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Abstract—Spiking neural networks (SNNs) are a highly
efficient signal processing mechanism in biological systems that
have inspired a plethora of research efforts aimed at translating
their energy efficiency to computational platforms. Efficient
training approaches are critical for the successful deployment
of SNNs. Compared to mainstream deep neural networks
(ANNs), training SNNs is far more challenging due to complex
neural dynamics that evolve with time and their discrete,
binary computing paradigm. Back-propagation-through-time
(BPTT) with surrogate gradients has recently emerged as an
effective technique to train deep SNNs directly. SNN-BPTT,
however, has a major drawback in that it has a high memory
requirement that increases with the number of timesteps. SNNs
generally result from the discretization of Ordinary Differential
Equations, due to which the sequence length must be typically
longer than RNNs, compounding the time dependence problem.
It, therefore, becomes hard to train deep SNNs on a single or
multi-GPU setup with sufficiently large batch sizes or time-
steps, and extended periods of training are required to achieve
reasonable network performance.

In this work, we reduce the memory requirements of BPTT
in SNNs to enable the training of deeper SNNs with more
timesteps (T). For this, we leverage the notion of activation
re-computation in the context of SNN training that enables the
GPU memory to scale sub-linearly with increasing time-steps.
We observe that naively deploying the re-computation based
approach leads to a considerable computational overhead. To
solve this, we propose a time-skipped BPTT approximation
technique, called Skipper, for SNNs, that not only alleviates this
computation overhead, but also lowers memory consumption
further with little to no loss of accuracy. We show the efficacy
of our proposed technique by comparing it against a popular
method for memory footprint reduction during training. Our
evaluations on 5 state-of-the-art networks and 4 datasets show
that for a constant batch size and time-steps, skipper reduces
memory usage by 3.3× to 8.4× (6.7× on average) over baseline
SNN-BPTT. It also achieves a speedup of 29% to 70% over the
checkpointed approach and of 4% to 40% over the baseline
approach. For a constant memory budget, skipper can scale to
an order of magnitude higher timesteps compared to baseline

SNN-BPTT.

Keywords-SNN; BPTT; compute and memory.

I. INTRODUCTION

Neuromorphic hardware implementing SNNs has the po-

tential for low-latency and energy-efficient signal processing

due to their locally-dense and globally-sparse architecture

[1], [2], [3]. Neuromorphic hardware is particularly suited

for processing the output of neuromorphic sensors [4] that

produce streams of events rather than frames. Prior research

has shown that event-based vision cameras can be very

useful in solving depth estimation and optical flow problems

using deep neural networks [5]. Also, several AI applica-

tions, realized using SNNs and benchmarked on prototype

neuromorphic hardware [2], have demonstrated considerable

performance and energy benefits compared to mainstream

platforms [6], establishing the effectiveness of such plat-

forms. Although such neuromorphic hardware platforms

are rapidly evolving and are highly efficient at processing

spiking temporal signals, they are still limited to inferences

[7] or constrained online learning [2] scenarios, and general-

purpose systems such as GPUs and CPUs continue to be the

predominant platforms for training of large-scale SNNs.

Most SNNs implement a variant of the integrate and fire

(I&F) neuron [8], which captures the neuron’s temporal

dynamics and its all-or-none activation. The discretization

of the I&F neuron differential equations results in a special

case of recurrent neural network (RNN), with two key chal-

lenges: firstly, the activation function is a non-differentiable

step function, and secondly, the typical sequence length is

considerably longer than RNNs to account for the temporal

dynamics. The first challenge can be addressed using the

surrogate gradient method, which assumes a smooth surro-
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gate network for the purposes of differentiation [9]. This

enables the use of stochastic gradient descent to optimize

task-relevant loss functions, and therefore the use of auto-

differentiation tools in ML frameworks [10], [11].

Gradient descent applied to SNNs is a variant of the BPTT

algorithm [12], which scales as the number of neurons times

the number of time steps (typically in the hundreds). The

dependence on the latter makes SNN training particularly

memory- as well as compute-intensive. This high complexity

makes SNN training a major obstacle for real-world ap-

plication scenarios [13]. To address this problem, several

algorithmic techniques have been proposed, such as approx-

imations of the real-time recurrent learning (RTRL) rule

[14], [15], [16], which eliminates the time dependence of

the network. Others have proposed local loss functions [14]

and feedback alignment [17], which eliminates the need to

back-propagate the loss across layers and are less compute-

and memory-intensive than BPTT. Other techniques such as

ANN-to-SNN conversion [18], [19], [20] and STDP-based

unsupervised learning [21], [22] have also been proposed.

However, approximations to RTRL and local learning result

in worse accuracy compared to BPTT [23], [24] and so

do conversion and STDP-based mechanisms. BPTT, thus,

remains the gold standard for training SNNs, and improving

its efficiency in terms of reduced memory footprint and

execution time on current compute platforms is key to its

adoption in large-scale, real-world applications.

Motivated by these observations, in this work, we present

two complementary techniques to minimize the memory

and computation overheads of BPTT-based SNN training

on a GPU. In order to alleviate the high memory cost

of SNN training that scales linearly with time steps, we

first leverage a well-known technique, called activation
checkpointing, where intermediate activations in a multi-

layer network are not saved, to reduce the memory demand.

This concept (also referred to as gradient checkpointing in

deep learning literature), has been applied for training deep

neural networks (DNNs) on GPUs, where memory is often

a limiting factor, by saving a subset of the layer activations

instead of the activations of all the layers (as is usually

the case), and then re-computing them when required [25],

[26]. The recomputation costs another 30%-35% increase

in training time [25], which we mitigate by proposing a

computation skipping mechanism.

While gradient checkpointing has been applied in the

context of CNNs and RNNs, we establish activation check-

pointing in SNNs which serves as a foundation for our

subsequent innovations. Thus, we first apply checkpointing

to SNNs in the temporal dimension i.e. instead of saving

all the intermediate neural states, we save only a subset of

these (activations) and then recompute them at the time of

backpropagation. Second, we propose a novel technique viz.

activation checkpointing with time-skipping or skipper
to alleviate the computational overhead of checkpointing,

by using a Spike Activity Monitoring (SAM) approach that

reduces the training time compared to baseline SNN-BPTT

and yields additional memory savings compared to only

checkpointing. In summary, following are our contributions:

• We apply checkpointing to SNN in the form of activa-

tion checkpointing to reduce its memory consumption

during training by trading off additional computations

for memory savings. We build a framework on top of

a popular deep learning library to readily train SNNs

with BPTT at a reduced memory cost. This can be

used by researchers for exploring deeper SNNs to solve

complex tasks.

• We propose a novel technique called Skipper, which

approximates BPTT (considered as our baseline) using

a Spike Activity Monitoring (SAM) approach and aug-

ments activation checkpointing to not only alleviate its

computational overhead, but also to reduce its training

memory consumption further, with little to no loss

of accuracy. The computation skipping in skipper is

achieved by intelligently utilizing the neuron computa-

tion dynamics in the form of spike activity during the

forward pass.

• We use our checkpointing framework to evaluate the

efficacy of both activation checkpointing and skipper
on 5 SNN workloads with 4 different vision datasets.

Experimental results show that for constant timesteps

and batch size, activation checkpointing can save up

to 4.3× (4.2× on average over evaluated SNNs) the

amount of memory compared to the baseline, while in-

curring ≈35% computational overhead on average. Our

proposed activation checkpointing with time-skipping

technique (skipper) further improves memory savings

by up to ∼2× compared to plain checkpointing, while

also saving compute time by 29% to 70% across the

5 workloads. This translates to a memory saving of up

to 8.4× (6.7× on average) and 4% to 40% run-time

speedup compared to baseline BPTT.

