
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Decomperson: How Humans Decompile
and What We Can Learn From It

Kevin Burk, Fabio Pagani, Christopher Kruegel,
and Giovanni Vigna, UC Santa Barbara

https://www.usenix.org/conference/usenixsecurity22/presentation/burk

DECOMPERSON: How Humans Decompile and What We Can Learn From It
Kevin Burk

UC Santa Barbara
kburk@ucsb.edu

Fabio Pagani
UC Santa Barbara
pagani@ucsb.edu

Christopher Kruegel
UC Santa Barbara

chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara

vigna@cs.ucsb.edu

Abstract
Human analysts must reverse engineer binary programs
as a prerequisite for a number of security tasks, such as
vulnerability analysis, malware detection, and firmware
re-hosting. Existing studies of human reversers and the
processes they follow are limited in size and often use
qualitative metrics that require subjective evaluation.

In this paper, we reframe the problem of reverse engineering
binaries as the problem of perfect decompilation, which is the
process of recovering, from a binary program, source code
that, when compiled, produces binary code that is identical
to the original binary. This gives us a quantitative measure
of understanding, and lets us examine the reversing process
programmatically.

We developed a tool, called DECOMPERSON, that supported
a group of reverse engineers during a large-scale security
competition designed to collect information about the par-
ticipants’ reverse engineering process, with the well-defined
goal of achieving perfect decompilation. Over 150 people par-
ticipated, and we collected more than 35,000 code submissions,
the largest manual reverse engineering dataset to date. This in-
cludes snapshots of over 300 successful perfect decompilation
attempts. In this paper, we show how perfect decompilation
allows programmatic analysis of such large datasets, providing
new insights into the reverse engineering process.

1 Introduction

The reverse engineering of binary code is a key process in a
number of security tasks, from malware analysis to vulnerabil-
ity discovery. Unfortunately, reverse engineering binary code
is a challenging task, as the process that transforms source
code into executable code results, in most cases, in the loss of
high-level constructs, such as structured control flow, complex
data structures, variable names, and function signatures.

The fundamental task of reverse engineering is to deduce
the information that the compiler has obscured, and to report
it in a human-friendly format. Reverse engineers often use
source code as this format; the process of recreating source
code from binary code is known as decompilation.

Decompiled code is often incomplete or pseudo-code, and
not valid in any real programming language. This is still useful
as a guide for humans trying to understand the binary, but we
believe that decompilation becomes even more useful when
it conforms to a programming language—ideally that of the
original program.

In the absolute best case, decompiled code would be valid
source code, and re-create the original binary when compiled.

This would enable a wide variety of new operations. For
example, such decompiled code could be used for patching,
allowing security analysts to patch at the source level instead
of directly modifying the binary [36]. This code could also
be used with source-based analysis techniques [31], or recom-
piled with the instrumentation required by fuzzing tools. It
could also be used to port a binary to other architectures—from
x86-64 to ARM, for example—or it could be recompiled with
additional optimizations [44].

We assert that this “perfect” decompilation is the ultimate
goal of all decompilers, human or otherwise. We show
that perfect decompilation is achievable by human reverse
engineers today, and that it allows study of the reversing
process at scale. These larger studies can then be used to
improve the automatic compilers of tomorrow.
Automatic Decompilers. Decompilation is a challenging
process, requiring intense focus from highly skilled reverse en-
gineers. Therefore, the ability to decompile binaries program-
matically can save a significant amount of time and effort. Even
partial decompilation can be useful for program comprehen-
sion, as source code is much easier to read than raw assembly.

Automatic decompilation techniques have received much at-
tention in the past few decades. Cifuentes laid the foundations
of modern decompilers in the mid-nineties [9], and further
research works have proposed techniques to improve the
recovery of control-flow constructs [5, 18, 49–51], types [7, 12,
13, 29, 32], and even variable names [1, 2, 7, 21, 22, 26]. More
recently, a number of machine learning techniques have also
been used to improve decompilation [15, 16, 19, 23, 24, 28].

Most of these approaches use readability metrics for eval-
uation, as they are intended to help human reverse engineers.
Only a few of them focus on the correctness of the decompiled
code. Schwartz et al. [5] were the first to propose correctness
as a metric to evaluate a decompiler. They use a test suite to
determine whether or not a decompiled program preserves the
semantics of the original binary. Schulte et al. [38] extended
this concept by introducing Byte-Equivalent Decompilation
(BED), a decompilation technique based on genetic program-
ming. The authors use byte-similarity between binaries as a
fitness function for their evolutionary algorithm; any individual
that reaches perfect byte-equivalence is guaranteed to be algo-
rithmically equivalent to the original binary. The topic has also
been explored by Verbeek et al. [44], who recently developed
FoxDec, a decompilation framework based on formal methods
that produces sound and recompilable source code. In this case,
the recompiled code is guaranteed to have the correct behavior,
but this may be difficult to verify independently, as the resulting
binary could be considerably different from the original.

USENIX Association 31st USENIX Security Symposium 2765

In general, automatic decompilers that aim for readability
tend to sacrifice correctness (or at least recompilability),
while those that aim for correctness do so at the expense of
readability. If we want decompilation that is both correct and
human-friendly, we must still rely on the ingenuity of humans.
Human Decompilers. Given that human reverse engineers
still produce the best decompiled code, it is surprising that
there are very few studies on how they do so. Existing studies
focus on higher-level understanding of binary programs, and
not on the low-level art of decompilation, which could provide
insights that could improve automatic decompilers. This paper
aims to bridge that gap.

In general, the problem of reverse engineering binaries
falls under the umbrella of program comprehension, which
is the study of how programmers understand unfamiliar code
bases [27, 40, 45]. This is a very broad field of research, which
includes understanding how programmers repair and maintain
software [46, 47] and how to create better tools to support the
comprehension process [25, 41].

In the past few years, program comprehension researchers
have started examining the process of reverse engineering.
Bryant [6], for example, presents three studies that explore the
conceptual aspects of reversing by various means: notes and
video taken during a reversing experiment, a semi-structured
interview with experts, and a “think-aloud” session where
participants were asked to reverse a key generation algorithm.
More recently, Votipka et al. [48] interviewed sixteen reverse
engineers as they reenacted a recent reverse engineering
activity. These interviews were also semi-structured, and the
authors used them to extract common themes. Taylor [42] pre-
sented a system to study the behavior of reverse engineers by
using an instrumented virtual machine that collects mouse and
keyboard events, process creations, and changes in window fo-
cus. Finally, Mantovani et al. [30] studied how humans reverse
engineer binary code, with an emphasis on the differences
between novices and experts. Their approach used a Restricted
Focus Viewer: basic blocks were blurred unless selected, allow-
ing the authors to precisely track the subjects’ attention. Most
of these studies were—necessarily—small. They examined
the reversing process using methods that were human-friendly
but not amenable to automated analysis. As a result, the data
was limited to what the researchers could analyze manually.

Exploring the reversing process at scale remains challeng-
ing. The biggest obstacle is the difficulty of quantifying the
reversers’ understanding: there is currently no metric that can
describe how well a reverse engineer understands a function.
This is further complicated by the fact that experience plays
a key role in reversing, and reversers of different skill levels
may reach very different levels of understanding. Even having
a standard set of tasks does not guarantee consistency. Expert
reversers might be able to carry out their tasks successfully
with limited (but focused) understanding, while novices might
need to acquire more in-depth, detailed knowledge about a
binary before being able to meaningfully modify or exploit it.

We believe that the problem of quantifying comprehension
can be addressed by using a more formal language to explain
program behavior. Specifically, we require reverse engineers
to communicate their understanding of a function in the
form of compilable source code. In other words, we compare
the process of understanding binary code to the process of
decompilation.

2 Perfect Decompilation

In this paper, we study the human reverse engineering process
in terms of a new metric of program comprehension that we
call perfect decompilation. We consider decompiled code
for a function to be perfect if, when compiled with the same
compiler and options as the original, it produces the exact
same assembly.
Benefits. Expecting perfect decompilation is a high bar, but it
allows for a number of useful features. Primarily, it gives us a
quantitative measure of program comprehension: decompiled
code can be evaluated based on how close it is to perfect. In
this paper, we measure understanding as the Jaccard similarity
coefficient over lines of assembly code.

Perfect decompilation also gives reverse engineers an obvi-
ous “done” state. Code that achieves perfect decompilation has
very clearly captured the behavior of the original function. It
also avoids the ambiguity present in pseudo-code and natural
language. Saying “this function averages a list of integers”
does not capture what happens when the list is empty, but the
source code of the function will.

Furthermore, defining everything in terms of source and as-
sembly code—both common and well-defined representations
of programs—allows for reverse engineers’ mental models
to be analyzed programmatically. As a result, studies can
be scaled to hundreds of individuals, unlike interview-based
approaches that are necessarily small and focus on qualitative
results.

