2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) | 978-1-6654-6272-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/MICR056248.2022.00047

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

Skipper: Enabling efficient SNN training through activation-checkpointing and
time-skipping

Sonali Singh
School of EECS

Anup Sarma
School of EECS

Sen Lu
School of EECS

Abhronil Sengupta
School of EECS

Pennsylvania State University Pennsylvania State University Pennsylvania State University Pennsylvania State University

University Park, USA
sms821@psu.edu

University Park, USA
avs6194@psu.edu

Mahmut T. Kandemir Emre Neftci
School of EECS RWTH Aachen
Pennsylvania State University Aachen, Germany
University Park, USA eneftci@uci.edu
mtk2 @psu.edu

Abstract—Spiking neural networks (SNNs) are a highly
efficient signal processing mechanism in biological systems that
have inspired a plethora of research efforts aimed at translating
their energy efficiency to computational platforms. Efficient
training approaches are critical for the successful deployment
of SNNs. Compared to mainstream deep neural networks
(ANNs), training SNNs is far more challenging due to complex
neural dynamics that evolve with time and their discrete,
binary computing paradigm. Back-propagation-through-time
(BPTT) with surrogate gradients has recently emerged as an
effective technique to train deep SNNs directly. SNN-BPTT,
however, has a major drawback in that it has a high memory
requirement that increases with the number of timesteps. SNNs
generally result from the discretization of Ordinary Differential
Equations, due to which the sequence length must be typically
longer than RNNs, compounding the time dependence problem.
It, therefore, becomes hard to train deep SNNs on a single or
multi-GPU setup with sufficiently large batch sizes or time-
steps, and extended periods of training are required to achieve
reasonable network performance.

In this work, we reduce the memory requirements of BPTT
in SNNs to enable the training of deeper SNNs with more
timesteps (T). For this, we leverage the notion of activation
re-computation in the context of SNN training that enables the
GPU memory to scale sub-linearly with increasing time-steps.
We observe that naively deploying the re-computation based
approach leads to a considerable computational overhead. To
solve this, we propose a time-skipped BPTT approximation
technique, called Skipper, for SNNs, that not only alleviates this
computation overhead, but also lowers memory consumption
further with little to no loss of accuracy. We show the efficacy
of our proposed technique by comparing it against a popular
method for memory footprint reduction during training. Our
evaluations on 5 state-of-the-art networks and 4 datasets show
that for a constant batch size and time-steps, skipper reduces
memory usage by 3.3x to 8.4x (6.7x on average) over baseline
SNN-BPTT. It also achieves a speedup of 29% to 70% over the
checkpointed approach and of 4% to 40% over the baseline
approach. For a constant memory budget, skipper can scale to
an order of magnitude higher timesteps compared to baseline

Vijaykrishnan Narayanan
School of EECS
Pennsylvania State University
University Park, USA
vijaykrishnan.narayanan@psu.edu

University Park, USA
5215689 @ psu.edu

University Park, USA
sengupta@psu.edu

Chita R. Das
School of EECS
Pennsylvania State University
University Park, USA
cxd12@psu.edu

SNN-BPTT.
Keywords-SNN; BPTT; compute and memory.

I. INTRODUCTION

Neuromorphic hardware implementing SNNs has the po-
tential for low-latency and energy-efficient signal processing
due to their locally-dense and globally-sparse architecture
[11, [2], [3]. Neuromorphic hardware is particularly suited
for processing the output of neuromorphic sensors [4] that
produce streams of events rather than frames. Prior research
has shown that event-based vision cameras can be very
useful in solving depth estimation and optical flow problems
using deep neural networks [5]. Also, several Al applica-
tions, realized using SNNs and benchmarked on prototype
neuromorphic hardware [2], have demonstrated considerable
performance and energy benefits compared to mainstream
platforms [6], establishing the effectiveness of such plat-
forms. Although such neuromorphic hardware platforms
are rapidly evolving and are highly efficient at processing
spiking temporal signals, they are still limited to inferences
[7] or constrained online learning [2] scenarios, and general-
purpose systems such as GPUs and CPUs continue to be the
predominant platforms for training of large-scale SNNs.

Most SNNs implement a variant of the integrate and fire
(I&F) neuron [8], which captures the neuron’s temporal
dynamics and its all-or-none activation. The discretization
of the I&F neuron differential equations results in a special
case of recurrent neural network (RNN), with two key chal-
lenges: firstly, the activation function is a non-differentiable
step function, and secondly, the typical sequence length is
considerably longer than RNNs to account for the temporal
dynamics. The first challenge can be addressed using the
surrogate gradient method, which assumes a smooth surro-

978-1-6654-6272-3/22/$31.00 ©2022 IEEE 565
DOI 10.1109/MICR0O56248.2022.00047
Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

gate network for the purposes of differentiation [9]. This
enables the use of stochastic gradient descent to optimize
task-relevant loss functions, and therefore the use of auto-
differentiation tools in ML frameworks [10], [11].

Gradient descent applied to SNNs is a variant of the BPTT
algorithm [12], which scales as the number of neurons times
the number of time steps (typically in the hundreds). The
dependence on the latter makes SNN training particularly
memory- as well as compute-intensive. This high complexity
makes SNN training a major obstacle for real-world ap-
plication scenarios [13]. To address this problem, several
algorithmic techniques have been proposed, such as approx-
imations of the real-time recurrent learning (RTRL) rule
[14], [15], [16], which eliminates the time dependence of
the network. Others have proposed local loss functions [14]
and feedback alignment [17], which eliminates the need to
back-propagate the loss across layers and are less compute-
and memory-intensive than BPTT. Other techniques such as
ANN-to-SNN conversion [18], [19], [20] and STDP-based
unsupervised learning [21], [22] have also been proposed.
However, approximations to RTRL and local learning result
in worse accuracy compared to BPTT [23], [24] and so
do conversion and STDP-based mechanisms. BPTT, thus,
remains the gold standard for training SNNs, and improving
its efficiency in terms of reduced memory footprint and
execution time on current compute platforms is key to its
adoption in large-scale, real-world applications.

Motivated by these observations, in this work, we present
two complementary techniques to minimize the memory
and computation overheads of BPTT-based SNN training
on a GPU. In order to alleviate the high memory cost
of SNN training that scales linearly with time steps, we
first leverage a well-known technique, called activation
checkpointing, where intermediate activations in a multi-
layer network are not saved, to reduce the memory demand.
This concept (also referred to as gradient checkpointing in
deep learning literature), has been applied for training deep
neural networks (DNNs) on GPUs, where memory is often
a limiting factor, by saving a subset of the layer activations
instead of the activations of all the layers (as is usually
the case), and then re-computing them when required [25],
[26]. The recomputation costs another 30%-35% increase
in training time [25], which we mitigate by proposing a
computation skipping mechanism.

While gradient checkpointing has been applied in the
context of CNNs and RNNs, we establish activation check-
pointing in SNNs which serves as a foundation for our
subsequent innovations. Thus, we first apply checkpointing
to SNNs in the femporal dimension i.e. instead of saving
all the intermediate neural states, we save only a subset of
these (activations) and then recompute them at the time of
backpropagation. Second, we propose a novel technique viz.
activation checkpointing with time-skipping or skipper
to alleviate the computational overhead of checkpointing,

566

by using a Spike Activity Monitoring (SAM) approach that
reduces the training time compared to baseline SNN-BPTT
and yields additional memory savings compared to only
checkpointing. In summary, following are our contributions:

o We apply checkpointing to SNN in the form of activa-
tion checkpointing to reduce its memory consumption
during training by trading off additional computations
for memory savings. We build a framework on top of
a popular deep learning library to readily train SNNs
with BPTT at a reduced memory cost. This can be
used by researchers for exploring deeper SNNs to solve
complex tasks.

« We propose a novel technique called Skipper, which
approximates BPTT (considered as our baseline) using
a Spike Activity Monitoring (SAM) approach and aug-
ments activation checkpointing to not only alleviate its
computational overhead, but also to reduce its training
memory consumption further, with little to no loss
of accuracy. The computation skipping in skipper is
achieved by intelligently utilizing the neuron computa-
tion dynamics in the form of spike activity during the
forward pass.

« We use our checkpointing framework to evaluate the
efficacy of both activation checkpointing and skipper
on 5 SNN workloads with 4 different vision datasets.
Experimental results show that for constant timesteps
and batch size, activation checkpointing can save up
to 4.3x (4.2x on average over evaluated SNNs) the
amount of memory compared to the baseline, while in-
curring ~35% computational overhead on average. Our
proposed activation checkpointing with time-skipping
technique (skipper) further improves memory savings
by up to ~2x compared to plain checkpointing, while
also saving compute time by 29% to 70% across the
5 workloads. This translates to a memory saving of up
to 8.4x (6.7x on average) and 4% to 40% run-time
speedup compared to baseline BPTT.

o We compare our techniques with truncated back-prop-
agation-through-time (TBPTT [27]), a widely used
technique to reduce memory consumption while train-
ing RNNs and demonstrate the advantages of our
approach.

« We also compare our techniques with a prior work [28]
and demonstrate the scalability of our approach.

o Finally, we show the efficacy of our approach on
the neuromorphic vision datasets DVS-gesture and N-
MNIST, highlighting its applicability to both frame-
based and event-based data.

We perform all our experiments on GPUs for ease of
programmability and reproducibility, but the techniques pro-
posed in this work are agnostic to the underlying platform
and therefore equally applicable to future/custom neuromor-
phic hardware platforms as well.

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

Forward pass —»
Layers: L1 L2 L3 L4 L5 L6 L7
input—_f L L]
¥] v v ¥ v]
I

<«— Backward pass

(a) All activations stored (baseline approach)

Forward pass —
L4 L5

save [

Layers: L1 L6

Input

L2

save

v

N
] ¥

- ?
|:l‘-|:|‘-|:|‘a:kward pass-1

I save |—>|

Backward pass-2

(b) Selected activations stored (checkpointing approach)

Figure 1: Typical training process of a DNN.

