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Abstract. We address the problem of designing a distributed algorithm
for two robots that sketches the boundary of an unknown shape. Criti-
cally, we assume a certain amount of delay in how quickly our robots can
react to external feedback. In particular, when a robot moves, it commits
to move along path of length at least λ, or turn an amount of radians
at least λ for some positive λ ≤ 1/26, that is normalized based on a
unit diameter shape. Then, our algorithm outputs a polygon that is an
ϵ-sketch, for ϵ = 8

√
λ, in the sense that every point on the shape bound-

ary is within distance ϵ of the output polygon. Moreover, our costs are
asymptotically optimal in two key criteria for the robots: total distance
travelled and total amount of rotation.
Additionally, we implement our algorithm, and illustrate its output on
some specific shapes.

Keywords: Boundary Sketch · Robotics · Drones · Distributed Algo-
rithms · Euclidean Plane.

1 Introduction

What if a robot cannot react instantaneously? In particular, suppose a robot
alternates between (1) analyzing past sensor data in order to plan motion of
some minimum amount; and (2) executing that plan and gathering new data.
Thus, some small, but finite time elapses between first sensing data; and then
planning motion.

Now imagine we want such robots to traverse the boundary of an unknown
shape in the Euclidean plane. The robots know nothing about the shape in ad-
vance, and can only gather local information as they traverse the shape bound-
ary. If the boundary is a continuous curve, efficiently tracing the exact boundary
seems challenging. Instead, our goal is to obtain an ϵ-sketch: a traversal curve
with the property that every point in the actual boundary is within distance ϵ of
some point of the sketch; ϵ will be related to the parameter giving the minimum
amount a robot can move.

Finally, we want to obtain this ϵ-sketch “efficiently”. Unfortunately, for most
efficiency measures like time or energy usage, cost is a complicated function of

†This work is supported by the National Science Foundation grant IIS 2024520.



2 Varsha Dani, Abir Islam, and Jared Saia

the path travelled, since it must account for both angular and linear momentum.
This makes it hard to devise an algorithm with provable asymptotic bounds.
Instead, prior work generally either provably optimizes at most one parameter
related to efficiency, such as amount turned [27], or distance travelled [22].

In this paper, we take a different approach. Our goal is a bicreteria: minimize
both (1) distance travelled, and (2) amount turned. Rather serendipitously, we
show that using 2 robots it is possible to asymptotically minimize both criteria.
This has broad implications for minimizing a large class of efficiency measures.
In particular, our algorithm is also asymptotically optimal for any efficiency
function that is polynomial in distance traveled and/or amount turned.

Novelty of Result. The novelty of our results is thus three-fold. First, we
handle non-zero robot reaction time and also non-instantaneous sensor mea-
surements. Thus, we improve over control-theoretic results which assume in-
stantaneous reaction time, and instantaneous and continual measurements of
quantities such as boundary gradient [8, 9, 15, 17], boundary distance [21, 20,
16, 10], or field measurements [29, 28, 26]. Second, we assume no a priori shape
knowledge. Thus we improve over “robotic coverage” results [4, 22, 27], which
assume a priori knowledge of the boundary. Finally, we asymptotically optimize
two key criteria: distance travelled and amount turned. Thus, we improve over
results [27, 22] that provably only optimize only one such criterion.

1.1 Problem Statement

We consider the problem of approximately traversing the boundary of an un-
known shape in the Euclidean plane, using two robots.

Problem Parameters. The diameter of the shape is normalized so that it is 1 unit.
Our model depends critically on a parameter λ < 1/26, which describes both
the “smoothness” of the shape boundary and the reaction time of the robots as
described below.

The Robots. We make the following assumptions about the two robots.

– Every time a robot moves, it must commit to travelling a path that has
distance of at least λ, or turning at least λ radians.

– At any point in time, each robot knows its location and whether it is inside
or outside the shape. The robots are both initially located a distance of at
most

√
λ from the shape boundary.

– When a robot crosses the shape boundary, it learns the gradient at the
crossing point. 3

– The robots can instantaneously communicate with each other.

3A robot can consider the last gradient encountered in any path of length λ, so
estimation of the gradient at the crossing can be computed efficiently (Details in Sec-
tion A.1)
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The Boundary. The boundary of the shape is a curvilinear polygon4, which in-
formally is a closed, non-intersecting loop consisting of a finite number of curves,
connected at vertices. Curvilinear polygons include all shapes with boundaries
whose gradients are continuous at all but a finite number of points; for example,
shapes defined by unions of Gaussians and polygons. They also seem to be the
most general shape for which the total rotation of the shape is well-defined.

We make the following additional assumptions about the shape boundary.

– The intersection of the boundary with any ball of a radius 4
√
λ centered on

a point of the boundary contains exactly one path component.4

– The vertices of the boundary are at least
√
λ distance apart from each other.

– The boundary is twice continuously differentiable except at the vertices.

Our Goal. Our goal is to use the robots to estimate the boundary in the form
of an ϵ-sketch, while minimizing both distance travelled and the amount turned
by the robots.

Main Result. Our main result is given in the following theorem.

Theorem 1. For any positive λ < 1/26, there exists an algorithm that uses
2 robots to compute an ϵ-sketch of the boundary, for ϵ = 8

√
λ. Moreover the

algorithm requires the robots to travel a total distance and rotate a total amount
that are both asymptotically optimal.

As as a corollary we can use this ϵ-sketch to estimate the area of the shape.

Corollary 1. Our algorithm can estimate the area of the shape up to an additive
error of O(ℓ

√
λ), where ℓ is the perimeter of the shape.

1.2 Technical Overview

We now give some intuition behind our algorithm and the proof of Theorem 1.

BOUNDARY-SKETCH Intuition. Our algorithm works by trying to ensure
a sandwich invariant : the robots are traveling in parallel lines on both sides of
the boundary. When a robot crosses the boundary, this invariant fails since both
robots are now on the same side of the shape. We want the robot that crossed
to go back to the other side of the shape in order to reestablish the sandwich
invariant. The subroutine CROSS-BOUNDARY performs this function.

The main idea in CROSS-BOUNDARY is to use the boundary gradient
learned at the crossing point, to guide the robot back to the other side of the
shape and reestablish the sandwich invariant. In CROSS-BOUNDARY, the
crossing robot successively takes small steps at a gradually increasing offset from
the gradient at the last crossing. The angular offset is in the direction (clockwise
or counterclockwise) of the shape boundary. Essentially the robot travels a regu-
lar polygon that approximates a small circle, until it crosses the boundary again.