• We compare our techniques with truncated back-prop-

agation-through-time (TBPTT [27]), a widely used

technique to reduce memory consumption while train-

ing RNNs and demonstrate the advantages of our

approach.

• We also compare our techniques with a prior work [28]

and demonstrate the scalability of our approach.

• Finally, we show the efficacy of our approach on

the neuromorphic vision datasets DVS-gesture and N-

MNIST, highlighting its applicability to both frame-

based and event-based data.

We perform all our experiments on GPUs for ease of

programmability and reproducibility, but the techniques pro-

posed in this work are agnostic to the underlying platform

and therefore equally applicable to future/custom neuromor-

phic hardware platforms as well.
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(a) All activations stored (baseline approach)

(b) Selected activations stored (checkpointing approach)

Figure 1: Typical training process of a DNN.

II. RELATED WORK

A number of recent research proposals have designed

neuromorphic hardware for efficient SNN inference and

on-chip learning through the use of innovative devices

and circuits [29], micro-architecture [30], [31], dataflow

[32], and interconnect [2], [7]. However, there is a relative

lack of prior works aimed at making the existing training

techniques more computationally efficient. To fill this gap,

we optimize SNN training by investigating the “compute-

memory tradeoff” hitherto unexplored in the SNN context.

Although this tradeoff in the form of activation (gradient)

checkpointing has been studied in the context of general

computation graphs [33], they have only recently been ap-

plied to backpropagation in DNNs. One of the earliest works

to explore gradient checkpointing in DNNs, [25] proposed

algorithms to reduce the memory consumption of n-layered

DNN by
√
n and in the extreme case by O(nlogn). Ref.

[26] proposed a dynamic programming-based approach to

reduce the memory consumption of BPTT when training

RNNs given a fixed memory budget. Authors in [34] present

a recomputation-based method that can be applied to a wider

range of neural network topologies (such as those with long

skip connections). However, all of these methods incur a

computational overhead of at least one additional forward

pass. Additionally, our proposed techniques are orthogonal

to [34], as we apply checkpointing to the temporal dimen-

sion, which makes it agnostic to the network topology.

To the best of our knowledge, no other works have
attempted to reduce the computational overhead of the extra
forward pass. Probably, the most closely related work to

ours is [28], which reduces the memory footprint of BPTT in

SNN through a combination of temporal truncation (TBPTT)

and locally-supervised layers. However, they simplify the

complexity of the training algorithm in space, whereas

skipper does so in time. Besides, the scalability of their

approach to deeper networks (such as ResNets) is not clear.

We now briefly discuss activation checkpointing in DNNs,

in which the idea is to only selectively store the activations

from the forward pass, instead of storing the activations of

all the layers. The baseline technique is shown in Figure 1(a)

– where all the activations from the forward pass are stored

in memory. During the backward pass, the stored activations

are recalled for gradient computation. However, in the case

of Gradient Checkpointing, only a few layer activations

are stored (marked as ‘save’ in Figure 1(b)). Thus, the

backward pass now runs in multiple passes to complete

gradient computation of the entire network. As shown in the

figure, in Backward pass-2, activations are restored by re-

computing the discarded states from L5 onwards, which are

then consumed in the gradient computation process. In the

subsequent pass, the remaining activations are restored (L2

to L3) and the gradient computation process is completed for

the corresponding network segment. The number of passes

required to complete the BP thus equals the number of

checkpointed states.

III. BACKGROUND

In this section, we provide a brief overview of how

SNN training is performed using gradient descent-based

optimization techniques and the issues involved therein,

which serve as the main motivation for our current work.

A. The Neuron Model

The neuron model describes the internal state update

dynamics as well as the firing behavior of a spiking neu-

ron. Although several neuron models exist in the literature

that replicate biological neurons at varying levels of bio-

plausibility [35], variations of the linear leaky-integrate-and-

fire (LIF) neuron are widely used in ML-based optimizations

due to their simplicity and scalability. A discrete-time for-

mulation of the LIF neuron suitable for digital simulations

is characterized by the following equation:

U l
t = λU l

t−1 +W lol−1
t − θolt−1, o

l
t−1 =

{
1, if U l

t−1 > θ

0, otherwise ,
(1)

where U l
t is the neuron’s membrane potential (internal

neuron state) at time t, l is the layer index, λ (≤ 1) is the

membrane potential leak, Wl is the weight matrix connecting

layers l − 1 and l, ot is the spike vector at time t, and θ
is the firing threshold potential. The first term on the right

hand side of equation 1 carries forward the neuron state

from previous to the current time-step (modulated by leak

λ); the second term is a weighted sum of spikes coming from

the previous layer (a feed-forward connection); and the third
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Figure 2: Back-propagation through time in SNNs. The
vertical dimension shows different layers of an SNN,
while horizontal dimension shows unrolling in temporal
dimension.

term arises from the thresholding non-linearity that decreases

the membrane potential by θ if an output spike olt−1 is

generated by a neuron (a recurrent connection). The SNN

can, thus, be considered a specialized form of a Recurrent

Neural Network (RNN) [12], [9].

B. SNN training via backpropagation through time

BPTT consists of minimizing a global loss function L by

applying gradient backpropagation to the network unrolled

in space and time as depicted in Figure 2. For a loss L
computed at time t, the gradient descent weight update ΔW
for layer l is governed by:

ΔW l = −η
∂Lt

∂W l
= −η

t∑
s=0

δlso
l−1
s

�
,

where
∂Lt

∂U l
s

= δls = diag(σ′(U l
s))W

�,l+1δl+1
s+1 + λδls+1.

(2)

σ′ is the smooth surrogate function for computing the

gradient of the activation function [9]. Note that the reset

term is not taken into account for the gradient computation.

C. Truncated backpropagation through time

Truncated backpropagation through time (TBPTT) [27] is

a popular technique in deep learning literature that is often

used to reduce the memory consumption of RNN and its

variants during training. In its simplest form, the network is

unrolled for a shorter computation window also known as

the truncation window t′ < T . A loss value is calculated

at t′, its derivatives are backpropagated through the network

and the weight gradients are computed and stored. At this

point, the computation graph of the network is discarded

and the corresponding memory is released. This process of

loss calculation and backpropagation is repeated for multiple

Figure 3: SNN accuracy and training memory consump-
tion vs timesteps for (a) VGG5, CIFAR10, (b) ResNet20,
CIFAR10. Breakdown of GPU tensor memory occupancy
vs timesteps at B=32 for (c) VGG5, (d) ResNet20.
Training time per epoch and GPU memory consumption
vs batch size for (e) VGG5 and (f) ResNet20.

Figure 4: Training ResNet34 SNN on ImageNet via BPTT
(a) GPU memory breakdown vs timesteps at B=1, and
(b) Time to train 800 samples in a data-parallel regime
on 4 A100 GPUs and corresponding memory (per GPU)
vs batch size.

truncation windows, and the weight gradients calculated at

time (t′, 2t′, ..., T ), are summed to get the final gradient,

which is then used by the optimizer to update the network

parameters.

IV. MOTIVATION

In this section, we experimentally demonstrate the reasons

for the highly memory-intensive nature of SNN training.

Figures 3(a) and (b) show the SNN accuracy on the testing

set when trained with an increasingly large time-window

for a small (VGG5 [36], [37]) and a large network (ResNet-

20 [38], [19]), respectively, on the CIFAR-10 dataset [39].

