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Abstract—Analyzing the hippocampus in the brain through
magnetic resonance imaging (MRI) plays a crucial role in
diagnosing and making treatment decisions for several neu-
rological diseases. Hippocampus atrophy is among the most
informative early diagnostic biomarkers of Alzheimer’s disease
(AD), yet its automatic segmentation is extremely difficult given
the anatomical structure of the brain and the lack of any contrast
in between its different regions. The gold standard remains
manual segmentation and the use of brain atlases. In this study,
we use a well-known image segmentation model, UNet++, and
introduce an attention mechanism called the Convolutional Block
Attention Module (CBAM) to the UNet++ model. This integrated
model improves the feature weights of our region of interest, and
hence increases the accuracy in segmenting the hippocampus.
Results show averages of 0.8715, 0.8107, 0.8872, and 0.9039 for
the metrics of Dice, Jaccard, Precision, and Recall, respectively.

Index Terms—Hippocampus segmentation, Alzheimer’s dis-
ease, MRI, UNet++, Attention Mechanism

I. INTRODUCTION

As society ages, Alzheimer’s disease (AD) will affect more
people and families. Projections indicate that by 2050, more
than 13.8 million people in the United States will have
dementia[1]. In addition, AD is irreversible and can cause se-
vere memory and behavioral problems.Therefore, early detec-
tion of AD and its initial stage, namely mild cognitive impair-
ment (MCI), and effective diagnosis and treatment planning,
especially using computer-assisted methods, have attracted a
lot of attention in recent years[2]. The studies[3][4] showed
that hippocampal volume is an essential quantitative indicator
that may be used as a biomarker for neurological diseases such
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as Alzheimer’s disease. Therefore, correct segmentation of this
region is critical to assess any subtle structural and volumetric
changes in the brain to diagnose early this disease.

In the medical field, doctors use MRI to describe the
internal structure and state of the brain to analyze brain
diseases. At present, artificial intelligence technology plays
an increasingly significant role in the field of medical image
processing. Therefore, creating a robust deep learning model
for image segmentation with great accuracy and efficiency
will significantly impact the treatment of Alzheimer’s disease.
Among them, UNet[5] performs well in image segmentation,
and UNet++[6] performs better as an improved version.

Our method introduces an attention mechanism in the
UNet++ network, and the model obtained after training
achieves satisfactory performance on the hippocampus seg-
mentation task in MRI in comparison to Unet and Unet++
without the attention mechanism.

II. METHODOLOGY

In this section, the methodology proposed for the neural
network architecture is expressed visually through Fig. 1. What
follows is a retrospective on the UNet++ with attention mecha-
nism (CBAM) and the loss function used for our experiments.

A. UNET++ with CBAM

Based on the traditional UNet encoding and decoding U-
shaped structure, UNet++ introduces a series of convolutional
blocks that are used to bridge the semantic gap between
the corresponding feature maps of encoding and decoding
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Fig. 1. Network structure of our UNet++ implementation with CBAM

in UNet before feature fusion. For example, in Fig. 1, the
semantic difference between X%0 and X123 is filled by the
convolutional blocks between them. The black nodes and lines
in Fig. 1 represent the original UNet network. Its structure
mainly includes the encoding part and the decoding part. First,
the encoding part is formed by the arrows pointing downward
starting from X% on the left. In this part, X% is obtained
by a series of down-sampling from X%°. Then starting from
X490, the decoding part formed by the upward arrows on the
right is completed after a series of up-sampling operations.

The inner yellow and green parts are the added parts that
make up UNet++. For example, the yellow node X2 is
obtained from X2 and X3, Node X after up-sampling
is concatenated with X2 to serve as input data of X?21!.
Similarly for X%9 and X132, with X123 after up-sampling
being concatenated with X %0 to serve as input data of X4
in UNet. But the features of X%° have a semantic gap with
the features of X1 after going through the U shape. UNet++
introduces a series of intermediate nodes between X%° and
X113 to make up for this difference. In UNet++, X3 after
up-sampling is concatenated with X0, X01 X0.2 and X3
as the input data of X%, Therefore, the semantic gap between
the feature maps of X% and X! is bridged.

We introduce the attention mechanism model CBAM, Con-
volutional Block Attention Module[7], to enhance the feature
map and improve semantic segmentation accuracy. The CBAM
model enables the network to quickly locate the ROI in the
feature map, which is then analyzed in detail. Due to the small
size of our images, we only introduced CBAM before the
final convolution operation in decoding. First, the feature map
generated by X is processed by CBAM. Then a convolution
operation is performed to obtain the output result.
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B. Loss Functions

The loss function used for our architecture is the
BCEDiceLoss function. This loss function is a combination of
the Binary Cross Entropy (BCE) and the Dice Loss function.
This combination overcomes the shortcomings that comes with
both loss functions when used separately, so as to consolidate
the benefits of the class imbalance (to deal with imbalanced
class distributions) from the Dice Loss function and smooth
curve (avoiding discontinuities and outliers) from the BCE
function.

BCFEDiceLoss = BCFE + DiceLoss (1)

The BCE loss function determines the difference between
two probability distributions. The BCE can be very useful for
classification tasks that are binary in nature (i.e., two choices).
In this particular endeavor, image segmentation is pixel-level
classification, with 1s and Os as outcomes tomean object and
background or vice versa. So this loss function would work
well for the proposed neural network architecture. To deal
with these 0’s and 1’s outcomes or outputs, the Binary Cross-
Entropy is defined as follows:

—(ylog(y) + (1 —y)log(1 = 7)) ()

where y represents the true value, and 7y represents the
predicted outcome.