4 These terms are formally defined in Section 3.1 in Definition 4 and Definition 6
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Fig. 1. Illustration of BOUNDARY-SKETCH and CROSS-BOUNDARY. Red curve
indicates the shape boundary, blue and green curves indicate the trajectory of the
robots that sandwich the boundary. Notice that upon crossing, a dotted blue line
(illustrating CROSS-BOUNDARY) indicates a change in direction and step length as
discussed in this section.

After the crossing, the robot reorients its direction so that both robots are mov-
ing in parallel lines the sandwich the boundary. See Figure 1. By repeatedly re-
establishing the sandwich invariant whenever it fails, BOUNDARY-SKETCH
progressively computes an ϵ-sketch of the boundary.

BOUNDARY-SKETCH Analysis. Our proof of correctness requires tools from
real analysis, differential geometry and topology. A main technical challenge is
the proof that BOUNDARY-SKETCH produces an ϵ sketch, for ϵ = 8

√
λ.

Key milestones in this proof include lemmas showing that the sketch exists; it
does not self-intersect; and that the sketch and the shape boundary are “close”.
We use proof by contradiction extensively to show these results. In particular,
we repeatedly construct balls of radius 4

√
λ that violate the path component

assumption unless our desired result holds.

Optimality of Distance Traversed. This part of the asymptotic analysis is rel-
atively straightforward. First, we claim when the sandwich invariant fails, the
robots at the end of CROSS-BOUNDARY 1) either cover Ω(

√
λ) distance of

the shape boundary or 2) traverse a small distance O(
√
λ) between successive

instances of Case 1 during a number of executions of CROSS-BOUNDARY.
This is proven in Lemma 12, which immediately shows that since the former Case
1 occurs at most O(ℓ/

√
λ) times, the robots traverse O(ℓ) distance to restore

the sandwich invariant.
Second, the robots take the shortest path when the sandwich invariant holds,

since they move in a straight line parallel to each other, they also traverse O(ℓ)
distance in this case. The optimality of distance traversed follows by combining
these two facts.

Optimality of Rotation. To prove bounds on rotation, we need to introduce
additional formal definitions in Section 3.1, and develop a few helper lemmas in
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Section 3.2. Our first main results is an application of Rolle’s Theorem to show
the existence, between any points x and y on the shape boundary, of a tangent
line somewhere on the boundary between these points that is parallel to the line
joining x and y (See Lemma 20). This result has multiple applications including
proving two key lemmas, Lemmas 5 and 14. These lemmas were proven via a
reduction from the problem for general shapes to shapes that are a polygon.
The case of a polygon is one that we can handle easily in the first few lemmas
in Sections 3.2 and 3.4.

Lemma 5 is our first key lemma about our unit-diameter shape. It states that
the perimeter of our shape is asymptotically bounded by the total “rotation”
in the boundary. In particular, it states that ℓ = O(ϕ), where ℓ is the shape
perimeter and ϕ is the boundary rotation, i.e. the total amount a single robot
would rotate if it could follow the shape boundary exactly.

The proof of Lemma 5, requires usage of the property of uniform continuity of
the curvature (a fact that we prove using continuity of the curvature along with
some topological properties) to split the curve into a finite number of segments,
whose endpoints we define to be vertices of a certain polygon. Next, to compare
the perimeter of the shape against the perimeter of this polygon, we borrow
a key result in differential geometry from [2] stated as Lemma 2. This lemma
from differential geometry compares the path length of a curve with bounded
curvature against the length of a line segment connecting two endpoints of that
curve, and shows that the former is bounded by a constant times the latter. The
other case of unbounded curvature is easy to handle from the definition of total
rotation in terms of curvature.

Finally, to compare the total rotation of the polygon against the total rotation
of the shape boundary, we recall Lemma 20, which says that the shape has at
least some point with a boundary gradient that is parallel to the respective side
of the polygon. Thus, the total rotation of the polygon is a lower bound on the
total rotation of the shape boundary. Thus, we conclude that the shape boundary
rotates at least as much as the constructed polygon boundary.

Lemma 14 is another key lemma for bounding the robot rotation. Lemma 14
bounds the number of times the robots make a turn of

√
λ radians during

CROSS-BOUNDARY. Once again, we consider the case where the shape
boundary between crossings is a polygon first, and then apply Lemma 20 to
derive the asymptotics for the general case. Next, we multiply this bound with
the rotation angle

√
λ to bound the overall rotation during all executions of

CROSS-BOUNDARY.
Lemma 5 handles an intermediate step where total rotation during CROSS-

BOUNDARY include the term ℓ and Lemma 14 handles the rest of the analysis
of CROSS-BOUNDARY. Together, these two lemmas prove the optimality of
rotation by the robots.

1.3 Related Work

Application Domains. Robot exploration of a shape is a long-standing prob-
lem, which has exploded in popularity recently with the advent of drones and
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other autonomous devices. Application domains are numerous, running the gamut
from surveillance of: forest fires [11, 13]; harmful algae blooms [18]; mosquito pop-
ulations [27, 31, 30]; oil spills [23, 12]; radiation leaks [6]; and volcanic emissions
[32].

Boundary Search. Our algorithm assumes that the robots are initially located
close to the boundary. The boundary search problem instead requires the robots
to actually find the boundary. Many algorithms for boundary search have been
proposed, techniques used include: random walk [6], spiral search [12], gradient
following [24], and finite difference approximation based on partial differential
equations [7].

Boundary Following. In boundary following, the goal is for the robots to tra-
verse the shape boundary, given that they all initially start close to the boundary.
This is the problem addressed in our paper. Many control-theoretic algorithms
for boundary following offer provable guarantees that their output converges to
the exact boundary under certain assumptions on the boundary shape. How-
ever, to the best of our knowledge all such results: (1) assume instantaneous and
continuous tracking of some quantity such as boundary gradient or distance to
boundary; (2) assume infinitesimally accurate control of the robots; and (3) do
not give asymptotic bounds on robot travel time or energy expenditure.

Many such prior results use instantaneous and continuous gradient measure-
ments to control the robots tracking the boundary [8, 9, 15, 17]. Some prior re-
sults depend on instantaneous and continuous measurements of other quantities;
for example, distance from the boundary [21, 20, 16, 10]; or field measurements
defining the shape [29, 28, 26].

Robotic Coverage. In the robotic coverage problem, a robot must visit within
some given distance of every point in a target shape. Many variants of this
problem are known to be NP-Hard, even with a single robot. Thus, many result
either use approximation algorithms or heuristics to optimize some criteria such
as distance travelled [22] or amount turned [27]. See [4] for a general overview of
results. The problem has been extended to multiple robots [5, 14]. Our problem
is both easier and harder than the typical robotic coverage problem. It is easier
in that we only seek to cover a 1-dimensional boundary, and not a 2-dimensional
shape. It is harder in that it is online: no information about the shape is known
in advance.

