
 

Diagnosis of Pediatrics Epilepsy Based on Graph analysis of Scalp 
EEG Applying Mutual Information

Abstract: Epilepsy is a brain disorder that causes 
seizures, affecting nearly half a million children in the 
US alone. In this study, we aimed to use a nonlinear 
driven method to characterize scalp EEG recordings of 
pediatric epilepsy patients (PE: n=7) compared to 
pediatric control subjects (PC: n=7) in a clinical 
environment. A time-varying approach was used to 
construct functional connectivity networks (FCNs) of 
all subjects. Next, the FCNs are mapped into the form 
of undirected graphs that are subjected to the 
extraction of graph theory-based features. An 
unsupervised clustering technique based on K-mean is 
used to delineate the PE from the PC group. Our 
findings show a statistically significant difference in 
the mean FCNs between PC and PE groups (t(340)=-
15.9899, p<< 0.0001). Performance results showed an 
accuracy of 92.5% with a sensitivity of 90% and a 
specificity of 95.3%. This approach can help improve 
and validate the early diagnosis of PE by applying 
non-invasive scalp EEG signals.

Keywords—: Interictal Epilepsy EEG; Functional connectivity; 
entropy, Mutual Information; Graph theory; Clustering.

1. INTRODUCTION

Epilepsy is the fourth most common neurological 
disorder characterized by recurrent unprovoked 
epileptic seizures that affect individuals from all walks 
of life [1-3]. According to the US Centers for Disease 
Control and Prevention (CDC), there are 3.4 million 
people living with epilepsy (PLWE) nationwide, 
including nearly 3 million adults and half a million 
children [4]. Although recent scientific endeavors on 
epilepsy have uncovered important and clinically 
relevant mechanisms to help in the diagnosis and 
prognosis of the disease, a large percentage of PLWE 
continue to suffer the consequences of uncontrolled 
seizures, which include psychosocial stigma and death 

[2]. Therefore, to prescribe a broad-spectrum anti-
seizure medicine for PLWE and subsequently improve 
their quality of life and avoid harm, it is vital to have 
an on-time and accurate diagnosis [5, 6]. 

Since its discovery in 1929 by the German 
psychiatrist Hans Berger [7], electroencephalography 
(EEG) has played a central role in the diagnosis and 
management of patients with seizure disorders [8]. 
Since the 1950s, scalp EEG has been extensively used
as a convenient and relatively inexpensive way for 
carrying out non-invasive brain investigations in 
PLWE [9]. By the turn of the century, this diagnostic 
tool has gained significant prominence for examining 
brain functions in PLWE while simultaneously 
providing high temporal resolution data with 
negligible side effects [8, 9]. 

It is notable that the benign EEG variants (i.e., 
certain rhythmic and epileptiform spikes without 
known clinical importance) sometimes occur in 
healthy subjects which can lead to numerous sources 
of misdiagnosis [10]. To tackle this issue, interictal 
EEG data is the most frequent recording type in 
clinical practice, which can help both in the diagnosis 
and treatment stages with high predictive values in 
terms of sensitivity of specificity [11]. In fact, medical 
practitioners rely heavily on EEG patterns to identify, 
quantify, classify, and localize epileptic seizures, 
which are largely based on the monitored spikes in 
EEG recordings [12]. Additionally, the connectivity 
pattern of the brain networks for disease 
differentiation would be useful to explore the brain 
model when the patient is diagnosed with epilepsy 
assuming that connectivity features of a healthy brain 
would instinctively be different from the PLWE’s 
brain [13-15]. Since the connectivity network of the 
brain can be considered as a graph, several attributes 
of EEG data can be obtained using specific graph 
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characteristics for further investigation [11, 13]. Taken 
together, comparing extracted EEG data (including 
connectivity patterns) from PLWEs and healthy 
controls using robust statistical methods could lead to 
enhanced diagnosis and better treatment planning.

Almost all biological systems including brain 
activity recorded through EEG signals show 
considerably complex nonlinear behavior, which may 
be directly assessed using non-linear analytical 
methods [16, 17]. A nonlinear component is apparent 
in all analyzed EEG records which directs the analysis 
more towards modeling the brain as a complex model, 
and consequently, can be used to extract the higher 
order information through nonlinear operators [18].
An analytical approach that can identify and quantify 
any characteristic of this nonlinear change may better 
reflect the dynamic structure of the EEG, measure the 
irregularity/complexity of a signal, and consequently 
classify PLWE versus healthy controls [19]. Several 
classification techniques have been proposed in the 
literature [20]. For example, our research team [21]
and others [22] employed different types of Artificial 
Neural networks (ANN) to classify patients with 
epilepsy versus healthy controls. Although ANN is a 
promising tool for automatic on-line seizure detection, 
the ultimately goal is in designing an optimal network
[20].  On the other hand, in order to extract associative 
features from EEG signals without the need for any 
prior information, the EEG signals can be grouped by 
a clustering algorithm such as K-means, which is a 
well-known clustering algorithm that requires no prior 
training part or defining parameters to categorize the 
graph and the associations of data points with clusters
[23]. Therefore, in this study, we used K-means to 
categorize the graph-based extracted features of each 
calculated connectivity matrix. Moreover, we used a 
probabilistic approach to label each subject into the 
epileptic or healthy control group. 