The network test accuracy improves with more timesteps
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(left axis, Figure 3(a) and (b)). This, however, comes at an

increased memory cost that scales linearly with the number

of timesteps, as plotted on the right axis of Figure 3(a), (b).

To investigate further, Figures 3(c) and (d) plot the relative

memory consumption of different types of tensors present on

the GPU during training of VGG5 and ResNet20 SNNs as a

function of timesteps for batch size 32. These measurements

were taken after the GPU reaches its maximum memory

occupancy and becomes steady (i.e., from the second iter-

ation onwards), at which point there is dedicated memory

allocated to all types of tensors required for training. Fig-

ures 3(c) and (d) categorize these tensors as input, model,

activations, optimizer, and others. The input tensor consists

of spiking data to be supplied as input to the SNN and

the corresponding labels. The model tensor represents the

trainable network parameters. The optimizer portion jointly

consists of the weight gradients and gradient moments that

depend on the type of optimizer used, as well as some non-

trainable parameters (e.g. leak, threshold etc). Since we have

used the Adam optimizer [40], the gradient moments are 2×
the size of the weights, whereas the weight gradients are

of the same size as the weights. Nevertheless, we observe

that a major portion of the tensor memory (60% - 95%)

is occupied by activations, which consist of time-dependent

spikes and neuronal states. This is partly due to the fact that

large batch sizes are used in training to obtain higher GPU

throughput1. However, the relative proportion of activations

also increases with the number of timesteps for a constant

batch size. This is because, the time-wise activation tensors

are saved on the GPU memory during the forward pass

computations since they are required during the backward

pass computations as per equation 2. To further emphasize

this point, we report the GPU tensor memory breakdown

while training ResNet34 on ImageNet against timesteps for

a batch size of 1 in Figure 4(a). The time-wise activations

account for 56% to 90% of the total memory consumption,

thus establishing SNN activations as a significant memory

bottleneck.

We also report the training latency and memory consump-

tion required to train this SNN in a data-parallel regime on 4

A100 GPUs as a function of batch size in Figure 4(b), with

B=16 being the largest batch size that can fit on the GPUs at

T=200. At B=16, the time to train on 1M ImageNet training

samples would be ∼3.5 days (extrapolated from 10 minutes

for 800 samples) for a single epoch. Even if we perform

transfer learning and train the SNN only for 20 epochs, this

would translate to roughly 70 days of training, assuming

we have all the hyper-parameters properly tuned. The huge

computational complexity of training not only arises from

the temporal nature of SNNs but also from the discretization

function, which requires them to be simulated for 100s

1Another reason for this is that CNNs have fewer trainable parameters
per activation than fully connected networks.

of timesteps, as noted earlier. This observation presents us

with a challenge as well as an opportunity to reduce the

training memory consumption of SNNs by directly lowering

its activation memory footprint.

The potential memory savings could be utilized in the

following ways: (i) for explorations of deeper networks with

longer temporal horizons (demonstrated in Figure 14 in

results section), (ii) to train SNNs on larger mini-batches,

thus improving GPU throughput and speeding up training

(shown in Figure 11 in results section). Figures 3(e) and

(f) show the time required for a single training epoch as a

function of the batch size. The training time decreases by ∼
5× as we increase the batch size from 32 to 512 for VGG5

and from 32 to 144 for ResNet20. This comes at the cost of

increased memory requirement that also scales linearly with

batch size. (iii) to enable multiple simultaneous trainings on

the GPU, often useful in hyper-parameter search/tuning.

V. ACTIVATION CHECKPOINTING IN SNN

As explained earlier in Section III-B, the SNN forward

pass computations are completely unrolled in time and the

resulting intermediate states (U l
t , o

l
t) are saved in memory

for the backward propagation of error gradients to take

place. This model serves as our baseline. Figure 5 shows the

computational graph of an SNN being trained for T = 20
timesteps. Figure 5(a) shows the layer-to-layer interactions

for a single timestep and 5(b) shows the unrolled timesteps

for a single layer l. In order to reduce the memory, we

propose to apply activation (gradient) checkpointing to this

computational graph, i.e., we drop some of the intermediate
neural states and recompute them later during the backward
pass, at the cost of an extra forward pass computation. For

a given T , the amount of memory saved will depend on the

number of times the network is checkpointed, denoted as C
in the rest of this paper. Figure 5(b) depicts this idea more

clearly through the following example. In this, the SNN from

Figure 5(a) is checkpointed twice (C = 2).

Step1: The forward pass computation takes place and

after t = 19, the loss function L and its derivative at t = 19
are computed. The time-wise activations are only saved

twice at t = 0 and t = 10, and therefore, the corresponding

memory occupancy is only twice the activation size per

timestep, at this stage.

Step2: The network is unrolled from the most recent

activation checkpoint (at t = 10) and the intermediate states

are recomputed. To be precise, the forward pass computa-

tions are performed a second time from t = 11 to t = 19 and

the corresponding states are saved in memory. The activation

memory at this point comprises of the activations from Step1

along with this unrolled time-segment of intermediate states.

Step3: Back-propagation takes place from t = 19 to

t = 10 and the corresponding error gradients up until

t = 10 (∂L10

∂W l ) are computed as per the chain rule. The
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Figure 5: (a) SNN inter-layer spike interactions per time step. (b) Activation checkpointing shown in layer l applied
along temporal dimension. Evolution of states (U l

t , o
l
t) follows equation 1 and backward pass follows equation 2.

device activation memory corresponding to these time-steps

is released.

Step4: Step2 is repeated for the next most recent check-

point (at t = 0) and the intermediate states from t = 1 to

t = 9 are re-computed in the forward pass.

Step5: The error gradients calculated in Step3 (∂L10

∂W l ) are

used to back-propagate the errors from t = 10 to t = 0. The

network weight updates (ΔW ) are then calculated as a sum

of these error gradients for all time-steps, as per equation 2

and the corresponding activation memory is freed. Note that

for each training iteration, the recomputation for each time

step happens only once.

A. Tradeoff between the number of time steps, checkpoints
and layers

For a DNN with n layers, [25] has shown that the memory

cost can grow as O(
√
n), instead of O(n), at the cost of an

extra forward pass. When applied to SNNs along the tempo-

ral dimension, the activation memory consumption will be a

function of T and C. Specifically, for an SNN checkpointed

C times and simulated for T timesteps, (C ≤ T ), the size

of each time-segment will be T/C. As a result, the total

activation memory requirement for training can be expressed

as follows:

totalActCost = O
(T
C

)
+O(C). (3)

Thus, the memory cost of running SNN backpropagation

on each time-segment is O(T/C). Note that the second

part of the above equation is the memory required to

save the intermediate states between time-segments. As per

this algorithm, the activation memory cost is minimized at

C =
√
T [25].

Further, in the case of SNNs, we cannot have an arbitrary

number of checkpoints C. This is because, for a baseline

SNN with Ln layers, we must have T > Ln for spikes to

propagate to all the layers after the thresholding function

has been applied. Correspondingly, for checkpointed SNN,

the length of each time segment (T/C) must be greater than

Ln, for the propagation of information to all the layers in

that time segment (i.e. T/C > Ln). As a result, C is upper

bounded by the ratio T/Ln of an SNN.

B. Computational overhead of checkpointing

In a typical single GPU neural network training, the

forward and backward passes constitute roughly 1/3rd and

2/3rd of the total number of computations per iteration. This

is because, for each layer, the backward pass performs two

sets of computations – one for computing the error gradients

with respect to the activations and another with respect to the

weights. As a result, the activation checkpointing is expected

to incur ∼33% increase in training time.