Finally, perfect decompilation is trivial to prove correct:
a simple assembly diff is enough to prove perfection (or to
show what instructions differ). In contrast, proving that code
is functionally equivalent requires unit tests, and even these
are insufficient without an additional measure of coverage that
ensures all code paths are tested.
Limitations. Perfect decompilation is not a traditional reverse
engineering task, so there is some risk that using this metric
will distort the reversing process. For example, reverse
engineers do not usually report their findings as compilable
source code, so this requirement will add more work. However,
we believe that reverse engineers already have a code-like
mental model of binaries, and that it takes only minor extra
work to make this explicit.

Perfect decompilation also focuses on the careful analysis
of functions. Other skills are also important for reverse
engineers—for example, the ability to skim a large binary

2766 31st USENIX Security Symposium USENIX Association

to determine on which functions to focus—but these will not
necessarily be captured by our metrics.

There is also a risk that reverse engineers may spend a non-
negligible amount of time “fighting with the compiler.” This
refers to the extra time spent by reversers who have a complete
mental model of a function, but struggle to reach perfect
decompilation due to the idiosyncrasies of the compiler.

We believe that only the third point above is a true threat
to our work, and that it is outweighed by the benefits of using
perfect decompilation.
Contributions. We define perfect decompilation as a new,
quantifiable metric of program comprehension. We develop
a tool, called DECOMPERSON, that supports human reverse
engineers during the decompilation process and helps them
achieve perfect decompilation, recording the steps they
take along the way. We then set out to answer the following
research questions:

RQ1: Are humans capable of perfect decompilation?
RQ2: If they are, what processes do they follow when

decompiling?
RQ3: Are these processes representative of more tradi-

tional reverse engineering (program comprehension)
processes?

Our findings are based on the submissions to an online
security competition in which reverse engineers were asked
to use DECOMPERSON while decompiling binaries written in
five different languages.1 Over 150 people participated—twice
as many as the next-largest study, and an order of magnitude
more than most—making this, to the best of our knowledge,
the largest decompilation study to date. It is also the first study
that has a concrete metric for levels of understanding during
the reverse engineering process.

By analyzing these submissions, we show that perfect
decompilation is within reach of humans today, and therefore
a reasonable goal for the automated decompilers of the future.
The results also show which key activities performed by
humans should be targeted by tools supporting the reverse engi-
neering process, and provide insights that can be used to build
and improve automated and semi-automated decompilers.

3 DECOMPERSON

We developed a custom tool, which we called DECOMPERSON,
to collect source code submissions. The tool was designed to
give reverse engineers complete control over their source code
and to encourage frequent submissions, allowing us to collect
many “snapshots” over the course of the reversing process.

Typical reversing tools, such as Hex-Rays [20], Ghidra [17],
or Binary Ninja [3], provide some form of decompilation

1Most existing studies and associated tools focus on C/C++ decompilation
only; we also cover Go, Rust, and Swift.

functionality,2 but users have very little control over the
output. User input is typically limited to a small set of
well-defined interactions, such as renaming variables or
functions, providing type annotations, and inserting comments.
When using these tools, a reverse engineer’s workflow consists
of iteratively applying these annotations in order to coax better
and better source code out of the decompiler.

We believe that this style of interaction is too restrictive
to reliably produce perfect decompilation. As an alternative,
DECOMPERSON gives users complete control over the decom-
piled code and helps them modify it until it compiles identically
to the original binary. Since this method of decompilation is
heavily reliant on the user, the tool attempts to make the user’s
job as easy as possible. DECOMPERSON makes discrepancies
between the generated binary and the original one obvious, and
it provides a tight feedback loop, showing the user how each
source code modification changes the generated binary code.

The high-level workflow of DECOMPERSON is the
following: 1 users edit the source code using our interface;
2 the source code is sent to our back-end component, where
it is compiled, disassembled, tested, and diffed against the
original binary; 3 the binary is scored based on the metrics
described in Section 4, and the results, including the diff, are
sent back to the interface.
The Interface. The heart of the DECOMPERSON system is the
user interface, shown in Figure 1. On the left side, the interface
shows editable source code, which the user can compile at any
time. On the right side, the interface shows the target disas-
sembly and any output from the compilation process. When
compilation fails, the right panel displays any errors reported
by the compiler. When compilation succeeds, DECOMPERSON
shows the disassembly of the resulting binary, both in raw
format and in diff-style, which shows the differences between
the compiled binary and the original binary’s assembly code.

This diff view is the most important part of the system, as
it shows reverse engineers exactly where their binary does not
match the target, providing immediate feedback on the effects
of any source code change—typically within two seconds
of the user hitting the “Compile” button. In order to help
reversers focus on the more important structural changes first,
minor differences—such as instructions that differ only in
their operands—get more subdued highlighting.3 Both styles
of highlighting are visible in Figure 1.

The interface also provides a few other useful features. For
example, clicking a line of assembly highlights the corre-
sponding line of source code; this mechanism is responsible
for the matching blue highlights in Figure 1. The interface also
offers a “Replace” function that lets reversers make cosmetic
replacements that clean up the disassembly view; for example,
one of our playtesters used this feature to hide stack layout

2At the time of writing, these tools are not able to produce decompiled
code that can be recompiled.

3The majority of these differences are caused by mismatched stack
layouts, as seen on lines 33–34 of Figure 1.

USENIX Association 31st USENIX Security Symposium 2767

Figure 1: The DECOMPERSON interface showing a partial solution to the baby-c challenge. The current decompiled source code
(provided by the user) is visible on the left, and the assembly diff is shown on the right. Instructions present in the target but missing
from the submission are shown in purple, while instructions that should be removed from the submission are shown in yellow.
Lines 16–20 of the disassembly show significant differences, and are displayed with a bright background; lines 33–34 contain
only operand differences, and are shown with a subdued background. The user has clicked on line 25 of the assembly code, and
the corresponding line of source code (line 22) has been highlighted to match.

mismatches completely—decluttering the diff while working
on control flow—and then fixed the stack layout at the end.
The Disassembler. We chose to show binary differences as
line-based assembly diffs. This has the benefit of familiarity:
all reverse engineers know assembly, and virtually all will have
used a command line diffing tool, like diff or git. There is
also the benefit of simplicity: the diff format can be displayed
in any text editor.

To keep these diffs usable, we needed assembly that was free
of any noise that would lead to spurious highlighting. The main
sources of noise are absolute memory addresses, which depend
on how the compiler lays out the binary. Examples of these ad-
dresses are code references (such as addresses used in call and
jmp instructions) and global data references (such as addresses
in the .bss region). Highlighting diffs that include these refer-
ences would be cumbersome for DECOMPERSON’s users, since
these differences are rarely fixable by editing the source code
of the function in which they appear. To avoid these problems,
DECOMPERSON includes a custom disassembler that replaces

absolute memory references with symbols where possible, or
generic identifiers where not. For example, lines 13–14 of the
assembly code in Figure 1 show a sanitized block label and
jump, line 19 shows a symbol replacement, and line 21 shows
a sanitized global memory reference. The disassembler also
recovers string constants, as seen on line 21, helping reversers
by keeping the disassembly as self-contained as possible.
The Back-End. Whenever a user hits the “Compile” button,
the user-provided source code is sent to the DECOMPERSON
back-end. This component compiles and tests the source code
submission in a container, and then scores it based on the
differences between its assembly and that of the target. If unit
tests are available for the binary, the submission is also scored
based on its performance on the tests. These scores are used
as a measure of source code correctness, and also serve as the
basis of the competition described in Section 4.

Compiling submissions on a central server allows us
to use the correct compiler for each submission, and also
relieves users of the burden of installing and managing

2768 31st USENIX Security Symposium USENIX Association

different compilers for each language. In the current version
of DECOMPERSON, we presume to know the toolchain and
the compilation options used to build the original binaries, and
use the correct versions to compile any user submissions. This
was sufficient for our research; a more advanced version could
integrate compiler provenance techniques to automatically
extract this information from binaries [8, 33–35, 37] and allow
users to add or select new compilers. This architecture also
allowed us to collect every source code submission that our
users made. This generated a large corpus of submissions,
recording our users’ reverse engineering processes from their
very first tentative solutions to an exact disassembly match.

4 DECOMPETITION

The data we analyze in this paper comes from an online
competition called DECOMPETITION, which we designed and
ran in November 2020. This was a competition purely focused
on reverse engineering and, to the best of our knowledge, the
first of its kind.4

Format. DECOMPETITION was a 24-hour Jeopardy-style
competition.5 Each challenge was an executable binary, and the
competitors’ goal was to write source code that would compile
to an identical binary. Scores were based on binary similarity,
and calculated by both assembly diffing and unit testing.

Competitors were required to submit their source code
through the DECOMPERSON interface, but were not required
to use the interface for reversing; output from other reversing
tools could easily be pasted in. Competitors were given access
to DECOMPERSON and all the challenges as soon as the com-
petition started, and could make any number of submissions.

