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Abstract—The Standard Uptake Value (SUV) is conventionally
calculated using the ratio of the injected PET radiotracer dose
and subject body weight (B;,;). SUVs are used to obtain SUV
ratios (SUVr), an important metric in many Alzheimer’s Disease
(AD) neuroimaging studies. However, SUVr can be obtained
using only neuroimaging data, bypassing the need for B;, ;. This
paper proposes the SUVr-LightWeight (SUVr-LW) algorithm
which is not reliant on clinical data and instead focuses on
PET intensity values. The SUVr-LW was evaluated using the
Centiloid Project Florebetaben (FBB) subject cohort and reached
a linear regression slope of 0.98, while the healthy control subjects
produced a slope of 0.87.

Index Terms—Alzheimer’s Disease, Neuroimaging, SUVR,
Amyloid PET, MRI

I. INTRODUCTION

In diagnosing Alzheimer’s Disease (AD), medical experts
depend primarily on different methodologies of mental ex-
aminations and clinical data [1]. Neuroimaging modalities
such as Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET), which are integral components
for assessing brain structures and functionality, have become
essential imaging modalities for the diagnosis and under-
standing of AD and its related effects on the structure and
functionality of the brain [2]. Recent efforts have leveraged
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the amount of quantitative data that can be extracted from
the neuroimaging modality via automatic brain segmentation
of an MRI Tl-sequenced image of a brain with software
tools such as FreeSurfer [3] and the Statistical Parametric
Mapping (SPM) toolbox [4] which are capable of automatic
segmentation of an MRI image into the brain’s individual
regions of interest (ROI). PET scans have been uniquely
useful in the accurate detection of AD via radiotracers that
bind to specific biomarkers such as Beta-Amyloid binding
radiotracers, which include F-18 Florbetaben (FBB), F-18
Florbetapir (AV45), and C-10 Pittsburgh compound B (PiB)
[5].

As the research and amount of data collected grows, there
arises the issue of cross-site comparison. Using image pro-
cessing techniques, the voxel intensity values of PET modality
can be gathered and then normalized by some subject-specific
factor B;y,; to yield a Standardized Uptake Value (SUV) [6].
SUVs can then be normalized across the brain by different
composite regions such whole cerebellum, cerebellar grey
matter, or a composite region [7] creating an SUV ratio
(SUVr). The SUVr is vital in comparing radiotracer binding
indexes across PET images generated with the same radio-
tracer [8]. However, multiple radiotracers are often used for
the same purpose due to their different absorption behaviours
but the resulting SUVs cannot be compared across tracers.
The Centiloid Project [9] devised a set of scaling formulas to
calibrate all PET radiotracers for use in cross-cohort studies
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Fig. 1. Flowchart of the proposed pipeline flow: MRI-specific data/files are marked in blue, PET in red, and combined modalities in purple.

through use of the Centiloid Score. This study proposes the
use of a PET intensity value K to directly calculate SUVr and
the Centiloid Score to demonstrate SUVr-LW.

The rest paper is structured as follows: Section II de-
scribes the tools and processes used throughout the SUVr-
LW, Section III compares and statistically evaluates the
SUVr-LW against a Centiloid Project calibration dataset, and
Section I'V concludes the paper, discusses the limitations, and
offers future direction for the research.

II. METHODS

A. Dataset

This study makes use of the Global Alzheimer’s Association
Interactive Network (GAAIN) Centiloid Project [9] FBB PET
calibration dataset aimed at onboarding new study centers into
their network. The dataset detailed in Table I consists of 10
young healthy control subjects (aged < 45yrs old) and 25
elderly subjects (aged 45yrs old). The elderly subjects are
comprised of both healthy controls (HC) and those with neu-
rological disorders such as mild cognitive impairment (MCI),
Frontotemporal Dementia (FTD), and Alzheimer’s Disease
(AD).