Next, we discuss the opportunity for reducing the compu-

tational overhead of checkpointed SNN to leverage benefits

in terms of overall computation time, in addition to memory

footprint reduction.

VI. OVERCOMING THE COMPUTATION OVERHEAD OF

ACTIVATION CHECKPOINTING THROUGH SKIPPER

Although activation checkpointing in SNNs is a promising

technique to reduce its memory cost during training, it incurs

an increased computational overhead of ∼33%, which can be

considerable for long-running and large-scale SNN training.

In this section, we explore techniques to alleviate this extra

computational cost without compromising on the memory

benefits. Towards this end, we re-examine the computation

graph created during training of a checkpointed SNN and

notice that the same forward pass computation is performed

twice (Steps 1, 2 and 4 in Figure 5(b)). Our experience

working with spiking data for vision-based applications has

shown that some of the spike patterns can be redundant

across time steps and it could be worthwhile to simply skip

these computations to reduce training time. As a result, the
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Figure 6: (a) SNN inter-layer spike interactions per time step. (b) An example schematic of skipper. Neuronal states
(U l

t , o
l
t) are represented by t for readability. Evolution of states follows equation 1 and st are simultaneously saved.

Recomputation at time t and the corresponding backward pass are performed if st > SST .

corresponding backward pass computations would also not

take place. This is because, in the case of training with

auto-differentiation tools such as Pytorch [10] or Tensorflow

[11], the tool builds a computation graph by reading the

forward pass description of a network and imperatively

traverses the graph symmetrically in the reverse order during

the backward computation, thus implicitly realizing the

chain-rule of differentiation. However, if we blindly avoid

calculating some of the intermediate states in the forward

pass, the corresponding gradients for those time-steps will

not be computed in the backward pass, and this could affect

network convergence during training.

In the case of activation checkpointing, however, the

fact that the forward pass graph is traversed twice is an

opportunity that can be leveraged to drop some computa-

tions without hurting network performance. Our key insight,

therefore, is to collect some information about the neural

dynamics during the first forward pass and use it to intel-
ligently skip or drop some computations during the second

forward pass, and thus recover some of the computational

overhead of activation checkpointing. The challenge is to

identify such a metric that is low overhead in terms of

memory and computation time and yet powerful enough

to convey critical information about whether or not to skip

computations during the second forward pass, succinctly.

A. Skipping computation based on temporal spike activity

To avoid network convergence issues, computations can-

not be skipped arbitrarily. Further, since we want to skip

computations at the time granularity, which essentially

means avoiding forward pass computations for all layers

at that time-step, our decision-making metric needs to be

a time-dependent variable. The neuron membrane potential

and output spikes (U l
t , o

l
t) are possible candidates for such

a decision-making process as they indicate the current level

of activity in the network. Of these, we choose the output

spikes olt as our indicator since the all-or-none behavior of

spikes is an intrinsic yardstick of the current activity level

in the network. We take the sum of the spikes as a heuristic

to gauge the current activity level at every timestep. Further,

all layers in the network simultaneously emit spikes at every

timestep. We, therefore, compute and save the sum of spikes

from each of the layers at a timestep in the forward pass

(denoted as st in Figure 6(b)) and expressed as follows:

st =

l=Ln∑
l=0

sum(olt) (4)

Thus, we propose a Spike Activity Monitoring (SAM)

mechanism which computes and saves st for every timestep

during the first forward pass of the network. Next, we

propose a metric, called Spike-Sum-Threshold, which is

calculated for each of the checkpoints just before the second

forward pass (denoted as SSTc, where c is the checkpointed

segment number). In skipper, we measure this value by

taking the pth percentile of the spike sums corresponding

to each checkpoint.

SSTc = percentile({s0(c), s1(c), ..., sT/C(c)}, p) (5)

where p can be treated as an additional hyper-parameter in

the training process.

During the backward pass of training, which now involves

re-computation of ‘non-checkpointed’ activations, SAM is

used to compare the the spiking activity of the current

timestep (st) against the corresponding SST value. If
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the spiking activity is found higher than this Spike-Sum-
Threshold ( st > SSTc), then re-computation takes place as

usual for the particular time-step, otherwise, it is skipped.

Figure 6(b) depicts this idea pictorially in 5 steps, and

we continue using the same example configuration as the

previous section.

Step1: The forward pass computations are performed in a

similar fashion to Step1 of activation checkpointing tech-

nique, i.e., only the intermediate states at t = 0 and t = 10
are saved. In addition to the computation of intermediate

states, the output spikes generated from all the layers at that

time-step are summed up and stored. Thus, a spike-count is

calculated per time-step (shown as s0, ..., s19 in the figure),

which serves as a metric for indicating the spike activity at

that time-step.

Step2: Prior to recomputing the intermediate states for the

backward pass, we perform a look-up on the Spike Activity

Monitor and for the spike-counts corresponding to the latest

checkpoint’s time-segment, we calculate its pth percentile

as per equation 5, which serves as our Spike-Sum-Threshold
(SSTc). We then compare each st(c) with this SSTc and

skip the computation of those timesteps whose st is lower

than this threshold value. The percentile p is critical to our

technique as it decides the number of time-steps that can

be skipped. Higher p values will lead to higher Spike-Sum-
Thresholds (equation 5). As a result, there will be more

timesteps at which spike-counts st will fail to cross this

threshold and thus more intermediate steps can be skipped.

Step3: Since we drop some of the compute-iterations during

the forward pass in Step2, a shallower computation graph is

created in memory, as shown in the Figure 6(b) (steps 2 and

3). The backward computation will now traverse through this

new and shorter graph of checkpointed segment #2 at the

end of which, the corresponding memory will be released.

Step4: We repeat Step3 for the next most recent time-

segment, starting from t = 0 and selectively re-compute

the intermediate states depending on the SSTc value.

Step5: Similar to Step4, we perform a backward pass on

the time-skipped checkpointed segment #1.

To summarize, memory gets allocated every time a for-

ward pass takes place and gets deallocated during the back-

ward pass. In the case of SNN, the forward pass activation

memory also consists of time-unrolled spikes and neural

states. As a result, the allocated memory depends on the

level of temporal unrolling. It is to be noted that skipper
saves memory by unrolling fewer non-sequential timesteps

during the second forward pass. The intermediate timesteps

that are not a part of this new unrolled graph are essentially

‘skipped’, thus also saving compute time.

Choice of Spike Activity Monitor: Although we use the

sum of spikes across all layers per timestep as a low

overhead Spike Activity Monitor due to its simplicity, it

is possible to use other metrics that can monitor network

activity at a finer granularity, e.g., the sum of spike counts

weighted by the neuron count in each layer, the l2-norm of

neuron trace per timestep, or a combination of both. The

impact of more sophisticated activity monitoring mecha-

nisms on skipper’s accuracy is an interesting future research

direction.