II. RELATED WORK

A number of recent research proposals have designed
neuromorphic hardware for efficient SNN inference and
on-chip learning through the use of innovative devices
and circuits [29], micro-architecture [30], [31], dataflow
[32], and interconnect [2], [7]. However, there is a relative
lack of prior works aimed at making the existing training
techniques more computationally efficient. To fill this gap,
we optimize SNN training by investigating the “compute-
memory tradeoff” hitherto unexplored in the SNN context.
Although this tradeoff in the form of activation (gradient)
checkpointing has been studied in the context of general
computation graphs [33], they have only recently been ap-
plied to backpropagation in DNNs. One of the earliest works
to explore gradient checkpointing in DNNs, [25] proposed
algorithms to reduce the memory consumption of n-layered
DNN by /n and in the extreme case by O(nlogn). Ref.
[26] proposed a dynamic programming-based approach to
reduce the memory consumption of BPTT when training
RNNSs given a fixed memory budget. Authors in [34] present
a recomputation-based method that can be applied to a wider
range of neural network topologies (such as those with long
skip connections). However, all of these methods incur a
computational overhead of at least one additional forward
pass. Additionally, our proposed techniques are orthogonal
to [34], as we apply checkpointing to the temporal dimen-
sion, which makes it agnostic to the network topology.

To the best of our knowledge, no other works have
attempted to reduce the computational overhead of the extra
forward pass. Probably, the most closely related work to

567

ours is [28], which reduces the memory footprint of BPTT in
SNN through a combination of temporal truncation (TBPTT)
and locally-supervised layers. However, they simplify the
complexity of the training algorithm in space, whereas
skipper does so in time. Besides, the scalability of their
approach to deeper networks (such as ResNets) is not clear.

We now briefly discuss activation checkpointing in DNNSs,
in which the idea is to only selectively store the activations
from the forward pass, instead of storing the activations of
all the layers. The baseline technique is shown in Figure 1(a)
— where all the activations from the forward pass are stored
in memory. During the backward pass, the stored activations
are recalled for gradient computation. However, in the case
of Gradient Checkpointing, only a few layer activations
are stored (marked as ‘save’ in Figure 1(b)). Thus, the
backward pass now runs in multiple passes to complete
gradient computation of the entire network. As shown in the
figure, in Backward pass-2, activations are restored by re-
computing the discarded states from L5 onwards, which are
then consumed in the gradient computation process. In the
subsequent pass, the remaining activations are restored (L2
to L3) and the gradient computation process is completed for
the corresponding network segment. The number of passes
required to complete the BP thus equals the number of
checkpointed states.

III. BACKGROUND

In this section, we provide a brief overview of how
SNN training is performed using gradient descent-based
optimization techniques and the issues involved therein,
which serve as the main motivation for our current work.

A. The Neuron Model

The neuron model describes the internal state update
dynamics as well as the firing behavior of a spiking neu-
ron. Although several neuron models exist in the literature
that replicate biological neurons at varying levels of bio-
plausibility [35], variations of the linear leaky-integrate-and-
fire (LIF) neuron are widely used in ML-based optimizations
due to their simplicity and scalability. A discrete-time for-
mulation of the LIF neuron suitable for digital simulations
is characterized by the following equation:

otherwise ,

ey

where U} is the neuron’s membrane potential (internal
neuron state) at time ¢, [is the layer index, A (< 1) is the
membrane potential leak, 17/; is the weight matrix connecting
layers [— 1 and [, o; is the spike vector at time ¢, and 6
is the firing threshold potential. The first term on the right
hand side of equation 1 carries forward the neuron state
from previous to the current time-step (modulated by leak
A); the second term is a weighted sum of spikes coming from
the previous layer (a feed-forward connection); and the third

1, ifUl >0

Ul = MU+ Whor™ = oi_y.01 = §

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

Forward in: space — time ----»
Backward in: space «—— time «----

+1 ,1+1

1+1
t+1, Ot+1

t+2,0t+42

Ul+1

Across layers

Ot+1 Ot+2

Time steps

Figure 2: Back-propagation through time in SNNs. The
vertical dimension shows different layers of an SNN,
while horizontal dimension shows unrolling in temporal
dimension.

term arises from the thresholding non-linearity that decreases
the membrane potential by @ if an output spike o} _; is
generated by a neuron (a recurrent connection). The SNN
can, thus, be considered a specialized form of a Recurrent
Neural Network (RNN) [12], [9].

B. SNN training via backpropagation through time

BPTT consists of minimizing a global loss function L by
applying gradient backpropagation to the network unrolled
in space and time as depicted in Figure 2. For a loss L
computed at time ¢, the gradient descent weight update AW
for layer [is governed by:

OL ! T
1 _ t 1 1-1
AW' = ot = 1 SEZO 0,05
OLt _ o _ 4 1errl TI41 5041 1
where 30T — 0, = diag(c’ (Ug))W Oty + Adgyq.

2

o’ is the smooth surrogate function for computing the
gradient of the activation function [9]. Note that the reset
term is not taken into account for the gradient computation.

C. Truncated backpropagation through time

Truncated backpropagation through time (TBPTT) [27] is
a popular technique in deep learning literature that is often
used to reduce the memory consumption of RNN and its
variants during training. In its simplest form, the network is
unrolled for a shorter computation window also known as
the truncation window ¢’ < T'. A loss value is calculated
at t/, its derivatives are backpropagated through the network
and the weight gradients are computed and stored. At this
point, the computation graph of the network is discarded
and the corresponding memory is released. This process of
loss calculation and backpropagation is repeated for multiple

568

87%

82%

77%

Test accuracy

72%

25

50 _ 75
Timesteps

(a) EEGPU memory (GiB) -e-accuracy

100 125 50 100 _ 150 200

Timesteps
EEGPU memory (GiB) -e-accuracy

250

90%

60%

30%

GPU memory usage
GPU memory usage

0%

75 100
(©) Time steps
[activations @ input M weights @ wt gradients @ others

25 50 125 50 100 150

(d) Time steps
mactivations @input M weights @ wt gradients @ others

200 250

@
o
15}
3
S

o_ EmGPU memory (GiB)
o-time per epoch (s

EmGPU memory (GiB)
8. -o-time per epoch (s)

0
S

-
S

N
S
15}
@
o

IS
S

o.

~
o
o
N
o o
GPU memory (GiB)

5
GPU memory (GiB)

Time per epoch (s)
Time per eoch (s)

o
o
o

64

96
Batch size

128 144

32

64 256 512

128
(e) Batch size

Figure 3: SNN accuracy and training memory consump-
tion vs timesteps for (a) VGGS5, CIFAR10, (b) ResNet20,
CIFAR10. Breakdown of GPU tensor memory occupancy
vs timesteps at B=32 for (c) VGGS5, (d) ResNet20.
Training time per epoch and GPU memory consumption
vs batch size for (e) VGG5 and (f) ResNet20.

100%

L] = = 40 IS} =

g a% — £ 60 8
£ 60% e £ % z
g g 20 40 2
£ aon £ 5
a c 13
G 20% g 1w 20 >
0% T o ©

250 4 8 12
Batch size

50 100 150 16

Timesteps
Mactivations Hinput M weights @wt gradients Eothers

(a)

Figure 4: Training ResNet34 SNN on ImageNet via BPTT
(a) GPU memory breakdown vs timesteps at B=1, and
(b) Time to train 800 samples in a data-parallel regime
on 4 A100 GPUs and corresponding memory (per GPU)
vs batch size.

200

EmGPU memory (GiB)

(b)

o-train time (mins)

truncation windows, and the weight gradients calculated at
time (¢',2t',...,T), are summed to get the final gradient,
which is then used by the optimizer to update the network
parameters.

IV. MOTIVATION

In this section, we experimentally demonstrate the reasons
for the highly memory-intensive nature of SNN training.
Figures 3(a) and (b) show the SNN accuracy on the testing
set when trained with an increasingly large time-window
for a small (VGGS5 [36], [37]) and a large network (ResNet-
20 [38], [19]), respectively, on the CIFAR-10 dataset [39].
The network test accuracy improves with more timesteps

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

(left axis, Figure 3(a) and (b)). This, however, comes at an
increased memory cost that scales linearly with the number
of timesteps, as plotted on the right axis of Figure 3(a), (b).

To investigate further, Figures 3(c) and (d) plot the relative
memory consumption of different types of tensors present on
the GPU during training of VGGS5 and ResNet20 SNNs as a
function of timesteps for batch size 32. These measurements
were taken after the GPU reaches its maximum memory
occupancy and becomes steady (i.e., from the second iter-
ation onwards), at which point there is dedicated memory
allocated to all types of tensors required for training. Fig-
ures 3(c) and (d) categorize these tensors as input, model,
activations, optimizer, and others. The input tensor consists
of spiking data to be supplied as input to the SNN and
the corresponding labels. The model tensor represents the
trainable network parameters. The optimizer portion jointly
consists of the weight gradients and gradient moments that
depend on the type of optimizer used, as well as some non-
trainable parameters (e.g. leak, threshold etc). Since we have
used the Adam optimizer [40], the gradient moments are 2 x
the size of the weights, whereas the weight gradients are
of the same size as the weights. Nevertheless, we observe
that a major portion of the tensor memory (60% - 95%)
is occupied by activations, which consist of time-dependent
spikes and neuronal states. This is partly due to the fact that
large batch sizes are used in training to obtain higher GPU
throughput'. However, the relative proportion of activations
also increases with the number of timesteps for a constant
batch size. This is because, the time-wise activation tensors
are saved on the GPU memory during the forward pass
computations since they are required during the backward
pass computations as per equation 2. To further emphasize
this point, we report the GPU tensor memory breakdown
while training ResNet34 on ImageNet against timesteps for
a batch size of 1 in Figure 4(a). The time-wise activations
account for 56% to 90% of the total memory consumption,
thus establishing SNN activations as a significant memory
bottleneck.

