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1. Introduction

Given a finite set F C R", the traveling salesman problem asks for the shortest curve
~ that contains E. This is one of the most famous intractable problems of combinatorial
optimization and its study has had a profound impact on the development of computa-
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tional geometry and discrete geometry. The “analyst’s traveling salesman problem” asks
whether an infinite set £ C R is contained in any curve of finite length, i.e., it asks to
characterize subsets of rectifiable curves. This problem has had a powerful influence on
the development of harmonic analysis and geometric measure theory over the last three
decades. For sets in R? it was solved by Peter Jones in [16] and this is known as Jones’s
“traveling salesman theorem” (TST). He gave an infinite series whose sum estimates
the length of the optimal curve containing £ up to a bounded factor; thus E lies on a
rectifiable curve if and only if the series converges. Jones’s TST was extended to higher
(finite) dimensions by Kate Okikiolu [27], but with constants that grow exponentially
with the dimension, and later Raanan Schul [31] proved a version that holds for sets in
Hilbert space, and thus in R™ with constants that are independent of n. This is one of
only a handful of problems in Euclidean analysis where dimension independent bounds
are known. Extensions to curves in other metric spaces are given in [10], [13], [21], [22].
There has also been much work in extending Jones’ result from curves to higher dimen-
sional objects in R™, e.g., what is the “smallest” surface containing a given set. This
problem has proved extremely subtly, and is central to recent developments in harmonic
analysis, geometric measure theory and rectifiability. For a sampling of applications of
Jones’s TST and related work, see [3], [4], [6], [9], [20], [22], [28], [34].

The purpose of this paper is to return to the original setting of curves in R", and
prove a sharper version of Jones’s and Okikiolu’s theorems. In order to state their results
precisely and explain the proposed improvement, we need a few definitions.

A dyadic interval I in R is one of the form (27"5,27"(j + 1)] for j,n € Z. A dyadic
cube @ in R™ is the product of n dyadic intervals of the same length. This common
length is called the side length of @ and is denoted £(Q). Note that diam(Q) = /nf(Q).
For a positive number A > 0, we let AQ) denote the cube concentric with @ but with
diameter A - diam(Q), e.g., 3Q) is the “triple” of @, a union of @ and 3™ — 1 adjacent
copies of itself. Given a set E C R™, A > 0 and a dyadic cube Q, define

1
B(E, N\ Q) = diam(Q)

where the infimum is over all lines L that hit ). In most cases we take A\ = 3 and for
brevity we set Sg(Q) = B(F, 3, Q). Note that 0 < Sg(Q) < 2, and equals 0 if and only
if F is a subset of a line. See Fig. 1. There are several other versions of the S-numbers

i%f sup{dist(z, L) : z € A\Q N E},

that can be used to state equivalent versions of Jones’s TST; see Appendix B for a few
of these.
Jones’s theorem in [16] says that the shortest curve I' containing £ C R? has length

{(T) ~ diam(E) + > B7(Q)diam(Q). (1.1)
Q

In this paper A < B means the same as A = O(B), i.e., A, B both depend on some
parameter and A < C - B where C is independent of the parameter. If A < B and
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Fig. 1. The definition of the S-numbers. The left shows a situation where Sg(Q) is small and the right a
situation where it is large. The shaded region represents the thinest strip containing £ N3Q and the dashed
line is its axis, the line L in the definition of Br(Q).

B < A, we write A ~ B, and say that A and B are comparable. Thus Jones’s S-sum
estimates the length of the optimal curve up to a bounded factor.
Actually, [16] states that for any § > 0 and F C R™, 2 < n < oo,

() < (1 + 0)diam(E ZﬁE Q)diam(Q). (1.2)

For general sets E, this does not hold for § = 0. For example, if E = {0,1,i3} C R?
with 0 < 8 << 1, then the shortest curve I' containing E satisfies ¢/(I') = 1 + 3, but
diam(T) = /1+ B2 = 1+ O(8?). It is not hard to check that the ?-sum for E is
O(?) < . Thus the term C(§) must tend to oo as § N\, 0. However, we will show that
(1.2) does hold for 6 =0 when E =T a Jordan curve:

Theorem 1.1. For any Jordan arc in R™,

(T) — diam(T") ~ Y~ B2(Q)diam(Q), (1.3)
Q

where the sum is over all dyadic cubes.

