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If Γ ⊂ Rn, n ≥ 2, is a Jordan arc with endpoints z and w, we 
show that the arclength of Γ satisfies

�(Γ) − |z − w| �
∑

Q

β2
Γ(Q)diam(Q),

where the sum is over all dyadic cubes in Rn and βΓ(Q)
is Peter Jones’s β-number that measures the deviation of 
Γ from a straight line inside 3Q. This estimate sharpens 
previously known results by replacing an O(diam(Γ)) term 
by |z − w|. Applications of this improvement to the study 
of Weil-Petersson curves are described, and a new proof of 
Jones’s traveling salesman theorem is given.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Given a finite set E ⊂ R
n, the traveling salesman problem asks for the shortest curve 

γ that contains E. This is one of the most famous intractable problems of combinatorial 

optimization and its study has had a profound impact on the development of computa-
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tional geometry and discrete geometry. The “analyst’s traveling salesman problem” asks 

whether an infinite set E ⊂ R
n is contained in any curve of finite length, i.e., it asks to 

characterize subsets of rectifiable curves. This problem has had a powerful influence on 

the development of harmonic analysis and geometric measure theory over the last three 

decades. For sets in R2 it was solved by Peter Jones in [16] and this is known as Jones’s 

“traveling salesman theorem” (TST). He gave an infinite series whose sum estimates 

the length of the optimal curve containing E up to a bounded factor; thus E lies on a 

rectifiable curve if and only if the series converges. Jones’s TST was extended to higher 

(finite) dimensions by Kate Okikiolu [27], but with constants that grow exponentially 

with the dimension, and later Raanan Schul [31] proved a version that holds for sets in 

Hilbert space, and thus in Rn with constants that are independent of n. This is one of 

only a handful of problems in Euclidean analysis where dimension independent bounds 

are known. Extensions to curves in other metric spaces are given in [10], [13], [21], [22]. 

There has also been much work in extending Jones’ result from curves to higher dimen-

sional objects in R
n, e.g., what is the “smallest” surface containing a given set. This 

problem has proved extremely subtly, and is central to recent developments in harmonic 

analysis, geometric measure theory and rectifiability. For a sampling of applications of 

Jones’s TST and related work, see [3], [4], [6], [9], [20], [22], [28], [34].

The purpose of this paper is to return to the original setting of curves in Rn, and 

prove a sharper version of Jones’s and Okikiolu’s theorems. In order to state their results 

precisely and explain the proposed improvement, we need a few definitions.

A dyadic interval I in R is one of the form (2−nj, 2−n(j + 1)] for j, n ∈ Z. A dyadic 

cube Q in R
n is the product of n dyadic intervals of the same length. This common 

length is called the side length of Q and is denoted �(Q). Note that diam(Q) =
√

n�(Q). 

For a positive number λ > 0, we let λQ denote the cube concentric with Q but with 

diameter λ · diam(Q), e.g., 3Q is the “triple” of Q, a union of Q and 3n − 1 adjacent 

copies of itself. Given a set E ⊂ R
n, λ > 0 and a dyadic cube Q, define

β(E, λ, Q) =
1

diam(Q)
inf
L

sup{dist(z, L) : z ∈ λQ ∩ E},

where the infimum is over all lines L that hit Q. In most cases we take λ = 3 and for 

brevity we set βE(Q) = β(E, 3, Q). Note that 0 ≤ βE(Q) ≤ 2, and equals 0 if and only 

if E is a subset of a line. See Fig. 1. There are several other versions of the β-numbers 

that can be used to state equivalent versions of Jones’s TST; see Appendix B for a few 

of these.

Jones’s theorem in [16] says that the shortest curve Γ containing E ⊂ R
2 has length

�(Γ) � diam(E) +
∑

Q

β2
E(Q)diam(Q). (1.1)

In this paper A � B means the same as A = O(B), i.e., A, B both depend on some 

parameter and A ≤ C · B where C is independent of the parameter. If A � B and 
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Fig. 1. The definition of the β-numbers. The left shows a situation where βE(Q) is small and the right a 
situation where it is large. The shaded region represents the thinest strip containing E ∩ 3Q and the dashed 
line is its axis, the line L in the definition of βE(Q).

B � A, we write A � B, and say that A and B are comparable. Thus Jones’s β-sum 

estimates the length of the optimal curve up to a bounded factor.

Actually, [16] states that for any δ > 0 and E ⊂ R
n, 2 ≤ n < ∞,

�(Γ) ≤ (1 + δ)diam(E) + C(δ)
∑

Q

β2
E(Q)diam(Q). (1.2)

For general sets E, this does not hold for δ = 0. For example, if E = {0, 1, iβ} ⊂ R
2

with 0 < β << 1, then the shortest curve Γ containing E satisfies �(Γ) = 1 + β, but 

diam(Γ) =
√

1 + β2 = 1 + O(β2). It is not hard to check that the β2-sum for E is 

O(β2) 	 β. Thus the term C(δ) must tend to ∞ as δ ↘ 0. However, we will show that 

(1.2) does hold for δ = 0 when E = Γ a Jordan curve:

Theorem 1.1. For any Jordan arc in Rn,

�(Γ) − diam(Γ) �
∑

Q

β2
Γ(Q)diam(Q), (1.3)

where the sum is over all dyadic cubes.

In fact, we can do even better than this. Let crd(Γ) = |z − w| where {z, w} are the 

endpoints of Γ; this is the “chord length” of Γ. We always have crd(Γ) ≤ diam(γ), so 

Theorem 1.1 implies

�(Γ) − crd(Γ) �
∑

Q

β2
Γ(Q)diam(Q). (1.4)

The opposite direction is less obvious, but also holds:

Theorem 1.2. For any Jordan arc Γ ⊂ R
n,

�(Γ) − crd(Γ) �
∑

Q

β2
Γ(Q)diam(Q), (1.5)

where the sum is over all dyadic cubes.
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One obvious consequence is that for any Jordan arc Γ,

diam(Γ) − crd(Γ) �
∑

Q

β2
Γ(Q)diam(Q),

and another is:

Corollary 1.3. If Γ is a closed Jordan curve, then

�(Γ) �
∑

Q

β2
Γ(Q)diam(Q), (1.6)

where the sum is over all dyadic cubes.

In Sections 2 and 3 we prove Theorem 1.1, and in Section 4 we use it to prove

Theorem 1.2. In Appendix A we show how to adapt our proof of Theorem 1.1 to give 

a new proof of (1.2) for general sets E ⊂ R
n, and in Appendix B we discuss equivalent

formulations of the β-numbers and Jones’s theorem.

We end the introduction by describing one motivation for wanting this improved 

version of Jones’s theorem. Although changing O(diam(Γ)) to crd(Γ) may seem minor, it 

is crucial for proving the following result in [5]. Recall that a closed curve Γ is called chord-

arc if any two points z, w ∈ Γ are joined by a sub-arc γ with length �(γ) = O(|z − w|).

Theorem 1.4. The following are equivalent for a closed Jordan curve in Rn, n ≥ 2:

(1) Γ satisfies

∑

Q

β2
Γ(Q) < ∞.

(2) Γ is chord-arc and for any dyadic decomposition of Γ, the inscribed polygons {Γn}
defined by the nth generation points satisfy

∞∑

n=1

2n [�(Γ) − �(Γn)] < ∞,

with a bound that is independent of the choice of the decomposition.

(3) Γ has finite Möbius energy, i.e.,

Möb(Γ) =

ˆ

Γ

ˆ

Γ

(
1

|x − y|2 − 1

�(x, y)2

)
dxdy < ∞,

where dx, dy denotes integration with respect to arclength measure.
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Note that (1) is Jones’s sum without the diam(Q) factor; thus this condition represents 

something stronger than rectifiability. The β’s are a measurement of local curvature of 

Γ, so (1) makes precise the idea that the that curvature of Γ is square integrable over all 

locations and scales.

