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Abstract—The Standard Uptake Value (SUV) is conventionally
calculated using the ratio of the injected PET radiotracer dose
and subject body weight (Binj). SUVs are used to obtain SUV
ratios (SUVr), an important metric in many Alzheimer’s Disease
(AD) neuroimaging studies. However, SUVr can be obtained
using only neuroimaging data, bypassing the need for Binj . This
paper proposes the SUVr-LightWeight (SUVr-LW) algorithm
which is not reliant on clinical data and instead focuses on
PET intensity values. The SUVr-LW was evaluated using the
Centiloid Project Florebetaben (FBB) subject cohort and reached
a linear regression slope of 0.98, while the healthy control subjects
produced a slope of 0.87.

Index Terms—Alzheimer’s Disease, Neuroimaging, SUVR,
Amyloid PET, MRI

I. INTRODUCTION

In diagnosing Alzheimer’s Disease (AD), medical experts

depend primarily on different methodologies of mental ex-

aminations and clinical data [1]. Neuroimaging modalities

such as Magnetic Resonance Imaging (MRI) and Positron

Emission Tomography (PET), which are integral components

for assessing brain structures and functionality, have become

essential imaging modalities for the diagnosis and under-

standing of AD and its related effects on the structure and

functionality of the brain [2]. Recent efforts have leveraged
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the amount of quantitative data that can be extracted from

the neuroimaging modality via automatic brain segmentation

of an MRI T1-sequenced image of a brain with software

tools such as FreeSurfer [3] and the Statistical Parametric

Mapping (SPM) toolbox [4] which are capable of automatic

segmentation of an MRI image into the brain’s individual

regions of interest (ROI). PET scans have been uniquely

useful in the accurate detection of AD via radiotracers that

bind to specific biomarkers such as Beta-Amyloid binding

radiotracers, which include F-18 Florbetaben (FBB), F-18

Florbetapir (AV45), and C-10 Pittsburgh compound B (PiB)

[5].

As the research and amount of data collected grows, there

arises the issue of cross-site comparison. Using image pro-

cessing techniques, the voxel intensity values of PET modality

can be gathered and then normalized by some subject-specific

factor Binj to yield a Standardized Uptake Value (SUV) [6].

SUVs can then be normalized across the brain by different

composite regions such whole cerebellum, cerebellar grey

matter, or a composite region [7] creating an SUV ratio

(SUVr). The SUVr is vital in comparing radiotracer binding

indexes across PET images generated with the same radio-

tracer [8]. However, multiple radiotracers are often used for

the same purpose due to their different absorption behaviours

but the resulting SUVs cannot be compared across tracers.

The Centiloid Project [9] devised a set of scaling formulas to

calibrate all PET radiotracers for use in cross-cohort studies
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Fig. 1. Flowchart of the proposed pipeline flow: MRI-specific data/files are marked in blue, PET in red, and combined modalities in purple.

through use of the Centiloid Score. This study proposes the

use of a PET intensity value K to directly calculate SUVr and

the Centiloid Score to demonstrate SUVr-LW.

The rest paper is structured as follows: Section II de-

scribes the tools and processes used throughout the SUVr-

LW, Section III compares and statistically evaluates the

SUVr-LW against a Centiloid Project calibration dataset, and

Section IV concludes the paper, discusses the limitations, and

offers future direction for the research.

II. METHODS

A. Dataset

This study makes use of the Global Alzheimer’s Association

Interactive Network (GAAIN) Centiloid Project [9] FBB PET

calibration dataset aimed at onboarding new study centers into

their network. The dataset detailed in Table I consists of 10

young healthy control subjects (aged ≤ 45yrs old) and 25

elderly subjects (aged 45yrs old). The elderly subjects are

comprised of both healthy controls (HC) and those with neu-

rological disorders such as mild cognitive impairment (MCI),

Frontotemporal Dementia (FTD), and Alzheimer’s Disease

(AD).

TABLE I
SUBJECT DEMOGRAPHIC DATA

Diagnosis Age Subjects (f/m) Total

AD 69.9 4 / 4 8

FTD 73.5 0 / 2 2

HC 47.4 11 / 5 16

MCI 72.7 5 / 4 9

The Centiloid Project’s FBB calibration dataset [10] in-

cludes the following 5 items: (1) a text description of all files,

(2) a demographic spreadsheet of all subjects, (3) a spreadsheet

containing the SUVr and Centiloid scores of all subjects for

different reference regions, (4) a statistical analysis of the

SUVr and Centiloid scores (mean, standard deviation, and

covariance) for each age group, and (5) the raw DICOM T1-

sequenced MRI and FBB PET images for all subjects. GAAIN

also provides a .docx file outlining their PiB radiotracer.