TABLE I
SUBJECT DEMOGRAPHIC DATA

Diagnosis Age  Subjects (f/m) Total
AD 69.9 474 8
FTD 73.5 0/2 2
HC 47.4 11/5 16
MCI 72.7 5/4 9

The Centiloid Project’s FBB calibration dataset [10] in-
cludes the following 5 items: (1) a text description of all files,
(2) a demographic spreadsheet of all subjects, (3) a spreadsheet
containing the SUVr and Centiloid scores of all subjects for
different reference regions, (4) a statistical analysis of the
SUVr and Centiloid scores (mean, standard deviation, and
covariance) for each age group, and (5) the raw DICOM T1-
sequenced MRI and FBB PET images for all subjects. GAAIN
also provides a .docx file outlining their PiB radiotracer.
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B. Software & Tools

SUVr-LW is a python 3.7-based [11] pipeline which uses
MRI and PET DICOM files for processing and analysis
resulting in the SUVr and centiloid scores of a subject. Figure
1 delineates the SUVr-LW overall flow as follows:

1) Preprocessing: The T1 MRI and FBB PET images
provided are in the raw DICOM file format that need to
be converted to the more compact NIftl file format. This
conversion is done via the popular dem2niix toolbox [12].

2) MRI Processing: FreeSurfer version 6.0 (FS6) [3] is
selected for its active support community and open-source
availability allowing for application within the python-based
SUVr-LW pipeline. The NIftl formatted T1 images are then
routed to FS6 to be processed using the recon — all command
which will segment the T1 MRIs according to a stored
atlas [13]. This will output the FS6 estimated volumetric
information for different regions of the brain.

3) PET Processing: The NIftl PET scans are matched
with their T1 NIftl counterparts and the pair of scans are
routed to the FSL toolbox [14] for co-registration with the
MRI T1 image. Co-registration is achieved using the flirt
command with the default settings, e.g. 12 degrees of freedom.
The segmented MRIs from Step 2 and the co-registered PET
images are used to extract the average intensity of individual
ROIs as per Formula 1:

Nror

ey

i=1
CTOl NROI

Where C,.,; is the average intensity of an ROI, K; represents
a voxel intensity, and Ny is the current ROI calculated. The
algorithm parses through all voxels in the PET scan using the
FS6 look-up table identifies the most relevant ROI using the x,
y, z coordinate of the current voxel. The sum of all intensities
for each ROI is stored and divided by the voxel volume of that
region yielding the average PET voxel intensity of the region.

4) SUVr Calculation: The SUVr calculation process uses
the PET image intensity which is then normalized by Formula
2:

Croi
SUV,0i = Bon; 2
where Bip; = é%/)v
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Where ID is the injected radio tracer dose and BW the
subject’s body weight [6]. The SUV quantifies the amount
of radiotracer absorbed by the relevant region of the brain.
However, since the SUVr, as seen in Formula 3, is needed to
compare these values across patient cohorts, an SUV must be
normalized to the Whole-Cerebellum (WC) [15].

SUV’I‘Oi
SUV,ef

There are many research applications where the purpose
of a neuroimaging pipeline is to quantify the incoming neu-
roimaging scans via volumetric data, SUVr, and centiloid
scores, in which can be calculated without the use of the
clinical data [16] [17] [18]. Conventionally a subject’s B;y,; is
utilized. However, using a mathematical derivation 4 of SUVr
formula, the Bj;,; is not necessary to the SUVr or Centiloid
score calculations. Instead, SUVr calculations would be reliant
on the PET intensity K;,; and the reference region used to
normalize it.

SUVT’TOZ' = (3)

CTOZ
SUVioi  Binj  Croi
SUV g = o100 = 2 700 4
Froi SUVref Cref Cref ( )
Binj

5) Centiloid Score Formula: To compare the FBB uptake
value to scans across different radiotracers, the global SUVr
can be scaled via specific conversion formulae to yield a
Centiloid Score [9]. The FBB tracer is scaled via Formula
5[19].

CLppp =153.4 x SUVrppp —154.9 ®)

6) Analysis: The statistical moments (i.e. mean, median,
standard deviation, covariance, and variance) and percent error
of the data sets are calculated. WC-normalized SUVrs from
GAAIN and SUVr-LW in the study are plotted against each
other and the linear regression is calculated for the whole
data and across the different age groups. GAAIN’s calibration
process recommends investigating the correlation among the
young control and elderly subject groups. An additional linear
regression analysis is also generated considering that the age
groups are not further discriminated by diagnostic criteria,
such as whether they are healthy controls (HC) or non-healthy
controls (NC).