If a closed Jordan curve Γ has finite length �(Γ), choose a base point z0
1 ∈ Γ and for 

each n ≥ 1, let {zn
j }, j = 1, . . . , 2n be the unique set of ordered points with zn

1 = z0
1 that 

divides Γ into 2n equal length intervals (called the nth generation dyadic subintervals 

of Γ). Let Γn be the inscribed 2n-gon with these vertices. Clearly �(Γn) ↗ �(Γ) and 

condition (2) measures the rate of convergence.

In (3), the Möbius energy of a curve is one of several “knot energies” on curves intro-

duced by O’Hara [24], [25], [26], that blows up when the curve is close to self-intersecting, 

so continuously deforming a curve in R3 to minimize it should lead to a canonical “nice” 

representative of each knot type. This was proven by Freedman, He and Wang [15] for 

irreducible knots. They also showed that Möb(Γ) is Möbius invariant (hence the name) 

and that Möb(Γ) attains its minimal value 4 only for circles. Theorem 1.4 provides a 

geometric characterization of the curves for which this energy is finite. Function theo-

retic arguments suffice to prove Theorem 1.4 in the plane, but for n ≥ 3, Theorem 1.2

is used in [5] to prove (1) ⇒ (2); the other implications (2) ⇒ (3) ⇒ (1) follow by more 

elementary arguments.

In the special case n = 2, the class of closed curves described by Theorem 1.4 is known 

as the Weil-Petersson class. This is the closure of the smooth curves in the Weil-Petersson 

metric on universal Teichmüller space defined by Takhtajan and Teo [33]; their work was 

motivated by problems arising in string theory. Before [5] it had been an open problem to 

give a geometrical characterization of these curves, a question that also arose in the work 

of David Mumford and his students on computer vision and pattern recognition, e.g., 

[11], [12], and [32]. The Weil-Petersson class is also connected to the study of Schramm-

Loewner evolutions (random Jordan paths) and the Brownian “loop soup” of Lawler and 

Werner. See [29], [35], [36], [37]. In addition to the conditions in Theorem 1.4, there are 

numerous other characterizations of the Weil-Petersson class involving conformal maps, 

Schwarzian derivatives, quasiconformal mappings, Sobolev spaces and minimal surfaces 

in hyperbolic 3-space with asymptotic boundary Γ. The results of this paper allow many 

of these characterizations to be extended to higher dimensions and proven equivalent 

there. They should also prove useful in a number of other constructions involving β-

numbers in higher dimensions.

I thank Jack Burkart, María González, Joe Mitchell, David Mumford, and Raanan 

Schul for reading early drafts of this paper and for numerous useful comments and 

suggestions. Also thanks to two anonymous referees for their extremely helpful remarks.
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Fig. 2. The convex set R is split into two smaller convex sets.

2. Proof of the upper bound in Theorem 1.1

In this section we prove the inequality

�(Γ) − diam(Γ) �
∑

Q

β2
Γ(Q)diam(Q), (2.1)

and we will prove the opposite direction in the next section.

Proof of (2.1). This direction closely follows the proof of Theorem 10.5.1 in [7] in the 

planar case, which itself is inspired by the argument in Section X.2 of [14] (but that 

proof contains a minor gap, fixed in [7]). However, several facts that are easy in the 

plane require more intricate proofs in higher dimensions.

We will define a sequence of nested, compact sets {Γn}∞
0 that shrinks down to Γ. 

Γ0 is the convex hull of Γ. In general, suppose that Γn is the union of a collection Rn

of compact, convex sets that cover Γ and that each set R ∈ Rn is the convex hull of 

R∩Γ. For each such set R, choose a diameter segment I of R and divide I into two equal 

halves. Let R1, R2 be the convex hulls of the parts of R ∩ Γ than project orthogonally 

onto each of these segments. See Fig. 2. We call this process splitting R. The collection 

Rn+1 is obtained by splitting every element of Rn in this way. Thus Rn+1 has twice 

as many elements as Rn and we will think of these elements as the nth generation of a 

binary tree whose root is R0 = Γ0. Below we will show that the diameters of these sets 

tend to zero uniformly in n and that the sets are well dispersed in space (only a bounded 

number with diameter � r can be within distance r of each other).

For a convex set R we define

β(R) = inf
I

sup
z∈R

dist(z, I)

diam(R)
,

and the infimum over all diameters I of R. (diameters are segments connecting pairs of 

points z, w ∈ ∂R with |z − w| = diam(R)).

Lemma 2.1. If R is split into R1, R2 as above, then

diam(R1) + diam(R2) ≤ diam(R) + O
(
β2(R)diam(R)

)
.
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Proof. The subset R1 ⊂ R is contained in a cylinder W with axis length diam(R)/2

and radius β(R)diam(R), so diam(R1) ≤ diam(W ) = 1
2diam(R) + O(β2(R)diam(R)). 

Similarly for R2, and adding the estimates proves the lemma. �

Lemma 2.2. There is a constant M = M(n), so that if the splitting operation is performed 

M times, then each of the 2M resulting sets has diameter at most 3
4diam(R).

Proof. Suppose not, that is, suppose there is an R with diam(R) = 1 and a large integer 

M , so that after M splittings some subset still has diameter > 3/4. After the first 

subdivision the projection onto the direction of the first diameter segment has length 

1/2, so the second diameter segment (or any of the next M diameter segments) can’t 

point in the same direction. Indeed, since all the next M diameters are > 3/4 then can’t 

lie within angle θ = cos−1(2/3) of the first direction. Similarly, the third direction can’t 

be within θ of either the first or second directions, and so on. Since the (n − 1)-sphere is 

compact, it contains at most a bounded number C(n) of disjoint spherical caps of this 

size and so M ≤ C(n) + 1, as desired. �

By considering an n-dimensional ball, we see that n splittings may have to occur 

before the diameter drops at all. As a side remark, Borsuk’s conjecture [8] asked if any 

bounded set in Rn could be partitioned into n +1 subsets of strictly smaller diameter, but 

this was disproven by Kahn and Kalai [17] who gave examples of sets requiring ≥ (1.1)
√

n

subsets when n is large. Schramm had earlier shown that (1.3)n subsets always suffice. 

See also Chapter 18 of [1] for some history and related results.

Using Lemma 2.1, induction and diam(Γ0) = diam(Γ), we get

∑

R∈Rn+1

diam(R) ≤
∑

R∈Rn

diam(R) + O

(
∑

R∈Rn

β2(R)diam(R)

)

≤ diam(Γ) + O

(
n∑

k=1

∑

R∈Rk

β2(R)diam(R)

)

The following is a standard fact.

Lemma 2.3. For a Jordan curve, the definition of �(Γ) via the supremum of lengths of 

inscribed polygons agrees with the definition of 1-dimensional Hausdorff measure H1(Γ)

as the limit limδ↘0 inf
∑

j diam(XJ), where the infimum is over all coverings of Γ by set 

of diameter less than δ.

Proof. For any arc σ, we have H1(σ) ≥ crd(σ) so for any polygon P inscribed in γ, 

we have H1(γ) ≤ �(P ). By taking limits we get H1(γ) ≤ �(γ). On the other hand, 

we can cover γ by finitely many disjoint (except for endpoints) subarcs {γk} each of 

length ≤ δ. Hence 
∑

k diam(γk) ≤ ∑
k �(γk) ≤ �(γ). Taking the limit as δ ↘ 0 we get 

H1(γ) ≤ �(γ). �
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By Lemma 2.2 our collections Rn form such coverings and hence

�(Γ) = H1(Γ) ≤ lim sup
n→∞

∑

R∈Rn

diam(R). (2.2)

Therefore,

�(Γ) ≤ diam(Γ) + O

( ∞∑

n=0

∑

R∈Rn

β2(R)diam(R)

)
. (2.3)

So all that remains to do is to show that the β2-sum over all the convex sets in the tree 

T is dominated by the usual β2-sum over dyadic cubes. Given a set R in some Rn there 

is a dyadic cube Q that intersects R and satisfies diam(Q) ≤ diam(R) ≤ 2 · diam(Q). 