B. Software & Tools

SUVr-LW is a python 3.7-based [11] pipeline which uses

MRI and PET DICOM files for processing and analysis

resulting in the SUVr and centiloid scores of a subject. Figure

1 delineates the SUVr-LW overall flow as follows:

1) Preprocessing: The T1 MRI and FBB PET images

provided are in the raw DICOM file format that need to

be converted to the more compact NIftI file format. This

conversion is done via the popular dcm2niix toolbox [12].

2) MRI Processing: FreeSurfer version 6.0 (FS6) [3] is

selected for its active support community and open-source

availability allowing for application within the python-based

SUVr-LW pipeline. The NIftI formatted T1 images are then

routed to FS6 to be processed using the recon−all command

which will segment the T1 MRIs according to a stored

atlas [13]. This will output the FS6 estimated volumetric

information for different regions of the brain.

3) PET Processing: The NIftI PET scans are matched

with their T1 NIftI counterparts and the pair of scans are

routed to the FSL toolbox [14] for co-registration with the

MRI T1 image. Co-registration is achieved using the flirt
command with the default settings, e.g. 12 degrees of freedom.

The segmented MRIs from Step 2 and the co-registered PET

images are used to extract the average intensity of individual

ROIs as per Formula 1:

Croi =

NROI∑

i=1

Ki

NROI

(1)

Where Croi is the average intensity of an ROI, Ki represents

a voxel intensity, and NROI is the current ROI calculated. The

algorithm parses through all voxels in the PET scan using the

FS6 look-up table identifies the most relevant ROI using the x,

y, z coordinate of the current voxel. The sum of all intensities

for each ROI is stored and divided by the voxel volume of that

region yielding the average PET voxel intensity of the region.

4) SUVr Calculation: The SUVr calculation process uses

the PET image intensity which is then normalized by Formula

2:

SUVroi =
Croi

Binj
(2)

where Binj =
ID
BW
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Where ID is the injected radio tracer dose and BW the

subject’s body weight [6]. The SUV quantifies the amount

of radiotracer absorbed by the relevant region of the brain.

However, since the SUVr, as seen in Formula 3, is needed to

compare these values across patient cohorts, an SUV must be

normalized to the Whole-Cerebellum (WC) [15].

SUV rroi =
SUVroi

SUVref
(3)

There are many research applications where the purpose

of a neuroimaging pipeline is to quantify the incoming neu-

roimaging scans via volumetric data, SUVr, and centiloid

scores, in which can be calculated without the use of the

clinical data [16] [17] [18]. Conventionally a subject’s Binj is

utilized. However, using a mathematical derivation 4 of SUVr

formula, the Binj is not necessary to the SUVr or Centiloid

score calculations. Instead, SUVr calculations would be reliant

on the PET intensity Kint and the reference region used to

normalize it.

SUV rroi =
SUVroi

SUVref
=

Croi

Binj

Cref

Binj

=
Croi

cref
(4)

5) Centiloid Score Formula: To compare the FBB uptake

value to scans across different radiotracers, the global SUVr

can be scaled via specific conversion formulae to yield a

Centiloid Score [9]. The FBB tracer is scaled via Formula

5 [19].

CLFBB = 153.4× SUV rFBB − 154.9 (5)

6) Analysis: The statistical moments (i.e. mean, median,

standard deviation, covariance, and variance) and percent error

of the data sets are calculated. WC-normalized SUVrs from

GAAIN and SUVr-LW in the study are plotted against each

other and the linear regression is calculated for the whole

data and across the different age groups. GAAIN’s calibration

process recommends investigating the correlation among the

young control and elderly subject groups. An additional linear

regression analysis is also generated considering that the age

groups are not further discriminated by diagnostic criteria,

such as whether they are healthy controls (HC) or non-healthy

controls (NC).

III. RESULTS

A. Individual SUVr/Centiloid Score Comparison between Age
Groups

The WC-normalized SUVr scores calculated by SUVr-LW

and provided by GAAIN are compared in a scatter plot to

produce Figure 2. A linear regression is plotted for each

age group. Overall, the data’s linear regression had a slope

of 0.97. While the elderly subject data is consistent across

both methodologies with a linear regression slope of 0.95,

the young control group has a slope of 0.54. This graph is

replicated with the WC-normalizedd Centiloid Scores as seen

in Figure 3. The linear regression for all groups produced

a slope of 0.97, the elderly a slope of 0.95, and the young

controls a slope 0.54.