2 Our Algorithm: BOUNDARY-SKETCH

Our algorithm BOUNDARY-SKETCH is described in Algorithm 3. It uses a
helper algorithm, CROSS-BOUNDARY, that is described in Algorithm 2. We
assume an auxiliary function incomplete that the robots are capable of, that
checks if they have completed a tour around the shape. In addition, by gradient
in this algorithm, we mean the direction of the gradient vector.

For simplicity of presentation our algorithms are described in a central-
ized manner, without explicit communication. To parallelize our algorithms, the
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robots must sometimes send messages. In particular, if a robot crosses the bound-
ary during some step, it needs to send that information to the other robot.

Fig. 2. Figure illustrating a sample high level execution of BOUNDARY-SKETCH.
The red curve indicates the shape boundary and the blue, green curves indicate the
path of the robots in progression.

Algorithm 1 Ensures the robots are at distance
√
λ from each other and are

oriented in the same direction. Additional discussion with illustrative diagrams
of this synchronization is in Appendix D.

1: procedure SYNCHRONIZE(D1, D2)
2: Path← the polyline path of D2 from last crossing of BOUNDARY-SKETCH

with the shape till current position.
3: ∇ ← the gradient at the last boundary crossing for D2.
4: L1 ← the line in the direction of ∇ through D1’s position.
5: L2 ← the line in the direction of ∇ through D2’s position.
6: if L1 crosses Path then
7: Move D2 in its current direction until it is

√
λ distance away from L1.

Change direction to ∇ and take a single step of length λ.
8: Move D1 along L1 until it is

√
λ away from D2.

9: else
10: Move D1 in its current direction until it is

√
λ distance away from L2.

Change direction to ∇ and move until the distance from D2 is
√
λ.
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Algorithm 2 Reestablishes “Sandwich” Invariant

1: procedure CROSS-BOUNDARY(D1, D2, α)
2: p← last position of D1 before crossing
3: R ← the vertices of the regular polygon including D1’s position with exterior

angle
√
λ and the edge beginning at D1’s position facing the direction of ∇+ α.

4: P ← the vertices of the convex hull of R ∪ {p}. For all i : 0 ≤ i ≤ |P | − 1, let
Pi be the i-th vertex in this convex hull, ordered such that P0 = p and P1 = D1’s
current position.

5: ∇ ← gradient at the last boundary crossing of D1

6: i← 1.
7: while neither robot has crossed the boundary AND i+ 1 < |P | do
8: D1 moves to Pi+1.
9: D2 moves to closest point from it that is

√
λ distance away from Pi and

orthogonal to ∇+ iα
10: i← i+ 1

11: while neither robot has crossed the boundary do
12: D1 moves towards point p taking steps of length λ.
13: D2 moves to closest point from it that is

√
λ distance away from D1 and

orthogonal to D1’s direction.

14: if D2 crossed the boundary then
15: SYNCHRONIZE (D1, D2)
16: else
17: ∇ ← the current direction of D1.

Algorithm 3 Initially, robots are
√
λ apart; one inside and one outside

1: procedure BOUNDARY-SKETCH(λ) ▷
2: D1, D2 ← the two robots
3: ∇ ← boundary gradient at point of crossing with line segment between D1 and D2

4: α←
√
λ

5: while Incomplete(D1,D2) do
6: if inside (D1) XOR inside (D2) then
7: D1 and D2 both move λ distance in the direction of ∇
8: if inside (D1) = false and inside (D2) = false then
9: α← −

√
λ

10: CROSS-BOUNDARY(D1, D2, α)
11: elseif inside (D1) = true and inside (D2) = true
12: α←

√
λ

13: CROSS-BOUNDARY (D2, D1, α)
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3 Analysis

In this section, we give the proof of Theorem 1. We divide the analysis into
four sections. First, we formalize the notions of curve, path length and total
rotations of a curve in our problem model. In addition, we formally state in the
language of topology what path and path component means. The second section
establishes some helper lemmas in computational geometry that will be applied
in the later sections. Next, we prove that BOUNDARY-SKETCH terminates
and outputs an ϵ-sketch of γ, where ϵ = 8

√
λ. Finally, we provide asymptotic

analysis of BOUNDARY-SKETCH.

3.1 Formal Problem Model

The shape is represented by a curve in the Euclidean space. We make use of
several definitions, repeated below, about this curve from [19].

Definition 1. A point γ(t) of a parameterized curve γ is called a regular point
if γ′(t) ̸= 0; otherwise γ(t) is a singular point of γ. A curve is regular if all of
its points are regular.

Definition 2. A curve γ : [a, b] → R2 is called a unit-speed curve if for all
t ∈ [a, b], |γ′(t)| = 1.

The next claim which is Proposition 1.3.6 from [19] relates unit-speed
parametrization of curves with regular curves.

Lemma 1. A parametrized curve has a unit-speed reparametrization if and only
if it is regular.

In what follows, we assume γ is regular unless otherwise stated.

Definition 3. If γ is a unit-speed curve with parameter t, its curvature κ(t) at
the point γ(t) is defined to be |γ′′(t)|.

Next we generalize the notion of curve by allowing the possibility of corners.
More precisely, we use the definition 13.2.1 from [19].

Definition 4. A curvilinear polygon in R2 is a continuous map γ : R → R2

such that, for some real number T and some values 0 = t0 < t1 < ... < tn = T :

1. γ(t) = γ(t′) if and only if t′ − t is an integer multiple of T .
2. γ is smooth on each of the open intervals (t0, t1), (t1, t2), ..., (tn−1, tn).
3. The one-sided derivatives,

γ′−(ti) = lim
t→t−i

γ(t)− γ(ti)

t− ti
, γ′+(ti) = lim

t→t+i

γ(t)− γ(ti)

t− ti

exist for all i = 1, ..., n and are non-zero and not parallel.
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The points γ(ti) are called the vertices of the curvilinear polygon γ, and the
segments of it corresponding to the open intervals (ti−1, ti) are called its edges.
Here T is called the period of γ and if the curve has unit-speed i.e. |γ′(t)| = 1
for all t ∈ R, then the length of γ, denoted ℓ(γ) is T , which is the sum of the
length of its edges.