Then R ⊂ C(n) · Q and β(R) = O(β(Q)). We will be done once we know that only a 

uniformly bounded number of R’s can be associated to the same Q. This is implied by:

Lemma 2.4. Suppose R is the convex hull of Γ ⊂ R
n, n ≥ 2. Consider the binary tree of 

subsets obtained by the subdivision rule described above. Given 0 < ε < diam(Γ) and a 

point x ∈ R
n, the number of descendants of R that hit the ball B(x, ε) and have diameter 

between ε/2 and ε is bounded depending only on the dimension n.

Proof. Rescale so ε = 1/1000 and x = 0. Let C be the collection of sets described in the 

lemma. Choose a large integer N and remove all the sets that are within tree distance N

of the root; there are at most 2N of these, so it suffices to bound the number of remaining 

sets. Replace each remaining set by its smallest (in terms of containment) ancestor to 

have diameter larger than 4. By Lemma 2.2 there must be such an ancestor, if N is large 

enough (depending only on n), and at most 2N sets in C have the same replacement. 

Thus it suffices to bound the number of minimal sets R′ in T so that diam(R′) ≥ 4 and 

R′ ∩ Bε �= ∅. We call these sets R′ the admissible descendents of R and denote them by 

A.

We say a set R′ in A has rank k if it contains a k-dimensional ball of radius 10−k

centered on the unit n-sphere. We will call the center of this ball the center of R′. Since 

every admissible descendent hits Bε and has diameter ≥ 4, it contains a segment that 

connects {|x| = 1/2} to {|x| = 3/2} and hence has rank at least 1. The maximum 

possible rank is n, and there are only a bounded number of such sets in A since they 

contain disjoint balls of fixed volume centered on the unit sphere. When considering the 

tree T , we will say a vertex has rank k if the corresponding set does.

The key observation is the following. Suppose that δ = 10−n−4 and that R1, R2 are 

two descendent sets whose center points are within δ of each other. Suppose also that R2

has rank less than or equal to k, the rank of R1. Let R0 be the smallest common ancestor 

of R1 and R2 (on the tree T , this is the vertex where the paths from R1 and R2 to root 

first meet). Then R1 and R2 are on opposite sides of the hyperplane H (possibly each 

intersecting H) bisecting some diameter I of R0, and hence H must come within δ of the 
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Fig. 3. If the hyperplane H passes very close to the center of a k-dimensional ball Bk that lies on one side 
of H, then Bk is nearly parallel to H and a concentric ball of comparable radius and dimension k + 1 lies 
in the convex hull of Bk and any segment I that is bisected and perpendicular to H, and whose length is 
comparable to its distance from Bk. This implies the common ancestor of two disjoint sets with very close 
centers must have strictly larger rank than either of them.

center of R1. Thus the k-ball Bk in R1 is very close to parallel to H. The segment I is 

perpendicular to H and hits H at a point at most distance diam(R0) from the center of 

Bk. By definition, R0 contains the convex hull of its endpoints and the k-ball Bk. Since 

diam(I) = diam(R0) ≥ diam(R1), R0 contains a (k + 1)-ball Bk+1 with the same center 

as Bk and with radius at least 1/10 as big, in particular, bigger than 10−k−1. Thus any 

common ancestor of two sets whose center points are δ-close has strictly higher rank 

than either of them. See Fig. 3.

Now choose a point x on the unit sphere in Rn and consider all the admissible de-

scendents whose centers are within δ of this point. These sets form the leaves of a finite 

subtree of T , where the only vertices of degree 3 are smallest common ancestors of some 

subcollection of the sets. By our remarks above, each vertex of degree three has strictly 

larger rank than any of the degree three vertices below it (closer to the leaves). Thus 

each leaf is connected to the root by a path that has at most n degree three vertices on 

it and so the tree is homeomorphic to a rooted binary tree with depth ≤ n. Thus there 

are at most 2n leaves.

Since the unit sphere in R
n is compact, we can partition the set of all admissible 

descendents into N(n, δ) collections, each of which has all their centers contained inside 

some ball of radius δ. By our previous argument, each such collection has at most 2n

elements, and this proves the lemma. �

As noted earlier, this completes the proof of (2.1). �

3. Proof of the lower bound in Theorem 1.1

Next we consider the opposite direction:

�(Γ) − diam(Γ) �
∑

Q

β2
Γ(Q)diam(Q). (3.1)
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In the case n = 2 we will actually prove that

�(Γ) − 1

2
prm(Γ) �

∑

Q

β2
Γ(Q)diam(Q), (3.2)

where prm(Γ) = �(∂(ch(Γ))) denotes the perimeter of Γ, i.e., the length of the boundary 

of its planar convex hull (twice the length of Γ if it is a line segment). By noting that 

the orthogonal projection of a closed curve onto a diameter segment is 1-Lipschitz and 

at least 2-to-1, we see that the perimeter of Γ is at least twice its diameter. Hence (3.2)

implies (3.1). In higher dimensions, the perimeter is replaced by a quantity called the 

“mean width” of Γ, defined below.

Proof of (3.1). Estimate (3.1) is proven using ideas from integral geometry. For the fol-

lowing facts, see [30].

There is a standard measure μ on the space of (n − 1)-hyperplanes in R
n, that is 

invariant under rigid motions of R
n. In this proof “hyperplane” will always mean a 

(n − 1)-dimensional affine space, and we will drop the explicit mention of the dimension. 

Each hyperplane H ⊂ R
n (except those passing though the origin; a set of μ measure 

zero) is determined by the point p ∈ H closest to the origin. If p = rx with r > 0, 

x ∈ S
n−1 = {x ∈ R

n : |x| = 1}, the measure μ on hyperplanes is given by dr times 

(n − 1)-measure on the unit sphere Sn−1 ⊂ R
n.

Crofton’s formula says there is a constant cn > 0 so that

�(Γ) = cn

ˆ

n(H, Γ)dμ(H),

where n(H, Γ) is number of points in H ∩ Γ. See [30]. As a special case, the measure of 

the set of hyperplanes hitting a line segment I is cn�(I) (almost every hyperplane hits a 

given segment at most once). The value of cn is explicitly known, but not important to 

us; indeed, from this point on we normalize μ so that cn = 1. Note that if S is the chord 

of Γ then

μ({H : H ∩ Γ �= ∅}) ≥ μ(H : H ∩ S �= ∅}) = crd(Γ). (3.3)

The leftmost quantity in (3.3) is called the mean width of Γ; it is the average over 

Sn−1 of the length of the projection of Γ onto the line every direction. For n = 2, 

this is a multiple of the perimeter of the convex hull K of Γ, and for n = 3 it is a 

multiple of the integral of the mean curvature over the surface of K (and this is often 

easier to compute). More generally, it is the coefficient V1 of ε in Steiner’s formula 

vol(Kε) = vol(K) + V1ε + V2ε2 + · · · + Vnεn, where Kε is the ε-neighborhood of K. The 

Vk’s are the intrinsic volumes of K and every rigid motion invariant on convex sets is a 

combination of these. See, e.g., [18], [30].

Let D denote the collection of dyadic cubes in R
n and let D∗ be the union of all 

possible translates of D by {−1
3 , 0, 13} along any subset of the n coordinates. The family 
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D∗ has the property that any bounded subset of Rn is contained in some member of D∗

of comparable size (the 1
3 -trick, [27]). Also, the translate of any dyadic cube by �(Q)/3

along any subset of the coordinates is in D∗ (to see this, note that one of 2n ± 1 is 

divisible by 3 hence 1
32−n = ±1

3 + k2−n has a solution). The set of all such translates of 

Q is denoted D∗(Q).

For Q ∈ D∗ let S(Q, Γ) be the set of hyperplanes that intersect both 5
3Q ∩ Γ and 

(3Q \ 2Q) ∩ Γ. For a hyperplane H, let N(H, Γ) be the number of cubes Q ∈ D∗ such 

that H ∈ S(Q, Γ).

Lemma 3.1. n(H, Γ) − 1 � N(H, Γ) whenever n(H, Γ) > 0.