Fig. 2. WC SUVr scatter plot with 1:1 and linear regression across Young
and Elderly age groups.

Fig. 3. WC Centiloid scatter plot with 1:1 and linear regression across Young
and Elderly age groups.
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B. Individual SUVr/Centiloid Score Comparison between Di-
agnostic Groups

The results are grouped by diagnostic criteria (HC / NC)

and a linear regression for each group is plotted as seen in

Figure 4. The HC group has a linear regression slope of 0.87

and the NC group a slope of 0.96.

Fig. 4. WC SUVr scatter plot with 1:1 and linear regression across diagnostic
groups health control (HC) and non-control (non-HC).

C. Histogram Analysis

The SUVr of both pipelines are plotted on overlaying

histograms to better visualize the overall shape and the dif-

ferences between both methods as seen in Figure 5, and the

kernel density estimation lines for each dataset were plotted

in Figure 6.

TABLE II
SUVR STATISTICAL ANALYSIS

Age Group Method Mean Median StD Cov Var

Elderly SUVr-LW 1.4 1.33 0.35 0.25 0.12

GAAIN 1.43 1.38 0.36 0.25 0.13

Young SUVr-LW 0.97 0.98 0.03 0.03 0

GAAIN 1.01 1.02 0.04 0.04 0

IV. CONCLUSION

Overall, the results suggest that there is a high correlation

between the GAAIN processed-results and the SUVr-LW

pipeline. In Figure 2, the scatter plot values of the individual

subject SUVrs initially appear to have significant variance.

However, upon further analysis, SUVR-LW’s overall results

Fig. 5. Histogram of SUVr for GAAIN and SUVR-LW.

Fig. 6. Kernel Mean Density plot of SUVr for GAAIN and SUVR-LW.

remain consistent when compared with the GAAIN FBB PET

calibration dataset. The linear regression plots seen in Figure 2

and Figure 3 illsutrate the close correlation among the elderly

data group.

The strongest correlation of SUVrs between SUVr-LW

and GAAIN occurs within the elderly age group with a

linear regression slope of 0.97. In the multi-diagnostic linear

regression plot generated in Figure 4, SUVr-LW exhibits a

high correlation with the GAAIN calibration dataset across

both diagnostic categories where the health controls’ linear

regression slope is 0.87 and 0.96 for the non-healthy controls.

The histogram from Figure 5 of the SUVr data indicate a

strong correlation by the general shape of both datasets is

relatively similar with a slight deviation explained by the

different softwares used. This visual analysis is confirmed

via statistical analysis where the mean percent difference for

elderly age group between the GAAIN and SUVr-LW 2.43%

and 3.57% for the young group.

A. Limitations

From Figure 2, the young age group’s linear regression

slope is 0.54 which implies poor correlation for this group.
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The inconsistency between the young control groups could

potentially be caused by the small sample size of 10 young

controls.
Additionally, it should be noted that both pipelines use

different software and methodologies with SUVr-LW using

FreeSurfer while the GAAIN pipeline employs the SPM

toolbox [4] for the MRI processing. These two softwares have

been shown to skew the MRI volumetric data in different

ways, such as enlarging white matter regions with respect to

the other [20]. As for the PET coregistration, SUVr-LW uses

FSL and GAAIN makes use of SPM. These differences can

cause discrepancies inherent to the tool being used and must

be considered when evaluating results from different pipelines.

B. Future Work
In future studies, a larger dataset should be used from

a prominent AD neurogimaging database such as the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [21].

Additionally, SUVr-LW should be evaluated using other radio-

tracers besides FBB, such as PiB, FDG, and AV45, to ensure

the consistency of the pipeline. Lastly, different reference

regions should be used for the SUVr to test the consistency

of SUVr-LW methodologies. Furthermore, the discrepancy

between the slope of the elderly population and young control

population should be further investigated to ascertain the

source of the inconsistent SUVr values.
This study aims to serve as the beginning of investigative

studies on the stability and robustness of different SUVr

variables, such as determining the optimal Kint PET value

and reference region used in normalization. This should in-

turn provide the most accurate and relevant information for

AD neuroimaging research.
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