Definition 5. Given a curvilinear polygon γ with vertices at t0, t1, ..., tn ∈ [0, T ]
where T is its period , let θ±i be the angles between γ′±(ti) and X-axis. Define
δi = θ+i − θ−i to be the external angle at the vertex γ(ti). The total rotation of γ
over the entire period T , denoted ϕ, is defined to be,

ϕ =
n∑

i=1

δi +

∫ ℓ(γ)

0

|κ(t)|dt

where we set the speed of γ to be the unit speed.

Next, we state a couple of definitions from the Topology textbook of Munkres
[3].

Definition 6. Given points x and y of a topological space X, a path in X from
x to y is a continuous map f : [a, b] → X of some closed interval in the real
line into X, such that f(a) = x and f(b) = y. Furthermore, x, y ∈ X are said
to be path connected if there is a path from x to y. In addition, define an
equivalence relation between pairs x, y ∈ X if there is a path in X from x to y.
The equivalence classes are called the path components of X.

Finally, we define ϵ-sketch.

Definition 7. For ϵ > 0 and a regular curvilinear polygon γ, we say a non self-
intersecting polygon P is an ϵ-sketch of γ if every point on γ lies at most an ϵ
distance away from P .

Next we begin the analysis with some helper lemmas, some of which are in
the Appendix B.

3.2 Helper Lemmas

We start with a lemma found in the following simplified form (p. 272) in [2].

Lemma 2. For every real number K > 0, any curve in R2 with curvature at
every point not greater than χ ∈ [0,K) is not longer than a circular arc of
curvature χ whose end points are opposite points of the circumference.

Lemma 3. Let γ : [a, b] → R2 be a regular curve and κ : [a, b] → R be the
curvature function of γ. If |κ(t)| ≤ 1/π for all t ∈ [a, b], then∫ b

t=a

|γ′(t)|dt ≤ π|γ(b)− γ(a)|/2
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Proof. Let A = γ(a), B = γ(b) and ρ = |γ(b) − γ(a)|. Now consider the circle
drawn from the midpoint of AB with radius ρ/2. Since the shape is bounded by
a unit square, ρ ≤

√
2. In addition, we have for all t ∈ [a, b], |κ(t)| ≤ 1/π ≤ 2/ρ.

Setting χ = 1/π,K = 2/ρ, we get by Lemma 2,∫ b

a

|γ′(t)|dt ≤ πρ/2 = π|γ(b)− γ(a)|/2

This completes the proof.

Next we recall a definition from real analysis.

Definition 8. A function f : X → Y with X ⊂ Rn and Y ⊂ Rm for n,m ∈ N
is called uniformly continuous on X if for every real number ϵ > 0, there exists
a natural number N such that for every x, y ∈ X,

|x− y| < 1/N =⇒ |f(x)− f(y)| < ϵ

We now state the following lemma that is a simplified form of Theorem 4.19
in [1].

Lemma 4. Let f : [a, b] → R be a continuous mapping with a, b ∈ R. Then f is
uniformly continuous on [a, b].

Lemma 5. Let γ be a curvilinear polygon in R2. Then ℓ(γ) is O(ϕ), where ϕ is
the total rotation of γ.

Proof. Partition into Segments:
Let γ be parametrized by its length, then its period T = ℓ. Suppose γ has m

vertices γ(d1), γ(d2), ..., γ(dm) where di ∈ [0, ℓ] for all i = 1, ...,m. We also set
dm+1 = d1.

Since [dj , dj+1] is closed and κ is continuous over [dj , dj+1], by Lemma 4, κ
is uniformly continuous over [dj , dj+1]. That means for all x, y ∈ [dj , dj+1] and
j ∈ [1,m] ∩ N, there exists n ∈ N such that,

|x− y| < (dj+1 − dj)/n =⇒ ||κ(x)| − |κ(y)|| ≤ |κ(x)− κ(y)| < 1/2π (1)

We now partition each [dj , dj+1] into at most n segments of the form [ak, bk]
where ak = (k − 1)δj/n, bk = kδj/n, δj = dj+1 − dj for k ∈ [1, n] ∩ N. Observe
that, by inequality 1 for each of these segments [ak, bk], either for all t ∈ [ak, bk],
|κ(t)| ≥ 1/2π or for all t ∈ [ak, bk], |κ(t)| ≤ 1/π. We denote these cases by cases
1, 2 in their respective order.

Finally, over the entire domain [0, T ] there are mn segments. Let these seg-
ments be indexed by i and let ℓi and ϕi indicate the perimeter length and the
angle turned by the shape in the i-th segment [ai, bi].
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Fig. 3. Figure illustrating the proof for Lemma 5, where ℓ(AB), ℓ(CD), ℓ(EF ) indicate
the length of the shape (in red color) between the respective endpoints. The black line
segments are the sides of the polygon construction and the dotted blue lines indicate
the tangents parallel to the respective polygon sides. Here Case 1 is represented by the
segments BC,DE,FA while Case 2 is represented by the segments AB,CD,EF .

Case 1:

Since for all t ∈ [ai, bi], |κ(t)| ≥ 1/2π then,

ϕi =

∫ bi

ai

|κ(t)|dt ≥
∫ bi

ai

1/2πdt

=⇒ ϕi ≥ 1/2πℓi

=⇒ ℓi ≤ 2πϕi

Case 2:

Next we handle the other case where the segment [ai, bi] has the property
that for all t ∈ [ai, bi], |κ(t)| ≤ 1/π.

Let P be a polygon consisting of vertices equal to the endpoints of each seg-
ment of the shape. For a fixed side of this polygon the endpoints are γ(ai), γ(bi).
Let ℓP be the perimeter length of P .

By Lemma 3, we have ℓi ≤ π|γ(bi)− γ(ai)|/2. Hence the total length of the
shape over all segments covered by these two cases is at most πℓP /2.

By Lemma 20, there exists a value c ∈ [ai, bi] such that γ′(c) is parallel to
γ(bi)− γ(ai).

Clearly then ϕ ≥ η where η is the sum of the exterior angles of P .

By Lemma 19, ℓP ≤ η. This means the length of the perimeter of the shape
over all the segments covered by this case is at most πϕ/2.

Conclusion:

Combining both cases gives ℓ(γ) ≤ 2πϕ i.e. ℓ(γ) = O(ϕ).
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3.3 Correctness of BOUNDARY-SKETCH

Let ζ1, ζ2 be the parametrized curves for the path of the robots D1 and D2

in BOUNDARY-SKETCH. Let ti ∈ [0, ℓ(γ)] such that γ(ti) is i-th point of
crossing of either robot with the boundary.

Lemma 6. The regular polygon constructed in the While loop of Algorithm 2
has diameter at most 2

√
λ.