Proof. Assume n(H, Γ) is finite (otherwise there is nothing to do). Since D∗ consists 

of a finite union of families of translations of the dyadic cubes D, its suffices to bound 

the number of cubes belonging to each family. Since the argument is the same for each 

family, we just consider the dyadic cubes. By breaking the dyadic family into a finite 

number of sub-families, we may also assume the cubes are “M -sparse”, i.e., there is a large 

constant M so that any two cubes Q, Q′ of the same size satisfy dist(Q, Q′) ≥ Mdiam(Q)

and cubes Q, Q′ of different sizes satisfy either diam(Q) ≥ Mdiam(Q′) or the reverse 

inequality. Let Q be one such a collection of sparse dyadic cubes.

We define a graph G = (V, E) with vertices V = H ∩ Γ and an edge between z, w ∈ V

if there is some cube Q ∈ Q with z ∈ 5
3Q and w ∈ 3Q \ 2Q. Let C ⊂ Q be the cubes 

Q for which such a pair (z, w) exists. Note that diam(Q) � |z − w|, so the number of 

dyadic cubes associated to this pair is uniformly bounded. Moreover, by sparseness there 

is at most one Q ∈ Q associated to any pair (z, w). Thus #(C) ≤ #(E) (where # is 

cardinality). In fact, if Q is associated to more than one edge in G, we remove all but 

one of these edges from the graph (that we still call G), so that #(C) = #(E). If G has 

no cycles, i.e., all its connected components are trees, then #(C) = #(E) ≤ #(V ) − 1 =

n(H, Γ) − 1 and we are done.

Note that if M is chosen large enough, and e1, e2 ∈ E are adjacent edges of G whose 

lengths are comparable to within a factor of 100, then by sparseness, e1 and e2 must 

correspond to the same cube Q, and hence e1 = e2. Thus adjacent edges in G have 

lengths differing by a factor of at least 100.

It suffices to prove G has no cycles, so suppose e1, . . . eN are the ordered edges of 

cycle in G. We want to show this is impossible. We will call a pair of edges ej , ek in the 

cycle a “good pair” if they have sizes that are comparable within a factor of 100, but are 

connected by a non-empty path of edges that are all smaller by a factor of 100. We may 

assume e1 is the longest edge. Thus it is one element of a good pair; the other element is 

either itself (if it is the only edge with comparable length in the cycle) or another edge 

ek; in the latter case e1 and ek can’t be adjacent by our earlier remarks. We claim there 

must be another good pair on the path connecting e1 to ek.

Let f be the largest edge between e1 and ek. Since e1, ek is a good pair, �(f) ≤
min(�(e1), �(ek))/100. If there is a second edge with length comparable to f (within a 
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factor of 100), then since the path from e1, e2 is finite, then some pair of these comparable 

edges gives another good pair. Otherwise there is no other edge with length comparable 

to f . Now consider the largest edge f ′ between e1 and f . As above, there is either another 

edge between e1 and f of comparable size (and hence another good pair), or just a single 

such edge f ′ with �(f ′) ≤ �(f ′)/100 (since we have assumed there are no edges with 

length that is within a factor of 100 of f ’s). The same argument applies to the path from 

f to ek. Thus either we find a good pair or there are at most two edges (besides f) that 

are longer than �(e1)/1002. Continuing in the same way, we either find a good pair or 

we prove that there are at most 2n − 1 edges of length ≥ 100−n−1�(e1). Thus the total 

length of all the edges in the path from e1 to ek is at most 
∑∞

n=1 2n ·100−n�(e1) 	 �(e1). 

However, the path either connects the endpoints of e1, or connects e1 to an edge ek whose 

distance from e1 is ≥ 100 · �(e1). In either case, the path is too short, so the assumption 

that there are no good pairs must be wrong.

So a good pair of edges ej , ei with diameters ≤ 100 · diam(e1) must exist. But these 

edges are separated by distance at least 100 · diam(ej) and the same argument as above 

implies the path between them contains another good pair smaller by at least a factor 

of 100. Continuing in this way, we see the proposed cycle in G contains arbitrarily many 

edges, and this contradicts the fact that G is a finite graph. Thus G is a forest, and the 

lemma is proven. �

Continuing with the proof of (3.1), note that by (3.3)

�(Γ) − crd(Γ) ≥
ˆ

n(H, Γ)dμ(H) −
ˆ

H∩Γ 
=∅

1dμ(H)

�

ˆ

N(H, Γ)dμ(H)

=
∑

Q∗

μ(S(Q∗, Γ)).

To complete the proof we need

Lemma 3.2. For every dyadic cube Q there is a intersecting Q∗ ∈ D∗ of comparable size 

so that β2
Γ(Q)diam(Q) � μ(S(Q∗, Γ)).

Given the lemma, we deduce that

∑

Q∈D
β2(Q)diam(Q) �

∑

Q∗∈D∗

μ(S(Q∗, Γ)),

and hence

�(Γ) − crd(Γ) �
∑

Q∈D
β2(Q)diam(Q),
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as desired. To prove Lemma 3.2 we will need some preliminary facts.

Lemma 3.3. Suppose I is the unit segment between 0 and 1 on the x1-axis, and suppose 

J is another unit length segment in Rn with dist(I, J) ≥ 1 and with at least one endpoint 

inside {|x| < 100} that is distance β > 0 from the x1-axis. Then the μ-measure of the 

hyperplanes hitting both I and J is � β2.

Proof. Think of I as fixed and J as variable. The measure of the hyperplanes hitting 

both I and J is a continuous function of J and is non-zero as long as J is not a subset 

of X1, the x1-axis. Thus it is bounded away from zero as long as J has one endpoint 

outside the cylinder of radius 1/100 around X1.

Since the lemma is true if β ≥ 1/100, now suppose β < 1/100. Then the hyperplanes 

that hit both I and J have unit perpendicular vectors that within O(β) of the (n − 1)-

unit-sphere Sn−1 in X⊥
1 , the orthogonal complement of X1. Consider the linear map 

that is the identity on X1 and expands by a factor of b = 1/(100β) on X⊥
1 . In the p = rx

parameterization of hyperplanes, this map can change r by a factor of O(b) and changes 

the x1 coordinate of x by at most a factor of b. Therefore the μ measure of hyperplanes 

hitting I and J is increased by at most a factor of O(b2) = O(β−2) and the new measure 

is bounded uniformly away from zero. This proves the lemma. �

Lemma 3.4. Suppose Q is a dyadic cube in Rn and Q∗ ∈ D∗ is cube of the same size and 

is a translation of Q by at most �(Q)/3 in each coordinate direction. Then the distance 

from 2Q ∪ 2Q∗ to Rn \ (3Q ∩ 3Q∗) is at least �(Q)/6.

Proof. If z ∈ 2Q ∪ 2Q∗ then Pk(z) ∈ 2I ∪ 2I∗ = Pk(2Q) ∪ Pk(2Q∗) for every k =

1, . . . , n, where Pk is the orthogonal projection onto the kth coordinate axis. Similarly, if 

w /∈ (3Q ∩ 3Q∗) then Pk(z) /∈ 3I ∩ 3I∗ = Pk(3Q) ∩ Pk(3Q∗) for some choice of k. But in 

dimension 1, the distance between 2I ∪ 2I∗ and R \ (3I ∩ 3I∗) is easily computed to be 

�(I)/6, e.g., if I = [0, 1] and I∗ = [ 1
3 , 43 ], then 2I ∪ 2I∗ = [−1

2 , 11
6 ] and 3I ∩ 3I∗ = [−2

3 , 2]. 

Hence |z − w| is at least this big. �

Proof of Lemma 3.2. The idea is simple: by Lemma 3.3 and the fact that any hyperplane 

hitting a chord S of a sub-arc γ ⊂ Γ also hits γ, the estimate reduces to finding two sub-

arcs γ1, γ2 of Γ ∩ 3Q with length ≥ �(Q)/100 and ≤ �(Q)/2 and so that dist(γ1, γ2) ≥
�(Q)/2, and also whose chords are β far from lying on the same line. The separation 

property will hold if one chord lies in 3
2Q and the other in 3Q \ 2Q.