Competitors played on teams of unlimited size. Anyone
wishing to play solo could play as a team of one, and most
players chose to do so.
Challenges. Multiple people from the UCSB security lab
contributed a total of 23 challenge binaries, covering five major
compiled systems languages: C, C++, Go, Rust, and Swift. The
binaries were not stripped, but did not include any debug infor-
mation. An overview of these challenges is shown in Table 1.

The challenges were designed to use the features and
peculiarities of each programming language. For instance, a
challenge written in C traversed a linked list of structs, while
a C++ challenge made heavy use of classes and Standard
Template Library containers. Similarly, a challenge written
in Go was designed to use complex numbers, while another
challenge made use of Rust traits and networking.

4This research has received IRB scrutiny, and was determined to be
exempt under Category 3. No personally identifiable information was used.

5In Jeopardy-style security competitions, participants solve a number of
challenges from a list of options. They do not interact with other participants,
as is instead customary in traditional attack-defense security competitions.
Both Jeopardy-style and attack-defense competitions are often referred to
as “Capture the Flag” (CTF) competitions.

We selected challenge ideas primarily to cover a variety
of language features. A spectrum of difficulty levels was also
desirable, but harder to estimate; challenge authors controlled
difficulty by limiting the number of lines of source code.
Authors also provided some scaffolding for each challenge:

• A set of unit tests to ensure that the semantics of the
original program were reproduced.

• Starter code to provide to the DECOMPETITION
participants, which typically contained only stubs for
the functions a participant was expected to decompile,
data-type stubs, or include directives.

• A list of the functions that should be disassembled and
diffed, which was used as an input to the disassembler,
to make sure it only disassembled user-defined functions.

As a bonus, we provided Binary Ninja Intermediate
Language [4] for all challenges. This is a “semantic repre-
sentation of [...] assembly language instructions”—a form
of decompilation that attempts to capture the operation of
binary code without tying it to any particular programming
language. This intermediate language served as an additional
perspective on the challenge binaries, and could be used even
by participants who did not have access to a decompiler. Like
other forms of decompilation, it tended to be helpful for C
binaries, but less so for other languages.
Scoring. We assigned each challenge an arbitrary value
between 100 and 500 points. These values reflected estimated
difficulty, and were mainly based on challenge size and the
presence of language-specific constructs that would make the
binary harder to reverse.

The values are well-correlated with the number of assembly
lines per challenge (Pearson’s r = 0.83), and their inverses
are well-correlated with the number of perfect submissions
per challenge (r=0.70).6 There is also a correlation between
challenge value and average time to solve, but this is weaker
(r=0.54 for mean; r=0.59 for median).

One challenge per language was designated as a “baby”
challenge. These challenges were simple but worth extra
points, encouraging players to start there to learn the basics
of reversing code written in that specific language and to
familiarize themselves with DECOMPERSON.

Each submission received a score based on the following
weighted components:

Test Score: Each challenge had a collection of test cases that
were not disclosed to the participants. Test case points
were awarded proportional to the number of test cases
passed. These points made up 20% of the total score.

Diff Score: The majority of the points came from matching
the target assembly. Each submission was compiled and
its user-implemented functions were disassembled. This

6This jumps to r=0.90 if the 200-point baby-c challenge is considered
an outlier and removed.

USENIX Association 31st USENIX Security Symposium 2769

Challenge Statistics Submission Statistics

Language Challs Points Source
Lines

Assembly
Lines Ratio Submissions Compilable Passing

Tests
Perfect

Decompilation

C 4 500 110 396 3.60 10,060 8,022 1,634 186
C++ 5 1,400 491 2,548 5.19 9,155 6,065 1,091 50
Go 7 1,800 310 1,730 5.58 10,192 7,617 4,018 44
Rust 4 1,300 219 1,695 7.74 3,524 2,561 1,252 26
Swift 3 1,200 178 2,871 16.13 2,599 1,686 405 23
Total 23 6,200 1,486 9,240 7.06 35,530 25,951 8,400 329

Table 1: An overview of the DECOMPETITION challenges and submissions. Ratio is the average number of assembly lines
produced per source line. Only one perfect submission is counted per (team, challenge) pair. The number of Go submissions is
inflated by the top two teams trying to brute-force the unsolved julie challenge. See Appendix C for a more detailed breakdown.

Figure 2: Demographic information from the background survey. The bar graphs on the left show how participants are involved in
computer security, and for how long. The area plots on the right show how familiar participants are with programming and reversing
each of the languages used in the competition, as measured on a five-point Likert scale. Responses from all 308 respondents are
shown in light purple; responses from the 93 “committed” respondents who earned a 50% score or better on at least one challenge
are shown in dark purple.

portion of the score was calculated as the intersection-
over-union (Jaccard similarity coefficient) of the submis-
sion versus the target, and made up 60% of the total score.

Bonus Score: In order to encourage participants to generate
perfect decompilation, the final 20% of the points were
awarded only when a submission matched the target
assembly exactly.

A team’s score on a challenge was the maximum score
achieved by any of its members’ submissions. A team’s total
score was the sum of these per-challenge scores. There was
no limit on the number or frequency of submissions, and any
new record would improve the team’s score; there was no way
for a team to lose points.
Recruiting. We recruited participants by word-of-mouth

and by announcing the competition on CTFtime [11], a
popular online index of security and hacking competitions. To
encourage participation, we split a $1,000 prize pool among
the top three teams and provided Binary Ninja licenses [3] to
the top two teams.

A total of 425 users and 238 teams registered for DECOM-
PETITION, but only a fraction of those played. A total of 188
users and 139 teams made source code submissions; 159 users
and 114 teams submitted source code that could be compiled.

Demographics. Before the competition, we invited the
players to fill out a survey about their involvement in reverse
engineering. This survey consisted mainly of questions about
how—and for how long—the participants were involved in
computer security. The full survey can be found in Appendix A.

2770 31st USENIX Security Symposium USENIX Association

A total of 308 people (72% of all registrants) filled out
this survey; the results are summarized in Figure 2. The large
majority of participants were either students or hobbyists,
and only a few worked in a position where they were paid as
reverse engineers. The majority were also new to computer
security, and to reverse engineering in particular—the number
of players at each year of experience decreases exponentially.

The survey also asked participants how familiar they were
with programming and reversing the languages used for
challenges. We found that participants were well versed
in C and C++ but significantly less familiar with Go, Rust,
and Swift. Given that these latter languages are becoming
more popular systems languages, this lack of familiarity may
indicate a gap in security education or a lack of tooling support.

We asked players to fill out a similar survey after the compe-
tition. This follow-up survey is described in Appendix B, and
was intended to capture any changes in players’ perception
of reversing that occurred during the competition; it also
provided a place to leave general feedback. Only 49 players
(12% of all registrants) chose to complete this second survey,
so it is likely less representative than the first.
Submissions. In order to study the process that humans use
when decompiling, we recorded all submissions made during
DECOMPETITION. As summarized in Table 1, we received
a total of 35,530 source code submissions, 25,951 (73%) of
which successfully compiled. The majority of the submissions
were for challenges written in C, C++, and Go. With about
10,000 submissions each, these three languages account for
almost 83% of all submissions. Rust and Swift were less
popular, with around 3,000 submissions per language, likely
because of their perceived difficulty.

While fewer experts played than beginners, these experts
were able to solve more challenges, and thus made more
submissions. Overall, the submissions were balanced across
different levels of expertise. In total, 32,254 submissions
(90% of all submissions) were made by users who completed
the background survey. Among these, we received 9,553
submissions from expert users who claimed five or more years
of security experience, 7,155 (75%) of which compiled; 12,963
submissions from players with 2 to 4 years of experience,
9,271 (72%) of which compiled; and 9,738 submissions from
beginners with less than 2 years of experience, 6,908 (71%) of
which compiled. We estimate that beginners submitted around
30% of all decompilation attempts and intermediate players
around 40%, with experts responsible for the remaining 30%.

The number of submissions that passed all unit tests is also
interesting, but harder to interpret. Perhaps counterintuitively,
a language or challenge that has a higher percentage of passing
submissions is likely harder to perfectly decompile—the
reversers were able to replicate the binary’s behavior early
in the reversing process, but then had to make many more
submissions while trying to fix mismatches caused by the
compiler’s handling of various language constructs. Reversing
style also affects this statistic: reversers who reverse one

function at a time cannot pass all tests until they start work
on the final function.

There are also some confounding factors. For example, all
participants worked on the C challenges, including those who
never made much progress, while only the most committed
reversers dared attempt the Rust and Swift challenges. Addi-
tionally, the number of Go submissions was inflated by the top
two teams trying to brute-force the unsolved julie challenge.

Figure 3: How difficult is completely recreating the source
code of a small binary? Top: Survey responses from all 308 re-
spondents compared with those from the 93 committed players
who achieved a 50% score or better on at least one challenge.
Bottom: Responses before and after the competition from the
42 players who answered this question on both surveys.