Proof. During Step 10 or Step 13, the regular polygon has diameter at most
λ/ sin

√
λ. By the inequality sin(2x) ≥ x for x ∈ [0, π/4] and since 0 <

√
λ < π/4,

we have
λ/ sin

√
λ ≤ 2

√
λ

Lemma 7. Suppose Algorithm 2 is invoked after crossing the shape for the i-th
time. Then γ(ti+1) is at most 3

√
λ distance away from the nearest robot for all

invocations of Algorithm 2. In addition, |γ(ti)− γ(ti+1)| ≤ 3
√
λ and the nearest

robot traverses no more than 3
√
λ distance during the execution of Algorithm 2.

Proof. First we show that γ(ti+1) is at most 3
√
λ distance away for all invoca-

tions of Algorithm 2. If γ(ti+1) is on the boundary of the regular polygon, then
it is at most 2

√
λ distance away by Lemma 6. Otherwise by triangle inequality

it is at most, 2
√
λ+λ < 3

√
λ distance away, where the first term is the distance

from last visited vertex to the starting vertex of the polygon and the second
term is the distance from the starting vertex to γ(ti), which are bounded by the
diameter of the regular polygon and step length respectively.

Furthermore, following the argument above, |γ(ti)− γ(ti+1)| ≤ 3
√
λ and the

nearest robot traverses no more than 3
√
λ.

Lemma 8. During the While loop of Algorithm 3, BOUNDARY-SKETCH
maintains a distance of at most

√
λ between each of the robots and the shape

boundary throughout all executions of Step 7.

Proof. This is immediate from the assumption that the robots maintain a dis-
tance of

√
λ between them and that the shape is sandwiched there.

Lemma 9. BOUNDARY-SKETCH maintains a distance of at most 8
√
λ be-

tween the shape boundary and each of the robots.

Proof. By Lemma 8, throughout all executions of Step 7 inside the While loop
in Algorithm 3, every point of γ is at a distance of at most

√
λ from ζ1 and ζ2.

Suppose here Algorithm 2 is invoked after crossing the shape for the i-th
shape. We will show that over the interval [ti, ti+1], γ is always at most 7

√
λ

distance away from the nearest robot.
First by Lemma 7 γ(ti+1) is at most 3

√
λ distance away for all invocations

of Algorithm 2. In addition, |γ(ti)− γ(ti+1)| ≤ 3
√
λ.

Now define d(x) = |γ(ti+1)−γ(x)| for all x ∈ [ti, ti+1]. We claim that d(x) ≤
4
√
λ for all x ∈ [ti, ti+1]. If not, consider a ball B of radius 4

√
λ centered at

γ(ti+1). Observe that the path from γ(ti) to γ(ti+1) must be contained in B or
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else we will have two different sections that are disjoint inside this ball. This
contradicts our path component assumption.

That means we can get to γ(ti+1) first with at most 3
√
λ distance traversal

by Lemma 7 and then from γ(ti+1) to the respective point, which is at most
4
√
λ distance away by the above argument. Finally, noting that the robots are

apart by at most
√
λ distance and by triangle inequality, the lemma follows.

Lemma 10. ζ1, ζ2 have finite periods and therefore they intersect the shape
finitely many times.

Proof. Based on our assumption, BOUNDARY-SKETCH selects the direction
of the gradient to move away from the region the robots came from. Since the
length of γ is finite and the step length of the robots is at least λ, the lemma
follows.

Lemma 11. ζ1, ζ2 do not self-intersect over their respective periods.

Proof. We will prove this for ζ1, the proof is identical for ζ2.
Suppose there exists u, v ∈ [0, ℓ(ζ1)] such that ζ1(u) = ζ1(v) and u ̸= v.
Observe that, unless crossed γ is always on the same direction (clockwise or

counterclockwise) from D1 and opposite otherwise.
Without loss of generality, assume that γ was on the clockwise direction of

D1 at u. Note that ζ1(u) must be inside the shape or else it implies D1 went
back to the direction it came from. Let L be the interval of γ with distance at
most 2

√
λ from ζ1(u) on this direction. By Lemma 8, L is nonempty.

Now consider for v an interval R of γ that is on the counterclockwise direction
from D1 at u and that the distance of every point in R from ζ1(u) is at most
2
√
λ. By Lemma 8 R is nonempty.
Now consider the ball B centered at ζ1(u) with radius 2

√
λ. We now show

that the intersection of B with L and R are disjoint. If they are not disjoint,
they are path connected without crossing themselves, since the latter violates the
assumption that γ is a simple i.e. non self-intersecting curve.

If they are path connected, BOUNDARY-SKETCH crosses this path since
L and R are on different directions of ζ1(u). But since D1 upon crossing the
shape, chooses to go away from the direction it came from, it must be that R is
on the counterclockwise direction of ζ1(v), a contradiction.

Therefore L and R must be disjoint. Finally, we pick any point c ∈ L and
consider a ball B1 of radius 4

√
λ centered at c. Observe that, L and R can only

be connected inside this ball in one direction, otherwise it will imply the shape
has a bounding box of side length O(

√
λ), which contradicts our assumption

that the λ is scaled with respect to the diameter of the shape and is at most
1/26.

If L and R connects inside B1, consider the robot path going in the other
direction. We can extend L and R in this direction a distance of at most 8

√
λ

until we can construct another ball B2 where L and R do not connect. If this
construction is not possible, one of the robots must have crossed the boundary
and we can construct this ball B2 with radius 4

√
λ centered at that point of

crossing, but this contradicts our assumption on path component.
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Lemma 12. For each execution of Algorithm 1, the robots cover Ω(
√
λ) dis-

tance of the shape boundary. In addition, the distance traversed by the robots
between successive executions of Algorithm 1 and during executions of CROSS-
BOUNDARY is O(

√
λ).

Proof. The first claim follows immediately since the robot that crosses the
boundary changes from D1 to D2 and the robots are

√
λ distance apart from

each other.
Next, between successive executions of Algorithm 1, robot D1 may cross the

boundary at the end of CROSS-BOUNDARY. The total number of steps robot
D1 can take over this period cannot be more than 2π/

√
λ since at each step it

turns
√
λ and a total turn over a convex path is at most 2π. Since each step is

of length λ, the claim follows.

Lemma 13. ζ1, ζ2 are 8
√
λ-sketches of γ.

Proof. This follows immediately from Lemmas 9, 11 and Definition 7.