By rescaling we may assume Q has side length 1, and that Γ hits both Q and 3Qc. Set 

β = βΓ(2 23
24 , Q). For any child Q′ of Q, 3Q′ ⊂ 2Q ⊂ 2 23

24 Q, so βΓ(Q′) ≤ β = βΓ(2 23
24 , Q). 

Thus the β-numbers for the children of Q are all bounded by O(β), and we will show 

that this is either O(μ(S(Q, Γ))) or O(μ(S(Q∗, Γ))) for some Q∗ ∈ D∗(Q). Thus finding 

the two chords in Γ ∩ Q will actually bound the β numbers for the children of Q.

Choose z ∈ Γ ∩ ∂Q and define the ball B1 = B(z, 1
24 ). Choose w ∈ Γ ∩ ∂B1 so that z

and w are connected by a sub-arc γ1 ⊂ Γ ∩B1. Let S1 = [z, w] be the segment connecting 
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Fig. 4. In both cases, we can find two segments inside 3Q that have lengths comparable to diam(Q) and are 
not both close to common line. Lemma 3.3 them implies at least measure 
 β2 of hyperplanes hit both 
segments. For clarity, the pictures are not quite to scale.

them. Then S1 ⊂ 1 2
3Q and any hyperplane that hits S1 must also hit γ1 ⊂ Γ ∩ 1 2

3Q. Let 

L1 be the line that contains S1 and let W0 ⊂ W1 be the cylinders of radius β/1000 and 

β/2 respectively, both with axis L1. Since these radii are less than β, we know Γ ∩ 2 23
24 Q

contains a point outside the cylinder W1. There are two cases to consider, depending on 

where this point is.

Case 1: Suppose there is a point

v ∈ Γ ∩
(

2
23

24
Q \ 2

1

24
Q

)
\ W0.

See left side of Fig. 4. Since Γ is path connected and has diameter ≥ diam(Q), v can be 

connected to a point u ∈ Γ with |u − v| = 1
24 (we may assume u and v are connected by 

a sub-arc γ2 ⊂ Γ that stays inside the ball B2 = B(v, 1
24 ) by starting at v and following 

γ until it first leaves B2). Let S2 = [u, v] be the segment connecting these two points 

and note that any line that hits S2 also hits γ2 ⊂ Γ ∩ D2 ⊂ 3Q \ 2Q. Since S2 has an 

endpoint outside W0, the measure of the set of lines that hits both S1 and S2 is � β2 by 

Lemma 3.3. Thus μ(S(Q, Γ)) � β2 as well and the lemma is satisfied with Q∗ = Q.

Case 2: Suppose Case 1 does not hold. Then there must be a point p ∈ Γ ∩ (2 1
24 Q \ W1). 

Choose q with |p − q| ≤ 1
12 that is connected to p by a sub-arc γ3 ⊂ Γ ∩ B3, where 

B3 = B(p, 1
12 ) ⊂ 2 1

3Q. See right side of Fig. 4. Let S3 = [p, q]. As before, any line that 

hits S3 must also hit γ3. Choose an element Q∗ ∈ D∗(Q) that is the same size as Q and 

translated by at most 1
3�(Q) in each coordinate direction (possibly Q itself) and so that 

B3 ⊂ 1 2
3Q∗ (it is easy to check there is at least one such cube Q∗ by considering the 

projections onto each coordinate).

By Lemma 3.4, Γ must contain a point u ∈ (3Q ∩ 3Q∗) \ (2Q ∪ 2Q∗) that is at least 

distance ≥ 1
12 from the boundaries of both 2Q and 3Q. Therefore the ball B4 = B(u, 1

24 )

is inside of 2 23
24 Q \ 2 1

24 Q. As before, we can find a radius S4 of B4 so that any line that 

hits S4 also hits a sub-arc γ4 ⊂ Γ ∩ B4. Since γ4 lies inside the very thin cylinder W0, 

the line L4 containing S4 is almost parallel to L1 (the axis of W0) and so L4 ∩ 3Q lies 
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Fig. 5. Definitions for the proof of Theorem 1.2.

inside a cylinder of radius β/4 around L1. Since p is outside the larger cylinder W1 we 

see that S3 and S4 satisfy Lemma 3.3, hence the measure of the set of lines that hit both 

S4 and S3 is � β2 by Lemma 3.3. Thus μ(S(Q∗, Γ)) � β2, as desired. �

This completes the proof of (3.1), and hence of Theorem 1.1. �

4. Proof of Theorem 1.2

Proof. As noted earlier, “�” is immediate from Theorem 1.1 since crd(Γ) ≤ diam(Γ).

To prove the other direction, we may assume the β2-sum in (1.4) is finite, for otherwise 

there is nothing to prove. Thus we may assume γ is rectifiable. We may also assume 

diam(Γ) = 1. Let Q0 be a dyadic cube hitting Γ with 1 ≤ diam(Q0) ≤ 2, hence Γ ⊂ 3Q. 

Suppose β0 is a small positive number (chosen to satisfy various conditions described 

below). If βΓ(Q0) > β0, then the result is trivially true since then

crd(Γ) ≤ diam(Γ) = 1 ≤ 1

β2
0

β2
Γ(Q0)diam(Q0) � β2

Γ(Q0)diam(Q0),

(with constant depending on β0) and hence the crd(Γ) term in (1.4) can be absorbed 

into the β2-sum term.

Therefore we may assume βΓ(Q0) ≤ β0. Let S = [x, y] be a diameter segment of Γ

and let γ0 be the open subarc of Γ connecting x and y. Then Γ \ γ0 consists of two arcs, 

γ1 connecting x to an endpoint z (possibly z = x) and γ2 connecting y to the other 

endpoint w (possibly w = y).

By rotating and rescaling, we may assume that x = 1, y = −1 are on the x1-axis. See 

Fig. 5. Note that

crd(Γ) ≥ diam(Γ) − �(γ1) − �(γ2)

and hence using Theorem 1.1 (in particular (2.1)) we get

�(Γ) − crd(Γ) ≤ �(Γ) − diam(Γ) + �(γ1) + �(γ2)

≤ O

⎛
⎝

∑

Q

β2
Γ(Q)diam(Q)

⎞
⎠ + �(γ1) + �(γ2).

Thus Theorem 1.2 will follow if we can show that both �(γ1) and �(γ2) are bounded 

by a multiple of the β2-sum for Γ. Because of (1.2), i.e., the usual form of the traveling 

salesman theorem, and the fact that βγ1
(Q), βγ2

(Q) are both at most βΓ(Q), it is enough 
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to bound the diameters of these arcs by the β2
Γ-sum; then the diameters can be absorbed 

into the sum by making the comparability constant larger. The arguments for both arcs 

are the same, so we only discuss γ1.

Let ε = diam(γ1). Assume ε > 0 (otherwise there is nothing to do). Let Q1, . . . , Qk

be the nested dyadic cubes containing x with diameters going from diam(Q0) to ε. Note 

that k � log(diam(Q0)/ε). If any one of these cubes satisfies βΓ(Qj) ≥ β0, then

diam(γ1) ≤
β2

Γ(Qj)

β2
0

diam(γ1) � β2
Γ(Qj)diam(Qj),

and hence diam(γ1) is dominated by the β2-sum, as desired. For the remainder of the 

proof we may therefore assume that βΓ(Qj) ≤ β0 for all j ∈ {0, 1, . . . , k}. Let Lj be a 

best line in the definition of βΓ(Qj).

Case 1: Assume that for some j ∈ {1, . . . , k}, the line Lj makes an angle larger than 10β0

with the x1-axis. Since the angle between L0 and Lj is bounded by O
(∑j

i=0 β(Qi)
)

, 

and we have normalized so that the best line for Q0 is within β0 of the x1-axis, we must 

have 
∑k

j=1 βΓ(Qj) � β0 � 1. The Cauchy-Schwarz inequality then implies

1 �

⎛
⎝

k∑

j=1

βΓ(Qj)

⎞
⎠

2

≤

⎛
⎝

k∑

j=1

β2
Γ(Qj)2−j

⎞
⎠ ·

⎛
⎝

k∑

j=1

2j

⎞
⎠ � 2k

k∑

j=1

β2
Γ(Qj)2−j

so 
∑k

j=1 β2
Γ(Qj)2−j � 2−k � ε, and hence

ε = diam(γ1) �
k∑

j=1

β2
Γ(Qj)diam(Qj),

as desired.

