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Abstract—Analyzing the hippocampus in the brain through
magnetic resonance imaging (MRI) plays a crucial role in
diagnosing and making treatment decisions for several neu-
rological diseases. Hippocampus atrophy is among the most
informative early diagnostic biomarkers of Alzheimer’s disease
(AD), yet its automatic segmentation is extremely difficult given
the anatomical structure of the brain and the lack of any contrast
in between its different regions. The gold standard remains
manual segmentation and the use of brain atlases. In this study,
we use a well-known image segmentation model, UNet++, and
introduce an attention mechanism called the Convolutional Block
Attention Module (CBAM) to the UNet++ model. This integrated
model improves the feature weights of our region of interest, and
hence increases the accuracy in segmenting the hippocampus.
Results show averages of 0.8715, 0.8107, 0.8872, and 0.9039 for
the metrics of Dice, Jaccard, Precision, and Recall, respectively.

Index Terms—Hippocampus segmentation, Alzheimer’s dis-
ease, MRI, UNet++, Attention Mechanism

I. INTRODUCTION

As society ages, Alzheimer’s disease (AD) will affect more

people and families. Projections indicate that by 2050, more

than 13.8 million people in the United States will have

dementia[1]. In addition, AD is irreversible and can cause se-

vere memory and behavioral problems.Therefore, early detec-

tion of AD and its initial stage, namely mild cognitive impair-

ment (MCI), and effective diagnosis and treatment planning,

especially using computer-assisted methods, have attracted a

lot of attention in recent years[2]. The studies[3][4] showed

that hippocampal volume is an essential quantitative indicator

that may be used as a biomarker for neurological diseases such

as Alzheimer’s disease. Therefore, correct segmentation of this

region is critical to assess any subtle structural and volumetric

changes in the brain to diagnose early this disease.

In the medical field, doctors use MRI to describe the

internal structure and state of the brain to analyze brain

diseases. At present, artificial intelligence technology plays

an increasingly significant role in the field of medical image

processing. Therefore, creating a robust deep learning model

for image segmentation with great accuracy and efficiency

will significantly impact the treatment of Alzheimer’s disease.

Among them, UNet[5] performs well in image segmentation,

and UNet++[6] performs better as an improved version.

Our method introduces an attention mechanism in the

UNet++ network, and the model obtained after training

achieves satisfactory performance on the hippocampus seg-

mentation task in MRI in comparison to Unet and Unet++

without the attention mechanism.

II. METHODOLOGY

In this section, the methodology proposed for the neural

network architecture is expressed visually through Fig. 1. What

follows is a retrospective on the UNet++ with attention mecha-

nism (CBAM) and the loss function used for our experiments.

A. UNET++ with CBAM

Based on the traditional UNet encoding and decoding U-

shaped structure, UNet++ introduces a series of convolutional

blocks that are used to bridge the semantic gap between

the corresponding feature maps of encoding and decoding
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Fig. 1. Network structure of our UNet++ implementation with CBAM

in UNet before feature fusion. For example, in Fig. 1, the

semantic difference between X0,0 and X1,3 is filled by the

convolutional blocks between them. The black nodes and lines

in Fig. 1 represent the original UNet network. Its structure

mainly includes the encoding part and the decoding part. First,

the encoding part is formed by the arrows pointing downward

starting from X0,0 on the left. In this part, X4,0 is obtained

by a series of down-sampling from X0,0. Then starting from

X4,0, the decoding part formed by the upward arrows on the

right is completed after a series of up-sampling operations.

The inner yellow and green parts are the added parts that

make up UNet++. For example, the yellow node X2,1 is

obtained from X2,0 and X3,0. Node X3,0 after up-sampling

is concatenated with X2,0 to serve as input data of X2,1.