In fact, we can do even better than this. Let crd(T") = |z — w| where {z,w} are the
endpoints of T'; this is the “chord length” of I'. We always have crd(T") < diam(vy), so
Theorem 1.1 implies

T) — crd(T) 2 ZBF Q)diam(Q). (1.4)

The opposite direction is less obvious, but also holds:

Theorem 1.2. For any Jordan arc I' C R"™,

() —erd(T) ~ Y~ BE(Q)diam(Q), (1.5)
Q

where the sum is over all dyadic cubes.
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One obvious consequence is that for any Jordan arc T,

diam(T") — erd(T ZBF Q)diam(Q),

and another is:

Corollary 1.3. If T is a closed Jordan curve, then

Zﬁp Q)diam(Q), (1.6)

where the sum is over all dyadic cubes.

In Sections 2 and 3 we prove Theorem 1.1, and in Section 4 we use it to prove
Theorem 1.2. In Appendix A we show how to adapt our proof of Theorem 1.1 to give
a new proof of (1.2) for general sets £ C R™, and in Appendix B we discuss equivalent
formulations of the f-numbers and Jones’s theorem.

We end the introduction by describing one motivation for wanting this improved
version of Jones’s theorem. Although changing O(diam(T")) to crd(I") may seem minor, it
is crucial for proving the following result in [5]. Recall that a closed curve I' is called chord-
arc if any two points z,w € I" are joined by a sub-arc v with length ¢(v) = O(]z — w]).

Theorem 1.4. The following are equivalent for a closed Jordan curve in R™, n > 2:

(1) T satisfies

(2) T is chord-arc and for any dyadic decomposition of T, the inscribed polygons {T'y,}
defined by the nth generation points satisfy

S 2" [((T) — £(T,)] < oo,

with a bound that is independent of the choice of the decomposition.
(3) T has finite Mobius energy, i.e.,

M%m:!!<mjw‘a;w>“@<%

where dx,dy denotes integration with respect to arclength measure.




C.J. Bishop / Advances in Mathematics 404 (2022) 108443 5

Note that (1) is Jones’s sum without the diam(Q) factor; thus this condition represents
something stronger than rectifiability. The 8’s are a measurement of local curvature of
T, so (1) makes precise the idea that the that curvature of ' is square integrable over all
locations and scales.

If a closed Jordan curve I has finite length ¢(T'), choose a base point 2¢ € T and for
eachn > 1, let {z;}, j=1,...,2" be the unique set of ordered points with 2" = 29 that
divides T' into 2" equal length intervals (called the nth generation dyadic subintervals
of T'). Let T';, be the inscribed 2"-gon with these vertices. Clearly ¢(T',,)  ¢(T") and
condition (2) measures the rate of convergence.

In (3), the Mobius energy of a curve is one of several “knot energies” on curves intro-
duced by O’Hara [24], [25], [26], that blows up when the curve is close to self-intersecting,
so continuously deforming a curve in R? to minimize it should lead to a canonical “nice”
representative of each knot type. This was proven by Freedman, He and Wang [15] for
irreducible knots. They also showed that Moéb(I') is Mobius invariant (hence the name)
and that Moéb(I") attains its minimal value 4 only for circles. Theorem 1.4 provides a
geometric characterization of the curves for which this energy is finite. Function theo-
retic arguments suffice to prove Theorem 1.4 in the plane, but for n > 3, Theorem 1.2
is used in [5] to prove (1) = (2); the other implications (2) = (3) = (1) follow by more
elementary arguments.

In the special case n = 2, the class of closed curves described by Theorem 1.4 is known
as the Weil-Petersson class. This is the closure of the smooth curves in the Weil-Petersson
metric on universal Teichmiiller space defined by Takhtajan and Teo [33]; their work was
motivated by problems arising in string theory. Before [5] it had been an open problem to
give a geometrical characterization of these curves, a question that also arose in the work
of David Mumford and his students on computer vision and pattern recognition, e.g.,
[11], [12], and [32]. The Weil-Petersson class is also connected to the study of Schramm-
Loewner evolutions (random Jordan paths) and the Brownian “loop soup” of Lawler and
Werner. See [29], [35], [36], [37]. In addition to the conditions in Theorem 1.4, there are
numerous other characterizations of the Weil-Petersson class involving conformal maps,
Schwarzian derivatives, quasiconformal mappings, Sobolev spaces and minimal surfaces
in hyperbolic 3-space with asymptotic boundary I'. The results of this paper allow many
of these characterizations to be extended to higher dimensions and proven equivalent
there. They should also prove useful in a number of other constructions involving (-
numbers in higher dimensions.