5 RQ1: Can Humans Perfectly Decompile?

Expectations. We started this project unsure whether or not
humans would be able to consistently perform perfect decom-
pilation. It was interesting, then, that many DECOMPETITION
participants did not share our conservative views.

One of the questions in our pre-competition survey asked
the participants to rate, on a scale from trivial to impossible,
how difficult they thought it would be to recreate the source
code of a small binary. We summarize the responses in
Figure 3. The majority (37%) of all respondents thought it
would be a moderately difficult task, and 12% claimed that
it would be trivially easy. Only 20% of the responders thought
it would be difficult, and 5% thought it would be impossible.

The players who were able to reach a 50% score on at
least one challenge, however, had more realistic expectations.
Only 4% of this group had originally thought that perfect
decompilation would be trivially achievable,7 23% thought

7Of the 19 “trivial” respondents who made source code submissions, 15
gave up without reaching a 50% score on any challenge.

USENIX Association 31st USENIX Security Symposium 2771

Reg’d 0% >0% 20% 40% 60% 80% 100%

Users 425 188 159 120 110 103 91 91
Teams 238 139 114 82 76 72 66 66

Table 2: Numbers of users and teams who registered and who
made any submission reaching the listed cutoff scores on any
challenge. All submissions that successfully compiled got a
score greater than zero. The lack of attrition between 80% and
100% is an artifact of the 20% perfect match bonus described
in Section 4: any submission reaching 80% would earn the
bonus and jump up to a perfect score.

it would be difficult, and the majority (46%) believed it to be
a moderately difficult goal.

It is also interesting to see how opinions changed after using
DECOMPERSON. Out of the 42 respondents that answered
both surveys, 11 lowered their difficulty expectations, 10
increased them, and 21 did not revise their assessment. Overall,
the trend was towards a tighter clustering around “moderate”
difficulty, and after the competition, none of the respondents
thought that perfectly decompiling a binary was impossible.
Perfect Decompilation. The results of DECOMPETITION
show that the participants’ optimism was justified. Generating
perfect decompilation was certainly not trivial, but of the
players who were willing to put in the effort, a surprisingly
large number were able to achieve this goal, even when
confronted with higher-level languages.

As shown in the last column of Table 2, a total of 91 players
reached a perfect score on at least one challenge. This is only
48% of the 188 users who submitted source code, but 57% of
the 159 users who persisted until their code compiled. This
figure only improves if we set a higher bar for persistence: of
the 120 players who earned a 20% score on any challenge, for
instance, more than 75% would go on to reach a perfect score
on at least one challenge.

As reported in Table 1, the language with the highest
number of perfect submissions was C (186 submissions),
followed by C++ (50), Go (44), Rust (26), and finally Swift
(23). Interestingly, this order perfectly follows the languages’
ratio order reported in Table 1—higher-level languages tend
to produce more lines of assembly per source line, and are also
more difficult to decompile.

All challenges were attempted, and all but one were
perfectly decompiled by at least one participant. The top two
teams were able to solve all challenges except one—the Go
challenge julie—and both teams were able to pass all unit
tests and reach at least a 90% diff score on this unsolved chal-
lenge.8 Furthermore, with the exception of the C++ challenge

8The julie challenge was a Go program that used a syscall to get the
terminal dimensions, then used complex128s to calculate and draw a Julia set
as ASCII art. The first-place team had explicitly zero-initialized their winsize
struct and captured it as a struct variable rather than a reference, both changes
that (for some reason) caused Go’s register allocator to behave differently.

lambic, where lambda expressions were used extensively, all
other challenges received at least three perfect solutions.
Player Distribution. Figure 4 gives a breakdown of the
players who made any submission earning at least a 20% score,
categorized both by years of experience and by security involve-
ment. Solves per player are broken down into C and non-C
plots, as players treated C challenges differently than the rest.

Virtually all players attempted the C challenges, and
even the least-solved C challenge—the rootkit challenge,
which built and traversed a singly linked list of user-defined
structs—received 30 perfect solutions; the baby-c challenge
received the most, with 66. This resulted in a high number of
perfect solutions per player, even though there were only four
C challenges available. Experience had some effect, but not
a large one; beginners are able to reverse C relatively well.

On the other hand, experience played a more significant
role when reversing the other languages. As seen in Figure 4,
the Solves per Player ratio drops dramatically for players
with one or fewer years of experience; only a small number
of beginners submitted perfect solutions, despite there being
many more non-C challenges. Challenges written in these
languages also received more solutions from participants with
longer security careers, and those with five or more years of
reversing experience had a clear advantage. There was also
a more marked difference based on role, with researchers
outperforming the other participants.
Summary. These results validate our potentially ambitious
claims from Section 1: perfect decompilation is a reasonable
standard of program comprehension, reachable even by
non-experts. Experience, however, is certainly helpful,
especially when reversing higher-level languages.

6 RQ2: How do Humans Decompile?

Having shown that humans are capable of producing perfect
decompilation, the next step is to investigate how they do it.

Understanding this process is beneficial for a number of
different applications. In particular, a better grasp of the
reversing process and identifying the roadblocks that stand
in the way of perfect decompilation will support the design
and implementation of better tools to support human reversers.
This knowledge may also help improve automatic decompilers,
which can incorporate insights learned from human experts.

Since we collected tens of thousands of source code
submissions, we were interested in analyses that could be
performed programmatically. The metrics described below
provide quantitative alternatives to the more traditional
interview method of studying the reversing process.
Code and Score Changes. The first analysis we performed
involved the magnitude of the players’ code changes and

The second-place team handled the struct correctly, but did not realize that
the original program had used complex128s, and tried, unsuccessfully, to
replicate it with float64s.

2772 31st USENIX Security Symposium USENIX Association

Figure 4: Distribution of active players and perfect submissions, broken down by involvement, experience, and language. “Active”
players reached a 20% score or better on at least one challenge. Only one perfect submission is counted per (user, challenge) pair.

the magnitude of the score changes they produced. Figure 5
summarizes the correlation between the two. The big cluster of
data points to the left in Figure 5 shows how each submission
tended to contain only minor changes from the previous
submission, which resulted in an even smaller change in
diff score. The average Levenshtein distance was only 47
characters (or 5 lines), and each submission yielded, on
average, a 1.5% improvement in diff score over the last.

Score improvement did increase slightly with edit size, but
the correlation was very loose, with a Pearson’s r of only 0.1.
In general, edits were almost as likely to cause the diff score
go down as to go up, and small edits were just as capable of
causing large score swings as large edits. Adjustments to stack
layout are a good example of this effect: changing the size
of a single local variable can potentially affect every stack
reference in a function.

These results show that reversers tried to approach the
solution through a series of small modifications, each testing
a hypothesis with a limited scope (e.g., the modification of
a single control-flow structure, or the type specification of a
single variable).
Function Focus. We were also able to measure which
functions reversers focused on over the course of a challenge.
Since our disassembler produced per-function output, we were
able to calculate per-function diff scores over time, and use
these as a proxy for attention: any function seeing frequent
changes in diff score was very likely to be the center of a
reverser’s attention.

The top row of Figure 6 shows the changes in function diff
scores over the course of three perfect solutions. The reversers
seemed to prefer working on one function at a time—although
this may have been encouraged by the per-function view of
the DECOMPERSON interface; the (estimated) places where
they switched focus are shown on the graphs. This result
is confirmed when looking at the number of functions that
change between two subsequent submissions, which we
summarized in Table 3. Of the 24,265 non-Swift submissions

Figure 5: Diff score changes versus code changes, measured
as the Jaccard distance on source code lines. For the sake of
readability, only 10% of the submissions are visible in the
scatter plot. The line of best fit is shown in light purple.

that compile,9 19,940 (82%) include changes affecting only
a single function. Edits are also highly clustered over time;
any function that was modified by one edit has about an 80%
chance of being modified again by the next.

More generally, we found that reversers tended to operate
in two distinct stages:

• During the first stage, reversers operated at the level of
the entire program. In this stage, they would stub out the
program, making sure that functions had enough code to
successfully compile, and that the functions had the cor-
rect type signatures. The latter was particularly important
for name-mangled languages: these languages embed the
type signature in the function symbol name, and our differ

9The library we used to classify code changes did not support Swift.

USENIX Association 31st USENIX Security Symposium 2773

Figure 6: The processes followed by three expert reversers as they solved the baby-cpp, unfair, and wolfgang challenges,
respectively. Diff scores by function are shown on top, and edit density per function is shown on the bottom. Submissions that
did not compile are omitted. Function focus can be observed both as fluctuations in function diff score and as clusters of edits.
Places where the reversers switched focus to a different function are marked with vertical lines.

could not locate functions until the prototype was correct.

During this stage, we would typically see minor
increases in the diff scores for all functions. It was also
common for the first few submissions to not compile at
all—only 37% of the initial submissions did so—and the
first submission that did compile would typically contain
edits to multiple functions.