2. MATERIALS AND METHODOLOGY
2.1. EEG data source and preparation

Multichannel scalp EEG recordings from 14 
pediatric patients, 7 pediatric epilepsy (PE) patients,
and 7 pediatric control (PC) group were included in 
this study. The scalp EEG signals were recorded using 
XLTEK Networks ver. 3.0.5 equipment and referential 
montage following 10-20 electrode placement system 
with a varying sampling rate of 200 Hz and 512 Hz, 
indistinctly for PC and PE subjects. The studied EEG 
data were collected from the 19 electrodes: C3, C4, 
O1, O2, Cz, Fa3, F4, F7, F8, Fzrat1, Fp2, P3, P4, Pz, 

T3, T4, T5, and T6. We selected 10-second segments 
free of artifacts from all EEG recordings. To avoid any 
bias, care was given to the initial selection of EEG 
segments from the patients with epilepsy ensuring that 
they do not contain ictal activity. A total of 134 EEG 
segments from the study subjects were considered.
The demographic characteristics of the study subjects 
are presented in Table 1. The study flowchart of the 
algorithm is shown in Figure 1, which was 
implemented using MATLAB software environment. 
The study was approved by the Institutional Review 
Board (Protocol number: IRB-052708-03) and 
parental written informed consent was obtained prior 
to participation.

 
               
               Figure 1. Study flowchart

Table 1. Demographic characteristics of study subjects (patients and 
controls are labeled as “P” and “C” respectively)

T: Temporal lobe, F: Frontal lobe, R: Right, L: Left     

2.2. Preprocessing

Evidence indicates that EEG signals are easily 
contaminated by undesired noise [24]. To tackle this 
issue, prior to segmentation, the EEG data were 
preprocessed to attenuate the effect of unwanted 
sources and to maximize brain-related activities. 

Scalp EEG recordings

Preprocessing
filtering and baseline activity removal

Construcions of functional connectivity 
networks based on mutual information (MI)

Graph analysis 
feature extraction

K-means Clustering (k=2)

Class likelihood calculation 
for each subject

ID Age Gender Diagnosis Sampling 
rate (Hz)

P1 10 F L.T. lobe dysplasia 200
P2 7 F L. F. region 512
P3 7 M L.F. Posterior frontal lobe 512
P4 14 M Generalized 512
P5 4 M R. Fronto-centro-temporal 512
P6 2 F L.T. (posterior) 512
P7 8 M R. Parietal 200
C1 12 M - 200
C2 15 F - 512
C3 12 M - 200
C4 15 F - 512
C5 10 M - 512
C6 18 F - 512
C7 8 M - 200
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Therefore, all EEG signals were preprocessed with a 
4th order Butterworth zero-phase digital band-pass 
filter with a range of [0.5 70] Hz passing frequency 
and with the digital infinite impulse response (IIR) 
notch filter with 60 Hz notch frequency to remove 
power line noise. For all EEG data, the baseline of 
signals was also removed.

2.3. Functional connectivity networks construction 
based on mutual information (MI)

Mutual information (MI) is an information-
theoretic and non-parametric approach that measures 
the generalized interdependence, both linear and 
nonlinear, between two random variables. Consider 
discrete random variables ܺ and ܻ with sets of values 
Ҳ and ϒ respectively. According to [17] the entropy ܪ(ܺ) of a random single variable X is defined by: 

(ܺ)ܪ =  − ෍ (ݔ)݌ log௔  ௑ఢҲ(ݔ)݌
where (ݔ)݌ = Pr  {ܺ = {ݔ , Ҳ ߳ ݔ is the probability 
distribution function (PDF). The entropy is measured 
in bits (or Shannon) if the logarithm is to the base ܽ =2, while the entropy is measured in natural units 
;ܺ) ܫܯ if the logarithm is to the base ݁. The (ݏݐܽ݊) ܻఛ) defined as the average amount of shared 
information in the variables ܺ and ܻఛ will be 
formulated as follows:ܫܯ (ܺ; ܻఛ) = − ෍ ෍ ,௧ݔ)݌ (௧ିఛݕ log௔ ,௧ݔ)݌ ௬೟ഓఢϒ௫೟ఢҲ(௧ିఛݕ)݌(௧ݔ)݌(ఛିݕ