3.4 Asymptotic Analysis

By Lemma 10, BOUNDARY-SKETCH crosses the shape finitely many times.
Let m be the number of crossings and for i ≤ m, ϕi be the angle the shape
turns over [ti, ti+1] and define A = {1, 2, ...,m} and f : A→ N such that f(i) is
the number of iterations the While loop inside Algorithm 2 executes in between
the robots crossing the shape boundary for the i and i+ 1-th time. Some of the
lemmas analyzing the case of a polygon are in the Appendix C.

Lemma 14. If
√
λ ≤ ϕi ≤ π/8 for some positive integer i ≤ m, f(i) ≤

8ϕi/
√
λ+ ϕi−1/

√
λ+ 1.

Proof. The trivial case is where Algorithm 2 is not executed at all i.e. f(i) = 0.
Suppose there are j vertices of γ defined over [ti, ti+1]. Let these vertices be

indexed γ(ak) where ak ∈ (ti, ti+1) for all 1 ≤ k ≤ j. If j = 0, select a value
a1 = (ti+1 + ti)/2. In addition, let a0 = ti, aj+1 = ti+1.

By Lemma 20, for all 0 ≤ k ≤ j, there exists a ck ∈ (ak, ak+1) such that
γ′(ck) is parellel to the line segment joining γ(ak) and γ(ak+1). This means if we
consider a polygon P with j + 1 vertices being γ(ak) for 0 ≤ k ≤ j, the amount
P rotates is at most the amount γ rotates over [ti, ti+1].

If ϕ′i is the amount of rotation of P , then by Lemma 23,

f(i) ≤ 8ϕ′i/
√
λ+ ϕi−1/

√
λ+ 1 ≤ 8ϕi/

√
λ+ ϕi−1/

√
λ+ 1

Lemma 15. If π/8 ≥ ϕi ≥
√
λ, after resetting ∇ in lines 15 or 17 of Algorithm

2, the robots turn at most 8ϕi+ϕi−1+
√
λ as the algorithm continues to execute

Algorithm 3.

Proof. The angle the robot needs to turn to reorient itself with respect to the
boundary just crossed is at most 8ϕi + ϕi−1 +

√
λ, since the robot orientation

itself is no more off than 8ϕi + ϕi−1 +
√
λ by Lemma 14.
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Lemma 16. Let I be those indices such that,
√
λ ≤ ϕi ≤ π/8 for i ∈ I. Then

the total radians turned by the algorithm for the ϕi values indexed by I is O(ϕ).

Proof. Observe that,
∑

i∈I ϕi ≤ ϕ. In addition by Lemma 14 f(i) ≤ 8ϕi/
√
λ +

ϕi−1/
√
λ+1 and by Lemma 15 the angle turned after resetting ∇ in lines 15 or

17 in Algorithm 2 is at most 8ϕi + ϕi−1 +
√
λ.

Thus the total radians turned by the algorithm for the ϕi values indexed by
I is at most:

∑
i∈I

√
λf(i) + 8ϕi + ϕi−1 +

√
λ ≤

∑
i∈I

16ϕi + 2ϕi−1 +
√
λ = 16ϕ+ |I|

√
λ = O(ϕ)

where we note ϕi ≥
√
λ implies |I| = O(ϕ/

√
λ).

Theorem 2. The robots in BOUNDARY-SKETCH traverse a total distance
of O(ℓ).

Proof. During Step 7 of Algorithm 3, the robots take the shortest path and thus
the distance traversed is bounded by the shape perimeter. Hence overall the total
distance traversed during execution of Step 7 is O(ℓ).

Now each time Algorithm 1 is executed, the robots cover at least Ω(
√
λ)

distance of the shape boundary. This means Algorithm 1 is executed at most
O(ℓ/

√
λ) times. In addition, between successive executions of Algorithm 1 and

during executions of CROSS-BOUNDARY the robots traverse a distance at
most O(

√
λ) by Lemma 12.

Combining we have that ℓ(ζ1) and ℓ(ζ2) are both O(ℓ).

Theorem 3. The total rotation by the robots in BOUNDARY-SKETCH is
O(ϕ).

Proof. The number of indices i ≤ m such that ϕi ≤
√
λ is O(ℓ/λ). For each of

these indices, the robots rotate O(λ) angle in CROSS-BOUNDARY by Lemma
21. Since ℓ = O(ϕ), for these indices the robots rotate O(ϕ).

Now, if π/8 ≥ ϕi ≥
√
λ, by Lemma 16, the robots rotate a total of O(ϕ)

radians.
If ϕi >

π
8 during execution of Algorithm 2, BOUNDARY-SKETCH turns

at most 2π. Thus, the radians turned is bounded by 16ϕi. In total, across all
iterations of Algorithm 2 where ϕi >

π
8 , the robots rotate at most 16ϕ.

In addition, by Lemma 25, the robots asymptotically rotate the same.
Finally, during execution of Step 7 the robots do not rotate at all. Combining

all of the above, we have the theorem.

Corollary 2. The area estimated by BOUNDARY-SKETCH differs from the
actual shape area by O(ℓ

√
λ).

Proof. BOUNDARY-SKETCH computes the area of the polygon generated
by successive positions of one of the robots (say the one that starts from the
inside). By Lemma 9, this polygon stays within at most 8

√
λ distance from the

shape boundary. Hence, the area of the polygon differs from the shape area by
at most O(ℓ

√
λ).
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4 Simulations

We present preliminary simulation results to illustrate the precision of ϵ-sketch
for various values of λ. To start with, we tested our algorithm for a small number
of intersecting gaussians with different variances. Next, we test our algorithm
on the boundary of shapes drawn from real world shape data. Both of these
simulations demonstrate encouraging convergence of ϵ-sketch to the shape as λ
decreases.

Intersecting Gaussians In our experiments, the shape is an intersection of
a few two dimensional gaussians. We discuss experimental details of gradient
estimation for this shape in the Appendix A.1.

Fig. 4. BOUNDARY-SKETCH for λ = 0.0001, the green border marks the shape
boundary sandwiched by the inner and outer robots.

Definition 9. In two dimensions, the elliptical gaussian function f for uncor-
related varieties X and Y having a bivariate normal distribution and standard
deviations σx, σy is defined to be,
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f(x, y) =
1

2πσxσy
e−[(x−σx)

2/(2σx)
2+(y−σy)

2/(2σy)
2]

Test shape. We generate a test shape in MATLAB with four gaussians with
centers (1, 1), (−2, 0), (1, 0), (4, 0) and corresponding standard deviations

(0.8, 0.8), (1, 1), (1.2, 1.2), (0.7, 0.7).

We also ignore the 1/2π factor in front of the definition.