We also report the training latency and memory consump-
tion required to train this SNN in a data-parallel regime on 4
A100 GPUs as a function of batch size in Figure 4(b), with
B=16 being the largest batch size that can fit on the GPUs at
T=200. At B=16, the time to train on 1M ImageNet training
samples would be ~3.5 days (extrapolated from 10 minutes
for 800 samples) for a single epoch. Even if we perform
transfer learning and train the SNN only for 20 epochs, this
would translate to roughly 70 days of training, assuming
we have all the hyper-parameters properly tuned. The huge
computational complexity of training not only arises from
the temporal nature of SNNs but also from the discretization
function, which requires them to be simulated for 100s

! Another reason for this is that CNNs have fewer trainable parameters
per activation than fully connected networks.

569

of timesteps, as noted earlier. This observation presents us
with a challenge as well as an opportunity to reduce the
training memory consumption of SNNs by directly lowering
its activation memory footprint.

The potential memory savings could be utilized in the
following ways: (i) for explorations of deeper networks with
longer temporal horizons (demonstrated in Figure 14 in
results section), (ii) to train SNNs on larger mini-batches,
thus improving GPU throughput and speeding up training
(shown in Figure 11 in results section). Figures 3(e) and
(f) show the time required for a single training epoch as a
function of the batch size. The training time decreases by ~
5x as we increase the batch size from 32 to 512 for VGG5
and from 32 to 144 for ResNet20. This comes at the cost of
increased memory requirement that also scales linearly with
batch size. (iii) to enable multiple simultaneous trainings on
the GPU, often useful in hyper-parameter search/tuning.

V. ACTIVATION CHECKPOINTING IN SNN

As explained earlier in Section III-B, the SNN forward
pass computations are completely unrolled in time and the
resulting intermediate states (U}, ol) are saved in memory
for the backward propagation of error gradients to take
place. This model serves as our baseline. Figure 5 shows the
computational graph of an SNN being trained for 7' = 20
timesteps. Figure 5(a) shows the layer-to-layer interactions
for a single timestep and 5(b) shows the unrolled timesteps
for a single layer [. In order to reduce the memory, we
propose to apply activation (gradient) checkpointing to this
computational graph, i.e., we drop some of the intermediate
neural states and recompute them later during the backward
pass, at the cost of an extra forward pass computation. For
a given T, the amount of memory saved will depend on the
number of times the network is checkpointed, denoted as C
in the rest of this paper. Figure 5(b) depicts this idea more
clearly through the following example. In this, the SNN from
Figure 5(a) is checkpointed twice (C = 2).

Stepl: The forward pass computation takes place and
after ¢ = 19, the loss function L and its derivative at ¢t = 19
are computed. The time-wise activations are only saved
twice at ¢ = 0 and ¢ = 10, and therefore, the corresponding
memory occupancy is only twice the activation size per
timestep, at this stage.

Step2: The network is unrolled from the most recent
activation checkpoint (at ¢ = 10) and the intermediate states
are recomputed. To be precise, the forward pass computa-
tions are performed a second time from ¢ = 11 to ¢ = 19 and
the corresponding states are saved in memory. The activation
memory at this point comprises of the activations from Step1
along with this unrolled time-segment of intermediate states.

Step3: Back-propagation takes place from ¢ = 19 to

t = 10 and the corresponding error gradients up until
t =10 (‘g{j‘}?) are computed as per the chain rule. The

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

Step 0 Forward pass (FP) in time and checkpointatt = 0,t = 10.

U£+1 0£+1 Chkpt #1

g step @ Recompute FP from
\7 chkpt#1 at t = 0.

Chkpt #2

g Step @ Recompute FP from chkpt #2

[m e

(W, 0), [P{W,0), [2{W,0), |2 2{W,0)5 || [,0)10 [P0, 0)1; W, 0)1, >

) at t =10.
2014

1
i
~
I
©°

Release memory.

(a)

Step @ BPTT-1fromt =10 tot = 0.

(b) ’l:l Save

Step @ BPTT-2 from t =19 to ¢t = 10.
Release memory.

.....

iDon’'t save @ Recompute & save ‘

Figure 5: (a) SNN inter-layer spike interactions per time step. (b) Activation checkpointing shown in layer [applied
along temporal dimension. Evolution of states (U}, o.) follows equation 1 and backward pass follows equation 2.

device activation memory corresponding to these time-steps
is released.

Step4: Step2 is repeated for the next most recent check-
point (at ¢ = 0) and the intermediate states from ¢ = 1 to
t = 9 are re-computed in the forward pass.

Step5: The error gradients calculated in Step3 (gﬁ}?) are
used to back-propagate the errors from ¢t = 10 to ¢ = 0. The
network weight updates (AW) are then calculated as a sum
of these error gradients for all time-steps, as per equation 2
and the corresponding activation memory is freed. Note that
for each training iteration, the recomputation for each time
step happens only once.

A. Tradeoff between the number of time steps, checkpoints
and layers

For a DNN with n layers, [25] has shown that the memory
cost can grow as O(+/n), instead of O(n), at the cost of an
extra forward pass. When applied to SNNs along the tempo-
ral dimension, the activation memory consumption will be a
function of 7" and C. Specifically, for an SNN checkpointed
C' times and simulated for T timesteps, (C' < T'), the size
of each time-segment will be T'/C. As a result, the total
activation memory requirement for training can be expressed
as follows:

T

total ActCost = O (6 3

Thus, the memory cost of running SNN backpropagation
on each time-segment is O(7/C). Note that the second
part of the above equation is the memory required to
save the intermediate states between time-segments. As per
this algorithm, the activation memory cost is minimized at
C = VT [25].

Further, in the case of SNNs, we cannot have an arbitrary
number of checkpoints C'. This is because, for a baseline
SNN with L,, layers, we must have T > L,, for spikes to
propagate to all the layers after the thresholding function

)+0(0).

570

has been applied. Correspondingly, for checkpointed SNN,
the length of each time segment (7'/C') must be greater than
L, for the propagation of information to all the layers in
that time segment (i.e. 7/C > L,,). As a result, C is upper
bounded by the ratio T'/L,, of an SNN.

B. Computational overhead of checkpointing

In a typical single GPU neural network training, the
forward and backward passes constitute roughly 1/3"¢ and
2/374 of the total number of computations per iteration. This
is because, for each layer, the backward pass performs two
sets of computations — one for computing the error gradients
with respect to the activations and another with respect to the
weights. As a result, the activation checkpointing is expected
to incur ~33% increase in training time.

Next, we discuss the opportunity for reducing the compu-
tational overhead of checkpointed SNN to leverage benefits
in terms of overall computation time, in addition to memory
footprint reduction.

VI. OVERCOMING THE COMPUTATION OVERHEAD OF
ACTIVATION CHECKPOINTING THROUGH SKIPPER

Although activation checkpointing in SNNS is a promising
technique to reduce its memory cost during training, it incurs
an increased computational overhead of ~33%, which can be
considerable for long-running and large-scale SNN training.
In this section, we explore techniques to alleviate this extra
computational cost without compromising on the memory
benefits. Towards this end, we re-examine the computation
graph created during training of a checkpointed SNN and
notice that the same forward pass computation is performed
twice (Steps 1, 2 and 4 in Figure 5(b)). Our experience
working with spiking data for vision-based applications has
shown that some of the spike patterns can be redundant
across time steps and it could be worthwhile to simply skip
these computations to reduce training time. As a result, the

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

Step @) First FP in time and checkpoint at t = 0,¢ = 10. Compute s, = Yol.
] Chkpt #1 Chkpt #2
> T Loy T 7L ooy T L > T Lo T Tl ey T 7L
b)) [0 T W T M e B a1z e 1
i EN EEN kB El £ B i
o |
- step @ Compute SST; = ({s;1}, p) Step @ Compute SST, = ({s;2},P) i
[Ui 0¢ Recompute from chkpt #1 Recompute from chkpt #2 [
W if s, > SST, t € {1,9}. if s, > SST,,t € {11 19} i
—_——— Y Al P T~ :
- I-
LT B e e ol (e en
Wl—l _____ ~——— _‘l
0t Step @ BPTT-1 on partially computed Step 6 BPTT-2 on partially computed
timesteps. Release memory. timesteps. Release memory.
(a) (b) Recompute? Yes € No ¢

Figure 6: (a) SNN inter-layer spike interactions per time step. (b) An example schematic of skipper. Neuronal states
(U}, 0l) are represented by ¢ for readability. Evolution of states follows equation 1 and s; are simultaneously saved.
Recomputation at time ¢ and the corresponding backward pass are performed if s, > SST.

corresponding backward pass computations would also not
take place. This is because, in the case of training with
auto-differentiation tools such as Pytorch [10] or Tensorflow
[11], the tool builds a computation graph by reading the
forward pass description of a network and imperatively
traverses the graph symmetrically in the reverse order during
the backward computation, thus implicitly realizing the
chain-rule of differentiation. However, if we blindly avoid
calculating some of the intermediate states in the forward
pass, the corresponding gradients for those time-steps will
not be computed in the backward pass, and this could affect
network convergence during training.

In the case of activation checkpointing, however, the
fact that the forward pass graph is traversed twice is an
opportunity that can be leveraged to drop some computa-
tions without hurting network performance. Our key insight,
therefore, is to collect some information about the neural
dynamics during the first forward pass and use it to intel-
ligently skip or drop some computations during the second
forward pass, and thus recover some of the computational
overhead of activation checkpointing. The challenge is to
identify such a metric that is low overhead in terms of
memory and computation time and yet powerful enough
to convey critical information about whether or not to skip
computations during the second forward pass, succinctly.

A. Skipping computation based on temporal spike activity

To avoid network convergence issues, computations can-
not be skipped arbitrarily. Further, since we want to skip
computations at the time granularity, which essentially
means avoiding forward pass computations for all layers
at that time-step, our decision-making metric needs to be
a time-dependent variable. The neuron membrane potential

571

and output spikes (U], o) are possible candidates for such
a decision-making process as they indicate the current level
of activity in the network. Of these, we choose the output
spikes ol as our indicator since the all-or-none behavior of
spikes is an intrinsic yardstick of the current activity level
in the network. We take the sum of the spikes as a heuristic
to gauge the current activity level at every timestep. Further,
all layers in the network simultaneously emit spikes at every
timestep. We, therefore, compute and save the sum of spikes
from each of the layers at a timestep in the forward pass
(denoted as s; in Figure 6(b)) and expressed as follows:

I=L,

st = Z sum(ol)
1=0

Thus, we propose a Spike Activity Monitoring (SAM)
mechanism which computes and saves s; for every timestep
during the first forward pass of the network. Next, we
propose a metric, called Spike-Sum-Threshold, which is
calculated for each of the checkpoints just before the second
forward pass (denoted as S.ST,, where c is the checkpointed
segment number). In skipper, we measure this value by
taking the p*" percentile of the spike sums corresponding
to each checkpoint.

