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Abstract: Epilepsy is a brain disorder that causes
seizures, affecting nearly half a million children in the
US alone. In this study, we aimed to use a nonlinear
driven method to characterize scalp EEG recordings of
pediatric epilepsy patients (PE: n=7) compared to
pediatric control subjects (PC: n=7) in a clinical
environment. A time-varying approach was used to
construct functional connectivity networks (FCNs) of
all subjects. Next, the FCNs are mapped into the form
of undirected graphs that are subjected to the
extraction of graph theory-based features. An
unsupervised clustering technique based on K-mean is
used to delineate the PE from the PC group. Our
findings show a statistically significant difference in
the mean FCNs between PC and PE groups (#340)=-
15.9899, p<<0.0001). Performance results showed an
accuracy of 92.5% with a sensitivity of 90% and a
specificity of 95.3%. This approach can help improve
and validate the early diagnosis of PE by applying
non-invasive scalp EEG signals.

Keywords—: Interictal Epilepsy EEG; Functional connectivity;
entropy, Mutual Information; Graph theory; Clustering.

1. INTRODUCTION

Epilepsy is the fourth most common neurological
disorder characterized by recurrent unprovoked
epileptic seizures that affect individuals from all walks
of life [1-3]. According to the US Centers for Disease
Control and Prevention (CDC), there are 3.4 million
people living with epilepsy (PLWE) nationwide,
including nearly 3 million adults and half a million
children [4]. Although recent scientific endeavors on
epilepsy have uncovered important and clinically
relevant mechanisms to help in the diagnosis and
prognosis of the disease, a large percentage of PLWE
continue to suffer the consequences of uncontrolled
seizures, which include psychosocial stigma and death

[2]. Therefore, to prescribe a broad-spectrum anti-
seizure medicine for PLWE and subsequently improve
their quality of life and avoid harm, it is vital to have
an on-time and accurate diagnosis [5, 6].

Since its discovery in 1929 by the German
psychiatrist Hans Berger [7], electroencephalography
(EEG) has played a central role in the diagnosis and
management of patients with seizure disorders [8].
Since the 1950s, scalp EEG has been extensively used
as a convenient and relatively inexpensive way for
carrying out non-invasive brain investigations in
PLWE [9]. By the turn of the century, this diagnostic
tool has gained significant prominence for examining
brain functions in PLWE while simultaneously
providing high temporal resolution data with
negligible side effects [8, 9].

It is notable that the benign EEG variants (i.c.,
certain rhythmic and epileptiform spikes without
known clinical importance) sometimes occur in
healthy subjects which can lead to numerous sources
of misdiagnosis [10]. To tackle this issue, interictal
EEG data is the most frequent recording type in
clinical practice, which can help both in the diagnosis
and treatment stages with high predictive values in
terms of sensitivity of specificity [11]. In fact, medical
practitioners rely heavily on EEG patterns to identify,
quantify, classify, and localize epileptic seizures,
which are largely based on the monitored spikes in
EEG recordings [12]. Additionally, the connectivity
pattern of the brain networks for disease
differentiation would be useful to explore the brain
model when the patient is diagnosed with epilepsy
assuming that connectivity features of a healthy brain
would instinctively be different from the PLWE’s
brain [13-15]. Since the connectivity network of the
brain can be considered as a graph, several attributes
of EEG data can be obtained using specific graph
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characteristics for further investigation [11, 13]. Taken
together, comparing extracted EEG data (including
connectivity patterns) from PLWEs and healthy
controls using robust statistical methods could lead to
enhanced diagnosis and better treatment planning.

Almost all biological systems including brain
activity recorded through EEG signals show
considerably complex nonlinear behavior, which may
be directly assessed using non-linear analytical
methods [16, 17]. A nonlinear component is apparent
in all analyzed EEG records which directs the analysis
more towards modeling the brain as a complex model,
and consequently, can be used to extract the higher
order information through nonlinear operators [18].
An analytical approach that can identify and quantify
any characteristic of this nonlinear change may better
reflect the dynamic structure of the EEG, measure the
irregularity/complexity of a signal, and consequently
classify PLWE versus healthy controls [19]. Several
classification techniques have been proposed in the
literature [20]. For example, our research team [21]
and others [22] employed different types of Artificial
Neural networks (ANN) to classify patients with
epilepsy versus healthy controls. Although ANN is a
promising tool for automatic on-line seizure detection,
the ultimately goal is in designing an optimal network
[20]. On the other hand, in order to extract associative
features from EEG signals without the need for any
prior information, the EEG signals can be grouped by
a clustering algorithm such as K-means, which is a
well-known clustering algorithm that requires no prior
training part or defining parameters to categorize the
graph and the associations of data points with clusters
[23]. Therefore, in this study, we used K-means to
categorize the graph-based extracted features of each
calculated connectivity matrix. Moreover, we used a
probabilistic approach to label each subject into the
epileptic or healthy control group.