Case 2: Next we assume that all the lines Lj , j = 0, . . . , k make angle ≤ 10β0 with 

the x1-axis. Consider a subarc γ′
1 ⊂ γ1 that is contained in, and connects the boundary 

components of, the annulus

{p ∈ R
2 :

1

10
diam(γ1) ≤ |p − x| ≤ 1

5
diam(γ1)}.

Since γ1 and γ′
1 have comparable diameters, it is enough to bound diam(γ′

1).

For each p ∈ γ′
1 a dichotomy holds: either every dyadic cube Q containing p with 

diam(Q) ≤ diam(γ1)/10 satisfies βΓ(Q) ≤ β0 or there is a cube Qp of this form such 

that βΓ(Qp) > β0. Let E ⊂ γ′
1 be the set of points p where such a Qp exists. Since we 

can assume γ1 is rectifiable, almost every point of γ1 is a tangent point.

Lemma 4.1. If p ∈ γ′
1 \E and p is a tangent point of Γ, then p has the following “crossing 

property”: if Q is a dyadic cube containing p with diam(Q) ≤ diam(γ1)/10 then γ1 must 
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Fig. 6. If all the β’s are small at p, and p is a tangent point of γ, then γ must cross Q in the sense that the 
orthogonal projection of γ ∩ 3Q on the line L must cover L ∩ Q, i.e., γ can’t “double back” and leave using 
the same end of W that it entered.

“cross” Q in the sense that the orthogonal projection of γ1 ∩ 3Q onto LQ covers LQ ∩ Q, 

where LQ is a best approximating line for the definition of βΓ(Q). In other words, γ1

must connect the two components of W ∩ ∂3Q where W is a cylinder of radius 1/10 with 

axis LQ passing through p.

Proof. Note that because p is not in E, that γ has small β-number for Q and for every 

dyadic subcube of Q that contains p. Using this, we claim we can construct a (n − 1)-

surface σ so that

(1) σ cuts 3Q into two pieces,

(2) σ separates the endpoints of γ1 ∩ 3Q,

(3) σ contains p, but no other points of γ1, and

(4) σ ∩ 3Q′ \ Q′ is nearly orthogonal to LQ′ for each dyadic Q′ with p ∈ Q′ ⊂ Q.

To do this, choose a (n − 1)-sphere of the n-sphere of radius t = diam(Q)2−n around p

that is nearly orthogonal to the optimal line Ln passing through p for the definition of 

β(p, 2−n) and then connecting these (n − 1)-spheres by a surface (e.g., project both onto 

the (n − 1)-plane L⊥
n orthogonal to Ln and connect two points if the projections are on 

the same ray in L⊥
n ). See Fig. 6 for the planar picture.

If p is a tangent point of γ1, then σ has a tangent plane at p that is perpendicular to 

γ1’s tangent direction. From this we see that γ1 crosses σ, i.e., it hits both components 

of 3Q \ σ. Since γ1 only hits σ once, it must leave 3Q through a different component of 

∂(3Q) ∩ W than it entered through. This implies Lemma 4.1. �

Note in the previous proof, that if Γ contains two sub-arcs that connect different ends 

of the cylinder W , then both sub-arcs must cross through p and hence Γ is not a Jordan 

curve. This observation will be used later to prove Corollary 5.1.

Lemma 4.2. �(E) = �(γ′
1).
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Proof. If not, then we can choose a non-empty subset F ⊂ γ′
1 \ E that consists entirely 

of tangent points of γ. Suppose p ∈ F and define d to be the distance from p to γ0. 

By the assumption that every Lj is close to horizontal, we know d = O(β0 diam(γ1)) <

diam(γ1)/10. Also note that d is positive since p is not on γ0. Let Qp be the dyadic square 

containing p with diameter 2d < diam(Qp) ≤ 4d. Because diam(Qp) ≤ diam(γ1)/10, the 

argument in the previous paragraph applies, and γ1 must cross Qp inside a cylinder S of 

width β0diam(Qp). Moreover, since diam(Qp) > 2d, the curve γ0 also hits 3Q and hence 

contains a point q in the same cylinder S, and hence γ0 is at most distance β0 diam(Qp)

from γ1. For β0 small, this value is much smaller than d, giving a contradiction. Thus 

no such p exists, and hence �(E) = �(γ′
1), so Lemma 4.2 holds. �

By the nested property of dyadic cubes, we can find a collection {Qj
p} of cubes as in 

the definition of E that have disjoint interiors and that covers E. Hence

�(γ′
1) � �(E) ≤

∑

j

�(Qj
p ∩ E) �

∑

j

⎡
⎣diam(Qj

p) +
∑

Q⊂Qj
p

β2
E(Q)diam(Q)

⎤
⎦

where we have applied (1.2), say with δ = 1, to each set Qj
p ∩ E. Note that usual 

formulation of the traveling salesman theorem is to sum over all dyadic cubes in Rn, 

but if E ⊂ Q, then it suffices to sum over all cubes contained in Q (including Q itself) 

since the β2-sum over all larger cubes that hit E form a geometric series whose sum is 

O(β2(Q)diam(Q)). See also Lemma B.2.

Now we use (1.2) and the fact that βE ≤ βΓ, to show

�(γ′
1) �

∑

j

∑

Q⊂Qj
p

β2
Γ(Q)diam(Q),

where we have also used βΓ(Qj
p) � 1 to absorb the diam(Qj

p) terms into the β2-sums. 

Since this is a β2-sum over disjoint collections of dyadic cubes, it is dominated by the 

full β2-sum, and this completes the proof of Theorem 1.2. �

For the proof of (1.2) we can refer to [16], or note that it is also proven in Appendix A

of this paper. This proof uses a slight modification of the arguments in Section 2 and is 

independent of the current argument.

5. Corollaries and questions

Next we derive some consequences of our arguments that are used to derive the char-

acterizations of Weil-Petersson curves given in [5]. As noted in the introduction, such 

curves satisfy the condition 
∑

Q β2(Q) < ∞, where the “diam(Q)” has been dropped 

from Jones’s characterization of rectifiable curves.
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Fig. 7. If Γ does not have bounded turning, then there are points z, w that cannot be connected by a subarc 
of diameter O(|z −w|). This means these points lie on disjoint subarcs whose four endpoints are all distance 
� |z − w| from z and w.

Corollary 5.1. If Γ is a closed Jordan curve and S =
∑

Q β2
Γ(Q) < ∞, then Γ has bounded 

turning, i.e., there is an M < ∞ so that any pair z, w ∈ Γ is connected by a sub-arc γ

with diam(γ) ≤ M |z − w|. We may take M = O(eO(S)).

Proof. Suppose not. Then given any M < ∞ there are z, w ∈ Γ, so that both subarcs 

connecting them have diameter ≥ M |z−w|. Rescale so that |z−w| = 1. Then we can find 

disjoint arcs z ∈ γ1, w ∈ γ2 with endpoints z′, z′′ and w′, w′′ respectively, so that all four 

of these points are at least distance M from v = (z+w)/2. Choose a positive integer N so 

that M/2 < 2N ≤ M . See Fig. 7. Consider the annuli An = {y : 2n ≤ |y − v| < 2n+1} for 

n = 1, . . . , N and let Qn be the collection of dyadic cubes that hit An and have diameter 

≤ 2n+1. These collections have bounded overlap, so 
∑

n

∑
Qn

β2
Γ(Q) ≤ C · S, and hence 

there is some n so that 
∑

Qn
β2

Γ(Q) ≤ 1/10, if log M ≥ 10 · C · S. Both components of 

γ1 \ {z} cross An, as do both components of γ2 \ {w}. Thus there is a radial cylinder 

of radius 2n/100 and length 2n that connects the two boundary components of An and 

contains two disjoint sub-arcs of Γ that also cross An. The proof of Lemma 4.1, however, 

shows that there is a point p on in An that both arcs must pass through, a contradiction. 

Thus Γ has the bounded turning property for some M with log M � S =
∑

Q β2
γ(Q). �

Corollary 5.2. If Γ is a closed Jordan curve and S =
∑

Q β2
Γ(Q) < ∞, then Γ is chord-

arc, i.e., any pair of points z, w ∈ Γ are connected by a sub-arc γ with �(γ) � |z − w|.