B. Impact of skipping computations

Here we discuss the impact of computation skipping from

a theoretical standpoint by analyzing the key parameters T
(no.of timesteps), C (no. of checkpoints), Ln (no. of layers)

and p (percentile) during training. Firstly, with skipper,

there is a reduction in computation time which directly

depends on the number of time-steps skipped. In addition,

the memory cost of training also reduces in proportion to the

skipped time-steps. The new activation memory requirement

for training with skipper can be expressed as:

totalActCostskipper = O
(
(1− p

100
)× T

C

)
+O(C) (6)

Thus, we can skip a larger fraction of the timesteps if

the number of checkpoints C is low or if T/C (length of a

checkpointed time-segment) is high. Another constraint ap-

plicable specifically to SNNs is that the number of timesteps

that are not skipped per checkpoint must now be greater than

the number of layers, i.e., (1 − p
100 )

T
C > Ln, which yields

the following upper bound on the fraction of time-steps that

can be skipped for a given T , C and Ln:

p

100
< 1−

( C

T/Ln

)
(7)

This, combined with the fact that C < T
Ln

(from Sec-

tion V-A) together provide the boundary conditions for

setting C and p for a constant T and Ln. Equation 7

thus provides a simple rule of thumb for determining the

maximum %age of time-steps that can be skipped (p) for

an SNN with a particular T , C and Ln. Thus, we can

skip more time-steps for networks with a large T
Ln

ratio

or smaller C, implying that for a constant T
Ln

ratio, if an

SNN is checkpointed many times, the scope for skipping

time-steps and thus reducing training time decreases.

Note that, due to skipped time-steps, the functional out-

come of skipper will be different from the vanilla check-

pointing and baseline BPTT algorithms, and therefore, in-

volves a trade-off in terms of accuracy, in addition to the

memory and computation metrics discussed above. As a

result, we set the time-skipping percentage p at a value

that minimally impacts network accuracy. For this, we start

with the theoretically maximum p (Equation 7) and slowly

decrease it, while measuring its impact on network accuracy

for a few training iterations each time. We stop at the p value

where the accuracy loss is minimal.

In our study, we extensively evaluate the trade-offs involv-

ing the accuracy, memory and latency metrics, the details of

which are discussed in the subsequent sections.

572

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore.  Restrictions apply. 



VII. EVALUATION AND RESULTS

We implemented all the presented ideas including baseline

and truncated BPTT using the PyTorch framework [10] run-

ning on a GPU, in an end-to-end fashion. Thus, performance

metrics (with respect to memory, compute and accuracy)

are directly measurable at a system level. Specifically, we

first implemented activation checkpointing for SNN as a

generalized framework that can be used to checkpoint and

reduce the memory consumption of any feed-forward SNN

during training. We then implemented activation checkpoint-

ing with time-skipping (skipper) in which the network

can dynamically skip some percentage of the time-steps

(a user-defined parameter) based on its activity in the first

forward pass. The impact of skipper is also directly observed

during training in terms of lower run-time and memory

consumption as reported in the next section.

We evaluate our techniques by training SNNs to solve

the image classification and action recognition problems on

3 small (VGG5, LeNet, custom-Net) and two large network

topologies (VGG11 and ResNet20) in conjunction with 4

different datasets viz. CIFAR10 & CIFAR100 [39], DVS-

Gesture [41] and N-MNIST [42] – the latter two being

event-based datasets, specifically tailored for neuromorphic

processing. For the evaluation of network performance in

terms of accuracy, we train all the networks end-to-end for

20 epochs as per the hybrid training method described in

[37] using the ADAM optimizer. As per this technique, we

pre-initialize the SNN’s weights with the corresponding pre-

trained ANN weights and then train it further to fit the

network on spiking inputs, using integrate-and-fire neurons

and BPTT with a surrogate gradient. This was done to reduce

the time to train each SNN from scratch which typically

takes 100s of epochs and runs in days. It is to be noted that

hybrid/transfer learning is a standard practice in deep SNNs

[37], [43] as it enables faster convergence. Further, since

we use the same weight initialization and hyper-parameter

values as baseline SNN BPTT, skipper starts at an equal

footing with the baseline.

Next, we used Poisson-based rate encoding to convert the

CIFAR10 and CIFAR100 image datasets into spiking data.

Unlike the CIFAR10/100 datasets that are recorded using a

frame-based camera, the DVS Gesture Recognition, as well

as the N-MNIST datasets, are already in the spiking format

as they are recorded with a Dynamic Vision Sensor as sparse

asynchronous binary address events (x, y, p, t), where (x, y)

denote the spatial address, and (p, t) denote the polarity and

time-stamp of each event stimulus respectively. The DVS

Gesture dataset was recorded using the DVS-128 camera and

consists of 11 hand gestures (such as clapping, waving, arm

rotation etc.) performed by 29 different individuals under

3 illumination conditions and the problem is to classify

an action sequence into an action category. Pre-processing

of the dataset and ANN pre-training are performed using

the techniques described in [44] and [45]. The N-MNIST

dataset was created by performing saccadic movements of

the Asynchronous Time-based Image Sensor (ATIS) [46]

while being exposed to images from the MNIST [47] dataset

which were displayed on an LCD screen.

For the timing and memory measurements, we supplied ∼
40 – 100% of the training dataset samples in multiple mini-

batches and averaged it over 20 such iterations after a warm

start. The overall GPU memory consumption is measured

using the ‘pynvml’ [48] tool and the details of library

overheads and tensor memory consumption are obtained

using the PyTorch max_memory_allocated() and

max_memory_reserved() [49] APIs. The computation

runtime is measured for each mini-batch and consists of

the forward(), backward() and weight_update()
calls on the network. Finally, all training and benchmarking

is done on a server consisting of the NVIDIA A100 80GB

GPUs [50] supported by Intel(R) Xeon(R) Silver 4314 @

2.40GHz CPUs, using Pytorch version 1.10 and CUDA

version 11.2. Following are our detailed evaluation results.

A. SNN training memory cost vs #checkpoints C

Figures 7 (a), (b) , (c) and (d) show the overall peak GPU

memory consumption during SNN training as a function of

the number of checkpoints C for a constant batch size B
and timesteps T . We notice that the memory consumption

reduces with more checkpoints and reaches a minimum

value, after which it starts to increase. For example, in

the case of VGG5 simulated for T = 100 timesteps, the

memory consumption is the lowest when C =
√
T , as

explained in Section V-A. For small values of C, the memory

consumption of each time-segment dominates the overall

activation memory, whereas for large Cs, it is dominated

by the memory required for storing intermediate states

in between checkpoints (as per equation 3). Further, the

computational overhead of checkpointing is shown on the

right axis of Figures 7(a), (b), (c) and (d) as a function of

C. Compared to the baseline SNN, the checkpointed version

incurs around 30% overhead, on average, for any number of

checkpoints as long as the forward pass is re-computed once.

We observe these trends for the all the 4 networks.

The key takeaway of this study is that, following a 30%

increase in training time of checkpointed SNNs compared

to the baseline, the run-time remains more or less constant

with increasing values of C, and the memory consumption

is minimum at C =
√
T .

B. SNN accuracy with Skipper

Table I shows the network accuracy on the testing set for 5

different networks of varying sizes and depths with 4 differ-

ent datasets. The accuracy of the checkpointed networks is

reported to verify the correctness of our implementation, and

its slight variation from the baseline accuracy is due to the
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Training Details VGG5 VGG11 ResNet20 LeNet custom-Net
Baseline (BPTT) 0.8734 0.6623 0.8716 0.8897 0.9681
Checkpointed 0.8714 (C=4) 0.6648 (C=5) 0.8704 (C=5) 0.8889 (C=10) 0.9696 (C=4)
Skipper 0.8744 (p=70) 0.6648 (p=50) 0.8728 (p=52) 0.8933 (p=70) 0.9635 (p=70)
Trunc. BPTT 0.8715 (trW=25) 0.5673 (trW=25) 0.8593 (trW=50) 0.8882 (trW=40) -
# layers conv(3)+lin(3) conv(9)+lin(3) conv(20)+lin(1) conv(5)+lin(1) conv(3)+lin(1)
Dataset CIFAR10 CIFAR100 CIFAR10 DVS-Gesture N-MNIST
Timesteps (T) 100 125 250 400 300
Batch Size 128 128 128 32 256

Table I: SNN test accuracy of VGG5, VGG11, ResNet20, LeNet and custom-Net with four different training techniques
(BPTT, Checkpointed, Skipper, and TBPTT). C: #checkpoints, p: percentile of skipped timesteps, trW : truncation
window for TBPTT, conv: convolution layers, and lin: linear layers for a particular network.