BOUNDARY-SKETCH for different λ. For the same shape as above, we run
BOUNDARY-SKETCH for

√
λ values of 0.0001, 0.000025, 0.000001. Figure 4

illustrates the output for λ = 0.0001 and the other two figures 6, 7 in Appendix
A.1 demonstrate notable improvement in precision as λ gets smaller.
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Fig. 5. BOUNDARY-SKETCH for λ = 0.0001, the green border marks the shape
boundary sandwiched by the inner and outer robots (red and blue border).
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Real world plume shapes We also utilize a real world shape from a volcanic
plume in La Palma (see Figure 8 in Appendix A.2 ) and use a Python program
to generate a polytope approximation of it. The gradient of the boundary then
is easily found by the gradient of the corresponding side of the polygon. Next
we ran BOUNDARY-SKETCH for different values of λ on this shape. Figure
5 illustrates the output of the algorithm and figures 9, 10 in Appendix A.2
demonstrate notable improvement once again in precision as λ gets smaller.

5 Conclusion

We have described a distributed algorithm to enable two robots to traverse the
perimeter of a curvilinear polygon. Our algorithm is novel in three key ways.
First, it does not assume that the robots can respond instantaneously to sensor
data, instead assuming a minimum amount of movement or rotation occurs be-
tween motion planning events. Second, it does not assume that the robots have
access to instantaneous and continual sensor readings. Finally, our algorithm is
simultaneously asymptotically optimal in two criteria: both total distance trav-
elled by the robots, and also total amount turned by the robots.

Several open problems remain including the following. First, lower bounds:
even though our algorithm is asymptotically optimal in both distance travelled
and distance turned, we still would like to know if 2 robots are strictly necessary.
Can a single robot achieve the same asymptotic results? We conjecture the an-
swer is no, even if the single robot is attempting to follow a (unknown) function
in the Euclidean plane defined from the values x = 0 to x = 1. Second, Can we
reduce the value of ϵ in the ϵ-sketch returned by our algorithm? In particular, is
it possible to obtain a value of ϵ that is o(

√
λ)? Finally, How does our algorithm

perform when deployed in the real world? A real-world application domain of
particular interest to us is tracing boundaries of volcanic CO2 plumes.
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A Simulation Figures

A.1 Intersecting Gaussians

Gradient Estimation. To estimate the gradient at a point of intersection, we
formulate a least squares error (LSQ) problem and solve it using the pseudo-
inverse, as described below.

Least Squares Error Formulation. Assume we have three points a, b, c that are
close together, and that we have the values f(a),f(b),f(c). For the sake of the
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BOUNDARY-SKETCH, these three points can be said to be successive points
of a robot’s path with the middle one being where it crosses the shape boundary.
Then we estimate the gradient ∇f(b) = (x′, y′) as a vector that minimizes the
following sum:

(f(a)− f(b)−∇f(b) · (a− b))2 + (f(c)− f(b)−∇f(b) · (c− b))2

Setting the rows of a 2 × 2 matrix A to be a − b, c − b respectively and the
entries of vector β to be f(a) − f(b), f(c) − f(b) respectively, this problem is
formally solving for the vector v such that, |Av − β|2 is smallest.

Finally, we utilize the pseudo-inverse method for solving LSQ as discussed in
numerous sources e.g. in Section 4.5 of [25].

Fig. 6. BOUNDARY-SKETCH for λ = 0.000025, the green border marks the shape
boundary sandwiched by the inner and outer robots.
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Fig. 7. BOUNDARY-SKETCH for λ = 0.000001, the green border marks the shape
boundary sandwiched by the inner and outer robots.
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A.2 Real World Plume Shapes

Fig. 8. Volcanic plume in La Palma observed on September 20, 2021.
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Fig. 9. BOUNDARY-SKETCH for λ = 0.000025, the green border marks the shape
boundary sandwiched by the inner and outer robots (red and blue border).
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Fig. 10. BOUNDARY-SKETCH for λ = 0.000001, the green border marks the shape
boundary sandwiched by the inner and outer robots (red and blue border).
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B Helper Lemmas

Lemma 17. ℓ is Ω(1)

Proof. Since the diameter of the shape is scaled to be 1, ℓ ≥ 1 and the lemma
follows.

Lemma 18. The number of vertices in γ is at most ℓ/
√
λ.

Proof. This is immediate from the assumption that each of the vertices are at
least

√
λ distance apart.

Lemma 19. If a curve γ is a polygon and ϕ is the total rotation of this polygon,
then ℓ(γ) ≤ ϕ.

Proof. Suppose the vertices of the polygon P are given by a list of n points
v1, v2, ..., vn. Then ℓ =

∑n
i=1 |vi − vi+1| where we set vn+1 = v1, vn+2 = v2.

Now fix three successive vertices, vi, vi+1, vi+2 for 1 ≤ i ≤ n and denote
them A,B,C respectively. In addition, let a = |AB|, b = |BC|, c = |CA|, α =
∠BAC, β = ∠ABC,ω = ∠BCA.

By the law of sines,

a

sinα
=

b

sinβ
=

c

sinω
= 2ρ

where ρ is the radius of the circumcircle of the triangle ABC.
Since the polygon is bounded by a unit square, ρ ≤ 1. By the inequality

sinx ≤ x for all x ∈ R, we have,

a ≤ 2α

b ≤ 2β

Hence,

a+ b ≤ 2(α+ β) = 2(π − ω) = 2ϕi

where ϕi is the i-th exterior angle of P .
Summing over all i ∈ [1, n] we get,

2ℓ(γ) =
n∑

i=1

|vi − vi+1|+ |vi+1 − vi+2| ≤ 2
n∑

i=1

ϕi = 2ϕ

This implies,

ℓ(γ) ≤ ϕ

Lemma 20. Let γ : [0, L] → R2 be a regular curve parametrized by its arc length
L such that γ(0) ̸= γ(L). Then there exists c ∈ (0, L) such that γ′(c) is parallel
to the line segment joining γ(0) and γ(L).
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Proof. Let γ(t) = (x(t), y(t)) for all t ∈ [0, L] where x, y are differentiable single
valued real functions defined over [0, L].

Let u be the vector from γ(0) to γ(L). That is,

u = γ(0)− γ(0) = (x(L)− x(0), y(L)− y(0))

Let v be a vector perpendicular to γ(L) − γ(0). Since, ⟨u, v⟩ = 0, we can
write,

v = (y(0)− y(L),−x(0) + x(L))

Now consider the function f defined as follows over [0, L],

f(t) = γ(t) · v = x(t)(y(0)− y(L)) + y(t)(x(L)− x(0))

Observe that, f(0) = f(L). Hence by Rolle’s theorem there exists c ∈ (0, L)
such that, f ′(c) = 0. Since, for all t ∈ (0, L), f ′(t) = ⟨γ′(t), v⟩ + ⟨γ(t), v′⟩ =
⟨γ′(t), v⟩, we conclude, ⟨γ′(c), v⟩ = 0.