Similarly for X0,0 and X1,3, with X1,3 after up-sampling

being concatenated with X0,0 to serve as input data of X0,4

in UNet. But the features of X0,0 have a semantic gap with

the features of X1,3 after going through the U shape. UNet++

introduces a series of intermediate nodes between X0,0 and

X1,3 to make up for this difference. In UNet++, X1,3 after

up-sampling is concatenated with X0,0, X0,1, X0,2 and X0,3

as the input data of X0,4. Therefore, the semantic gap between

the feature maps of X0,0 and X1,3 is bridged.

We introduce the attention mechanism model CBAM, Con-

volutional Block Attention Module[7], to enhance the feature

map and improve semantic segmentation accuracy. The CBAM

model enables the network to quickly locate the ROI in the

feature map, which is then analyzed in detail. Due to the small

size of our images, we only introduced CBAM before the

final convolution operation in decoding. First, the feature map

generated by X0,4 is processed by CBAM. Then a convolution

operation is performed to obtain the output result.

B. Loss Functions

The loss function used for our architecture is the

BCEDiceLoss function. This loss function is a combination of

the Binary Cross Entropy (BCE) and the Dice Loss function.

This combination overcomes the shortcomings that comes with

both loss functions when used separately, so as to consolidate

the benefits of the class imbalance (to deal with imbalanced

class distributions) from the Dice Loss function and smooth

curve (avoiding discontinuities and outliers) from the BCE

function.

BCEDiceLoss = BCE +DiceLoss (1)

The BCE loss function determines the difference between

two probability distributions. The BCE can be very useful for

classification tasks that are binary in nature (i.e., two choices).

In this particular endeavor, image segmentation is pixel-level

classification, with 1s and 0s as outcomes tomean object and

background or vice versa. So this loss function would work

well for the proposed neural network architecture. To deal

with these 0’s and 1’s outcomes or outputs, the Binary Cross-

Entropy is defined as follows:

LBCE(y, ŷ) = −(ylog(ŷ) + (1− y)log(1− ŷ)) (2)

where y represents the true value, and ŷ represents the

predicted outcome.

The dice coefficient is a reproducible validation metric that

looks at the spatial overlap index. It indicates whether two

segmented results are overlapping or not using a range from 0

to 1. Eventually, it was implemented as a loss function called

the Dice Loss function[8] as defined below:

DL(y, ŷ) = 1− 2yŷ + 1

y + ŷ + 1
(3)

1531

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 06,2023 at 03:40:01 UTC from IEEE Xplore.  Restrictions apply. 



In this function, one is added in both the numerator and the

denominator of the fraction part so we can make sure that the

function is defined in the edge case scenarios, for example,

when y = p̂ = 0[9].

III. EXPERIMENTS & RESULTS

A. Dataset

In this study, the data used for training our segmenta-

tion model were obtained from the Medical Segmentation

Decathlon Challenge[10]. The MRI provided by the dataset

is T1-weighted. The ROIs were subdivided into the anterior

and posterior parts of the hippocampus. Therefore, in the

label image corresponding to MRI, there are two types of

label values. In our experiments, we processed the label

data by merging the anterior and posterior parts, considering

them as the entire hippocampus. There were 260 brain MRIs

available for this study. They were divided into 156(60%), 52

(20%), and 52(20%) MRIs for training, validation, and testing,

respectively.

B. Evaluation Metrics

To quantitatively evaluate the proposed method and compare

the performance with others, we used four standard metrics in

this study. First, we use the Mean Dice Similarity Coefficient

(DSC) to measure overlaps between the ground truth label Ag

and the predicted label Ap.

DSC = 2×
n∑

i=1

|Api ∩Agi |
|Api

|+ |Agi |
(4)

Jaccard Similarity Coefficient (JSC) is also called intersection

over union (IoU) coefficient, that is the intersection of Ag

and Ap, divided by their union as expressed in (5) yields a

similarity measure between Ag and Ap.

JSC =
n∑

i=1

|Api
∩Agi |

|Api
|+ |Agi | − |Api

∩Agi |
(5)

Precision Index is the intersection between Ag and Ap over

ground truth label Ag .