• Once the program was stubbed out, reversers would move
on to the second stage. In this stage, they would focus on
one function until they got stuck or were able to achieve
a perfect disassembly match. Once this happened, they
would move on to the next function, repeating this step
as many times as necessary to fully recreate the program.
This pattern is visible in Figure 6, where changes in focus
are marked with vertical lines.

These observations mirror the model extracted by Votipka et
al. [48]. In their study of the more traditional reverse engineer-
ing process, the authors found that reversers operate in three dis-
tinct phases: overview, sub-component scanning, and focused

experimentation. In the overview phase, reversers acquire a
broad overview of the program’s functionality, which is then re-
fined in the latter two phases. Our analysis shows that reversers
follow a similar approach when decompiling binaries: Our
phase one condenses the overview and sub-component scan-
ning stages, as reversers determine what the binary does, and
recreate how its functional components fit together. Our phase
two corresponds to the focused experimentation stage. Each
source code submission is effectively a hypothesis about how
a function was implemented, and the response from DECOM-
PERSON offers evidence either for or against that hypothesis.

Number of Modified Functions
Language 0 1 2 �3

C 540 6,931 443 108
C++ 570 4,954 322 219
Go 760 6,200 522 135
Rust 300 1,855 268 138
Swift — — — —

Total 2,170 19,940 1,555 600

Table 3: The number of edits that touched any given number
of functions. The vast majority of edits only modified a single
function.

We also observed that the reversers chose functions to
focus on based on the binary’s control flow graph. Most
reversers operated in a breadth-first manner: 75% of the
perfect solutions to two-function binaries focused on main()
first. For binaries with three or more functions, 46% of the
solutions focused on main() first, while 29% saved it for
last. This preference for breadth-first reversing held for all
challenges except the C challenge rootkit, where depth-first
was slightly more popular, and all the Rust challenges, where
multi-function edits were more common and function focus
was harder to discern. There was no significant difference
between the behaviors of beginners and experts; function
order seems to be a matter of personal preference.

Edit Classification. The previous analyses highlight the
magnitude and location of individual source code changes,
but tell us very little about the reversers’ intent when making
those changes. We would also like to know the semantics of
each edit: what specific feature of the binary was the reverser
trying to reproduce?

2774 31st USENIX Security Symposium USENIX Association

To extract this information, we used Tree-sitter [43], a
source code parsing library that supports all of the challenge
languages except Swift, which we did not include in this
analysis. Given a string of source code, Tree-sitter calculates
a “concrete syntax tree,” which includes the location of each
syntax node within the source string. We could combine this
information with the location of an edit to determine which
syntax nodes were affected. We then used the types of these
nodes—also provided by Tree-sitter—to classify the edit.

We recognize a total of eight semantic categories:

Control Flow: Constructs that redirect the execution of a
program, such as conditionals, loops, and exceptions.

Declarations: Definitions of new variables, typically locals.
We classify these separately from other statements be-
cause they change the layout of a function’s stack frame.

Functions: Changes that alter the signature of a function,
such as changes to the return type, name, or arguments.

Name Changes: Changes that only affect a single identifier,
typically caused by reversers renaming variables.

Statements: Typical imperative programming statements,
like assignments, increments, and function calls.

Types: Constructs that define custom data types, or edits to
member variables.

Comments: Changes to comments, typically made to
temporarily remove code, or to clean up the starter code.

Miscellaneous: Other edits. These are primarily changes to
import statements, preprocessor directives, and the like.

A single edit can have multiple classifications, depending on
the syntax nodes affected, and can contain multiple instances
of the same classification. For example, adding the following
C function

float hypotenuse(float a, float b) {
float a2 = a * a
float b2 = b * b;
return sqrt(a2 + b2);

}

would count as seven edits, namely three function edits
(the function and its two parameters), two declarations, one
statement (the function call), and one control-flow edit (the
return statement).

The ability to classify edits gives us a more detailed view into
the reverse engineering process. Figure 7 provides an example.
In this case, the reverser had initially focused on the main()
function, and was able to reach a reasonably high diff score
by decompiling its body, as evidenced by the declaration and
statement edits. After about ten minutes, however, other func-
tions were needed by main(), and the reverser switched to the
stubbing phase described previously. This can be identified by
the prevalence of function prototype edits, and the fact that they
appear in many functions at approximately the same time. The

Figure 7: Edit types over time as the top team solves the
unfair challenge. The diff score of each function (and of the
challenge as a whole, in the global row) is shown as a light gray
background. The stubbing phase is visible as a spate of func-
tion signature edits around the ten minute mark; the reverser
then focuses on one function at a time, bringing each one up to
100% with a series of edits to the function body. Another view
of this process is shown in the central column of Figure 6.

reverser then went to work on find(), then clean(), and fi-
nally crypt(). These latter changes were all function body ed-
its, and classified as variable declarations, control flow changes,
and generic statements (assignments and function calls).

In general, participants made most of their function
signature edits early in the course of reversing a function,
and most of their variable name edits later on, once they had
a better idea of what the variables were used for. Data type
edits also tended to be made later. Declaration, statement,
and control flow edits made up the majority of the reversing
work, and remained consistently common, with the reversers
showing a slight preference for handling control flow early
on and fixing declarations towards the end.

Other patterns of edits appear in specific circumstances.
Reversers trying to fix stack layout mismatches, for example,
will make lots of edits to variable declarations, while reversers
recovering user-defined structs will make mainly data type ed-
its. And some languages have their own idiosyncrasies; during
DECOMPETITION, for example, teams fighting with Go’s reg-
ister allocator would often try renaming variables in an attempt
to appease it, resulting in a multitude of variable name edits.

USENIX Association 31st USENIX Security Symposium 2775

Summary. Reversers prefer to make frequent, small code
changes, submitting often and refining their mental model
of the program based on the resulting assembly changes.
Experience is useful, particularly for higher-level languages,
allowing reversers to quickly map common assembly patterns
to the corresponding source code patterns.

We also found that reversers tend to start work by recreating
an outline of the program, providing stubs for all the important
functions—a task that could be made easier in a dedicated
function stubbing view with a built-in demangler. They then
refine these functions one at a time, typically in an order based
on the control flow graph.

Within each function, there were two main challenges: to
replicate the behavior of the function and to make sure the
local variables are in the correct stack slots. These tasks could
also be streamlined with dedicated views: a graph-matching
algorithm could be used to generate local variable aliases
(instead of stack offsets) for use while working on function-
ality, and variable declarations could likely be reordered
automatically to give the correct stack layout. The reversers’
concentration on single functions also suggests that humans
are able to generate perfect decompilation without relying on
the interprocedural context used by automatic decompilers.

7 RQ3: Does Reversing Equal Decompilation?

As mentioned previously, perfect decompilation is a very
exacting goal, requiring more effort from the reverser than
a traditional reversing task. Since the DECOMPETITION
participants were required to generate perfect decompilation
for each challenge binary in order to get a perfect score, there
is some concern that our observations are not applicable to
reversing in general. However, we can show that the process
involved is not substantially different.

Traditional reversing tasks, such as binary patching or
vulnerability discovery, require extremely precise knowledge
of particular “focus points” of a program, namely the points
with potential bugs. These points are typically a small fraction
of the entire binary, but a successful reverser will need
complete knowledge of what the program is supposed to
do—as well as how it does it—at each of them. In this light,
perfect decompilation is primarily an extension of traditional
reverse engineering:

• Reversers already dedicate very close attention to focus
points, so asking participants to devote that level of
analysis to an entire (small) binary is simply an extension
of an existing reversing task rather than a new one.

• We assume that reversers have a code-like internal
representation of the behavior of functions, so requir-
ing participants to submit valid source code merely
standardizes the language of communication.10

10This also prevents reversers from glossing over functionality they don’t

• Requiring perfect decompilation makes it trivial to con-
firm that a participant has completely reversed a function.

The third and final point is the only one where perfect
decompilation task differs from traditional reverse engineering.
The first two points are extensions of existing tasks, but the
third adds a new one: convincing the compiler to generate
specific binary output.
Fighting the Compiler. Perfect decompilation represents
the highest standard for reverse engineering: a source code
that matches the original binary has, by definition, the exact
semantics of the original source code. However, it is arguable
that such a goal could be too far-fetched, and that equivalent
code—measured by unit tests—might be a more realistic goal.
The risk here is that reversers aiming for perfect decompilation,
such as the DECOMPETITION participants, might spend a
significant portion of their time fighting with the compiler,
making our observations less representative of the traditional
reversing process.

We believed that in general, reversers would follow two
strategies: they would either attempt to pass all unit tests first
and work on matching assembly later, or they would work
directly on achieving a perfect assembly match and thus not
pass all test cases until the end. To study this behavior, we
selected the sequences of submissions that resulted in a perfect
decompilation, and we located the first submission in each
sequence that passed all unit tests.