The dice coefficient is a reproducible validation metric that
looks at the spatial overlap index. It indicates whether two
segmented results are overlapping or not using a range from 0
to 1. Eventually, it was implemented as a loss function called
the Dice Loss function[8] as defined below:

gyt
y+y+1

A~

Lece(y,7)

DL(y,y) =1 3
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In this function, one is added in both the numerator and the
denominator of the fraction part so we can make sure that the
function is defined in the edge case scenarios, for example,
when y = p = 0[9].

III. EXPERIMENTS & RESULTS
A. Dataset

In this study, the data used for training our segmenta-
tion model were obtained from the Medical Segmentation
Decathlon Challenge[10]. The MRI provided by the dataset
is T1-weighted. The ROIs were subdivided into the anterior
and posterior parts of the hippocampus. Therefore, in the
label image corresponding to MRI, there are two types of
label values. In our experiments, we processed the label
data by merging the anterior and posterior parts, considering
them as the entire hippocampus. There were 260 brain MRIs
available for this study. They were divided into 156(60%), 52
(20%), and 52(20%) MRISs for training, validation, and testing,
respectively.

B. Evaluation Metrics

To quantitatively evaluate the proposed method and compare
the performance with others, we used four standard metrics in
this study. First, we use the Mean Dice Similarity Coefficient
(DSC) to measure overlaps between the ground truth label A4,
and the predicted label A,

“4)

" Ay, N Ay
DSC =2 e Parl
SC=2X D 14, T4 Ao

Jaccard Similarity Coefficient (JSC) is also called intersection
over union (IoU) coefficient, that is the intersection of A,
and A,, divided by their union as expressed in (5) yields a
similarity measure between A, and A,,.

=1

[Ap, |+ [Ag;| = [Ap, N Ag,|
Precision Index is the intersection between A, and A, over
ground truth label A,.
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"L A, N A,
Precision Index = Z M

i=1

(6)

|Ag.
Recall Index is the intersection between A, and A,, labels over
predicted label A,,.
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C. Results and Analysis

We conducted three different experiments to assess the
model’s performance. In each experiment, we trained the
model three times to obtain an average of the metric data.
All architecture models were trained with the same dataset.
In the first experiment, we used the base architecture model
UNet without the CBAM. Next, we used UNet++ without the
CBAM. Finally, we used both the UNet++ and the CBAM. The
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four metrics of DSC, JSC, Precision Index, and Recall Index
were used to evaluate the performance of each architecture.
The average evaluation scores of the three networks are shown
in Table 1. We can see that the values of the four evaluation
indicators of the proposed method are all better than the other
two network models. The comparisons of the segmentation
results among the three models are shown in Fig. 2. The
images in Fig. 2 are from the test set, showing examples of
two different patients for visual appreciation.

The results of the experiments show that the proposed
method which integrates Unet++ with attention mechanism
achieves the best results in comparison when Unet and Unet++
are used alone. From the results shown in Table 1, the proposed
integrated method outperforms the other two networks on
average on the brain MRI dataset.

TABLE I

METRICS RESULTS
CBAM  Exper. Dice Jaccard Prec. Recall
UNet No 1 0.8687  0.8004  0.8822  0.8962
2 0.8703  0.8017  0.8819  0.8982
3 0.8668  0.8028  0.8812  0.9003
avg. 0.8686 0.8016  0.8818  0.8982
UNet++ No 1 0.8708  0.8042  0.8779  0.9054
2 0.8716  0.8050  0.8852  0.8989
3 0.8666  0.8054  0.8868 0.8976
avg. 0.8697 0.8049  0.8833  0.9006
UNet++ Yes 1 0.8714  0.8105  0.8849  0.9061
Proposed 2 0.8699  0.8108  0.8885  0.9025
Method 3 0.8731 0.8109  0.8883  0.9030
avg. 0.8715 0.8107 0.8872 0.9039

IV. CONCLUSION

Our goal in this study is to automatically segment the
hippocampus using a labeled MRI dataset. The deep learning
method as proposed is based on UNet++ with the inclusion
of an attention mechanism. We conducted experiments on
the brain MRI dataset for hippocampus segmentation. We
achieved better performance compared to the two previous net-
works for image segmentation, demonstrating the effectiveness
of our proposed method. Furthermore, our experimental results
show that the attention mechanism has had an impact on the
Convolutional Neural Network, improving the performance
of processing image pixel details. As with the general per-
formance of CNNs for various image processing, we predict
that in addition to brain MRI, other imaging modalities such
as arterial spin labelling (ASL), diffusion tensor imaging
(DTI), HighResHippocampus, susceptibility weighted imaging
(SWI), and T2Flair, to mention a few, could be co-registered
to the T1 weighted MRIs to enhance the prospects for a
more accurate automated segmentation that could be more
contextual through a multimodal imaging process.

Moreover, to better appreciate the results summarized in
Table 1, the study reported in [11] provides all the evidence we
need in the challenge faced when segmenting brain regions in
MR images. Interestingly, the authors of this study show that
even when there is very high agreement among four expert
tracers (pairwise Jaccard indices 0.82-0.87), the volumetric
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Fig. 2. (a) Input MRI (b) Result of UNet segmentation. (c) Result of UNet++ segmentation. (d) Segmentation result of our method. (e) Ground truth.
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results among the four expert tracers obtained using the HarP
(Hierarchical Attention Oriented Region-Based Processing)
benchmark dataset consisting of 135 MRIs still showed a
mean volume difference of 9% between them with a standard
deviation of 7%.
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