Figure 7: Overall peak GPU memory consumption and
computation time (for a fixed number of iterations)
vs number of checkpoints for (a) VGG5+CIFAR10,
T=100, B=128, (b) VGG11+CIFAR100, T=125, B=128
(c) ResNet20+CIFAR10, T=250, B=128, (d) LeNet+DVS-
getsure, T=400, B=32.

(a) Training (b) Validation

Figure 8: Accuracy vs #epochs for training LeNet SNN
on DVS-gesture from scratch. B=64, T=400.

Figure 9: Accuracy vs #timesteps for LeNet SNN on
DVS-gesture @ B=32, T=400 trained with baseline and
skipper.

stochasticity of the spiking input, dropout patterns, and opti-

mizer. We notice that the SNN accuracy with skipper is quite

competitive, if not slightly better, than the baseline accuracy.

We surmise that this is due to an additional regularization

that the network receives in the temporal domain, which is

akin to a spatial dropout in conventional DNNs, that enables

the network to generalize better [51]. However, unlike spatial

dropouts, our temporal dropout takes place at a much higher

granularity i.e., we completely skip the computations of all

the layers in a given timestep, and the timesteps at which to

drop computations are not chosen randomly, but are based

on a well-defined heuristic. Further, we report the accuracy

for the maximum fraction of timesteps that we were able

to skip without losing any performance and demonstrate the

skipping of up to 70% of the timesteps with little accuracy

loss.

Note that, for networks with a higher T
Ln

ratio,

we can skip more timesteps (refer to Equation 7),

e.g., VGG5+CIFAR10 has a higher T
Ln

ratio than

ResNet20+CIFAR10 and therefore, has a higher time-

skipping fraction. Additionally, the dataset complexity also

dictates the number of timesteps that can be skipped (e.g.,

VGG11 on CIFAR100).

Finally, in addition to frame-based datasets, our proposed

technique is also effective on event-based data as shown by

the accuracy of LeNet on DVS gesture and that of a custom

network on N-MNIST. The SNNs were trained from scratch

for 50 and 100 epochs respectively, and for both datasets,

skipper achieved a similar convergence to baseline and

checkpointed schemes. As proof of concept, Figure 8 reports

the accuracy curves for training an SNN from scratch for

the baseline, checkpointed and skipper regimes, and Figure

9 plots the accuracy against #timesteps for the baseline

and skipper techniques, thus further establishing skipper’s

competitiveness with the other techniques.

C. SNN training computation cost vs batch size

Next, we analyze the impact of batch size on training

time. Figures 10(a), (b), (c) and (d) report the computational

overhead of training SNNs with plain checkpointing and

skipper strategies as a function of batch size, over baseline.
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Figure 10: Computational overhead of checkpoint-
ing (C), skipper (C,p), and TBPTT (trW) training
regimes vs batch size for (a) VGG5+CIFAR10, T=100;
(b) VGG11+CIFAR100, T=125; (c) ResNet20+CIFAR10,
T=250; and (d) LeNet+DVS-gesture, T=400.

Figure 11: SNN end-to-end training latency vs batch
size for (a) VGG5+CIFAR10, (b) VGG11+CIFAR100,
(c) ResNet20+CIFAR10, and (d) LeNet+DVS-gesture.
Number above a bar reports the corresponding memory
consumption.

For VGG5 with CIFAR10 in Figure 10(a), the compu-

tational cost is measured using the entire training dataset

for all training strategies. The checkpointed VGG5 network

incurs a run-time overhead of 20% – 40% compared to

baseline BPTT, and this overhead is lower for larger batch

sizes. For the skipper training regime, this computational

overhead is not only amortized but completely alleviated,

leading to a 30% – 40% reduction in training time compared

to the baseline. This can be attributed to a large number of

computations of intermediate states that are dropped (∼70%)

during the second forward pass of checkpointing.

In VGG11 with CIFAR100 (Figure 10(b)), there is a sim-

ilar reduction in computational cost of the network trained

with skipper compared to its plain checkpointed counterpart

(ranging from 29% to 42%), which also increases with

the batch size. However, for small batch sizes (B=32),

the skipper network still incurs a small overhead of 6%

Figure 12: Overall GPU memory consumption of base-
line BPTT, checkpointing, skipper and TBPTT tech-
niques vs batch size for (a) VGG5+CIFAR10, T=100,
(b) VGG11+CIFAR100, T=125, (c) ResNet20+CIFAR10,
T=250, (d)LeNet+DVS-gesture, T=400.

compared to the baseline. For larger batch sizes (from B=64

onwards), skipper reduces the computational cost by ∼4%

to ∼8% compared to baseline-BPTT. We notice that the

computational cost savings in this network are lower than

those obtained in VGG5. This can be attributed to the lower

time-skipping ratio (50% in VGG11 compared to 70% in

VGG5), which eventually depends on the T
Ln

ratio of each

network. The T
Ln

ratio is higher for VGG5 than VGG11,

which allows it to skip more time-steps (refer to eq. 7)

without potentially losing much accuracy.

Similar conclusions can be drawn for ResNet20 on CI-

FAR10 (Figure 10(c)), in which the skipper technique saves

∼5% to ∼14% of the computation time compared to the

baseline SNN as its T
Ln

ratio lies in between that of

VGG5 and VGG11. For LeNet on DVS-gesture dataset, the

computation time is 18% to 30% lower than the baseline

(Figure 10(d)). Finally, in the case of N-MNIST dataset,

skipper (C=4, p=70) reduces baseline-BPTT computation

time by 8%.

To summarize, skipper successfully alleviates the compu-

tational overhead of plain checkpointing as is demonstrated

on networks and time steps of varying sizes, with savings as

high as 40% compared to the baseline SNN training time.

D. SNN end-to-end training latency vs batch size

Figures 11 (a), (b), (c) and (d) report the end-to-end

training latency in minutes of the different strategies at a

constant T against batch size for a single training epoch.

In each of the cases across the 4 networks, given a con-

stant memory budget, skipper can enable training of larger

batches with reduced training latency. E.g., in the case of

VGG11+CIFAR100 shown in Figure 11 (b), for a memory

budget sufficient to fit a baseline-BPTT training with mini-

batch of size 32 (memory consumption reported on top of

bar), skipper (C=5, p=50) can enable training with batch

size of up to 208, leading to 52% reduction in training
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Figure 13: Breakdown of overall GPU memory consump-
tion of baseline (Base), checkpointing (C), and skipper
(C,p) techniques vs batch size for (a) VGG5 + CIFAR10,
T=100, (b) VGG11 + CIFAR100, T=125, (c) ResNet20 +
CIFAR10, T=250, (d) LeNet + DVS-gesture, T=400.

latency. A similar trend can be observed for the other

networks evaluated in this study. Note that the largest batch

size used for our batch-sweep experiments is set based

on the maximum memory consumption of baseline BPTT

supported by the underlying GPU.