I thank Jack Burkart, Maria Gonzalez, Joe Mitchell, David Mumford, and Raanan
Schul for reading early drafts of this paper and for numerous useful comments and

suggestions. Also thanks to two anonymous referees for their extremely helpful remarks.
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Fig. 2. The convex set R is split into two smaller convex sets.

2. Proof of the upper bound in Theorem 1.1

In this section we prove the inequality

¢(T) — diam(T <Z/3F Q)diam(Q), (2.1)

and we will prove the opposite direction in the next section.

Proof of (2.1). This direction closely follows the proof of Theorem 10.5.1 in [7] in the
planar case, which itself is inspired by the argument in Section X.2 of [14] (but that
proof contains a minor gap, fixed in [7]). However, several facts that are easy in the
plane require more intricate proofs in higher dimensions.

We will define a sequence of nested, compact sets {I';,}§° that shrinks down to T
Ty is the convex hull of T'. In general, suppose that I';, is the union of a collection R,
of compact, convex sets that cover I' and that each set R € R,, is the convex hull of
RNT. For each such set R, choose a diameter segment I of R and divide I into two equal
halves. Let R;, Ro be the convex hulls of the parts of R NI than project orthogonally
onto each of these segments. See Fig. 2. We call this process splitting R. The collection
Rn+1 is obtained by splitting every element of R, in this way. Thus R,4+1 has twice
as many elements as R,, and we will think of these elements as the nth generation of a
binary tree whose root is Ry = I'y. Below we will show that the diameters of these sets
tend to zero uniformly in n and that the sets are well dispersed in space (only a bounded
number with diameter ~ r can be within distance r of each other).

For a convex set R we define

dist(z, I)
B(R) = 1r11f ieR diam(R)’

and the infimum over all diameters I of R. (diameters are segments connecting pairs of
points z,w € OR with |z — w| = diam(R)).

Lemma 2.1. If R is split into Ry, Ry as above, then

diam(R;) + diam(Rz) < diam(R) + O (8*(R)diam(R)) .
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Proof. The subset Ry C R is contained in a cylinder W with axis length diam(R)/2
and radius B(R)diam(R), so diam(R;) < diam(W) = idiam(R) + O(8%*(R)diam(R)).
Similarly for Rs, and adding the estimates proves the lemma. 0O

Lemma 2.2. There is a constant M = M (n), so that if the splitting operation is performed
M times, then each of the 2M resulting sets has diameter at most 3diam(R).

Proof. Suppose not, that is, suppose there is an R with diam(R) = 1 and a large integer
M, so that after M splittings some subset still has diameter > 3/4. After the first
subdivision the projection onto the direction of the first diameter segment has length
1/2, so the second diameter segment (or any of the next M diameter segments) can’t
point in the same direction. Indeed, since all the next M diameters are > 3/4 then can’t
lie within angle § = cos™1(2/3) of the first direction. Similarly, the third direction can’t
be within 0 of either the first or second directions, and so on. Since the (n — 1)-sphere is
compact, it contains at most a bounded number C(n) of disjoint spherical caps of this
size and so M < C(n) + 1, as desired. O

By considering an n-dimensional ball, we see that n splittings may have to occur
before the diameter drops at all. As a side remark, Borsuk’s conjecture [8] asked if any
bounded set in R™ could be partitioned into n+1 subsets of strictly smaller diameter, but
this was disproven by Kahn and Kalai [17] who gave examples of sets requiring > (1.1)\/5
subsets when n is large. Schramm had earlier shown that (1.3)" subsets always suffice.
See also Chapter 18 of [1] for some history and related results.

Using Lemma 2.1, induction and diam(I'g) = diam(T"), we get

Z diam(R Z diam(R (Z B?(R)diam(R ))

RER 41 RER, RER
< diam(T") + O (Z Z B?(R)diam( ))
k=1 RER;,

The following is a standard fact.

Lemma 2.3. For a Jordan curve, the definition of ¢(I') via the supremum of lengths of
inscribed polygons agrees with the definition of 1-dimensional Hausdorff measure H(I')
as the limit lims- o inf Zj diam (X y), where the infimum is over all coverings of T’ by set
of diameter less than 9.