“)

SST. = percentile({o(c); S1(c), -+ ST)C(0) },P) (5)

where p can be treated as an additional hyper-parameter in
the training process.

During the backward pass of training, which now involves
re-computation of ‘non-checkpointed’ activations, SAM is
used to compare the the spiking activity of the current
timestep (s;) against the corresponding SST value. If

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

the spiking activity is found higher than this Spike-Sum-
Threshold (sy > SST,), then re-computation takes place as
usual for the particular time-step, otherwise, it is skipped.

Figure 6(b) depicts this idea pictorially in 5 steps, and
we continue using the same example configuration as the
previous section.

Stepl: The forward pass computations are performed in a
similar fashion to Stepl of activation checkpointing tech-
nique, i.e., only the intermediate states at ¢ = 0 and ¢ = 10
are saved. In addition to the computation of intermediate
states, the output spikes generated from all the layers at that
time-step are summed up and stored. Thus, a spike-count is
calculated per time-step (shown as s, ..., s19 in the figure),
which serves as a metric for indicating the spike activity at
that time-step.

Step2: Prior to recomputing the intermediate states for the
backward pass, we perform a look-up on the Spike Activity
Monitor and for the spike-counts corresponding to the latest
checkpoint’s time-segment, we calculate its pt" percentile
as per equation 5, which serves as our Spike-Sum-Threshold
(SST,). We then compare each s, with this SST, and
skip the computation of those timesteps whose s; is lower
than this threshold value. The percentile p is critical to our
technique as it decides the number of time-steps that can
be skipped. Higher p values will lead to higher Spike-Sum-
Thresholds (equation 5). As a result, there will be more
timesteps at which spike-counts s; will fail to cross this
threshold and thus more intermediate steps can be skipped.
Step3: Since we drop some of the compute-iterations during
the forward pass in Step2, a shallower computation graph is
created in memory, as shown in the Figure 6(b) (steps 2 and
3). The backward computation will now traverse through this
new and shorter graph of checkpointed segment #2 at the
end of which, the corresponding memory will be released.
Step4: We repeat Step3 for the next most recent time-
segment, starting from ¢ = 0 and selectively re-compute
the intermediate states depending on the SST, value.
Step5: Similar to Step4, we perform a backward pass on
the time-skipped checkpointed segment #1.

To summarize, memory gets allocated every time a for-
ward pass takes place and gets deallocated during the back-
ward pass. In the case of SNN, the forward pass activation
memory also consists of time-unrolled spikes and neural
states. As a result, the allocated memory depends on the
level of temporal unrolling. It is to be noted that skipper
saves memory by unrolling fewer non-sequential timesteps
during the second forward pass. The intermediate timesteps
that are not a part of this new unrolled graph are essentially
‘skipped’, thus also saving compute time.

Choice of Spike Activity Monitor: Although we use the
sum of spikes across all layers per timestep as a low
overhead Spike Activity Monitor due to its simplicity, it
is possible to use other metrics that can monitor network
activity at a finer granularity, e.g., the sum of spike counts

572

weighted by the neuron count in each layer, the {2-norm of
neuron trace per timestep, or a combination of both. The
impact of more sophisticated activity monitoring mecha-
nisms on skipper’s accuracy is an interesting future research
direction.

B. Impact of skipping computations

Here we discuss the impact of computation skipping from
a theoretical standpoint by analyzing the key parameters T’
(no.of timesteps), C' (no. of checkpoints), L,, (no. of layers)
and p (percentile) during training. Firstly, with skipper,
there is a reduction in computation time which directly
depends on the number of time-steps skipped. In addition,
the memory cost of training also reduces in proportion to the
skipped time-steps. The new activation memory requirement
for training with skipper can be expressed as:

total ActCost spipper = O((l — % X %) +0(C) (6)

Thus, we can skip a larger fraction of the timesteps if
the number of checkpoints C' is low or if 7'/C (length of a
checkpointed time-segment) is high. Another constraint ap-
plicable specifically to SNNs is that the number of timesteps
that are not skipped per checkpoint must now be greater than
the number of layers, i.e., (1 — ﬁ)% > L, which yields
the following upper bound on the fraction of time-steps that

can be skipped for a given 7', C' and L,,:

P C

(%))

00 =~ \7/L, ™
This, combined with the fact that C' < Ll (from Sec-

tion V-A) together provide the boundary conditions for
setting C' and p for a constant 7' and L,. Equation 7
thus provides a simple rule of thumb for determining the
maximum %age of time-steps that can be skipped (p) for
an SNN with a particular 7, C' and L,. Thus, we can
skip more time-steps for networks with a large Lln ratio
or smaller C, implying that for a constant Ll ratio, if an
SNN is checkpointed many times, the scope for skipping
time-steps and thus reducing training time decreases.

Note that, due to skipped time-steps, the functional out-
come of skipper will be different from the vanilla check-
pointing and baseline BPTT algorithms, and therefore, in-
volves a trade-off in terms of accuracy, in addition to the
memory and computation metrics discussed above. As a
result, we set the time-skipping percentage p at a value
that minimally impacts network accuracy. For this, we start
with the theoretically maximum p (Equation 7) and slowly
decrease it, while measuring its impact on network accuracy
for a few training iterations each time. We stop at the p value
where the accuracy loss is minimal.

In our study, we extensively evaluate the trade-offs involv-
ing the accuracy, memory and latency metrics, the details of
which are discussed in the subsequent sections.

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

VII. EVALUATION AND RESULTS

We implemented all the presented ideas including baseline
and truncated BPTT using the PyTorch framework [10] run-
ning on a GPU, in an end-to-end fashion. Thus, performance
metrics (with respect to memory, compute and accuracy)
are directly measurable at a system level. Specifically, we
first implemented activation checkpointing for SNN as a
generalized framework that can be used to checkpoint and
reduce the memory consumption of any feed-forward SNN
during training. We then implemented activation checkpoint-
ing with time-skipping (skipper) in which the network
can dynamically skip some percentage of the time-steps
(a user-defined parameter) based on its activity in the first
forward pass. The impact of skipper is also directly observed
during training in terms of lower run-time and memory
consumption as reported in the next section.

We evaluate our techniques by training SNNs to solve
the image classification and action recognition problems on
3 small (VGGS, LeNet, custom-Net) and two large network
topologies (VGG11 and ResNet20) in conjunction with 4
different datasets viz. CIFAR10 & CIFAR100 [39], DVS-
Gesture [41] and N-MNIST [42] — the latter two being
event-based datasets, specifically tailored for neuromorphic
processing. For the evaluation of network performance in
terms of accuracy, we train all the networks end-to-end for
20 epochs as per the hybrid training method described in
[37] using the ADAM optimizer. As per this technique, we
pre-initialize the SNN’s weights with the corresponding pre-
trained ANN weights and then train it further to fit the
network on spiking inputs, using integrate-and-fire neurons
and BPTT with a surrogate gradient. This was done to reduce
the time to train each SNN from scratch which typically
takes 100s of epochs and runs in days. It is to be noted that
hybrid/transfer learning is a standard practice in deep SNNs
[37], [43] as it enables faster convergence. Further, since
we use the same weight initialization and hyper-parameter
values as baseline SNN BPTT, skipper starts at an equal
footing with the baseline.

Next, we used Poisson-based rate encoding to convert the
CIFAR10 and CIFAR100 image datasets into spiking data.
Unlike the CIFAR10/100 datasets that are recorded using a
frame-based camera, the DVS Gesture Recognition, as well
as the N-MNIST datasets, are already in the spiking format
as they are recorded with a Dynamic Vision Sensor as sparse
asynchronous binary address events (X, y, p, t), where (X, y)
denote the spatial address, and (p, t) denote the polarity and
time-stamp of each event stimulus respectively. The DVS
Gesture dataset was recorded using the DVS-128 camera and
consists of 11 hand gestures (such as clapping, waving, arm
rotation etc.) performed by 29 different individuals under
3 illumination conditions and the problem is to classify
an action sequence into an action category. Pre-processing
of the dataset and ANN pre-training are performed using

573

the techniques described in [44] and [45]. The N-MNIST
dataset was created by performing saccadic movements of
the Asynchronous Time-based Image Sensor (ATIS) [46]
while being exposed to images from the MNIST [47] dataset
which were displayed on an LCD screen.

For the timing and memory measurements, we supplied ~
40 — 100% of the training dataset samples in multiple mini-
batches and averaged it over 20 such iterations after a warm
start. The overall GPU memory consumption is measured
using the ‘pynvml’ [48] tool and the details of library
overheads and tensor memory consumption are obtained
using the PyTorch max_memory_allocated() and
max_memory_reserved () [49] APIs. The computation
runtime is measured for each mini-batch and consists of
the forward (), backward () and weight_update ()
calls on the network. Finally, all training and benchmarking
is done on a server consisting of the NVIDIA A100 80GB
GPUs [50] supported by Intel(R) Xeon(R) Silver 4314 @
2.40GHz CPUs, using Pytorch version 1.10 and CUDA
version 11.2. Following are our detailed evaluation results.

A. SNN training memory cost vs #checkpoints C

Figures 7 (a), (b) , (c) and (d) show the overall peak GPU
memory consumption during SNN training as a function of
the number of checkpoints C' for a constant batch size B
and timesteps 7. We notice that the memory consumption
reduces with more checkpoints and reaches a minimum
value, after which it starts to increase. For example, in
the case of VGGS simulated for 7' = 100 timesteps, the
memory consumption is the lowest when C' = /T, as
explained in Section V-A. For small values of C', the memory
consumption of each time-segment dominates the overall
activation memory, whereas for large C's, it is dominated
by the memory required for storing intermediate states
in between checkpoints (as per equation 3). Further, the
computational overhead of checkpointing is shown on the
right axis of Figures 7(a), (b), (c) and (d) as a function of
C. Compared to the baseline SNN, the checkpointed version
incurs around 30% overhead, on average, for any number of
checkpoints as long as the forward pass is re-computed once.
We observe these trends for the all the 4 networks.

