

workers, refer Figures 8(b) and 9(b)) and hence, end up being

less cost-effective than the 8xlarge. Note that the actual disk

stall suffered is not as high as shown in the disk stall analysis

due to caching of data. The disk stall is only high enough to

compensate for the small interconnect stall difference between

8xlarge and the 16xlarge. It is mostly the interconnect stall that

drives the cost-effectiveness of an instance. We also observe

that the network connected instances are the least cost optimal

due to high network stalls.
3) Recommendation: We recommend the single 2xlarge

as the most cost-effective instance for training. However,

we realize that using a single GPU is not practical to train

most models due to time constraints. Hence, tenants must

specifically find out the stalls for their models before running

an end-to-end training on an 8xlarge or a 16xlarge. Fortunately,

Stash is designed to solve this very problem and tenants can

use it to find out the various stalls in their model. We do not

recommend the use of 24xlarge unless the model requires the
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(b) Training cost per epoch

Fig. 14: P2 vs P3 train-time/cost comparison. (P3 is generally more
cost-optimal except for very small models)
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Fig. 15: GPU memory util. of P2 vs P3 for a two model. (Shufflenet
has low GPU util. in P3)

high GPU memory offered.

C. Comparison between P2 and P3

We now compare the two GPU instance types – P2 and P3

from a cost-efficiency perspective. From Figure 14, we notice

that P3 instances are generally more cost-effective than P2

instances, although P3 instances are about 3.5× costlier per

hour than P2 instances. This is because of the lower stalls

P3 instances experience compared to their P2 counterparts.

However, some smaller models like ShuffleNet are not able to

exploit the memory and compute capacity of large V100 GPUs

present in the P3 instances, unlike models with many layers

like ResNet18 (shown in Figure 15). Hence, such small models

incur the least cost when trained on P2 instances. Figure 14

shows the training time/ cost of running DDL on P2 and P3.

1) Recommendation: While we recommend using P3 in-

stances whenever possible, we do notice that smaller models

such as ShuffleNet can be trained cost-effectively on P2s. We

also note that AWS has limited GPU availability and tenants

might not always receive the desired number/type of GPUs

from AWS. Thus, tenants may be forced to use P2 instances

due to unavailability of P3s.

VI. MICRO CHARACTERIZATION AND NETWORK STALL

ANALYSIS

In this section, we analyze the interconnect and network

stalls through synthetic DNN models to (i) find characteristics

in model architecture that influence interconnect and network

stall behavior, and (ii) express the generality of our intercon-

nect and network stall profiler for unseen models. We then

discuss a cost comparison with Srifty.
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(b) N/W Stall %

Fig. 16: VGG has low I/C stall but high N/W stall while ResNet is
vice versa

A. Micro Characterization

In order to verify the generality of our profiling technique

for new models, we create synthetic models by altering the

model architecture of popular DNNs (namely, ResNet and

VGG), to highlight features that can affect stall behavior.

Note that these changes are not meant to improve the DNN

model accuracy or training/convergence time. Rather, they are

meant to provide insights that can be leveraged by users to

architect DNN models to improve system utilization. We run

all experiments on a p3.16xlarge instance with a batch size

of 32 per GPU, repeated thrice with the results averaged

across the runs. A smaller batch size (32) is chosen so

as to maximize all-reduce cycles. This, in turn, exacerbates

communication stalls, thereby, facilitating the analysis of its

underlying cause(s). We begin our discussion by asking two

questions: (i) Is there a relationship between the number
of layers in a model and its communication stalls?, and (ii)

How does the number of gradients to be transferred in a
model affect communication stalls?

1) Relationship between DNN layers, gradients and com-
munication stalls: We answer the above questions by ob-

serving the communication stalls of ResNet and VGG with

varying number of layers (fig 16). We observe that as the

number of layers increases (accompanied by a commensurate

increase in the number of gradients), both the interconnect stall

and network stall time increases. This is expected, as there is

more data to be transferred with the increase in number of

gradients. However, despite the number of gradients in VGG

being far more than that in ResNet (refer table II), VGG is
observed to have lower interconnect stall time than ResNet
(Figure 16) . Moreover, we also notice that the network stall
time of VGG is significantly more than ResNet (Figure 16).
These facts lead us to the next question that arises logically:

Why is the interconnect stall of VGG low and the network
stall high when compared to those of ResNet?

2) Explaining VGG and ResNet communication stalls:
From [25], we know that distributed PyTorch overlaps com-

munication and computation during the backward pass at

individual layers. In case of ResNet, there is a large number

of layers and relatively fewer gradients to transfer per layer.

In comparison, VGG has fewer layers, but a larger number of

gradients to transfer per layer. For instance, VGG16 consists

of about 134.7 million trainable parameters while ResNet152

consists of only 58.5 million [22]. Therefore, the gradients

to transfer per synchronization point is greater in VGG, but

the number of times the gradients get transferred is higher in

ResNet. We now explain how this characteristic leads to the

interconnect stalls observed in the previous subsection.

Suppose VGG has Gvgg bytes of gradients and Lvgg layers,

and ResNet has Gres bytes of gradients and Lres layers. Also,

let us say that NVLink offers Bnv bandwidth with τnv latency.