Proof. For any arc o, we have H!(c) > crd(o) so for any polygon P inscribed in 7,
we have H!(y) < ¢(P). By taking limits we get H'(y) < £(7). On the other hand,
we can cover « by finitely many disjoint (except for endpoints) subarcs {7y} each of
length < §. Hence ), diam(yz) < >, l(vk) < £(7). Taking the limit as § \, 0 we get
H(y) <L) O
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By Lemma 2.2 our collections R,, form such coverings and hence

() =H'(T) <limsup »  diam(R). (2.2)
N0 ReR,

Therefore,

¢(I) < diam(T") + O (i > 62(R)diam(R)> . (2.3)

n=0 ReRn

So all that remains to do is to show that the $2-sum over all the convex sets in the tree
T is dominated by the usual 3?-sum over dyadic cubes. Given a set R in some R,, there
is a dyadic cube @ that intersects R and satisfies diam(Q) < diam(R) < 2 - diam(Q).
Then R C C(n) - Q and B(R) = O(5(Q)). We will be done once we know that only a
uniformly bounded number of R’s can be associated to the same (). This is implied by:

Lemma 2.4. Suppose R is the convezr hull of ' C R™, n > 2. Consider the binary tree of
subsets obtained by the subdivision rule described above. Given 0 < € < diam(I") and a
point x € R™, the number of descendants of R that hit the ball B(x,€) and have diameter
between €/2 and € is bounded depending only on the dimension n.

Proof. Rescale so e = 1/1000 and « = 0. Let C be the collection of sets described in the
lemma. Choose a large integer IV and remove all the sets that are within tree distance NV
of the root; there are at most 2V of these, so it suffices to bound the number of remaining
sets. Replace each remaining set by its smallest (in terms of containment) ancestor to
have diameter larger than 4. By Lemma 2.2 there must be such an ancestor, if N is large
enough (depending only on n), and at most 2V sets in C have the same replacement.
Thus it suffices to bound the number of minimal sets R’ in T so that diam(R’) > 4 and
R' N B. # 0. We call these sets R’ the admissible descendents of R and denote them by
A.

We say a set R’ in A has rank k if it contains a k-dimensional ball of radius 10~*
centered on the unit n-sphere. We will call the center of this ball the center of R’. Since
every admissible descendent hits B, and has diameter > 4, it contains a segment that
connects {|z| = 1/2} to {|z| = 3/2} and hence has rank at least 1. The maximum
possible rank is n, and there are only a bounded number of such sets in A since they
contain disjoint balls of fixed volume centered on the unit sphere. When considering the
tree T', we will say a vertex has rank k if the corresponding set does.

The key observation is the following. Suppose that 6 = 107"~% and that Ry, Ry are
two descendent sets whose center points are within § of each other. Suppose also that Rs
has rank less than or equal to k, the rank of R;. Let Ry be the smallest common ancestor
of Ry and Ry (on the tree T, this is the vertex where the paths from Ry and Rz to root
first meet). Then R; and Ry are on opposite sides of the hyperplane H (possibly each
intersecting H ) bisecting some diameter I of Ry, and hence H must come within ¢ of the
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Fig. 3. If the hyperplane H passes very close to the center of a k-dimensional ball By that lies on one side
of H, then By is nearly parallel to H and a concentric ball of comparable radius and dimension k + 1 lies
in the convex hull of By and any segment I that is bisected and perpendicular to H, and whose length is
comparable to its distance from Bj. This implies the common ancestor of two disjoint sets with very close
centers must have strictly larger rank than either of them.

center of R;. Thus the k-ball By in R; is very close to parallel to H. The segment I is
perpendicular to H and hits H at a point at most distance diam(Rg) from the center of
Bj.. By definition, Ry contains the convex hull of its endpoints and the k-ball Bj. Since
diam(I) = diam(Ry) > diam(Ry), Ry contains a (k + 1)-ball B4 with the same center
as By and with radius at least 1/10 as big, in particular, bigger than 107*~!. Thus any
common ancestor of two sets whose center points are d-close has strictly higher rank
than either of them. See Fig. 3.

Now choose a point & on the unit sphere in R™ and consider all the admissible de-
scendents whose centers are within § of this point. These sets form the leaves of a finite
subtree of T', where the only vertices of degree 3 are smallest common ancestors of some
subcollection of the sets. By our remarks above, each vertex of degree three has strictly
larger rank than any of the degree three vertices below it (closer to the leaves). Thus
each leaf is connected to the root by a path that has at most n degree three vertices on
it and so the tree is homeomorphic to a rooted binary tree with depth < n. Thus there
are at most 2" leaves.