We found that 70% of the reversers earned a 100% test score
within the first 90% of their submissions, although some of
these may have been assembly-first users who passed tests
early by chance. These users spent, on average, the first 51%
of their submissions and 60% of their time reaching perfect
test scores, and the remainder perfecting their assembly. In
contrast, the pool of all reversers took, on average, 69% of
their submissions and 70% of their time to pass all unit tests.

The exact ratios varied significantly by language; C++ and
Swift had the easiest compilers to mimic (only 27% and 31%
of solve time, respectively, was spent on this stage), and Go
and Rust had the hardest (45% and 51%, respectively).
Reversing vs. Decompilation. As mentioned in the previous
section, when analyzing the submissions, we observed many
of the same behaviors as Votipka et al. [48], indicating that
we are measuring a similar, if not identical, process.

Furthermore, the DECOMPERSON interface maps nicely
onto the traditional reversing process. Reversing studies—all
the way back to much earlier program comprehension stud-
ies [27]—frame reversing as a series of hypotheses made by the
reverser: with DECOMPERSON, each source code submission
is a hypothesis about program behavior, and the response from
the back-end helps confirm or disprove that hypothesis.

We also have evidence that the diff scores used in DECOM-
PETITION correlate well with function behavior. After the com-
petition, we wrote unit tests for most of the leaf functions, and

fully understand.

2776 31st USENIX Security Symposium USENIX Association

Figure 8: Example distributions of per-function unit test scores and per-function diff scores. Medians are shown as dark purple
bars; means are shown as black dots. Lines of best fit are shown in pale gray.

tested the submissions. These test scores were not visible to
the participants, and thus could not be used as a decompilation
guide, but nevertheless corresponded to the submissions’ per-
function diff scores; some examples can be seen in Figure 8.

The left two plots show more typical distributions of
submission scores. Submissions are balanced across the
number of unit tests passed, and the unit test scores are
well-correlated with the diff scores, with a Pearson’s r of 0.75
and 0.64, respectively. This suggests that in the general case,
diff scores, which capture binary similarity, are a good proxy
for unit test scores, which capture functionality.

The rightmost plot shows a pathological case. The diff and
test scores are still reasonably well-correlated (r=0.50), but
the vast majority of submissions passed all the unit tests with a
mediocre diff score. This shows that the reversers were able to
replicate the behavior of the target function relatively quickly,
but then spent a significant amount of time getting rustc to
generate an exact assembly match.
Summary. Decompilation is a natural extension of tradi-
tional reversing. Reversers already generate a code-like
representation of the programs they work on, so turning
reversing into decompilation is simply a matter of writing this
representation in a well-defined language—and recovering
a precise representation of an entire function.

Perfect decompilation is no longer purely an extension of the
existing process, as it requires more effort to convince the com-
piler to generate specific output, but we found that even in this
case the process correlates well with function comprehension.

8 Threats to Validity

Experimental Setup. While we tried to reproduce standard
reversing activities as closely as possible, some differences
were unavoidable. For example, running the competition in
a web-based editor took people out of their familiar reversing
environments. After the competition, some players suggested
modifications to the web interface to make it easier to use,
while others were interested in integrating DECOMPERSON

into their pre-existing reversing environments. However, we
believe that the web-based interface did not affect how humans
approach the decompilation problem, although it may have
influenced the timings recorded during the competition.
Automatic Decompilers. Participants were able to paste the
output of automatic decompilers into the DECOMPERSON
editor. While this could potentially mean that we were not
observing the human reversing process, we found that this was
a rare behavior, and that the tools were not always helpful.

As an illustration, Figure 9 shows the maximum similarity
between any user’s rootkit submissions and the output of
the Hex-Rays decompiler. Only submissions with over 50%
similarity clearly resemble Hex-Rays, and only two users
(visible on the right in the first plot) achieved a perfect score
with code in this range.

Overall, after analyzing the C submissions, we found that
almost 20% of all function decompilation attempts included
a submission that clearly resembled tool output. Hex-Rays
was the most popular tool, accounting for 10% of all attempts,
followed by Ghidra at 7% and Binary Ninja at 3%. However,
only 6% of all attempts achieved perfect decompilation with
code that resembled tool output;11 once the output had been
edited into perfect decompilation, it was often no closer to the
original than a solution that had been written by hand.

Automatic decompilation was not useful for any other
languages. Only 2% of C++ function decompilation attempts,
for example, attempted to use tool output, and none of these
were successful. In fact, there were no perfect submissions
for any non-C languages that resembled tool output.

However, traditional reversing tools still proved useful as
a reversing aid. Fully 80% of the players who responded to the
follow-up survey reported using at least one tool “often” while
working on the challenge binaries. Hex-Rays was the most
popular tool, used often by about 50% of the respondents;
Ghidra and Binary Ninja were used by about 33% each. Most

11The vast majority of these successful attempts came from the prime
and baby-c challenges, at 18% and 6% respectively. The other C challenges
had an average tool success rate of 1%.

USENIX Association 31st USENIX Security Symposium 2777

Figure 9: Similarity of all rooktit decompilation attempts to
Hex-Rays output, measured as Jaccard similarity over charac-
ter diffs and ordered by similarity of the alloc_task function.
Maximum similarity of any submission is shown as lines;
maximally similar perfect decompilation is shown as points.

respondents used multiple tools, and only two (4%) used none.
Function Symbols. Our custom disassembler uses function
symbols to identify which functions to disassemble; therefore,
the DECOMPETITION binaries contained function symbols.
In practice, these are not always available. Symbols can be
“stripped” from real-world binaries—usually to obfuscate
them or to reduce their size—and adding meaningful function
names is an important step when reversing these.12

Having access to function symbols saved our reversers some
work. Although the function names used in DECOMPETITION
were not particularly descriptive, they still provided some
hints about what each function did. Additionally, the function
symbols in name-mangled languages encode the types of each
function’s parameters, which can be quite useful for reversing.

We do not believe that this information significantly altered
the decompilation process, but further study, using stripped
binaries and a more advanced function identification algorithm,
would be needed to definitively show the size of the effect.
Collaboration. DECOMPETITION was an online competition,
so we could not prevent users from collaborating on their
decompilation. However, we took the following steps to limit
this phenomenon: (1) the online interface was not designed
to be used collaboratively; (2) players had individual logins;
and (3) we used IP addresses to distinguish submissions that
were likely done by multiple users.

Overall, more than 80% of all players used the same IP
address for the entire competition, and 75% of all decompi-
lation attempts did not include submissions from interleaved
IP addresses. The vast majority of the interleaved submissions
came from well-established teams, who were accustomed to
sharing team accounts in other competitions. We know that
the top-scoring team used an informal “lock” protocol in their

12Function symbols are not uncommon, even in a reversing context;
dynamically linked binaries contain external function symbols even after
stripping, and in 2018, Cozzi et al. found that about 75% of Linux malware
was not stripped at all [10].

team chat to prevent conflicting edits to the same challenge;
other teams may have used a similar system.

9 Future Work

DECOMPERSON was developed with DECOMPETITION
and humans in mind, but we believe that, with the necessary
improvements, it could be used as a general-purpose reversing
tool. For example, the current system relies on the user to
provide all insights. The DECOMPERSON interface makes it
obvious where assembly mismatches occur, but the respon-
sibility of identifying the causes of these mismatches—and
of providing code that avoids them—lies solely with the
human operator. A more intelligent system would be able
to recognize causes of particular classes of mismatches and
suggest potential solutions.

Such a system could be trained on the output of human
reversers, including the data we collected here. Then,
depending on the quality of its suggestions, it could be put
to a variety of uses: a more rudimentary system could offer
suggestions to novice reverse engineers, helping them until
they reach a perfect match; an advanced system could provide
likely mutations to power a genetic decompiler, such as
BED [38]. This system could be part of a hybrid framework
as well, automating decompilation as much as possible before
falling back to the user for guidance [39].

This intersection of human and automated decompilation—
the same frontier that inspired this paper—still seems the most
promising direction for future research: the human insights
recorded here can be used to improve future decompilers,
which in turn will reduce the workload of their human users, a
trend towards combining human input and automated analysis
that has recently received substantial attention [14, 39].

10 Conclusions

The process of understanding binary code can be modeled
as the process of decompilation. In particular, it is possible
to set a precise, measurable goal by requiring that a human
perform perfect decompilation. We maintain that such a high
standard is not unreasonable: our study demonstrated that
perfect decompilation of small programs is within reach of
human reverse engineers today. We believe that the insights
from our experiment (the largest of this kind ever performed)
can be used to better understand the human reversing process.

Finally, we offer the dataset we collected during our study to
anyone wanting to study the process of human decompilation.
We showed some of the data that can be extracted, but we
believe that many more insights remain. We hope that it will
be used in the spirit of the competition from which it arose:
as a small step towards perfect decompilation.