E. SNN training memory cost vs batch size

Figures 12(a), (b), (c) and (d) report the overall memory

consumption for different training strategies of VGG5 on CI-

FAR10, VGG11 on CIFAR100, ResNet20 on CIFAR10 and

Figure 14: GPU memory consumption of baseline, check-
pointing and skipper techniques vs time steps for (a)
VGG11+CIFAR100, (b) ResNet20+CIFAR10. Patterned
bars show extrapolated memory cost of baseline BPTT
(overflows 80GB GPU DRAM).

LeNet on DVS-gesture SNNs, respectively. As is apparent

from the figures, checkpointing helps to reduce the overall

memory consumption of training by 1.7×− 3× for VGG5,

by 2.6×− 3.7× for VGG11, by 3×−3.7× for ResNet20, and

by 2×−2.5× for LeNet. As expected, the savings are higher

with larger batch sizes. Further, for the N-MNIST dataset,

the overall training memory footprint of the checkpointed

SNN (C=4) is 1.6× lower and that of skipper (C=4, p=70)

is 2× lower compared to the baseline.

The final memory consumption depends on several factors

within the framework runtime such as its memory allocation

policy, tensor alignment and CUDA context [52]. In order to

understand the impact of these factors, we plot a breakdown

of the overall memory consumption in terms of the space

occupied by tensors, and the overheads of the deep learning

framework and the CUDA context in Figures 13(a), (b),

(c) and (d). In the figures, for each of the batch sizes, we

plot three bars - one for the base configuration, one for

the checkpointing scheme, and one for skipper. (e.g., in

Figure 13(a), the three bars correspond to baseline BPTT,

checkpointing (C=4), and skipper (C=4 & p=70) configura-

tions). Each bar in turn reports the proportion of memory

allocated to tensors, PyTorch cache and CUDA context. For

small networks and batch sizes, the CUDA context overhead

can be quite large (ranging from 50% to 80% for smallest

batch size in the time-skipped networks). This means that

the actual memory savings are higher than those shown by

the overall figures (Figure 12). Thus, if we only consider the

tensor memory consumption and discount the CUDA context

and PyTorch’s caching overheads, the memory savings with

checkpointing are higher still, in the range of 3×−3.4×

576

Authorized licensed use limited to: Penn State University. Downloaded on August 10,2023 at 19:04:07 UTC from IEEE Xplore.  Restrictions apply. 



for VGG5, 3.8×−4.2× for VGG11, ∼4× for ResNet20

and ∼5.8× for LeNet. Note that the amount of memory

savings depends on a number of factors such as the network

depth (Ln), timesteps (T ), batch-size (B) and the number of

checkpoints (C). For this experiment, we have chosen C to

be a factor of T for each network, so that the length of every

checkpointed time-segment T/C in memory is the same.

Moreover, skipper helps to reduce the memory consump-

tion even further compared to plain checkpointing, and the

savings come as a by-product of our strategy to reduce

the computational overhead (i.e. due to the formation of a

shallower computation graph in the second forward pass).

Quantitatively, it lowers the overall memory cost by another

1.2× - 1.7× for VGG5, by 1.2× - 1.5× for VGG11 and by

1.4× - 1.7× for ResNet20, compared to plain checkpointing.

When considering tensors alone, the memory savings are

1.8× - 2.1× for VGG5, 1.5× - 1.6× for VGG11 and

∼2× for ResNet20, compared to plain checkpointing with

C=5. For N-MNIST, the corresponding memory savings

are 2.6× and 3.35× with plain checkpointing and skipper
respectively.

In summary, the memory savings of the checkpointed

SNNs range from 3.4× (2.6×) to 8.4× (4.3×) and on aver-

age 6.7× (4.2×) with (without) time-skipping, as compared

to baseline BPTT for the networks studied.

F. Comparison with TBPTT

Next, we compare our proposed training approach with

TBPTT [27] on all three metrics viz. memory consumption,

run-time and accuracy. For VGG5 SNN, Figure 12 (a)

shows the overall memory consumption of TBPTT with

a truncation window of 25 (TBPTT trW=25), where the

truncation window is chosen for an iso-memory comparison

with the checkpointing approach. Table I shows the corre-

sponding test accuracy of this network, which is comparable

to the baseline, plain checkpointing and skipper techniques.

The computational overhead, on the other hand, is higher

than skipper. Thus, for similar accuracy, skipper performs

better in terms of both memory and computational cost than

TBPTT trW=25. In the case of VGG11 SNN, a truncation

window of 25 has a similar memory consumption to its

checkpointed variant. At this level of temporal unrolling, the

network accuracy of TBPTT trW=25 is ∼57% as reported

in Table I, which is 9% lower than the baseline and other

techniques. Figure 10(b) shows the computational savings of

TBPTT trW=25 and trW=100, both of which perform as well

as, if not better than skipper. Although its computational

savings are higher than skipper, it comes at a huge cost to

network accuracy. TBPTT trW=100 improves the network

accuracy by a meager 1%, and also simultaneously fore-

goes the memory advantage (refer Figure 12(b) – TBPTT

trW=100).

For ResNet20 SNN on CIFAR10, the network accuracy

of TBPTT trW=50 is ∼1% lower than the baseline (Table

I), with a similar memory consumption to checkpointing

(Figure 12(c)) and higher computational savings compared

to skipper (Figure 10(c)). However with a larger truncation

window (trW=175) the accuracy does not improve much

(85.94%) and the memory savings are also lost. Finally,

for LeNet with DVS inputs, the accuracy is competitive at

similar memory cost to checkpointing (trW=40, Table I), and

memory savings of skipper are limited (due to small network

and batch sizes). However, the corresponding time savings

are less for the TBPTT approach compared to skipper
(Figure 10 (d)). This is due to a small truncation window

compared to T that leads to more number of backward

passes.

The key takeaway of these experiments is that for a

memory cost similar to activation checkpointing, TBPTT is

quite effective in reducing the computational cost of training

SNNs for relatively large time windows, but fails to provide

competitive performance on deeper networks compared to

all the other approaches presented.

G. SNN training memory cost vs timesteps

Figure 14(a) reports the overall peak GPU memory con-

sumption on a log scale as a function of the computation

time-steps for training VGG11 with CIFAR100 in the base-

line, checkpointed (C=5) and skipper (C=5 & p=50) regimes.

We can see a linear increase in the memory consumption

for the baseline technique, due to which the GPU runs

out of memory as T is increased from 200 to 300 (the

patterned blue bars show extrapolated memory requirements,

thus incapable of running in the available 80GB memory

budget of A100 GPU) and training fails. The checkpointed

network memory growth is sub-linear and allows training of

networks with up to 4.5 × as many time-steps (T = 900).

The growth in memory consumption of the skipper-trained

network is even slower and is, therefore, able to scale to

nearly twice as many timesteps as plain checkpointing i.e. up

to T = 1800. This is because the memory footprint of time-

skipped SNN is nearly half of the checkpointed network.

Thus, for a constant memory budget, the plain checkpointed

network and the time-skipped network can scale to 4.5×
and 9× longer timesteps respectively, than the maximum

timesteps (T = 200) supported for the baseline SNN for

VGG11. Similar trends are observed for ResNet20 SNN as

well (see Figure 14(b)), where the checkpointed and skipper
networks scale to 3.3× and 9.3× respectively, compared to

the maximum for baseline SNN (at T = 300).

These experiments show the scalability of skipper on top

of the plain checkpointing technique and its advantage in

running large models such as VGG11 or ResNet20 for longer

time steps for improving accuracy.

H. Experiments on an edge device

Next, we study the efficacy of our approach by running an

SNN on a 5W NVIDIA Jetson Nano [53] edge computing
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Figure 15: VGG5+CIFAR10, T=100, (a) memory con-
sumption and (b) latency per epoch vs batch size on
NVIDIA Jetson Nano.