III. RESULTS

A. Individual SUVr/Centiloid Score Comparison between Age
Groups

The WC-normalized SUVTr scores calculated by SUVr-LW
and provided by GAAIN are compared in a scatter plot to
produce Figure 2. A linear regression is plotted for each
age group. Overall, the data’s linear regression had a slope
of 0.97. While the elderly subject data is consistent across
both methodologies with a linear regression slope of 0.95,
the young control group has a slope of 0.54. This graph is
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replicated with the WC-normalizedd Centiloid Scores as seen
in Figure 3. The linear regression for all groups produced
a slope of 0.97, the elderly a slope of 0.95, and the young
controls a slope 0.54.
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Fig. 2. WC SUVr scatter plot with 1:1 and linear regression across Young
and Elderly age groups.
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B. Individual SUVr/Centiloid Score Comparison between Di-
agnostic Groups

The results are grouped by diagnostic criteria (HC / NC)
and a linear regression for each group is plotted as seen in
Figure 4. The HC group has a linear regression slope of 0.87
and the NC group a slope of 0.96.
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Fig. 4. WC SUVTr scatter plot with 1:1 and linear regression across diagnostic
groups health control (HC) and non-control (non-HC).

C. Histogram Analysis

The SUVr of both pipelines are plotted on overlaying
histograms to better visualize the overall shape and the dif-
ferences between both methods as seen in Figure 5, and the
kernel density estimation lines for each dataset were plotted
in Figure 6.

TABLE 11
SUVR STATISTICAL ANALYSIS

Age Group Method Mean Median StD Cov  Var
Elderly SUVr-LW 1.4 1.33 035 025 0.12
GAAIN 1.43 1.38 036 025 0.13
Young SUVr-LW 097 0.98 0.03  0.03 0
GAAIN 1.01 1.02 0.04 0.04 0

IV. CONCLUSION

Overall, the results suggest that there is a high correlation
between the GAAIN processed-results and the SUVr-LW
pipeline. In Figure 2, the scatter plot values of the individual
subject SUVrs initially appear to have significant variance.
However, upon further analysis, SUVR-LW’s overall results
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Fig. 6. Kernel Mean Density plot of SUVr for GAAIN and SUVR-LW.

remain consistent when compared with the GAAIN FBB PET
calibration dataset. The linear regression plots seen in Figure 2
and Figure 3 illsutrate the close correlation among the elderly
data group.

The strongest correlation of SUVrs between SUVr-LW
and GAAIN occurs within the elderly age group with a
linear regression slope of 0.97. In the multi-diagnostic linear
regression plot generated in Figure 4, SUVIr-LW exhibits a
high correlation with the GAAIN calibration dataset across
both diagnostic categories where the health controls’ linear
regression slope is 0.87 and 0.96 for the non-healthy controls.
The histogram from Figure 5 of the SUVr data indicate a
strong correlation by the general shape of both datasets is
relatively similar with a slight deviation explained by the
different softwares used. This visual analysis is confirmed
via statistical analysis where the mean percent difference for
elderly age group between the GAAIN and SUVr-LW 2.43%
and 3.57% for the young group.

A. Limitations

From Figure 2, the young age group’s linear regression
slope is 0.54 which implies poor correlation for this group.
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The inconsistency between the young control groups could
potentially be caused by the small sample size of 10 young
controls.

Additionally, it should be noted that both pipelines use
different software and methodologies with SUVr-LW using
FreeSurfer while the GAAIN pipeline employs the SPM
toolbox [4] for the MRI processing. These two softwares have
been shown to skew the MRI volumetric data in different
ways, such as enlarging white matter regions with respect to
the other [20]. As for the PET coregistration, SUVr-LW uses
FSL and GAAIN makes use of SPM. These differences can
cause discrepancies inherent to the tool being used and must
be considered when evaluating results from different pipelines.

B. Future Work

In future studies, a larger dataset should be used from
a prominent AD neurogimaging database such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [21].
Additionally, SUVr-LW should be evaluated using other radio-
tracers besides FBB, such as PiB, FDG, and AV45, to ensure
the consistency of the pipeline. Lastly, different reference
regions should be used for the SUVr to test the consistency
of SUVr-LW methodologies. Furthermore, the discrepancy
between the slope of the elderly population and young control
population should be further investigated to ascertain the
source of the inconsistent SUVTr values.

This study aims to serve as the beginning of investigative
studies on the stability and robustness of different SUVr
variables, such as determining the optimal K;,; PET value
and reference region used in normalization. This should in-
turn provide the most accurate and relevant information for
AD neuroimaging research.
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