Proof. Suppose z, w ∈ Γ and γ ⊂ Γ is a sub-arc with endpoints z, w and diam(γ) ≤
M |z − w| = Mcrd(γ), with M = O(exp(O(S)) as in the previous corollary. Then by 

Theorem 1.2 and the fact that it suffices to sum over cubes Q with diam(Q) � diam(γ)

we get
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�(γ) ≤ crd(Γ) + O

⎛
⎝

∑

Q

β2
γ(Q)diam(Q)

⎞
⎠

≤ crd(γ) + O

⎛
⎝diam(γ)

∑

Q

β2
γ(Q)

diam(Q)

diam(γ)

⎞
⎠

≤ crd(γ) + Mcrd(γ) ·
∑

Q

β2
γ(Q) · O(1)

= crd(γ) · (1 + O(MS)) = crd(γ) · (1 + O(S exp(O(S)))). �

The corollaries fail if Γ is not a closed arc, e.g., take a circle with an ε-long arc 

removed. Is it true that if 
∑

Q β2
Γ < ∞ for a Jordan arc Γ, then Γ is a subarc of a 

chord-arc curve Γ′? It seems likely that an argument similar to the proof of Lemma 4.1

can be used to extend Γ past an endpoint on scales where β is small, but something 

more clever is needed on scales where β is large. More generally, if E is a general set 

and 
∑

Q β2
Q(E) < ∞, is E a subset of a curve Γ with 

∑
Γ β2

Γ(E) < ∞? Jones’s traveling 

salesman theorem shows this is true for sums of the form 
∑

Q β2
Q(E)diam(Q). What 

about sets satisfying 
∑

Q β2
Q(E)diams(Q) for 0 < s < 1?

An earlier draft of this paper asked if Theorem 1.2 is true in Hilbert space. This has 

since been verified by Jared Krandel in [19]. Does this theorem hold in other metric 

spaces where the usual TST is known to hold? Does (1.2) hold for general sets in a 

metric space if (1.1) does? What about (1.3)? These questions seem analogous to the 

fact, proven independently by Arora [2] and Mitchell [23], that one can compute (1 + ε)-

approximations to the classical traveling salesman problem in polynomial time for finite 

sets in Euclidean space, but this is unknown for ε < 1/2 in metric spaces, and computing 

any bounded approximation is NP hard for general weighted graphs. What is the proper 

“analytic” version of this?

Appendix A. The TST for general sets

We have done most of the work needed to prove the traveling salesman theorem for 

general sets E ⊂ R
n, not just for Jordan curves. For the convenience of the reader, we 

explain how to prove (1.2) by modifying the argument in Section 2.

The only change is in the splitting procedure. As before, we start with Γ0 the convex 

hull of E. In general, we will have a collection of convex sets Rn and line segments 

Sn whose union is a closed, connected set Γn that contains E. As before, each convex, 

compact set R ∈ Rn, will be convex hull of R ∩ E. The intersection Γ = ∩Γn is a 

compact, connected set containing E and we wish to bound its 1-dimensional Hausdorff 

measure.

Given R ∈ Rn, we take a diameter segment I and split it into three equal thirds: 

the middle segment J0 and the two ends J1, J2. If the orthogonal projection of R ∩ E

contains a point v ∈ J0, then cut I into two pieces I1, I2 using this point and replace 
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R by two pieces R1, R2 that are the convex hulls of the parts of R ∩ E that project 

onto I1, I2 respectively. If the projection of onto J0 is empty, then define R1, R2 as the 

convex hulls of the parts of R ∩ E that project onto J1, J2 respectively and a shortest 

possible line segment S connecting R1 and R2. The union of the nth generation sets and 

segments is clearly a connected compact covering of E, so the sum of the diameters of 

these sets and segments is an upper bound for the shortest connected set containing E

(shortest in the sense of 1-dimensional Hausdorff measure).

The only change needed in the earlier proof is to Lemma 2.1. It becomes

Lemma A.1. If R is split into R1, R2 sets and a segment S as above, and δ > 0, then

diam(R1) + diam(R2) + (1 − δ)�(S) ≤ diam(R) + O(
1

δ
)β2(R)diam(R).

Proof. For the first case of the new splitting procedure, there is no segment S and each 

subset has diameter comparable to R, and the proof of Lemma 2.1 is the same as before. 

For the second case, first note that if β(R) ≥ δ/20, then

diam(R1) + diam(R2) + (1 − δ)�(S) ≤ �(J1) + �(J2) + �(J0) + 6β(R)diam(R)

≤ diam(R) +
120

δ
β2(R)diam(R)

If β(R) < δ/6, then because �(J0) = diam(R)/3,

diam(R1) + diam(R2) + (1 − δ)�(S) ≤ �(J1) + �(J2) + 8β2(R)diam(R)

+(1 − δ)(�(J0) + 4β2(R)|R|)

≤ (1 − δ

3
)diam(R) + 12β2(R)diam(R)

≤ (1 − δ

3
)diam(R) + 12(δ/6)2diam(R)

≤ diam(R).

This proves the lemma. �

The rest of the proof now proceeds as before, except that since

∑

n

∑

S∈Sn

�(S) ≤ �(Γ),

we can replace (2.3) by

(1 − δ)�(Γ) ≤ diam(Γ) + lim sup
n

∑

R∈Rn

diam(R) +

n∑

k=1

∑

S∈Sn

(1 − δ)�(S)
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≤ diam(Γ) + O(
1

δ
)
∑

n

∑

R∈Rn

β2(R)diam(R).

Dividing both sides by (1 − δ) proves (1.2). This implies the smallest connected set Γ

containing a set E satisfies

C1

∑

Q

β2
E(Q)diam(Q) ≤ �(Γ) − diam(E) ≤ (1 + δ)diam(E) +

C2

δ

∑

Q

β2
E(Q)diam(Q),

for some constants 0 < C1, C2 < ∞, since the proof of the lower bound in Section 3

applies to any curve Γ containing E.

Appendix B. Equivalent formulations of TST

There are several formulations of Peter Jones’s traveling salesman theorem and it is 

folklore that they are all equivalent to one another. Responding to requests from readers 

of an earlier draft of this paper, I give a precise formulation and proof of this “well 

known” fact.

A multi-resolution family in a metric space X is a collection of bounded sets {Xj} in 

X such that there are N, M < ∞ so that

(1) For each r > 0, the sets with diameter between r and Mr cover X,

(2) each bounded subset of X hits at most N of the sets Xk with diam(X)/M ≤
diam(Xk) ≤ Mdiam(X).

(3) any subset of X with positive, finite diameter is contained in at least one Xj with 

diam(Xj) ≤ Mdiam(X).

Dyadic intervals do not form a multi-resolution family, e.g., X = [−1, 1] ⊂ R is not 

contained in any dyadic interval, violating (3) above. However, the family of triples of all 

dyadic intervals (or cubes) do form a multi-resolution family. Similarly, if we “triple” the 

collection of dyadic intervals by adding all translates by ±1/3, we get a multi-resolution 

family (this is sometimes called the “1
3 -trick”, [27]). The analogous construction for 

dyadic cubes in R
n is to take all translates by elements of {−1

3 , 0, 13} on each of the 

coordinates; this gives 3n families of translates of D (including D itself). The union of 

these families is denoted D∗.

We often deal with functions α that map a collection of sets into the non-negative 

reals (the β-numbers are an example), and we will wish to decide if the sum 
∑

j α(Xj)

over some multi-resolution family converges or diverges. The following observation allows 

us to switch between various multi-resolution families without comment.

Lemma B.1. Suppose {Xj}, {Yk} are two multi-resolution families on a space X and that 

α is a function mapping subsets of X to [0, ∞) that satisfies α(E) � α(F ), whenever 

E ⊂ F and diam(F ) � diam(E). Then
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Fig. 8. Three equivalent versions of the β-numbers.

∑

j

α(Xj) �
∑

k

α(Yk).