The key takeaway of this study is that, following a 30%
increase in training time of checkpointed SNNs compared
to the baseline, the run-time remains more or less constant
with increasing values of C, and the memory consumption
is minimum at C' = /7.

B. SNN accuracy with Skipper

Table I shows the network accuracy on the testing set for 5
different networks of varying sizes and depths with 4 differ-
ent datasets. The accuracy of the checkpointed networks is
reported to verify the correctness of our implementation, and
its slight variation from the baseline accuracy is due to the

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

[Training Details | VGG5 [VGGI11 ResNet20 | LeNet | custom-Net ||
Baseline (BPTT) | 0.8734 0.6623 0.8716 0.8897 0.9681
Checkpointed 0.8714 (C=4) 0.6648 (C=5) 0.8704 (C=5) 0.8889 (C=10) 0.9696 (C=4)
Skipper 0.8744 (p=70) 0.6648 (p=50) 0.8728 (p=52) 0.8933 (p=70) 0.9635 (p=70)
Trunc. BPTT 0.8715 (rW=25) | 0.5673 (trW=25) | 0.8593 (rW=50) | 0.8882 (trW=40) | -

layers conv(3)+lin(3) conv(9)+lin(3) conv(20)+lin(1) conv(5)+lin(1) conv(3)+lin(1)
Dataset CIFAR10 CIFAR100 CIFARI10 DVS-Gesture N-MNIST
Timesteps (T) 100 125 250 400 300

Batch Size 128 128 128 32 256

Table I: SNN test accuracy of VGG5, VGG11, ResNet20, LeNet and custom-Net with four different training techniques
(BPTT, Checkpointed, Skipper, and TBPTT). C: #checkpoints, p: percentile of skipped timesteps, {7 : truncation
window for TBPTT, conv: convolution layers, and /in: linear layers for a particular network.

30 60 60
15 mmnvidia-smi -o-time (s) = Emnvidia-smi -o-time (s)
@ o - 2 o <
2 0 o o o ° 20 § g 40 © o © o o o 40 §
E- 10 - E- -
nEa 5 10 € qE) 20 I 20 E
[=
2, o 2o innnln,
(a) Base 2 4 8 10 12 16 (b) Base 2 5 8 10 12 16 20
checkpoints # checkpoints
80 400 15 o 30
P o—o—0—0—0—C| 0 & © Envidintmi o R () %5
g Emnvidia-smi -o-time (s) 2 S10]
z zz 2
Z40 200 g § 20]
é 20 100 = gn 5 15 =
0 0 0 10

5 10 16 20 25

Base 2
(¢ # checkpoints

(@ ! ¢ #Bchecll?poir%?s » 40
Figure 7: Overall peak GPU memory consumption and
computation time (for a fixed number of iterations)
vs number of checkpoints for (a) VGGS5+CIFAR10,
T=100, B=128, (b) VGG11+CIFAR100, T=125, B=128
(c) ResNet20+CIFAR10, T=250, B=128, (d) LeNet+DVS-
getsure, T=400, B=32.

100% — 90%
Y ——
! R
5 90% Zao /\
= =
3 80% —baseline 2.0, — baseline
< 70% c=10 g 70% =10
- - C=10&p=70 - - C=10& p=70
60% 60%

0 5 10 15 20 25 30 35 40 45
epochs

0 5 10 15 20 25 30 35 40 45
epochs

(a) Training (b) Validation

Figure 8: Accuracy vs #epochs for training LeNet SNN
on DVS-gesture from scratch. B=64, T=400.

100%

WBaseline @C=10& p=70

80%

R
Q
X

Accuracy
B
(=]
B3

20%

0%
50 100 150 200 250 300 350 400
Time steps

Figure 9: Accuracy vs #timesteps for LeNet SNN on
DVS-gesture @ B=32, T=400 trained with baseline and
skipper.

574

stochasticity of the spiking input, dropout patterns, and opti-
mizer. We notice that the SNN accuracy with skipper is quite
competitive, if not slightly better, than the baseline accuracy.
We surmise that this is due to an additional regularization
that the network receives in the temporal domain, which is
akin to a spatial dropout in conventional DNNSs, that enables
the network to generalize better [51]. However, unlike spatial
dropouts, our temporal dropout takes place at a much higher
granularity i.e., we completely skip the computations of all
the layers in a given timestep, and the timesteps at which to
drop computations are not chosen randomly, but are based
on a well-defined heuristic. Further, we report the accuracy
for the maximum fraction of timesteps that we were able
to skip without losing any performance and demonstrate the
skipping of up to 70% of the timesteps with little accuracy
loss.

Note that, for networks with a higher % ratio,
we can skip more timesteps (refer to Equation 7),
e.g, VGG5+CIFARIO has a higher I ratio than
ResNet20+CIFAR10 and therefore, has a higher time-
skipping fraction. Additionally, the dataset complexity also
dictates the number of timesteps that can be skipped (e.g.,
VGGI11 on CIFAR100).

Finally, in addition to frame-based datasets, our proposed
technique is also effective on event-based data as shown by
the accuracy of LeNet on DVS gesture and that of a custom
network on N-MNIST. The SNNs were trained from scratch
for 50 and 100 epochs respectively, and for both datasets,
skipper achieved a similar convergence to baseline and
checkpointed schemes. As proof of concept, Figure 8 reports
the accuracy curves for training an SNN from scratch for
the baseline, checkpointed and skipper regimes, and Figure
9 plots the accuracy against #timesteps for the baseline
and skipper techniques, thus further establishing skipper’s
competitiveness with the other techniques.

C. SNN training computation cost vs batch size

Next, we analyze the impact of batch size on training
time. Figures 10(a), (b), (c) and (d) report the computational
overhead of training SNNs with plain checkpointing and
skipper strategies as a function of batch size, over baseline.

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

40%

20%

0%

O—g‘u—n—q
220% fooeeeeeeeo Qs @ Q-
60% -40%
(a) 32 64 128 256 512 (b) 32 64 128 192 208
Batch size Batch size
4-C=4 B-C=4&p=70 -O-trW=25 -4-C=5 -B-C=5& p=50 -0-trW=25 —-trW=100

40%

w
[
X

20%

=
w
X

0%

o
X

-20%

Time overhead

-25% -40%

(c

96
Batch size

B-C=5 & p=52

) 32 128 144 v 16

Batch size
~4-C=10 -B-C=10 & p=70 -O-trW=40

d) 8 20

-&-C=5 0-trw=50

Figure 10: Computational overhead of checkpoint-
ing (C), skipper (C,p), and TBPTT (trW) training
regimes vs batch size for (a) VGG5+CIFAR10, T=100;
(b) VGG11+CIFAR100, T=125; (c) ResNet20+CIFAR10,
T=250; and (d) LeNet+DVS-gesture, T=400.

6 GiB

mBaseline mC=4 mC=4+TS(70)

1]
Dn
o4

) 2
2o
© <

2
N

32

64 128
(b) Batch size

mBaseline mC=10

32 64 128 192 208

(a) Batchsize

mBaseline BC=5

256

512

C=5+T5(52)

W C=10+T5(70)

18 GiB'

-]
(3]
0

4.2 GiB

Q
(o]
~
)

32 64 96

(c) Batchsize

128 144 8 12

(d) Batchsize

20 24
Figure 11: SNN end-to-end training latency vs batch
size for (a) VGG5+CIFAR10, (b) VGG11+CIFAR100,
(c) ResNet20+CIFAR10, and (d) LeNet+DVS-gesture.
Number above a bar reports the corresponding memory
consumption.

For VGG5 with CIFAR10 in Figure 10(a), the compu-
tational cost is measured using the entire training dataset
for all training strategies. The checkpointed VGGS5 network
incurs a run-time overhead of 20% — 40% compared to
baseline BPTT, and this overhead is lower for larger batch
sizes. For the skipper training regime, this computational
overhead is not only amortized but completely alleviated,
leading to a 30% — 40% reduction in training time compared
to the baseline. This can be attributed to a large number of
computations of intermediate states that are dropped (~70%)
during the second forward pass of checkpointing.

In VGG11 with CIFAR100 (Figure 10(b)), there is a sim-
ilar reduction in computational cost of the network trained
with skipper compared to its plain checkpointed counterpart
(ranging from 29% to 42%), which also increases with
the batch size. However, for small batch sizes (B=32),
the skipper network still incurs a small overhead of 6%

575

M Baseline

60 | mBaseline mc=4
] T TBPTT trW=25 mC=4& p=70 80 |mC=5
S0 60 |BTBPTTtrw=25
fl DO TBPTT trW=100
]
£20
=
0
32 64 128 256 512 32 64 128 192 208
(a) Batch size (b) Batch size

AlOO [Baseline mC=5 15 mBaseline mC=10
@ 80 [@TBPTTtrW=50 mTBPTTtrw=17 ETBPTT trW=40 WC=10& p=70
g B C=5 & p=52 10
= 60
=]
g 40 5
s 20 I H

o e Bnolle Mol fAiin ML/

32 64 96 128 144 8 12 16 20 24
(c) Batch size (d) Batchsize

Figure 12: Overall GPU memory consumption of base-
line BPTT, checkpointing, skipper and TBPTT tech-
niques vs batch size for (a) VGG5+CIFAR10, T=100,
(b) VGG11+CIFAR100, T=125, (c) ResNet20+CIFAR10,
T=250, (d)LeNet+DVS-gesture, T=400.

compared to the baseline. For larger batch sizes (from B=64
onwards), skipper reduces the computational cost by ~4%
to ~8% compared to baseline-BPTT. We notice that the
computational cost savings in this network are lower than
those obtained in VGGS. This can be attributed to the lower
time-skipping ratio (50% in VGG11 compared to 70% in
VGGS), which eventually depends on the LL ratio of each
network. The % ratio is higher for VGGS than VGG11,
which allows it to skip more time-steps (refer to eq. 7)
without potentially losing much accuracy.