The term  ݔ௧ defines a time series of the variable ܺ recorded at discrete time ݐ, and ݕ௧ିఛ is the signal 
displaced by lag ߬. Furthermore, ,௧ݔ)݌ (௧ݕ is the joint 
probability distribution function (PDF) associated 
with the two variables. MI always appears to be non-
negative and zero if and only if X and Y are 
stochastically independent. We assume ݌(ݕ௧ିఛ) ,(௧ݕ)݌= to mean that time shifting does not change the 
individual PDF, only the joint PDF. The MI can 
capture higher correlation when two time series are 
coupled in terms of the entire PDF and the selection 
of different sampling bins has a great influence on the 
accuracy of MI [25]. The logarithm with base  ݁ and 
11 bins were adopted for the purpose of this study. 

To select the maximum value of ܫܯ (ܺ; ܻఛ) over 
the lag as the strength of FC of each pair, the MI 
between ݔ௧ and ݕ௧ as expressed in [17] is defined asܫܯ = maxఛ ,ܺ)ܫܯ ܻ)
where ܫܯ is the value between the range of zero and 
1, i.e., normalized [26]. Thus, we obtained a 
symmetric adjacency matrix to show the mutual 

connectivity among all electrodes of one EEG 
segment: ே×ேܫܯ = ቎ܫܯଵ,ଵ ⋯ ⋮ଵ,ேܫܯ ⋱ ே,ଵܫܯ⋮ ⋯ ே,ே቏ܫܯ
with ܫܯ௜,௝ defining the MI between channels ݅ and ݆.
A high value for MI is hypothesized as the more 
powerful functional connectivity between electrodes. 
After calculating the connectivity strength for each 
EEG segment, we computed average connectivity 
matrices for each group.

2.4 Parameters Selection and Statistical Evaluation

There is a possibility that, during applying a
nonlinear approach, the linear correlation in the data 
leads to false results. Therefore, it is important to 
evaluate the data compatibility to avert potential bogus 
results. To avoid this likelihood and to assure the 
implication of the findings, one of the best statistical 
approaches is surrogate data testing, which is widely 
used in the literature for this purpose [27, 28]. We used 
the surrogate data testing technique to suggest an 
algorithm to choose the proper parameters, choosing 
the number of bins, and evaluate the significance of 
the connectivity matrices. 

The method works based on generating surrogate 
time series with some similarities with original data 
and tests for the null hypothesis of similarity between 
two connectivity matrices generated from surrogate 
and original signals. Rejection of the null hypothesis 
is an indication that the test result shows a signification 
difference between connectivity matrices of surrogate 
and original data.

To generate surrogate data, the Iterative 
Amplitude Adjusted Fourier Transform (iAAFT) was 
used. We calculated surrogates for each EEG segment 
based on the 95% confidence intervals that we need 
for the test. In line with the literature [2], for the level 
of significance (α), the minimum number of surrogate 
time series (M), can be obtained from the below 
equation: ܯ = ߙܭ2 − 1
where ܭ is a positive integer mostly chosen as 1 in 
order to minimize the computational effort of 
generating surrogates. Therefore, for a two-sided test 
with a 95% confidence interval, the critical threshold 
for significance level (α) will be set at 0.05, which 
requires 39 surrogate time series. 

We calculated connectivity matrices for the 
original data and all generated surrogates. Next, using 
a non-parametric statistical hypothesis test, namely the 
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Wilcoxon Rank Sum test, each surrogate connectivity 
matrix was tested against the original connectivity 
matrix. The original connectivity matrix is considered 
to be significant if the rejection rate of the null 
hypothesis was more than 60%. Selecting different 
sampling bins has a great influence on the accuracy of 
MI [25], therefore, to get significant results for all 
connectivity matrices of all segments, the surrogate 
data set was performed for a different number of bins. 
In this study, we took the logarithm with base ݁, and 
10 bins were adopted.

2.5. Graph analysis and feature extraction

Graph theory is a well-established mathematical 
procedure to model any complex system as a group of 
nodes (vertices) and links (edges) between pairs of 
nodes as well as anatomical connections in the brain 
[29]. For this study, the results of connectivity 
matrices obtained from the MI method are visualized 
in the constructed head map plots (i.e., undirected 
graphs). In the context of FCNs, vertices that are 
shown as nodes provide the strength of connectivity 
through edges. In the mapping of these FCNs, the 
hypothesis is to test for the existence of statistically 
significant differences among the functional 
connectivity matrices of epileptic patients from that of 
control subjects and consequently determine whether 
the hypothesized alteration could be used to 
distinguish patients with epilepsy from healthy control 
subjects. For this purpose, as shown in Table 2 [15],
we extracted a set of 6 features from the graph 
obtained from each segment.