Since the unit sphere in R™ is compact, we can partition the set of all admissible
descendents into N (n, d) collections, each of which has all their centers contained inside
some ball of radius §. By our previous argument, each such collection has at most 2"
elements, and this proves the lemma. O

As noted earlier, this completes the proof of (2.1). O
3. Proof of the lower bound in Theorem 1.1

Next we consider the opposite direction:

() — diam() 2 3 B2(Q)diam(Q). (3.1)
Q
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In the case n = 2 we will actually prove that
LT) — —prm ZBF Q)diam(Q), (3.2)

where prm(I") = ¢(9(ch(I"))) denotes the perimeter of T', i.e., the length of the boundary
of its planar convex hull (twice the length of I" if it is a line segment). By noting that
the orthogonal projection of a closed curve onto a diameter segment is 1-Lipschitz and
at least 2-to-1, we see that the perimeter of I" is at least twice its diameter. Hence (3.2)
implies (3.1). In higher dimensions, the perimeter is replaced by a quantity called the
“mean width” of I, defined below.

Proof of (3.1). Estimate (3.1) is proven using ideas from integral geometry. For the fol-
lowing facts, see [30].

There is a standard measure p on the space of (n — 1)-hyperplanes in R”, that is
invariant under rigid motions of R™. In this proof “hyperplane” will always mean a
(n —1)-dimensional affine space, and we will drop the explicit mention of the dimension.
Each hyperplane H C R™ (except those passing though the origin; a set of u measure
zero) is determined by the point p € H closest to the origin. If p = ra with r > 0,
r € S"1 = {2 € R" : |z| = 1}, the measure u on hyperplanes is given by dr times
(n — 1)-measure on the unit sphere S~ C R™.

Crofton’s formula says there is a constant ¢, > 0 so that

oT) = cn/n(H7 D)du(H),

where n(H,T') is number of points in H NT. See [30]. As a special case, the measure of
the set of hyperplanes hitting a line segment I is ¢, ¢(I) (almost every hyperplane hits a
given segment at most once). The value of ¢, is explicitly known, but not important to
us; indeed, from this point on we normalize y so that ¢, = 1. Note that if S is the chord
of I' then

p({H:HNT #0}) > pu(H: HNS #0}) = crd(I). (3.3)

The leftmost quantity in (3.3) is called the mean width of T'; it is the average over
S"~1 of the length of the projection of I' onto the line every direction. For n = 2,
this is a multiple of the perimeter of the convex hull K of I', and for n = 3 it is a
multiple of the integral of the mean curvature over the surface of K (and this is often
easier to compute). More generally, it is the coefficient V; of e in Steiner’s formula
vol(K.) = vol(K) + Vie + Vae? + - -+ + V", where K. is the e-neighborhood of K. The
Vi’s are the intrinsic volumes of K and every rigid motion invariant on convex sets is a
combination of these. See, e.g., [18], [30].

Let D denote the collection of dyadic cubes in R™ and let D* be the union of all
possible translates of D by {—%, 0, %} along any subset of the n coordinates. The family
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D* has the property that any bounded subset of R™ is contained in some member of D*
of comparable size (the i-trick, [27]). Also, the translate of any dyadic cube by (Q)/3
along any subset of the coordinates is in D* (to see this, note that one of 2" 4+ 1 is
divisible by 3 hence %2_" = j:% + k27" has a solution). The set of all such translates of
Q is denoted D*(Q).

For @ € D* let S(Q,I") be the set of hyperplanes that intersect both %Q NT and
(3Q\ 2Q) NT. For a hyperplane H, let N(H,I') be the number of cubes @) € D* such
that H € S(Q,T).

Lemma 3.1. n(H,T') — 1 2 N(H,T') whenever n(H,T') > 0.

Proof. Assume n(H,T") is finite (otherwise there is nothing to do). Since D* consists
of a finite union of families of translations of the dyadic cubes D, its suffices to bound
the number of cubes belonging to each family. Since the argument is the same for each
family, we just consider the dyadic cubes. By breaking the dyadic family into a finite
number of sub-families, we may also assume the cubes are “M-sparse”, i.e., there is a large
constant M so that any two cubes Q, Q' of the same size satisfy dist(Q, Q') > Mdiam(Q)
and cubes @, Q" of different sizes satisfy either diam(Q) > Mdiam(Q’) or the reverse
inequality. Let @ be one such a collection of sparse dyadic cubes.