Similar conclusions can be drawn for ResNet20 on CI-
FAR10 (Figure 10(c)), in which the skipper technique saves
~5% to ~14% of the computation time compared to the
baseline SNN as its % ratio lies in between that of
VGGS5 and VGGL11. For LeNet on DVS-gesture dataset, the
computation time is 18% to 30% lower than the baseline
(Figure 10(d)). Finally, in the case of N-MNIST dataset,
skipper (C=4, p=70) reduces baseline-BPTT computation
time by 8%.

To summarize, skipper successfully alleviates the compu-
tational overhead of plain checkpointing as is demonstrated
on networks and time steps of varying sizes, with savings as
high as 40% compared to the baseline SNN training time.

D. SNN end-to-end training latency vs batch size

Figures 11 (a), (b), (c) and (d) report the end-to-end
training latency in minutes of the different strategies at a
constant T against batch size for a single training epoch.
In each of the cases across the 4 networks, given a con-
stant memory budget, skipper can enable training of larger
batches with reduced training latency. E.g., in the case of
VGG11+CIFAR100 shown in Figure 11 (b), for a memory
budget sufficient to fit a baseline-BPTT training with mini-
batch of size 32 (memory consumption reported on top of
bar), skipper (C=5, p=50) can enable training with batch
size of up to 208, leading to 52% reduction in training

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

100%

<
§ 80%
T
= 60%
]
o 40%
g 20% g
§ o , ,
2 32 64 128 256
@ Batch size
Base tensor M Base cached [Base cuda
7 C=4 tensor B C=4 cached [1C=4 cuda

#C=4 & p=70 tensor M C=4 & p=70 cached 0 C=4 & p=70 cuda

Memory breakdown

32
(b)

Base tensor

64 128

Batch size
M Base cached [0 Base cuda
C=5 tensor M C=5 cached [C=5 cuda
C=5 & p=50 tensor mC=5 & p=50 cached O C=5 & p=50 cuda

100%
80%

0%

(c)

EBase tensor

Memory breakdown

Batch size
M Base cached [Base cuda
A C=5 tensor B C=5 cached [0C=5 cuda
B C=5 & p=52 tensor m C=5 & p=52 cached O C=5 & p=52 cuda

N
o
X
-
S
.

24

Memory breakdown
o
N

8 12

(d)

Base tensor

16
Batch size
M Base cached [Base cuda
& C=10 tensor m C=10 cached 0C=10 cuda
C=10 & p=70tensor MC=10 & p=70 cached O0C=10 & p=70 cuda

20

Figure 13: Breakdown of overall GPU memory consump-
tion of baseline (Base), checkpointing (C), and skipper
(C,p) techniques vs batch size for (a) VGG5 + CIFAR10,
T=100, (b) VGG11 + CIFAR100, T=125, (c) ResNet20 +
CIFAR10, T=250, (d) LeNet + DVS-gesture, T=400.

latency. A similar trend can be observed for the other
networks evaluated in this study. Note that the largest batch
size used for our batch-sweep experiments is set based
on the maximum memory consumption of baseline BPTT
supported by the underlying GPU.

E. SNN training memory cost vs batch size

Figures 12(a), (b), (c) and (d) report the overall memory
consumption for different training strategies of VGGS5 on CI-
FAR10, VGG11 on CIFAR100, ResNet20 on CIFAR10 and

576

(N
o
o
o

M baseline =mC=5 BC=5&p=50

Peak memory (log-GiB),

1000
1500
1800

(a) Time steps (T)

mbaseline mC=5 mC=5&p=52

o O O O 9O 9
o O O O O O
< n O K~ 0 O

(b) Time steps (T)

Peak memory (log-GiB)

200
300
2500
2800 [

Figure 14: GPU memory consumption of baseline, check-
pointing and skipper techniques vs time steps for (a)
VGG11+CIFAR100, (b) ResNet20+CIFAR10. Patterned
bars show extrapolated memory cost of baseline BPTT
(overflows 80GB GPU DRAM).

LeNet on DVS-gesture SNNs, respectively. As is apparent
from the figures, checkpointing helps to reduce the overall
memory consumption of training by 1.7x— 3x for VGGS,
by 2.6 x — 3.7x for VGGL11, by 3x—3.7x for ResNet20, and
by 2x—2.5x for LeNet. As expected, the savings are higher
with larger batch sizes. Further, for the N-MNIST dataset,
the overall training memory footprint of the checkpointed
SNN (C=4) is 1.6x lower and that of skipper (C=4, p=70)
is 2x lower compared to the baseline.

The final memory consumption depends on several factors
within the framework runtime such as its memory allocation
policy, tensor alignment and CUDA context [52]. In order to
understand the impact of these factors, we plot a breakdown
of the overall memory consumption in terms of the space
occupied by tensors, and the overheads of the deep learning
framework and the CUDA context in Figures 13(a), (b),
(c) and (d). In the figures, for each of the batch sizes, we
plot three bars - one for the base configuration, one for
the checkpointing scheme, and one for skipper. (e.g., in
Figure 13(a), the three bars correspond to baseline BPTT,
checkpointing (C=4), and skipper (C=4 & p=70) configura-
tions). Each bar in turn reports the proportion of memory
allocated to tensors, PyTorch cache and CUDA context. For
small networks and batch sizes, the CUDA context overhead
can be quite large (ranging from 50% to 80% for smallest
batch size in the time-skipped networks). This means that
the actual memory savings are higher than those shown by
the overall figures (Figure 12). Thus, if we only consider the
tensor memory consumption and discount the CUDA context
and PyTorch’s caching overheads, the memory savings with
checkpointing are higher still, in the range of 3x—3.4x

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

for VGG5, 3.8x—4.2x for VGG11, ~4x for ResNet20
and ~5.8x for LeNet. Note that the amount of memory
savings depends on a number of factors such as the network
depth (L,,), timesteps (1), batch-size (B) and the number of
checkpoints (C). For this experiment, we have chosen C to
be a factor of T for each network, so that the length of every
checkpointed time-segment 7'/C' in memory is the same.

Moreover, skipper helps to reduce the memory consump-
tion even further compared to plain checkpointing, and the
savings come as a by-product of our strategy to reduce
the computational overhead (i.e. due to the formation of a
shallower computation graph in the second forward pass).
Quantitatively, it lowers the overall memory cost by another
1.2x - 1.7x for VGGS, by 1.2x - 1.5x for VGGI11 and by
1.4x - 1.7x for ResNet20, compared to plain checkpointing.
When considering tensors alone, the memory savings are
1.8x - 2.1x for VGG5, 1.5x - 1.6x for VGGI11 and
~2x for ResNet20, compared to plain checkpointing with
C=5. For N-MNIST, the corresponding memory savings
are 2.6x and 3.35x with plain checkpointing and skipper
respectively.

In summary, the memory savings of the checkpointed
SNNs range from 3.4x (2.6%) to 8.4x (4.3x) and on aver-
age 6.7x (4.2x) with (without) time-skipping, as compared
to baseline BPTT for the networks studied.

FE. Comparison with TBPTT

Next, we compare our proposed training approach with
TBPTT [27] on all three metrics viz. memory consumption,
run-time and accuracy. For VGG5 SNN, Figure 12 (a)
shows the overall memory consumption of TBPTT with
a truncation window of 25 (TBPTT trW=25), where the
truncation window is chosen for an iso-memory comparison
with the checkpointing approach. Table I shows the corre-
sponding test accuracy of this network, which is comparable
to the baseline, plain checkpointing and skipper techniques.
The computational overhead, on the other hand, is higher
than skipper. Thus, for similar accuracy, skipper performs
better in terms of both memory and computational cost than
TBPTT trW=25. In the case of VGG11 SNN, a truncation
window of 25 has a similar memory consumption to its
checkpointed variant. At this level of temporal unrolling, the
network accuracy of TBPTT tr'W=25 is ~57% as reported
in Table I, which is 9% lower than the baseline and other
techniques. Figure 10(b) shows the computational savings of
TBPTT trW=25 and trW=100, both of which perform as well
as, if not better than skipper. Although its computational
savings are higher than skipper, it comes at a huge cost to
network accuracy. TBPTT trW=100 improves the network
accuracy by a meager 1%, and also simultaneously fore-
goes the memory advantage (refer Figure 12(b) — TBPTT
trw=100).

For ResNet20 SNN on CIFARI10, the network accuracy
of TBPTT trW=50 is ~1% lower than the baseline (Table

577

I), with a similar memory consumption to checkpointing
(Figure 12(c)) and higher computational savings compared
to skipper (Figure 10(c)). However with a larger truncation
window (trW=175) the accuracy does not improve much
(85.94%) and the memory savings are also lost. Finally,
for LeNet with DVS inputs, the accuracy is competitive at
similar memory cost to checkpointing (trW=40, Table I), and
memory savings of skipper are limited (due to small network
and batch sizes). However, the corresponding time savings
are less for the TBPTT approach compared to skipper
(Figure 10 (d)). This is due to a small truncation window
compared to T that leads to more number of backward
passes.

The key takeaway of these experiments is that for a
memory cost similar to activation checkpointing, TBPTT is
quite effective in reducing the computational cost of training
SNNss for relatively large time windows, but fails to provide
competitive performance on deeper networks compared to
all the other approaches presented.

G. SNN training memory cost vs timesteps

Figure 14(a) reports the overall peak GPU memory con-
sumption on a log scale as a function of the computation
time-steps for training VGG11 with CIFAR100 in the base-
line, checkpointed (C=5) and skipper (C=5 & p=50) regimes.
We can see a linear increase in the memory consumption
for the baseline technique, due to which the GPU runs
out of memory as T is increased from 200 to 300 (the
patterned blue bars show extrapolated memory requirements,
thus incapable of running in the available 80GB memory
budget of A100 GPU) and training fails. The checkpointed
network memory growth is sub-linear and allows training of
networks with up to 4.5 x as many time-steps (7" = 900).
The growth in memory consumption of the skipper-trained
network is even slower and is, therefore, able to scale to
nearly twice as many timesteps as plain checkpointing i.e. up
to T' = 1800. This is because the memory footprint of time-
skipped SNN is nearly half of the checkpointed network.
Thus, for a constant memory budget, the plain checkpointed
network and the time-skipped network can scale to 4.5x
and 9x longer timesteps respectively, than the maximum
timesteps (1" = 200) supported for the baseline SNN for
VGGI11. Similar trends are observed for ResNet20 SNN as
well (see Figure 14(b)), where the checkpointed and skipper
networks scale to 3.3x and 9.3 x respectively, compared to
the maximum for baseline SNN (at 7" = 300).