2. MATERIALS AND METHODOLOGY
2.1. EEG data source and preparation

Multichannel scalp EEG recordings from 14
pediatric patients, 7 pediatric epilepsy (PE) patients,
and 7 pediatric control (PC) group were included in
this study. The scalp EEG signals were recorded using
XLTEK Networks ver. 3.0.5 equipment and referential
montage following 10-20 electrode placement system
with a varying sampling rate of 200 Hz and 512 Hz,
indistinctly for PC and PE subjects. The studied EEG
data were collected from the 19 electrodes: C3, C4,
01, 02, Cz, Fa3, F4, F7, F8, Fzratl, Fp2, P3, P4, Pz,
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T3, T4, TS5, and T6. We selected 10-second segments
free of artifacts from all EEG recordings. To avoid any
bias, care was given to the initial selection of EEG
segments from the patients with epilepsy ensuring that
they do not contain ictal activity. A total of 134 EEG
segments from the study subjects were considered.
The demographic characteristics of the study subjects
are presented in Table 1. The study flowchart of the
algorithm is shown in Figure 1, which was
implemented using MATLAB software environment.
The study was approved by the Institutional Review
Board (Protocol number: IRB-052708-03) and
parental written informed consent was obtained prior
to participation.

Scalp EEG recordings

Preprocessing
filtering and baseline activity removal

Construcions of functional connectivity
networks based on mutual information (MI)

Graph analysis

feature extraction

K-means Clustering (k=2)

Class likelihood calculation
for each subject

Figure 1. Study flowchart

Table 1. Demographic characteristics of study subjects (patients and
controls are labeled as “P” and “C” respectively)

ID  Age Gender Diagnosis f:::l(’]l_;:)g

P1 10 F L.T. lobe dysplasia 200
P2 7 F L. F. region 512
P3 7 M L.F. Posterior frontal lobe 512
P4 14 M Generalized 512
P5 4 M R. Fronto-centro-temporal 512
P6 2 F L.T. (posterior) 512
P7 8 M R. Parietal 200
C1 12 M - 200
C2 15 F 512
C3 12 M 200
C4 15 F 512
C5 10 M 512
Cc6 18 F - 512
C7 8 M - 200

T: Temporal lobe, F: Frontal lobe, R: Right, L: Left

2.2. Preprocessing

Evidence indicates that EEG signals are easily
contaminated by undesired noise [24]. To tackle this
issue, prior to segmentation, the EEG data were
preprocessed to attenuate the effect of unwanted
sources and to maximize brain-related activities.
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Therefore, all EEG signals were preprocessed with a
4™ order Butterworth zero-phase digital band-pass
filter with a range of [0.5 70] Hz passing frequency
and with the digital infinite impulse response (IIR)
notch filter with 60 Hz notch frequency to remove
power line noise. For all EEG data, the baseline of
signals was also removed.

2.3. Functional connectivity networks construction
based on mutual information (MI)

Mutual information (MI) is an information-
theoretic and non-parametric approach that measures
the generalized interdependence, both linear and
nonlinear, between two random variables. Consider
discrete random variables X and Y with sets of values
X and Y respectively. According to [17] the entropy
H(X) of a random single variable X is defined by:

HX) = =)

XeX

where p(x) = Pr {X = x},x €X is the probability

distribution function (PDF). The entropy is measured

in bits (or Shannon) if the logarithm is to the base a =

2, while the entropy is measured in natural units

(nats) if the logarithm is to the base e. The

MI (X;Y") defined as the average amount of shared

information in the variables X andY® will be
formulated as follows:

p(x)logq p(x)

p (X, Y-r)

MI (X;YY) = — Z Z p(xe, V) lOgaW

xceX yreY

The term x, defines a time series of the variable
X recorded at discrete time t, and y;_, is the signal
displaced by lag 7. Furthermore, p(x;,y;) is the joint
probability distribution function (PDF) associated
with the two variables. MI always appears to be non-
negative and zero if and only if X and Y are
stochastically independent. We assume p(y;_.) =
p(¥:), to mean that time shifting does not change the
individual PDF, only the joint PDF. The MI can
capture higher correlation when two time series are
coupled in terms of the entire PDF and the selection
of different sampling bins has a great influence on the
accuracy of M/ [25]. The logarithm with base e and
11 bins were adopted for the purpose of this study.