2778 31st USENIX Security Symposium USENIX Association

Artifacts

All challenges used in DECOMPETITION, including
solutions and test cases, are available here: h t t p s :
//github.com/decompetition/challenges-2020

The environment used to build and test the chal-
lenges is available as a Docker container: h t t p s :
//hub.docker.com/r/decompetition/builder-2020

The DECOMPERSON server and web interface can be found
here: https://github.com/decompetition/server

The DECOMPERSON disassembler and differ are also
available as a standalone tool, which can be found here:
https://github.com/decompetition/disassembler

The full (anonymized) submission dataset is also available:
https://github.com/decompetition/data

Acknowledgements

The authors would like to thank Noah Spahn and Lukas Dresel
for writing and playtesting so many, many challenges; the
folks at Vector 35 for giving us space on Binary Ninja Cloud
and donating Binary Ninja licenses as extra prizes; and all the
random hackers of the internet who for some reason didn’t
have anything better to do than play our silly reversing game.

This material is based on research sponsored by DARPA un-
der agreement number FA8750-19-C-0003 and by NSF under
award CNS-1704253. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government.

References

[1] Fiorella Artuso, Giuseppe Antonio Di Luna, Luca
Massarelli, and Leonardo Querzoni. Function naming
in stripped binaries using neural networks. CoRR, 2019.

[2] Pratyay Banerjee, Kuntal Kumar Pal, Fish Wang, and
Chitta Baral. Variable name recovery in decompiled
binary code using constrained masked language
modeling. arXiv preprint arXiv:2103.12801, 2021.

[3] Binary Ninja. https://binary.ninja/.

[4] Binary Ninja Intermediate Language. h t t p s :
//docs.binary.ninja/dev/bnil-overview.html.

[5] David Brumley, JongHyup Lee, Edward J Schwartz,
and Maverick Woo. Native x86 decompilation using
semantics-preserving structural analysis and iterative
control-flow structuring. In 22nd USENIX Security

Symposium (USENIX Security 13), 2013.

[6] Adam Bryant. Understanding How Reverse Engineers

Make Sense of Programs from Assembly Language

Representations. PhD thesis, 2012.

[7] Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Claire
Le Goues, Graham Neubig, and Bogdan Vasilescu.
Augmenting decompiler output with learned variable
names and types. 31st USENIX Security Symposium

(USENIX Security 22), 2022.

[8] Yu Chen, Zhiqiang Shi, Hong Li, Weiwei Zhao, Yiliang
Liu, and Yuansong Qiao. Himalia: Recovering compiler
optimization levels from binaries by deep learning. In
SAI Intelligent Systems Conference, 2018.

[9] Cristina Cifuentes. Reverse compilation techniques.
1994.

[10] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio,
and Davide Balzarotti. Understanding linux malware.
In 2018 IEEE Symposium on Security and Privacy (SP),
2018.

[11] CTFtime. https://ctftime.org/.

[12] EN Dolgova and AV Chernov. Automatic recon-
struction of data types in the decompilation problem.
Programming and Computer Software, 2009.

[13] Javier Escalada, Ted Scully, and Francisco Ortin.
Improving type information inferred by decompilers
with supervised machine learning, 2021.

[14] Dustin Fraze. Computers and Humans Ex-
ploring Software Security (CHESS). h t t p s :
//www.darpa.mil/program/computers-and-huma
ns-exploring-software-security, 2019.

[15] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuan-
dong Tian, Farinaz Koushanfar, and Jishen Zhao. Coda:
An end-to-end neural program decompiler. Advances

in Neural Information Processing Systems, 2019.

[16] Cheng Fu, Kunlin Yang, Xinyun Chen, Yuandong Tian,
and Jishen Zhao. N-bref : A high-fidelity decompiler
exploiting programming structures, 2021.

[17] Ghidra. https://ghidra-sre.org/.

[18] Andrea Gussoni, Alessandro Di Federico, Pietro
Fezzardi, and Giovanni Agosta. A comb for decompiled
c code. In 15th ACM Asia Conference on Computer and

Communications Security, 2020.

[19] Iman Hosseini and Brendan Dolan-Gavitt. Beyond the
c: Retargetable decompilation using neural machine
translation. 2022.

[20] IDA Pro. https://www.hex-rays.com/ida-pro/.

USENIX Association 31st USENIX Security Symposium 2779

https://github.com/decompetition/challenges-2020
https://github.com/decompetition/challenges-2020
https://hub.docker.com/r/decompetition/builder-2020
https://hub.docker.com/r/decompetition/builder-2020
https://github.com/decompetition/server
https://github.com/decompetition/disassembler
https://github.com/decompetition/data
https://binary.ninja/
https://docs.binary.ninja/dev/bnil-overview.html
https://docs.binary.ninja/dev/bnil-overview.html
https://ctftime.org/
https://www.darpa.mil/program/computers-and-humans-exploring-software-security
https://www.darpa.mil/program/computers-and-humans-exploring-software-security
https://www.darpa.mil/program/computers-and-humans-exploring-software-security
https://ghidra-sre.org/
https://www.hex-rays.com/ida-pro/

[21] Alan Jaffe. Suggesting meaningful variable names
for decompiled code: a machine translation approach.
In 11th Joint Meeting on Foundations of Software

Engineering, 2017.

[22] Alan Jaffe, Jeremy Lacomis, Edward J Schwartz,
Claire Le Goues, and Bogdan Vasilescu. Meaningful
variable names for decompiled code: A machine
translation approach. In 26th Conference on Program

Comprehension, 2018.

[23] Deborah S Katz, Jason Ruchti, and Eric Schulte. Using re-
current neural networks for decompilation. In 2018 IEEE

25th International Conference on Software Analysis,

Evolution and Reengineering (SANER). IEEE, 2018.

[24] Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran
Yahav. Towards neural decompilation. arXiv preprint

arXiv:1905.08325, 2019.

[25] Rainer Koschke. Software visualization in software
maintenance, reverse engineering, and re-engineering:
a research survey. Journal of Software Maintenance and

Evolution: Research and Practice, 2003.

[26] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz,
Miltiadis Allamanis, Claire Le Goues, Graham Neubig,
and Bogdan Vasilescu. Dire: A neural approach to
decompiled identifier naming. In 34th IEEE/ACM

International Conference on Automated Software

Engineering (ASE), 2019.

[27] Stanley Letovsky. Cognitive processes in program
comprehension. Journal of Systems and software, 1987.

[28] Ruigang Liang, Ying Cao, Peiwei Hu, and Kai
Chen. Neutron: an attention-based neural decompiler.
Cybersecurity, 2021.

[29] Alwin Maier, Hugo Gascon, Christian Wressnegger, and
Konrad Rieck. Typeminer: Recovering types in binary
programs using machine learning. In International

Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer, 2019.

[30] Alessandro Mantovani, Simone Aonzo, Yanick Fratanto-
nio, and Davide Balzarotti. Re-mind: a first look inside
the mind of a reverse engineer. In 31st USENIX Security

Symposium (USENIX Security 22), 2021.

[31] Alessandro Mantovani, Luca Compagna, Yan Shoshi-
taishvili, and Davide Balzarotti. The convergence of
source code and binary vulnerability discovery – a case
study. In ACM Symposium on Information, Computer

and Communications Security (ASIACCS22), 2022.

[32] Alan Mycroft. Type-based decompilation (or program
reconstruction via type reconstruction). In European

Symposium on Programming. Springer, 1999.

[33] Yuhei Otsubo, Akira Otsuka, Mamoru Mimura, Takeshi
Sakaki, and Hiroshi Ukegawa. o-glassesx: Compiler
provenance recovery with attention mechanism from a
short code fragment. 2020.

[34] Davide Pizzolotto and Katsuro Inoue. Identifying com-
piler and optimization options from binary code using
deep learning approaches. In 2020 IEEE International

Conference on Software Maintenance and Evolution

(ICSME), 2020.

[35] Ashkan Rahimian, Paria Shirani, Saed Alrbaee, Lingyu
Wang, and Mourad Debbabi. Bincomp: A stratified
approach to compiler provenance attribution. Digital

Investigation, 2015.

[36] Pemma Reiter, Hui Jun Tay, Westley Weimer, Adam
Doupé, Ruoyu Wang, and Stephanie Forrest. Automat-
ically mitigating vulnerabilities in x86 binary programs
via partially recompilable decompilation. arXiv preprint

arXiv:2202.12336, 2022.

[37] Nathan Rosenblum, Barton P Miller, and Xiaojin Zhu.
Recovering the toolchain provenance of binary code.
In International Symposium on Software Testing and

Analysis, 2011.

[38] Eric Schulte, Jason Ruchti, Matt Noonan, David Ciarletta,
and Alexey Loginov. Evolving exact decompilation. In
Workshop on Binary Analysis Research (BAR), 2018.

[39] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel,
Christopher Salls, Ruoyu Wang, Christopher Kruegel,
and Giovanni Vigna. Rise of the HaCRS: Augmenting
Autonomous Cyber Reasoning Systems with Human
Assistance. In ACM Conference on Computer and

Communications Security (CCS), 2017.