The time to transfer gradients comprises both latency and data

transfer time. Define this for VGG and ResNet to respectively

be Tvgg and Tres. Thus, the transfer time using NVlink is

given by:

Tvgg =
[
τnv +

Gvgg

Lvgg×Bnv

]
× Lvgg, Tres =

[
τnv +

Gres

Lres×Bnv

]
× Lres

Since NVLink offers very high bandwidth (more than

100 Gbps [23]), and also because both models have a large

number of layers, we can assume:
Gvgg

Lvgg×Bnv
� τnv and

Gres

Lres×Bnv
� τnv . Hence, data transfer time over NVLink is

Tvgg ≈ τnv × Lvgg and Tres ≈ τnv × Lres.

Thus, Lres > Lvgg =⇒ Tres > Tvgg

In other words, the training process experiences increased

slowdown due to the larger number of layers to transfer

in ResNet (or in any other deep model, for that matter). It

follows that in the case of VGG, although the data to be

transferred is much larger, the time to transfer is nearly zero

due to the lower number of layers. The only slowdown we

observe here is due to the transfer latency associated with the

transfer link/framework.

Now, we explain the high network stall time observed for

VGG in the previous subsection. As already explained in

Section IV-B2, the collective all-reduce performed across the

network-connected instances is throttled by the network link.

Hence, we can assume that the data transfer time is a function

of the network link only. Suppose the network link offers Bnw

bandwidth with τnw latency. Similarly, the data transfer time

over network is:

Tvgg =
[
τnw +

Gvgg

Lvgg×Bnw

]
× Lvgg, Tres =

[
τnw + Gres

Lres×Bnw

]
× Lres

Since the network link is slow, we can assume: τnw � Gvgg

Bnw

and τnw � Gres

Bnw
. Hence, the data transfer time over network

link is: Tvgg ≈ Gvgg

Bnw
and Tres ≈ Gres

Bnw
.

Thus, Gvgg > Gres =⇒ Tvgg > Tres

In other words, since the network link is slow, the data

transfer is throttled on the transfer time rather than the

latency. Since a much larger volume of gradients needs to
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be transferred in VGG (in total), the network stall is much

higher in VGG than in ResNet.

3) Impact of model architecture: To probe further into

the specific aspects of DNN model architecture that impact

interconnect stalls, we made two changes to the ResNet model

by removing batch normalization (BN) as well as residual

networks. These changes are intended to show the extent to

which these layer types impact communication stalls. From

figure 16 we notice that removing residual networks has

minimal impact on communication overhead. This is because

residual networks do not introduce any new layers and hence

do not impact communication. However, removing BN reduces

the number of layers in the model and hence we see lowering

in communication stalls as shown in the figure 16.

4) Recommendation: From our experiments, we observe

that models with very deep networks and fewer gradients

are unable to fully exploit the fast NVLink interconnect,

whereas shallower networks with large gradient transfers can

be throttled on the network link. Hence, we recommend

running shallow networks with large gradients on instances

with the best interconnect possible. However, if the model is

very deep with fewer gradients per layer, the models can be

run on instances without the best interconnect, such as the

p3.8xlarge. The penalty for running such models on network-

connected instances is also minimized.

B. Discussion: Comparison with Srifty

Srifty extensively measures network-throughput variance

(for it to work) by performing a grid probe of communication

by sweeping different buffer sizes, world size, instance types

and location. This results in 40K unique measurements [28].

Hence, to use srifty one needs to run these probes again if:

(i) they do not gain access to the original measurements, (ii)

the network changes (public cloud network is susceptible to

infra or tenant changes), or (iii) the target location is not

measured by srifty. Moreover, the user is expected to setup

new VMs to take the measurements, which involves cold-start

delays, along with the effort of setting up large clusters (up

to 64 VMs required). Such significant added cost of achieving

an automated recommendation system should be accounted

against srifty’s performance. Note that Stash comes at no such

costs to the users.

VII. RELATED WORK

Characterizing Deep Learning. Existing works in the

area of DL characterization [2], [14], [17], [27], [31], [32],

[48]–[50] do not conduct a stall analysis on public cloud GPU

instances, which is what we do here.

Cost optimization in the public cloud. Prior works such as

[42], [47], [52] explicitly focus on reducing costs of migrating

and running ”generic” workloads on public cloud (including

DNN inference), i.e., not specifically DL. While some prior

works [4], [5] may focus on resource management, they

make implicit monetary decisions by selecting the serverless

platform, which may not be cost-optimal.

VIII. CONCLUDING REMARKS

We introduced a DDL stall profiler Stash and presented

novel methodologies to measure communication stalls in par-

ticular. Using Stash, we extensively characterized public cloud

GPU instances for the various stalls they experience when

training popular DNN models. We found communication stalls

to be the major bottleneck in DDL training and that some

AWS instances are heavily impacted by them. The observed

interconnect stalls and network stalls were up to 90% of single

GPU and 500% of single instance training time respectively

due to severe bandwidth contention when using the PCIe bus,

sub-optimal resource allocation when using the NVLink and

low AWS network bandwidth. Note that these high stalls

translate to higher training costs. Further, we analyzed the

impact of DNN model architecture features on communication

stalls. Finally, we discuss the true cost of cloud recommenders.

Stash is open-sourced at [46] with a technical report available

at [41] along with additional results from those shown here.
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