These experiments show the scalability of skipper on top
of the plain checkpointing technique and its advantage in
running large models such as VGG11 or ResNet20 for longer
time steps for improving accuracy.

H. Experiments on an edge device

Next, we study the efficacy of our approach by running an
SNN on a SW NVIDIA Jetson Nano [53] edge computing

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

10

= W Baseline @C=4 @C=4 & p=70
e
>
5 °
£
[T}
=

0

8 16 32 48 64
Batch size
15 .

= WBaseline @C=4 @mC=4& p=70
£10
>
o
g 5
2
: I

0

8 16 48 64

Batch size

Figure 15: VGG5+CIFAR10, T=100, (a) memory con-
sumption and (b) latency per epoch vs batch size on
NVIDIA Jetson Nano.

Config. Accuracy | GiB

TBPTT-LBP [28], trw=10 84.46% 6.15
T=20 trw=20 84.25% 9.27

This work, C=2 84.59% 6.26
T=20 C=2 & p=20 84.07% 6.16

Table II: Comparison of checkpointing and skipper
against TBPTT-LBP [28] on AlexNet+CIFAR10, B=256.

device as shown in Figure 15. The board has 4GB of unified
memory that is shared by both the CPU and the GPU.
Since the CUDA context takes up a large proportion of the
memory (~2GB), we allocated another 4GB as swap space,
to be able to demonstrate the different schemes. Figure 15(a)
shows the overall memory consumption vs batch size and
Figure 15(b) shows the corresponding training latencies for
the baseline, checkpointing (C=4) and skipper (C=4 & p=70)
schemes while training VGGS5 SNN on CIFARI10. As can
be seen from the figures, the jetson board could not support
the baseline SNN training beyond a batch size of 8. The
checkpointed SNN was able to run with a batch size of up
to 32, whereas the corresponding skipper version enabled
a batch size of 64. As a result, the corresponding training
latency of skipper at B=64 was reduced by 50% compared
to the baseline, for a similar memory footprint. Thus, our
proposed techniques can directly lead to power and energy
savings due to a smaller memory footprint and reduced
computational complexity on the edge device.

I. Comparison with [28]

In this section, we quantitatively compare our proposed
approach against a recent proposal [28], which uses a
combination of temporal truncation (TBPTT) and local back-
propagation (LBP) [14] to reduce the SNN training memory
consumption. As already noted in the previous sections,
temporal truncation helps to reduce the activation memory

578

N
o

— [o] ° ° ° 22 &
Q45 c
o 84.26% 84.47% 84.54% 85. #2% 2 €
E’ 10 t— accurac 1‘2 -
6 O
5. 14 §
= 12 8
0 1
50
truncation WIndow
E@memory (GiB) -o-time_per_epoch (mins)
20 5 4
—_ o 3.5 =~
215 N ° 3 2
= 8766% 87.18% 87.52% 87.64‘4(25 E
210 PR
£ 15 &
v 5 1 8
= D 05 3
0 0

Baseline C=4 & p=25

SNN training scheme

& p=40

E@memory (GiB) -e-time_per_epoch (mins)

Figure 16: Comparison of memory/time/accuracy vs (a)
truncation window of TBPTT-LBP [28] and (b) proposed
approaches on AlexNet+CIFAR10, T=50, B=256.

consumption of the SNN, but adversely affects the network
accuracy. Ref. [28] proposes the use of local classifiers
attached to some of the SNN layers in combination with
temporal truncation to help alleviate the over-fitting issue.
The local classifiers, however, incur an additional memory
cost, albeit small, due to their own weights. For comparison,
we train AlexNet SNN (topology details in [28]) with
CIFAR10 on both frameworks with 20 and 50 timesteps. As
per their best-performing configuration, the local classifiers
are attached at layers 4 and 8 and the network is trained for
100 epochs with the settings mentioned in the paper.

Table II reports the TBPTT-LBP and checkpoint-
ing/skipper accuracy and memory cost at T=20. In the
former, enlarging the truncation window (the number of
unrolled timesteps) from 10 to 20 increases the memory
consumption, but does not help to improve the network
accuracy which remains at ~84%. Notably, the checkpoint-
ing (C=2) and skipper (C=2 & p=20) techniques achieve a
similar accuracy at similar or lower memory cost compared
to TBPTT-LBP. Further, Figure 16(a) reports the memory
cost, the latency per epoch and the accuracy of the TBPTT-
LBP [28] algorithm for training AlexNet on CIFARI10 as
a function of the truncation window at T=50. Compared
with T=20, the TBPTT-LBP accuracy does not improve
much at a higher number of timesteps (T=50), even for
larger truncation windows that increase the memory cost of
training. In contrast, in the proposed framework (Figure 16
(b)), the SNN accuracy improves with more timesteps (by
~3%) and skipper maintains this accuracy with up to 40% of
skipped timesteps (C=4, p=40). The corresponding memory
consumption of our proposed schemes is also similar or
lower than TBPTT-LBP.

In summary, TBPTT-LBP achieves reasonable accu-

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

racy and low memory footprint when trained with fewer
timesteps, but its accuracy does not scale with an increased
number of timesteps. Checkpointing and skipper on the
other hand, not only achieve improved accuracies with larger
timesteps but do so at lower memory costs.

VIII. DISCUSSION
A. Challenges and uniqueness of SNN

Although the re-computation and time-skipping ap-
proaches proposed in this work are also applicable to
DNN:s, they have been independently demonstrated in prior
literature in separate contexts. Specifically, re-computation
has been utilized to reduce the training memory footprint
of DNNs, whereas dropout has been used as a regular-
ization technique to improve the network’s generalization
ability and also in some cases, to lower its computational
footprint. However, combining these two techniques in the
DNN context is not feasible, as that would necessitate the
dropping out of an entire layer during the second forward
pass to get reasonable latency reduction, which will obstruct
the flow of information across layers, affecting accuracy.
Activation checkpointing with time-skipping, however, fits
quite naturally with the SNN paradigm, as we recompute
and skip timesteps in the temporal dimension without hin-
dering information flow across layers. Further, since skipper
monitors the time-dependent SNN activity in the form of
spike-sums to determine which timesteps to skip, it utilizes
the specific temporal dynamics that are unique to SNNs.
Although it is possible to skip timesteps in the RNN context,
SNNs pose the additional challenge of larger number of
timesteps and spike-based discretization, due to which their
real gradients cannot be calculated. Remarkably, skipper
efficiently navigates these challenges and yields comparable
accuracy, while reducing the memory and computational cost
of SNN training.

B. Training SNNs
(TrueNorth, Loihi)

The literature is replete with designs for neuromorphic
chips out of which TrueNorth [7] and Loihi/Loihi2 [2]
are fully functional prototypes that can support SNNs.
However, our proposed activation checkpointing and skipper
approaches aim to optimize offline SNN training for which
GPUs are more suitable as they have the software infrastruc-
ture to support arbitrary functions and control statements.
On the other hand, chips such as TrueNorth and Loihi
are more suitable for low-power deployment scenarios after
the SNN has been trained. Specifically, TrueNorth’s circuits
are optimized for inference and do not support plasticity.
Further, although Loihi supports learning on-chip, it does so
in an incremental fashion, with a limited set of learning rules
and a batch size of 1 due to several architectural constraints
designed to keep the circuits low power. As a result, it
is not suitable for batched training of SNNs. However,

on neuromorphic accelerators

579

SNNs trained offline using our approach can be deployed
on TrueNorth/Loihi [54], [55] or any other neuromorphic
platform for online learning or inference.

IX. CONCLUSION

In this work, we have explored a recomputation-based
technique viz. activation checkpointing, to alleviate the large
memory cost associated with SNN training. Although check-
pointing decreases memory consumption by 3x—4.3x, it
still incurs a significant computation overhead (~33%) lead-
ing to longer training time. To mitigate this overhead, we
proposed a novel technique, called Skipper (checkpointing-
with-timeskipping), that approximates the SNN-BPTT al-
gorithm to skip low-activity time steps and thus, reduc-
ing the computational overhead of plain checkpointing by
29% to 70%. This translates to a training time reduc-
tion of 4% to 40% compared to the baseline BPTT with
little to no loss of accuracy. The time-skipped network
also reduced the memory consumption even further and
yielded up to 8.4x lower memory cost. Our techniques
were thoroughly evaluated on state-of-the-art networks and
datasets including a neuromorphic vision-based dataset to
demonstrate the applicability of the technique to other neu-
romorphic architectures. In addition to easing SNN train-
ing deployment under resource-constrained environment, we
believe our research will be beneficial to the wider neu-
romorphic community in general towards exploring larger
and deeper SNN models by enabling memory and com-
pute efficient training. Our PyTorch implementation can be
accessed at https://github.com/sms821/Training-SNN-with-
checkpointing-and-time-skipping-in-PyTorch.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation grant #1955815, #1763681 and the Semiconduc-
tor Research Corporation-CBRIC center. We thank the fund-
ing agencies for their support. Further, we thank the authors
of [28] for sharing their code-base with us. We also thank
Sadia Anjum Tumpa for her timely help and feedback.

REFERENCES

[1] E. Chicca, F. Stefanini, and G. Indiveri, “Neuromorphic elec-
tronic circuits for building autonomous cognitive systems,”
Proceedings of IEEE, 2013.

[2] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, P. Joshi,

A. Lines, A. Wild, and H. Wang, “Loihi: A neuromorphic

manycore processor with on-chip learning,” IEEE Micro,

vol. PP, no. 99, pp. 1-1, 2018.