To select the maximum value of MI (X;Y7) over
the lag as the strength of FC of each pair, the M/
between x; and y; as expressed in [17] is defined as

MI = max MI(X,Y)
T
where MI is the value between the range of zero and

1, i.e., normalized [26]. Thus, we obtained a
symmetric adjacency matrix to show the mutual
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connectivity among all electrodes of one EEG
segment:

MI 4 Ml y
MIyxy = ! :

MIN,I MIN,N

with MI; ; defining the MI between channels i and j.
A high value for MI is hypothesized as the more
powerful functional connectivity between electrodes.
After calculating the connectivity strength for each
EEG segment, we computed average connectivity
matrices for each group.

2.4 Parameters Selection and Statistical Evaluation

There is a possibility that, during applying a
nonlinear approach, the linear correlation in the data
leads to false results. Therefore, it is important to
evaluate the data compatibility to avert potential bogus
results. To avoid this likelihood and to assure the
implication of the findings, one of the best statistical
approaches is surrogate data testing, which is widely
used in the literature for this purpose [27, 28]. We used
the surrogate data testing technique to suggest an
algorithm to choose the proper parameters, choosing
the number of bins, and evaluate the significance of
the connectivity matrices.

The method works based on generating surrogate
time series with some similarities with original data
and tests for the null hypothesis of similarity between
two connectivity matrices generated from surrogate
and original signals. Rejection of the null hypothesis
is an indication that the test result shows a signification
difference between connectivity matrices of surrogate
and original data.

To generate surrogate data, the Iterative
Amplitude Adjusted Fourier Transform (1IAAFT) was
used. We calculated surrogates for each EEG segment
based on the 95% confidence intervals that we need
for the test. In line with the literature [2], for the level
of significance (a), the minimum number of surrogate
time series (M), can be obtained from the below
equation:

M="—-1
a

where K is a positive integer mostly chosen as 1 in
order to minimize the computational effort of
generating surrogates. Therefore, for a two-sided test
with a 95% confidence interval, the critical threshold
for significance level (o) will be set at 0.05, which
requires 39 surrogate time series.

We calculated connectivity matrices for the
original data and all generated surrogates. Next, using
a non-parametric statistical hypothesis test, namely the
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Wilcoxon Rank Sum test, each surrogate connectivity
matrix was tested against the original connectivity
matrix. The original connectivity matrix is considered
to be significant if the rejection rate of the null
hypothesis was more than 60%. Selecting different
sampling bins has a great influence on the accuracy of
MI [25], therefore, to get significant results for all
connectivity matrices of all segments, the surrogate
data set was performed for a different number of bins.
In this study, we took the logarithm with base e, and
10 bins were adopted.

2.5. Graph analysis and feature extraction

Graph theory is a well-established mathematical
procedure to model any complex system as a group of
nodes (vertices) and links (edges) between pairs of
nodes as well as anatomical connections in the brain
[29]. For this study, the results of connectivity
matrices obtained from the MI method are visualized
in the constructed head map plots (i.e., undirected
graphs). In the context of FCNs, vertices that are
shown as nodes provide the strength of connectivity
through edges. In the mapping of these FCNs, the
hypothesis is to test for the existence of statistically
significant  differences among the functional
connectivity matrices of epileptic patients from that of
control subjects and consequently determine whether
the hypothesized alteration could be wused to
distinguish patients with epilepsy from healthy control
subjects. For this purpose, as shown in Table 2 [15],
we extracted a set of 6 features from the graph
obtained from each segment.