Proof. By Condition (3) in the definition of a multi-resolution family, each Xj is con-

tained in some set Yk(j) of comparable diameter. Hence α(Xj) � α(Yk(j)) by assumption. 

By Condition (2), each Yk can only contain a bounded number of Xj ’s of compa-

rable size, so each Yk is only chosen a bounded number of times as a Yk(j). Thus ∑
j α(Xj) �

∑
k α(Yk). The opposite direction follows by reversing the roles of the 

two families. �

It is often convenient to consider several different formulations of the β-numbers. For 

x ∈ R
n and t > 0, define

βΓ(x, t) =
1

t
inf
L

max{dist(z, L) : z ∈ Γ, |x − z| ≤ t},

where the infimum is over all lines hitting the ball B = B(x, t) and let β̃Γ(x, t) be the 

same, but where the infimum is only taken over lines L hitting x. Since this is a smaller 

collection, clearly β(x, t) ≤ β̃(x, t) and it is not hard to prove that β̃(x, t) ≤ 2β(x, t) if 

x ∈ Γ. See the center picture in Fig. 8.

Given a Jordan arc γ with endpoints z, w we let

β(γ) =
max{dist(z, L) : z ∈ γ}

|z − w| ,

where L is the line passing through z and w. See the right side of Fig. 8.

Lemma B.2. Suppose −1 < s < 2 and Γ ⊂ R
n is bounded Jordan curve (either closed or 

an arc). Then the following are equivalent:

∑

Q∈D
β2

Γ(Q)diam(Q)s < ∞, (B.1)

∞̂

0

¨

Rn

β2(x, t)
dxdt

tn+1−s
< ∞. (B.2)
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If Γ is chord-arc, then (B.1) and (B.2) are also equivalent to

∞̂

0

ˆ

Γ

β̃2(x, t)
dsdt

t2−s
< ∞, (B.3)

∑

j

β2(Γj)diam(Γj)s < ∞, (B.4)

where dx is volume measure on Rn, ds is arclength measure on Γ, and the sum in (B.4)

is over a multi-resolution family {Γj} for Γ. All four quantities are comparable with 

constants that depend only on the dimension n. Moreover, convergence or divergence in 

(B.2) and (B.3) is not changed if 
´∞

0
is replaced by 

´M

0
(for any M > 0) and the values 

are all comparable for M ≥ diam(γ). The convergence of the sum in (B.1) is unchanged 

if we only sum over cubes of diameter ≤ M , for any M > 0 and are comparable for all 

values M ≥ diam(Γ).

Since β(x, t) � β̃(x, t) if x ∈ Γ, the integral in (B.3) is finite iff it is finite with β

replacing β̃. However, putting β̃ into (B.2) gives a divergent integral for every closed 

Jordan curve Γ. The case s = 1 in the lemma corresponds to Peter Jones’s traveling 

salesman theorem characterizing rectifiable curves, and s = 0 corresponds to the charac-

terization of Weil-Petersson curves in [5]. Do other values of s correspond to interesting 

curve families?

Proof of Lemma B.2. Without loss of generality we may assume diam(Γ) = 1.

(B.1) ⇔ (B.2): If Q is a dyadic cube and x ∈ Q, then diam(Q) ≥ √
nt implies then 

B(x, t) ⊂ 3Q. In this case β(x, t) ≤ √
nβ(Q). Therefore

diam(Q)/2
ˆ

diam(Q)/4

¨

Q

β2(x, t)
dxdt

tn+1−s
� β2(Q)

vol(Q)

diamn−s(Q)
� β2(Q)diam(Q)s.

Since the domains of integration on the left are disjoint for distinct (but not necessarily 

disjoint) dyadic cubes Q, we see that

∞̂

0

¨

Rn

β2(x, t)
dxdt

tn+1−s
�

∑

Q

β2(Q)diam(Q)s.

Conversely, if x ∈ Q and t ≥ 2diam(Q), then 3Q ⊂ D(x, t), so β(x, t) ≥ 1
2β(Q). This 

shows the β2-integral is also bounded below by a multiple of the β2-sum.

(B.1) ⇒ (B.3): Assume (B.1) holds and that Γ is chord-arc. If x ∈ Γ, 0 < t ≤ diam(Γ), 

then �(Γ ∩ D(x, t)) � t. If γ ⊂ Γ is a subarc of length t, then its diameter is at most t

and we can choose a dyadic cube Q containing x and so that 2t ≤ diam(Q) ≤ 4t. Then 

B(x, t) ⊂ 3Q and so β̃(x, t) � β(Q), and hence (if ds denotes arclength measure on Γ),
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diam(Q)/2
ˆ

diam(Q)/4

ˆ

γ

β̃2(x, t)
dsdt

t2−s
�

diam(Q)β2(Q)

diam(Q)1−s
� β2(Q)diam(Q)s.

Now divide Γ into dyadic subintervals, {γj} and let Qj be the dyadic cube associated to 

γj as above. Then

∞̂

0

¨

Γ

β̃2(x, t)
dsdt

t2−s
=

∑

j

�(γj)/2
ˆ

�(γj)/2

ˆ

γj

β̃2(x, t)
dsdt

t2−s

�
∑

j

β2(Qj)diam(Qj)s

�
∑

Q

β2(Q)diam(Q)s,

where the last line holds if we know that each dyadic Q is only chosen a bounded number 

of times as a Qj . But if Q is chosen for γj then γj hits Q and has length comparable to 

diam(Q). By the chord-arc condition, only a bounded number of such arcs can hit Q, for 

otherwise the arclength of Γ ∩ 3Q would be too large. This proves the arclength integral 

is bounded by the sum.

(B.3) ⇒ (B.4): For each element Γj of the multi-resolution family, choose a dyadic arc 

γk ⊂ Γ that hits Γj and has comparable length. Since β(Γj) � β̃(x, 2diam(Γj)),

β2(Γj)diam(Γj)s �

2diam(Γj)
ˆ

diam(Γj)

ˆ

γk

β̃Γ(x, t)
dxdt

t2−s
.

Since each γk can be associated to at most O(1) arcs Γk (Γj can only hit a bounded 

number of dyadic arcs of comparable size), the multi-resolution sum over the whole 

family is bounded by the β̃-integral over all Γ and all scales.

(B.4) ⇒ (B.2): Suppose Γ is chord-arc, that Q is a dyadic cube, x ∈ Q, and that 

diam(Q) ≤ t ≤ 2diam(Q). Let X = Γ ∩ 9Q and let Γj be a member of the multi-

resolution family containing X and having comparable diameter. Then

β(x, t) ≤ β(Γj) · crd(Γj)

t
� β(Γj),

since crd(Γj) � t by the chord-arc condition. The integral in (B.2) is obtained by sum-

ming all the integrals over product sets of the form Q × [diam(Q), 2diam(Q)], and each 

such integral is bounded by β2(Γj)diam(Γj)s for the corresponding Γj. Since Γj can only 

hit a bounded number of dyadic cubes with diam(Q) � diam(Γj), we see that each Γj

is used only a bounded number of times, hence the sum bounds the integral.
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Changing limits of integration: Recall that we have assumed diam(Γ) = 1. To see that 

(B.2) is equivalent to

diam(Γ)
ˆ

0

¨

Rn

β2(x, t)
dxdt

tn+1−s
< ∞, (B.5)

we simply note that for any x ∈ Γ and t > diam(Γ), that β(x, t) ≤ 1
t β(x, 1) and that 

β(x, 1) � β(y, 1) for any x, y ∈ Γ. Hence

∞̂

1

¨

Rn

β2(x, t)
dxdt

tn+1−s
� β2(x, 1)

∞̂

1

¨

D(x,2t)

dxdt

tn+3−s

� β2(x, 1)

∞̂

1

t−3+sdt

�

1
ˆ

1/2

¨

Rn

β2(x, t)
dxdt

tn+1−s

�

1
ˆ

0

¨

Rn

β2(x, t)
dxdt

tn+1−s

This is where we use the assumption s < 2, so that −3 + s < −1 and the integral above 

converges. Thus truncating the integral cannot convert it from divergent to convergent. 

A similar argument works for truncating the sum in (B.1) or the integral in (B.3). �
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