[3] C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser, K. Schreiber,

Y. Stradmann, J. Weis, A. Leibfried, E. Miiller, and J. Schem-

mel, “The brainscales-2 accelerated neuromorphic system

with hybrid plasticity,” arXiv preprint arXiv:2201.11063,

2022.

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

[4]

[5]

(6]

[7]

[8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S.-C. Liu and T. Delbruck, “Neuromorphic sensory systems,”
Current Opinion in Neurobiology, vol. 20, no. 3, pp. 288-295,
2010.

G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. Davison, J. Conradt, K. Dani-
ilidis et al., “Event-based vision: A survey,” arXiv preprint
arXiv:1904.08405, 2019.

M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F.
Guerra, P. Joshi, P. Plank, and S. R. Risbud, “Advancing
neuromorphic computing with loihi: A survey of results and
outlook,” Proceedings of the IEEE, vol. 109, no. 5, pp. 911-
934, 2021.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza,
J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta,
G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang,
R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha,
“Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, no. 10, pp. 1537-1557, 2015.

A. N. Burkitt, “A review of the integrate-and-fire neuron
model: I. homogeneous synaptic input,” Biological cybernet-
ics, vol. 95, no. 1, pp. 1-19, 2006.

E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate
gradient learning in spiking neural networks: Bringing the
power of gradient-based optimization to spiking neural
networks,” IEEE Signal Processing Magazine, vol. 36,
no. 6, pp. 51-63, Nov 2019. [Online]. Available: https:
/lieeexplore.ieee.org/iclaam/79/8887548/8891809-aam.pdf

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer,
“Automatic differentiation in pytorch,” 2017.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, and M. Isard, “Tensor-
flow: A system for large-scale machine learning,” in 12th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 265-283.

P. Werbos, “Backpropagation through time: what it does and
how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp.
1550-1560, 1990.

N. Perez-Nieves and D. F. Goodman, “Sparse spiking gradient
descent,” arXiv preprint arXiv:2105.08810, 2021.

J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity
dynamics for deep continuous local learning (decolle),”

Frontiers in Neuroscience, vol. 14, p. 424, 2020.
[Online]. Available: https://www.frontiersin.org/article/10.
3389/fnins.2020.00424

F. Zenke and S. Ganguli, “Superspike: Supervised learning
in multilayer spiking neural networks,” Neural computation,
vol. 30, no. 6, pp. 1514-1541, 2018.

G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj,
R. Legenstein, and W. Maass, “A solution to the learning
dilemma for recurrent networks of spiking neurons,” Nature
communications, vol. 11, no. 1, pp. 1-15, 2020.

580

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

E. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-
driven random back-propagation: Enabling neuromorphic
deep learning machines,” Frontiers in Neuroscience, vol. 11,
p- 324, Jun 2017. [Online]. Available: https://www.frontiersin.
org/articles/10.3389/fnins.2017.00324/full

P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and
M. Pfeiffer, “Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing,” in 2015
International joint conference on neural networks (IJCNN).
ieee, 2015, pp. 1-8.

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going
deeper in spiking neural networks: Vgg and residual archi-
tectures,” Frontiers in neuroscience, vol. 13, p. 95, 2019.

B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C.
Liu, “Conversion of continuous-valued deep networks to
efficient event-driven networks for image classification,”
Frontiers in Neuroscience, vol. 11, 2017. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2017.00682

B. Nessler, M. Pfeiffer, and W. Maass, “STDP enables spiking
neurons to detect hidden causes of their inputs,” in Advances
in Neural Information Processing Systems 22, Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Cu-
lotta, Eds. Curran Associates, Inc., 2009, pp. 1357-1365.

S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and
T. Masquelier, “Stdp-based spiking deep convolutional neural
networks for object recognition,” Neural Networks, 2017.

F. Zenke and E. O. Neftci, “Brain-inspired learning on neu-
romorphic substrates,” Proceedings of the IEEE, pp. 1-16,
2021.

J. Menick, E. Elsen, U. Evci, S. Osindero, K. Simonyan, and
A. Graves, “A practical sparse approximation for real time
recurrent learning,” arXiv preprint arXiv:2006.07232, 2020.

T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep
nets with sublinear memory cost,” 2016. [Online]. Available:
https://arxiv.org/abs/1604.06174

A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and
A. Graves, “Memory-efficient backpropagation through time,”
Advances in Neural Information Processing Systems, vol. 29,
2016.

I. Sutskever, Training recurrent neural networks. University
of Toronto Toronto, ON, Canada, 2013.
W. Guo, M. E. Fouda, A. M. Eltawil, and K. N.

Salama, “Efficient training of spiking neural networks with
temporally-truncated local backpropagation through time,”
2022. [Online]. Available: https://arxiv.org/abs/2201.07210

S. Singh, A. Sarma, N. Jao, A. Pattnaik, S. Lu, K. Yang,
A. Sengupta, V. Narayanan, and C. R. Das, “Nebula: A
neuromorphic spin-based ultra-low power architecture for
snns and anns,” in Proceedings of the ACM/IEEE 47th An-
nual International Symposium on Computer Architecture, ser.
ISCA ’20. IEEE Press, 2020, p. 363-376.

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

D. Lee, G. Lee, D. Kwon, S. Lee, Y. Kim, and J. Kim,
“Flexon: A flexible digital neuron for efficient spiking
neural network simulations,” in Proceedings of the 45th
Annual International Symposium on Computer Architecture,
ser. ISCA °18. IEEE Press, 2018, p. 275-288. [Online].
Available: https://doi.org/10.1109/ISCA.2018.00032

S. Narayanan, K. Taht, R. Balasubramonian, E. Giacomin, and
P-E. Gaillardon, “Spinalflow: An architecture and dataflow
tailored for spiking neural networks,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture
(ISCA), 2020, pp. 349-362.

J.-J. Lee, W. Zhang, and P. Li, “Parallel time batching:
Systolic-array acceleration of sparse spiking neural compu-
tation,” in 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2022, pp. 317—
330.

B. Dauvergne and L. Hascoét, “The data-flow equations of
checkpointing in reverse automatic differentiation,” in Com-
putational Science — ICCS 2006, V. N. Alexandrov, G. D.
van Albada, P. M. A. Sloot, and J. Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 566-573.

M. Kusumoto, T. Inoue, G. Watanabe, T. Akiba, and
M. Koyama, “A graph theoretic framework of recomputation
algorithms for memory-efficient backpropagation,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski,
Neuronal dynamics: From single neurons to networks and
models of cognition. Cambridge University Press, 2014.

K. Simonyan et al., “Very Deep Convolutional Networks for
Large-scale Image Recognition,” in ArXiv, 2014.

N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling
deep spiking neural networks with hybrid conversion and
spike timing dependent backpropagation,” arXiv preprint
arXiv:2005.01807, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in
deep residual networks,” in European Conference on Com-
puter Vision. Springer, 2016, pp. 630-645.

A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 and cifar-
100 datasets,” “https://www.cs.toronto.edu/~kriz/cifar.html”.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014. [Online]. Available: https://arxiv.org/
abs/1412.6980

A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry,
C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau,
M. Mendoza et al., “A low power, fully event-based gesture
recognition system,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 7243—
7252.

G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor,
“Converting static image datasets to spiking neuromorphic
datasets using saccades,” Frontiers in Neuroscience, vol. 9,
nov 2015.

[43]

[44]

[45]

[40]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

S. Lu and A. Sengupta, “Neuroevolution guided hybrid
spiking neural network training,” Frontiers in Neuroscience,
vol. 16, 2022.

B. Riickauer, N. Kinzig, S.-C. Liu, T. Delbriick, and Y. San-
damirskaya, “Closing the accuracy gap in an event-based
visual recognition task,” ArXiv, vol. abs/1906.08859, 2019.

S. Singh, A. Sarma, S. Lu, A. Sengupta, V. Narayanan,
and C. R. Das, “Gesture-snn: Co-optimizing accuracy,
latency and energy of snns for neuromorphic vision
sensors,” in Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, ser.
ISLPED °’21. 1IEEE Press, 2021. [Online]. Available:
https://doi.org/10.1109/ISLPED52811.2021.9502506

C. Posch, D. Matolin, and R. Wohlgenannt, “A qvga 143 db
dynamic range frame-free pwm image sensor with lossless
pixel-level video compression and time-domain cds,” Solid-
State Circuits, IEEE Journal of, vol. 46, no. 1, pp. 259-275,
jan. 2011.

L. Deng, “The mnist database of handwritten digit images for
machine learning research,” IEEE Signal Processing Maga-
zine, vol. 29, no. 6, pp. 141-142, 2012.

“Python bindings to the nvidia management library,” https:
//github.com/gpuopenanalytics/pynvml.

“Memory management,” https://pytorch.org/docs/stable/notes/
cuda.html#cuda-memory-management.

“NVIDIA A100 TENSOR CORE GPU,” https://www.nvidia.
com/en-us/data-center/al00/.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 56, pp. 1929-1958, 2014. [Online].
Available: http://jmlr.org/papers/v15/srivastaval4a.html

Y. Gao, Y. Liu, H. Zhang, Z. Li, Y. Zhu, H. Lin,
and M. Yang, Estimating GPU Memory Consumption of
Deep Learning Models. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1342-1352. [Online].
Available: https://doi.org/10.1145/3368089.3417050

“Jetson nano,”’
jetson-nano”.

“https://developer.nvidia.com/embedded/

K. Stewart, G. Orchard, S. B. Shrestha, and E. Neftci, “On-
chip few-shot learning with surrogate gradient descent on a
neuromorphic processor,” in 2020 2nd IEEE International
Conference on Artificial Intelligence Circuits and Systems
(AICAS), Sep. 2020, pp. 223-227. [Online]. Available:
http://arxiv.org/pdf/1910.04972

R. Massa, A. Marchisio, M. Martina, and M. Shafique, “An
efficient spiking neural network for recognizing gestures with
a dvs camera on the loihi neuromorphic processor,” in 2020
International Joint Conference on Neural Networks (IJCNN).
IEEE, 2020, pp. 1-9.

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore. Restrictions apply.