Precision Index =

n∑
i=1

|Api
∩Agi |

|Agi |
(6)

Recall Index is the intersection between Ag and Ap labels over

predicted label Ap.

Recall Index =
n∑

i=1

|Api ∩Agi |
|Api

| (7)

C. Results and Analysis

We conducted three different experiments to assess the

model’s performance. In each experiment, we trained the

model three times to obtain an average of the metric data.

All architecture models were trained with the same dataset.

In the first experiment, we used the base architecture model

UNet without the CBAM. Next, we used UNet++ without the

CBAM. Finally, we used both the UNet++ and the CBAM. The

four metrics of DSC, JSC, Precision Index, and Recall Index

were used to evaluate the performance of each architecture.

The average evaluation scores of the three networks are shown

in Table 1. We can see that the values of the four evaluation

indicators of the proposed method are all better than the other

two network models. The comparisons of the segmentation

results among the three models are shown in Fig. 2. The

images in Fig. 2 are from the test set, showing examples of

two different patients for visual appreciation.

The results of the experiments show that the proposed

method which integrates Unet++ with attention mechanism

achieves the best results in comparison when Unet and Unet++

are used alone. From the results shown in Table 1, the proposed

integrated method outperforms the other two networks on

average on the brain MRI dataset.

TABLE I
METRICS RESULTS

CBAM Exper. Dice Jaccard Prec. Recall
UNet No 1 0.8687 0.8004 0.8822 0.8962

2 0.8703 0.8017 0.8819 0.8982
3 0.8668 0.8028 0.8812 0.9003

avg. 0.8686 0.8016 0.8818 0.8982
UNet++ No 1 0.8708 0.8042 0.8779 0.9054

2 0.8716 0.8050 0.8852 0.8989
3 0.8666 0.8054 0.8868 0.8976

avg. 0.8697 0.8049 0.8833 0.9006
UNet++ Yes 1 0.8714 0.8105 0.8849 0.9061
Proposed 2 0.8699 0.8108 0.8885 0.9025
Method 3 0.8731 0.8109 0.8883 0.9030

avg. 0.8715 0.8107 0.8872 0.9039

IV. CONCLUSION

Our goal in this study is to automatically segment the

hippocampus using a labeled MRI dataset. The deep learning

method as proposed is based on UNet++ with the inclusion

of an attention mechanism. We conducted experiments on

the brain MRI dataset for hippocampus segmentation. We

achieved better performance compared to the two previous net-

works for image segmentation, demonstrating the effectiveness

of our proposed method. Furthermore, our experimental results

show that the attention mechanism has had an impact on the

Convolutional Neural Network, improving the performance

of processing image pixel details. As with the general per-

formance of CNNs for various image processing, we predict

that in addition to brain MRI, other imaging modalities such

as arterial spin labelling (ASL), diffusion tensor imaging

(DTI), HighResHippocampus, susceptibility weighted imaging

(SWI), and T2Flair, to mention a few, could be co-registered

to the T1 weighted MRIs to enhance the prospects for a

more accurate automated segmentation that could be more

contextual through a multimodal imaging process.

Moreover, to better appreciate the results summarized in

Table 1, the study reported in [11] provides all the evidence we

need in the challenge faced when segmenting brain regions in

MR images. Interestingly, the authors of this study show that

even when there is very high agreement among four expert

tracers (pairwise Jaccard indices 0.82-0.87), the volumetric
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Fig. 2. (a) Input MRI. (b) Result of UNet segmentation. (c) Result of UNet++ segmentation. (d) Segmentation result of our method. (e) Ground truth.
(f) Superimposition of the ground truth and our model’s segmentation. The yellow represents the pixels where our model matched correctly the ground truth.
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results among the four expert tracers obtained using the HarP

(Hierarchical Attention Oriented Region-Based Processing)

benchmark dataset consisting of 135 MRIs still showed a

mean volume difference of 9% between them with a standard

deviation of 7%.
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