Table 2. Extracted features from functional connectivity network
Feature Description

LD Link density of the graph
AD Average neighbor degree of a node
RCM Rich club metric
SM S-metric of graph
AC Algebraic connectivity of the graph
GR Graph radius

2.5. K-means clustering

All extracted features corresponding to 134 
segments are fed to the k-means clustering algorithm. 
This clustering method is unsupervised without any 
training, and each segment was categorized into one of 
the two groups that later were labeled as PE or PC 
group (K=2; the number of groups). Based on the 
findings obtained from each EEG segment, the 
probability of assigning to each group was calculated 
for each subject using below equation: 

௦ܲ௫ = ௦ܰ௫௦ܶ௫  

where ௦ܲ௫ is a calculated probability for each subject 
that illustrates the degree of belonging of subject ݏ,
and ݔ could be E for epileptic patients or C for control. 
Term ௦ܰ௫ is the number of segments from the given 
subject clustered in group x, and ௦ܶ௫ is the total 
number of segments for the corresponding subject. 
The probability threshold that determines subjects 
positions in the groups (either healthy or epileptics) 
was considered as 50%, as shown in Table 3 in the 
results section.

3. RESULT AND DISCUSSIONS

Figure 2 displays the constructed undirected 
FCNs averaged for PE and PC groups based on 
selected thresholds. In contrast to PC, higher and 
stronger connections were observed in PE head map 
plots under two pre-defined thresholds (20% and 
25%). 

To validate the hypothesis of the proposed 
method, a two-sided two sample student t-test was 
performed to examine whether there is a significant 
difference between the undirected mean FCNs of the 
PE and PC groups. The Null hypothesis of the mean 
difference in functional connectivity of epileptic and 
healthy groups was rejected, resulting in a statistically 
significant difference in the mean FCNs ((340)ݐ =−15.99, ݌ = 2.61݁ିସଷ) between PE and PC groups.

As shown in Figure 3, the number of connections 
between the two groups based on different thresholds 
is compared. The alteration in the form of the 
increasing number of connections in epileptic patients 

(a) (b)

Figure 2. Graph representation. Graph representation of average of
FCNs for (a) pediatric epilepsy (PE) and (b) pediatric control (PC) 
for selected thresholds.
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validates the hypothesis that abnormal networks will 
show more activation in all regions of the brain.

Table 3 shows the results of clustering and 
calculated class likelihood for each group. The 
suggested algorithm has shown the ability of detecting 
epileptic segments with high accuracy of 92.5%,
sensitivity of 95.3%, and specificity of 90%. The 
experiment is iterated 1000 times to assure the 
consistency of the results and obtained accuracies. 
Based on our results, increasing the EEG segments 
may improve the accuracy of the final clustering 
results. Compared with the method applied in the 
previous study [11], although fewer features were 
considered, higher accuracy and sensitivity were 
achieved.

Table 3. Table 3. Resulted Classification Probabilities of Study 
Subjects

Subject ID #Of 
segments ࡯࢙ࡼ ࡱ࢙ࡼ Subject 

labeled as
P1 10 0% 100% Epileptic
P2 10 0% 100% Epileptic
P3 10 10% 90% Epileptic
P4 10 0% 100% Epileptic
P5 10 0% 100% Epileptic
P6 10 0% 100% Epileptic
P7 10 60% 40% Healthy
C1 10 90% 10% Healthy
C2 10 100% 0% Healthy
C3 10 90% 10% Healthy
C4 10 100% 0% Healthy
C5 4 100% 0% Healthy
C6 10 100% 0% Healthy
C7 10 90% 10% Healthy

Accuracy 92.5%
Specificity 90%
Sensitivity 95.3%

4. CONCLUSION

The method applied in this study has a promising 
clinical implication. Using scalp EEG, the delineation 

between the PE and PC groups is hypothesized to be 
related to their different brain wiring patterns. The 
implemented algorithm was based on constructing
FCNs of the brain using MI- an information theoretic 
approach- between the electrodes and analyzing graph 
theoretical based features to identify the connectivity
pattern differences among these two groups. Since the 
brain connectivity networks of the PE group (vs PC) 
demonstrate stronger connections, the results strongly 
support the hypothesis that abnormal networks will 
exhibit more activation in all regions of the brain. Our 
findings support the algorithm that uses the k-means
clustering method for classification. Such a method 
facilitates the screening process of potential epileptic 
patients since it does not require any training. 
Altogether, the fully automated approach that was 
applied in the current study can provide clinicians with 
a validation tool to improve early and on-time 
diagnosis of pediatric epileptic patients, as a 
vulnerable population. Future studies with large 
samples of pediatric and adult patients are warranted 
to add statistical meaningfulness in the results using 
the same approach.
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