Config. Accuracy GiB
TBPTT-LBP [28], trW=10 84.46% 6.15

T=20 trW=20 84.25% 9.27

This work, C=2 84.59% 6.26
T=20 C=2 & p=20 84.07% 6.16

Table II: Comparison of checkpointing and skipper
against TBPTT-LBP [28] on AlexNet+CIFAR10, B=256.

device as shown in Figure 15. The board has 4GB of unified

memory that is shared by both the CPU and the GPU.

Since the CUDA context takes up a large proportion of the

memory (∼2GB), we allocated another 4GB as swap space,

to be able to demonstrate the different schemes. Figure 15(a)

shows the overall memory consumption vs batch size and

Figure 15(b) shows the corresponding training latencies for

the baseline, checkpointing (C=4) and skipper (C=4 & p=70)

schemes while training VGG5 SNN on CIFAR10. As can

be seen from the figures, the jetson board could not support

the baseline SNN training beyond a batch size of 8. The

checkpointed SNN was able to run with a batch size of up

to 32, whereas the corresponding skipper version enabled

a batch size of 64. As a result, the corresponding training

latency of skipper at B=64 was reduced by 50% compared

to the baseline, for a similar memory footprint. Thus, our

proposed techniques can directly lead to power and energy

savings due to a smaller memory footprint and reduced

computational complexity on the edge device.

I. Comparison with [28]

In this section, we quantitatively compare our proposed

approach against a recent proposal [28], which uses a

combination of temporal truncation (TBPTT) and local back-

propagation (LBP) [14] to reduce the SNN training memory

consumption. As already noted in the previous sections,

temporal truncation helps to reduce the activation memory

Figure 16: Comparison of memory/time/accuracy vs (a)
truncation window of TBPTT-LBP [28] and (b) proposed
approaches on AlexNet+CIFAR10, T=50, B=256.

consumption of the SNN, but adversely affects the network

accuracy. Ref. [28] proposes the use of local classifiers

attached to some of the SNN layers in combination with

temporal truncation to help alleviate the over-fitting issue.

The local classifiers, however, incur an additional memory

cost, albeit small, due to their own weights. For comparison,

we train AlexNet SNN (topology details in [28]) with

CIFAR10 on both frameworks with 20 and 50 timesteps. As

per their best-performing configuration, the local classifiers

are attached at layers 4 and 8 and the network is trained for

100 epochs with the settings mentioned in the paper.

Table II reports the TBPTT-LBP and checkpoint-

ing/skipper accuracy and memory cost at T=20. In the

former, enlarging the truncation window (the number of

unrolled timesteps) from 10 to 20 increases the memory

consumption, but does not help to improve the network

accuracy which remains at ∼84%. Notably, the checkpoint-

ing (C=2) and skipper (C=2 & p=20) techniques achieve a

similar accuracy at similar or lower memory cost compared

to TBPTT-LBP. Further, Figure 16(a) reports the memory

cost, the latency per epoch and the accuracy of the TBPTT-

LBP [28] algorithm for training AlexNet on CIFAR10 as

a function of the truncation window at T=50. Compared

with T=20, the TBPTT-LBP accuracy does not improve

much at a higher number of timesteps (T=50), even for

larger truncation windows that increase the memory cost of

training. In contrast, in the proposed framework (Figure 16

(b)), the SNN accuracy improves with more timesteps (by

∼3%) and skipper maintains this accuracy with up to 40% of

skipped timesteps (C=4, p=40). The corresponding memory

consumption of our proposed schemes is also similar or

lower than TBPTT-LBP.

In summary, TBPTT-LBP achieves reasonable accu-
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racy and low memory footprint when trained with fewer

timesteps, but its accuracy does not scale with an increased

number of timesteps. Checkpointing and skipper on the

other hand, not only achieve improved accuracies with larger

timesteps but do so at lower memory costs.

VIII. DISCUSSION

A. Challenges and uniqueness of SNN

Although the re-computation and time-skipping ap-

proaches proposed in this work are also applicable to

DNNs, they have been independently demonstrated in prior

literature in separate contexts. Specifically, re-computation

has been utilized to reduce the training memory footprint

of DNNs, whereas dropout has been used as a regular-

ization technique to improve the network’s generalization

ability and also in some cases, to lower its computational

footprint. However, combining these two techniques in the

DNN context is not feasible, as that would necessitate the

dropping out of an entire layer during the second forward

pass to get reasonable latency reduction, which will obstruct

the flow of information across layers, affecting accuracy.

Activation checkpointing with time-skipping, however, fits

quite naturally with the SNN paradigm, as we recompute

and skip timesteps in the temporal dimension without hin-

dering information flow across layers. Further, since skipper
monitors the time-dependent SNN activity in the form of

spike-sums to determine which timesteps to skip, it utilizes

the specific temporal dynamics that are unique to SNNs.

Although it is possible to skip timesteps in the RNN context,

SNNs pose the additional challenge of larger number of

timesteps and spike-based discretization, due to which their

real gradients cannot be calculated. Remarkably, skipper
efficiently navigates these challenges and yields comparable

accuracy, while reducing the memory and computational cost

of SNN training.

B. Training SNNs on neuromorphic accelerators
(TrueNorth, Loihi)

The literature is replete with designs for neuromorphic

chips out of which TrueNorth [7] and Loihi/Loihi2 [2]

are fully functional prototypes that can support SNNs.

However, our proposed activation checkpointing and skipper
approaches aim to optimize offline SNN training for which

GPUs are more suitable as they have the software infrastruc-

ture to support arbitrary functions and control statements.

On the other hand, chips such as TrueNorth and Loihi

are more suitable for low-power deployment scenarios after

the SNN has been trained. Specifically, TrueNorth’s circuits

are optimized for inference and do not support plasticity.

Further, although Loihi supports learning on-chip, it does so

in an incremental fashion, with a limited set of learning rules

and a batch size of 1 due to several architectural constraints

designed to keep the circuits low power. As a result, it

is not suitable for batched training of SNNs. However,

SNNs trained offline using our approach can be deployed

on TrueNorth/Loihi [54], [55] or any other neuromorphic

platform for online learning or inference.

IX. CONCLUSION

In this work, we have explored a recomputation-based

technique viz. activation checkpointing, to alleviate the large

memory cost associated with SNN training. Although check-

pointing decreases memory consumption by 3×−4.3×, it

still incurs a significant computation overhead (∼33%) lead-

ing to longer training time. To mitigate this overhead, we

proposed a novel technique, called Skipper (checkpointing-

with-timeskipping), that approximates the SNN-BPTT al-

gorithm to skip low-activity time steps and thus, reduc-

ing the computational overhead of plain checkpointing by

29% to 70%. This translates to a training time reduc-

tion of 4% to 40% compared to the baseline BPTT with

little to no loss of accuracy. The time-skipped network

also reduced the memory consumption even further and

yielded up to 8.4× lower memory cost. Our techniques

were thoroughly evaluated on state-of-the-art networks and

datasets including a neuromorphic vision-based dataset to

demonstrate the applicability of the technique to other neu-

romorphic architectures. In addition to easing SNN train-

ing deployment under resource-constrained environment, we

believe our research will be beneficial to the wider neu-

romorphic community in general towards exploring larger

and deeper SNN models by enabling memory and com-

pute efficient training. Our PyTorch implementation can be

accessed at https://github.com/sms821/Training-SNN-with-

checkpointing-and-time-skipping-in-PyTorch.
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