This means γ′(c) is perpendicular to v. Since u is perpendicular to v as well,
we conclude that, γ′(c) is parallel to u.

C Asymptotic Analysis

Lemma 21. Let j > 1 be an index such that, after crossing the boundary at
point D (Figure 11), D1, D2 are both outside or D1, D2 are both inside. Then
the number of times the While loop in Step 7 of Algorithm 2 executes before the
robots cross the line DB is at most ϕj−1/

√
λ+ 1.

Proof. Define ψj to be the change of gradient in radians between γ(tj−1) and
γ(tj). Clearly, ϕj−1 ≥ ψj .

The vertical distance from the robot at the beginning of the execution of
Algorithm 2 to the line DB is at most λ sin(ψj +

√
λ).

Thus after ψj/
√
λ+1 ≤ ϕj−1/

√
λ+1 steps, the robots will cross DB, which

concludes the proof.

Lemma 22. Suppose γ defines a polygon. Given an instance of crossing the
shape at a point D, let β be the first exterior angle of the shape continuing from
D. If β is the only exterior angle of γ from D to the next point of crossing and√
λ ≤ β ≤ π/8, then the While loop in Step 7 of Algorithm 2 executes at most

8β/
√
λ times to cover the distance from B to C.

Proof. Figure 11 illustrates this lemma where ∠BAC = β. Note that the radius
of the circumcircle of the triangle △ABC is at most the radius ρ of the circum-
circle of the regular polygon in the diagram indicated by dotted lines. Given the
exterior angle

√
λ and side length λ of the regular polygon, the radius of the

circumcircle is ρ = λ/2 sin(
√
λ). By Lemma 6, ρ ≤

√
λ.

Now by the law of sines, |BC|/ sinβ = 2ρ and this implies |BC| ≤ 2β
√
λ.
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Fig. 11. Figure for Lemmas 21 and 22, the red color indicates the shape boundary,
blue color indicates path of the nearest robot, black colored segment is a construction
for the proof.

Next, the angle β′ formed by the chord BC with the center of the regular
polygon is at most,

2 arcsin

(
2β sin(

√
λ)√

λ

)
≤ 2 arcsin(2β) ≤ 4β√

1− (2β)2
≤ 4β√

1− π2/16
≤ 8β

Next we multiply this angle with the radius to get the arc length between B
and C,

s = ρβ′ ≤ 8β
√
λ

Finally, noting that the arc length covered by every step of the robots is at
least λ, we get that after 8β/

√
λ steps from B the robots will cross AC.

Lemma 23. If γ is a polygon and if for some i ≤ m,
√
λ ≤ ϕi ≤ π/8, then

f(i) ≤ 8ϕi/
√
λ+ ϕi−1/

√
λ+ 1.

Proof. The trivial case is where Algorithm 2 is not executed at all i.e. f(i) = 0.
Observe that the motion of the robots during the execution of Algorithm 2

forms part of the perimeter of a convex polygon with side lengths and exterior
angles being λ and

√
λ respectively (except for the first and last sides).

Now suppose there are j vertices of γ defined over [ti, ti+1]. Let these vertices
be indexed γ(ak) where ak ∈ [ti, ti+1] for all k ∈ [1, j]. Finally, let βk be the
exterior angle at γ(ak). By Lemma 21, there will be at most ϕi−1/

√
λ+1 before

the robot crosses the nearest side of the exterior angle at γ(a1).
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Next, observe that by Lemma 22 the nearest robot to the shape will cross
one of the sides of the exterior angle at γ(ak) by at most 8βk/

√
λ iterations of

the While loop in Algorithm 2.
In addition, the shape boundary turns either in convex or concave manner.

If the turn at an index changes from convex to concave or concave to convex,
it may actually move the sides of γ closer for the robot and hence the amount
the angle βk contributes to the overall iterations run inside the While loop of
Algorithm 2 is at most 8βk/

√
λ. Therefore,

f(i) ≤
j∑

k=1

8βk/
√
λ+ ϕi−1/

√
λ+ 1 = 8ϕi/

√
λ+ ϕi−1/

√
λ+ 1

D Synchronization Details

Our final two lemmas show that the other robot do not rotate or traverse asymp-
totically more than the robot nearest to the boundary. In addition, we discuss
briefly the synchronization steps in Algorithm 1.

Fig. 12. Figure for synchronization steps in CROSS-BOUNDARY, green and blue
curves indicate robot path, red curve indicates the shape boundary.

Observe that in Figure 12, after reorientating itself to the curve gradient
direction, the green and blue curves are “closer” to each other. But this can
easily be handled by letting the blue or green curve based robot traverse a
little longer, in particular greater than

√
λ − λ > λ distance and then turn.

This synchronization that maintains the distance of
√
λ between the two robots

guarantees that between successive executions of Algorithm 1, the robots will
cover Ω(

√
λ) distance of the shape boundary, in turn we are able to prove Lemma

12.
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Lemma 24. For each execution of Algorithm 2, D2 traverses a distance of
O(

√
λ).

Fig. 13. Figure for Lemmas 24 and 25

Proof. In Figure 13, the line segment AC describes the path of D1 and D2

can move either directly from B to D or B to D via E. Now, by Algorithm 2
description, |AC| = |DE| = λ. Note that, ∠BAE =

√
λ and |BA| = |AE| =

√
λ.

Thus by the law of sine, |EB|/ sin
√
λ =

√
λ/ sin((π −

√
λ)/2) Hence,

|EB| ≤ λ/ cos(
√
λ/2) ≤ 2λ

. Thus, the path length of D2 at each step is at most 3λ.
In the last step independent of which robot encountered the shape boundary

and whether they are both inside or outside or one inside and one outside, D2

will traverse at most a constant factor of
√
λ by the above discussion based on

Figure 12. Finally, noting that D1 traverses O(
√
λ) distance according to lemma

7, D2 traverses O(
√
λ) during each execution of Algorithm 2.

Lemma 25. For each execution of Algorithm 2, D2 does not rotate asymptoti-
cally more than D1.

Proof. We only need to check that the rotation of the green path towards BE
and then ED is asymptotically bounded by D1’s rotation. For brevity, we simply
note this follows by elementary euclidean geometric comparison of various angles,
beginning from the rotation of the red path to AC.

Finally, in the last step, both robots turn towards a common direction i.e.
gradient at a point of crossing the boundary.
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