[40] Elliot Soloway, Beth Adelson, and Kate Ehrlich.
Knowledge and processes in the comprehension of
computer programs. The nature of expertise, 1988.

[41] M-AD Storey, Kenny Wong, and Hausi A Müller. How
do program understanding tools affect how program-
mers understand programs? Science of Computer

Programming, 2000.

[42] Claire Taylor and Christian Collberg. Getting revenge:
A system for analyzing reverse engineering behavior. In
Malware Conference, 2019.

[43] Tree-sitter. https://tree-sitter.github.io/.

[44] Freek Verbeek, Pierre Olivier, and Binoy Ravindran.
Sound c code decompilation for a subset of x86-64
binaries. In International Conference on Software

Engineering and Formal Methods. Springer, 2020.

2780 31st USENIX Security Symposium USENIX Association

https://tree-sitter.github.io/

[45] Anneliese von Mayrhauser and A Marie Vans. Program

Unterstanding: A Survey. Colorado State Univ., 1994.

[46] Anneliese Von Mayrhauser and A Marie Vans. Program
comprehension during software maintenance and
evolution. Computer, 1995.

[47] Anneliese Von Mayrhauser and A. Marie Vans. Iden-
tification of dynamic comprehension processes during
large scale maintenance. IEEE Transactions on Software

Engineering, 1996.

[48] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jef-
frey S Foster, and Michelle L Mazurek. An observational
investigation of reverse engineers’ processes. In 29th

USENIX Security Symposium, 2020.

[49] Tao Wei, Jian Mao, Wei Zou, and Yu Chen. A new
algorithm for identifying loops in decompilation. In
International Static Analysis Symposium, 2007.

[50] Khaled Yakdan, Sebastian Eschweiler, and Elmar
Gerhards-Padilla. Recompile: A decompilation frame-
work for static analysis of binaries. In 8th International

Conference on Malicious and Unwanted Software:" The

Americas"(MALWARE), 2013.

[51] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-
Padilla, and Matthew Smith. No more gotos:
Decompilation using pattern-independent control-flow
structuring and semantic-preserving transformations. In
NDSS, 2015.

A Background Survey

1. What best describes your involvement in computer
security?

(a) Professional
(b) Researcher
(c) Student
(d) Hobbyist
(e) Other

2. How many years have you been involved in computer
security?

(a) Integer value: 1 or above.13

3. How many years have you been involved in reverse
engineering?

(a) Integer value: 1 or above.13

4. How much of your paid time is spent reverse engineering?

(a) I’m not paid to reverse anything.
(b) A little bit of my workload is reversing.

13A programming error prevented users from entering zero.

(c) Around half of my workload is reversing.
(d) Most or all of my workload is reversing.

5. How much confidence do you have in your reversing
skills?
(a) I have no idea what I’m doing.
(b) I’m still a beginner.
(c) I’m an average reverser.
(d) I’m better than average.
(e) I am an expert.

6. How difficult is completely recreating the source code
of a small binary?
(a) Trivial
(b) Easy
(c) Moderate
(d) Difficult
(e) Impossible

7. How familiar are you with programming in the following
languages? (Range: 1 (Beginner) to 5 (Expert))
(a) C
(b) C++
(c) Go
(d) Rust
(e) Swift

8. How familiar are you with reversing the following
languages? (Range: 1 (Beginner) to 5 (Expert))
(a) C
(b) C++
(c) Go
(d) Rust
(e) Swift

9. How often do you use the following tools when reversing?
(Range: 1 (Never); 2 (Sometimes); 3 (Often))
(a) Angr
(b) Binary Ninja
(c) CLI Tools (objdump, etc.)
(d) Ghidra
(e) Ida / HexRays
(f) Radare
(g) Custom Scripts

B Follow-Up Survey

The follow-up survey contained repeats of questions 5–9 from
the background survey. Question 9 was re-worded to ask about
tools used during the competition, and included an item for the
DECOMPERSON web interface. There were also free-form text
inputs where players could give feedback on the challenges,
the interface, or the competition in general.

USENIX Association 31st USENIX Security Symposium 2781

C Table of Challenges

Challenges Non-Blank Lines Submissions by Diff Score Language Features

Name Functionality Value Src. Asm. Ratio All >0% >20% >40% >60% >80% 100%

C

baby-c Integer GCD. 200 24 77 3.21 1,933 1,445 1,357 1,171 943 526 112 arithmetic
bitesize Overflowable buffer. 100 30 81 2.70 2,803 2,327 2,302 2,056 1,593 760 70 types, buffers
prime Primality check. 100 20 117 5.85 1,670 1,337 1,307 1,013 432 282 56 arithmetic
rootkit Linked list search. 100 36 121 3.36 3,654 2,913 2,821 1,560 1,035 585 37 structs
Subtotal 500 110 396 3.60 10,060 8,022 7,787 5,800 4,003 2,153 275

C
+

+

baby-cpp Scrabble scoring. 200 49 441 9.00 3,370 2,553 2,259 1,685 1,270 669 41 strings, control flow
lambic Inventory mgmt. 400 152 647 4.26 815 495 262 158 116 70 4 structs, lambdas, vectors
pedigree Family tree search. 200 77 337 4.38 1,351 603 511 388 299 183 76 classes, sets
streamy RPN calculator. 400 146 622 4.26 895 593 467 394 267 142 24 classes, inheritance, streams
unfair Playfair cipher. 200 67 501 7.48 2,724 1,812 1,343 1,017 715 449 15 strings, tuples
Subtotal 1,400 491 2,548 5.19 9,155 6,056 4,842 3,642 2,667 1,513 160

G
o

baby-go FizzBuzz. 200 19 122 6.42 1,592 1,073 902 638 456 131 38 arithmetic
batsounds TCP echo server. 300 44 293 6.66 878 568 460 383 244 149 10 networking, time
carshop Inventory search. 300 75 400 5.33 726 352 299 191 163 108 8 structs, enums
fabulous Fibonacci sequence. 200 23 153 6.65 1,322 934 825 612 441 397 15 structs, arithmetic
julie Julia set ASCII art. 300 79 397 5.03 3,156 2,725 2,481 2,313 2,219 1,718 0 syscalls, complex numbers
switcher Buggy ROT-13 cipher. 200 32 153 4.78 1,600 1,219 1,110 1,039 937 667 14 strings, switches
wolfgang Cellular automaton. 300 38 212 5.58 918 717 619 578 446 358 3 strings, arithmetic
Subtotal 1,800 310 1,730 5.58 10,192 7,588 6,696 5,754 4,906 3,528 88

R
u

s
t

baby-rust Integer parsing. 300 14 222 15.86 1,325 975 765 388 270 237 30 matching
habidasher Two hash functions. 200 26 292 11.23 498 354 256 167 101 81 7 strings, arithmetic
s2ring Turing machine. 500 74 796 10.76 1,049 817 672 386 200 133 8 strings, structs, matching
toobz TCP pipeline. 300 105 385 3.67 652 415 363 335 288 239 8 traits, networking, lambdas
Subtotal 1,300 219 1,695 7.74 3,524 2,561 2,056 1,276 859 690 53

S
w

if
t

baby-swift Hotdog detector. 300 34 489 14.38 1,221 750 475 360 259 138 14 strings, sets
bandate Date comparison. 400 55 1,008 18.33 569 353 314 147 85 59 9 structs, dates
cardigan Luhn checksum. 500 89 1,374 15.44 809 583 485 387 110 37 4 strings, arithmetic
Subtotal 1,200 178 2,871 16.13 2,599 1,686 1,274 894 454 234 27

All Challenges 6,200 1,308 9,240 7.06 35,530 25,913 22,655 17,366 12,889 8,118 603

Table 4: Descriptions and statistics for the DECOMPETITION challenges.

D Table of Compilers

Language Compiler Version Options

C gcc 9.3.0 -fno-asm -g

C++ g++ 9.3.0 -fno-asm -g -std=c++17

Go go build 1.13.8
Rust rustc 1.43.0
Swift swiftc 5.2.4

Table 5: Compilers used during DECOMPETITION. All challenges were built for x86-64 on Ubuntu 20.04. The chal-
lenge binaries were compiled with the same options, but all debug information was removed from these before distri-
bution. Note that the -fno-asm option only prevents the use of the asm keyword in C and C++; we used an additional
pre-processing step to prohibit the __asm keyword. See the full build scripts in the challenge repository for details:
https://github.com/decompetition/challenges-2020

2782 31st USENIX Security Symposium USENIX Association

https://github.com/decompetition/challenges-2020

	Introduction
	Perfect Decompilation
	Decomperson
	Decompetition
	RQ1: Can Humans Perfectly Decompile?
	RQ2: How do Humans Decompile?
	RQ3: Does Reversing Equal Decompilation?
	Threats to Validity
	Future Work
	Conclusions
	Background Survey
	Follow-Up Survey
	Table of Challenges
	Table of Compilers