Table 2. Extracted features from functional connectivity network

Feature Description
LD Link density of the graph
AD Average neighbor degree of a node
RCM Rich club metric
SM S-metric of graph
AC Algebraic connectivity of the graph
GR Graph radius

2.5. K-means clustering

All extracted features corresponding to 134
segments are fed to the k-means clustering algorithm.
This clustering method is unsupervised without any
training, and each segment was categorized into one of
the two groups that later were labeled as PE or PC
group (K=2; the number of groups). Based on the
findings obtained from each EEG segment, the
probability of assigning to each group was calculated
for each subject using below equation:

NSX

Py = —

TS X
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where P, is a calculated probability for each subject
that illustrates the degree of belonging of subject s,
and x could be E for epileptic patients or C for control.
Term Ng, is the number of segments from the given
subject clustered in group x, and T, is the total
number of segments for the corresponding subject.
The probability threshold that determines subjects
positions in the groups (either healthy or epileptics)
was considered as 50%, as shown in Table 3 in the
results section.

3. RESULT AND DISCUSSIONS

Figure 2 displays the constructed undirected
FCNs averaged for PE and PC groups based on
selected thresholds. In contrast to PC, higher and
stronger connections were observed in PE head map
plots under two pre-defined thresholds (20% and
25%).

Pediatric Control

Pediatric Epilepsy

gl g2
1 R A

—

25% “//
i

G 9

o N

i
3

[ ]

20%

(b)

Figure 2. Graph representation. Graph representation of average of
FCN:ss for (a) pediatric epilepsy (PE) and (b) pediatric control (PC)
for selected thresholds.

To wvalidate the hypothesis of the proposed
method, a two-sided two sample student t-test was
performed to examine whether there is a significant
difference between the undirected mean FCNs of the
PE and PC groups. The Null hypothesis of the mean
difference in functional connectivity of epileptic and
healthy groups was rejected, resulting in a statistically
significant difference in the mean FCNs (t(340) =
—15.99, p = 2.61e~*3) between PE and PC groups.

As shown in Figure 3, the number of connections
between the two groups based on different thresholds
is compared. The alteration in the form of the
increasing number of connections in epileptic patients
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validates the hypothesis that abnormal networks will
show more activation in all regions of the brain.

Table 3 shows the results of clustering and
calculated class likelihood for each group. The
suggested algorithm has shown the ability of detecting
epileptic segments with high accuracy of 92.5%,
sensitivity of 95.3%, and specificity of 90%. The
experiment is iterated 1000 times to assure the
consistency of the results and obtained accuracies.
Based on our results, increasing the EEG segments
may improve the accuracy of the final clustering
results. Compared with the method applied in the
previous study [11], although fewer features were
considered, higher accuracy and sensitivity were
achieved.

180
«==0-=Healthy Controls

[

==0== Epileptic patients
140

Number of strong connections

/

100 90 80 70 60 50 40 30 25 20 15 10 5

Treshhold

Figure 3. The quantification comparison for average connectivity
matrices based on pre-defined thresholds.

Table 3. Table 3. Resulted Classification Probabilities of Study
Subjects

. #Of Subject
Subject ID segments Psc Psg labeled as
P1 10 0% 100% Epileptic
P2 10 0% 100% Epileptic
P3 10 10% 90% Epileptic
P4 10 0% 100% Epileptic
P5 10 0% 100% Epileptic
P6 10 0% 100% Epileptic
P7 10 60% 40% Healthy
C1 10 90% 10% Healthy
Cc2 10 100% 0% Healthy
C3 10 90% 10% Healthy
C4 10 100% 0% Healthy
C5 4 100% 0% Healthy
Cé6 10 100% 0% Healthy
Cc7 10 90% 10% Healthy
Accuracy 92.5%
Specificity 90%
Sensitivity 95.3%

4. CONCLUSION

The method applied in this study has a promising
clinical implication. Using scalp EEG, the delineation
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between the PE and PC groups is hypothesized to be
related to their different brain wiring patterns. The
implemented algorithm was based on constructing
FCNs of the brain using M- an information theoretic
approach- between the electrodes and analyzing graph
theoretical based features to identify the connectivity
pattern differences among these two groups. Since the
brain connectivity networks of the PE group (vs PC)
demonstrate stronger connections, the results strongly
support the hypothesis that abnormal networks will
exhibit more activation in all regions of the brain. Our
findings support the algorithm that uses the k-means
clustering method for classification. Such a method
facilitates the screening process of potential epileptic
patients since it does not require any training.
Altogether, the fully automated approach that was
applied in the current study can provide clinicians with
a validation tool to improve early and on-time
diagnosis of pediatric epileptic patients, as a
vulnerable population. Future studies with large
samples of pediatric and adult patients are warranted
to add statistical meaningfulness in the results using
the same approach.
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