We define a graph G = (V, E) with vertices V. = HNT and an edge between z,w € V
if there is some cube QQ € Q with z € %Q and w € 3Q \ 2Q. Let C C Q be the cubes
Q for which such a pair (z,w) exists. Note that diam(Q) ~ |z — w|, so the number of
dyadic cubes associated to this pair is uniformly bounded. Moreover, by sparseness there
is at most one ) € Q associated to any pair (z,w). Thus #(C) < #(E) (where # is
cardinality). In fact, if @) is associated to more than one edge in G, we remove all but
one of these edges from the graph (that we still call G), so that #(C) = #(F). If G has
no cycles, i.e., all its connected components are trees, then #(C) = #(E) < #(V)—-1=
n(H,T') — 1 and we are done.

Note that if M is chosen large enough, and e, e, € E are adjacent edges of G whose
lengths are comparable to within a factor of 100, then by sparseness, e; and e must
correspond to the same cube @), and hence e; = es. Thus adjacent edges in G have
lengths differing by a factor of at least 100.

It suffices to prove G has no cycles, so suppose ej,...eyx are the ordered edges of
cycle in G. We want to show this is impossible. We will call a pair of edges e;, e;, in the
cycle a “good pair” if they have sizes that are comparable within a factor of 100, but are
connected by a non-empty path of edges that are all smaller by a factor of 100. We may
assume e; is the longest edge. Thus it is one element of a good pair; the other element is
either itself (if it is the only edge with comparable length in the cycle) or another edge
er; in the latter case e; and e; can’t be adjacent by our earlier remarks. We claim there
must be another good pair on the path connecting e; to ey.

Let f be the largest edge between e; and eg. Since eq,er is a good pair, £(f) <
min(€(e1),€(ex))/100. If there is a second edge with length comparable to f (within a
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factor of 100), then since the path from ey, e is finite, then some pair of these comparable
edges gives another good pair. Otherwise there is no other edge with length comparable
to f. Now consider the largest edge f’ between e; and f. As above, there is either another
edge between e; and f of comparable size (and hence another good pair), or just a single
such edge [’ with £(f") < £(f')/100 (since we have assumed there are no edges with
length that is within a factor of 100 of f’s). The same argument applies to the path from
f to eg. Thus either we find a good pair or there are at most two edges (besides f) that
are longer than £(e;)/1002. Continuing in the same way, we either find a good pair or
we prove that there are at most 2" — 1 edges of length > 100~""1/(e;). Thus the total
length of all the edges in the path from e; to ey is at most > 2 | 2-100""4(e1) < £(e1).
However, the path either connects the endpoints of ey, or connects e; to an edge e, whose
distance from e; is > 100 - £(e1). In either case, the path is too short, so the assumption
that there are no good pairs must be wrong.

So a good pair of edges e;, e; with diameters < 100 - diam(e;) must exist. But these
edges are separated by distance at least 100 - diam(e;) and the same argument as above
implies the path between them contains another good pair smaller by at least a factor
of 100. Continuing in this way, we see the proposed cycle in G contains arbitrarily many
edges, and this contradicts the fact that G is a finite graph. Thus G is a forest, and the
lemma is proven. 0O

Continuing with the proof of (3.1), note that by (3.3)

() — erd(I) > / (H,T)dp(H) — / Ldu(H)

HNT#)D
2 [ NHDdu()

=> 8@
s

To complete the proof we need

Lemma 3.2. For every dyadic cube Q) there is a intersecting Q* € D* of comparable size

so that AE(Q)diam(Q) < u(S(Q*,T)).

Given the lemma, we deduce that

Y B(Qdiam(Q) S > pu(S(Q*.T)),

QeD Q*eD*

and hence

L(T) — crd(T Z A?(Q)diam(Q),

QeD
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as desired. To prove Lemma 3.2 we will need some preliminary facts.

Lemma 3.3. Suppose I is the unit segment between 0 and 1 on the x1-axis, and suppose
J is another unit length segment in R™ with dist(I,J) > 1 and with at least one endpoint
inside {|x| < 100} that is distance B > 0 from the x1-axis. Then the u-measure of the
hyperplanes hitting both I and J is 2 (32

Proof. Think of I as fixed and J as variable. The measure of the hyperplanes hitting
both I and J is a continuous function of J and is non-zero as long as J is not a subset
of X7, the xp-axis. Thus it is bounded away from zero as long as J has one endpoint
outside the cylinder of radius 1/100 around X;.

Since the lemma is true if 5 > 1/100, now suppose 8 < 1/100. Then the hyperplanes
that hit both I and J have unit perpendicular vectors that within O(8) of the (n — 1)-
unit-sphere S"~! in Xji-, the orthogonal complement of X;. Consider the linear map
that is the identity on X; and expands by a factor of b = 1/(1003) on Xi-. In the p = rx
parameterization of hyperplanes, this map can change r by a factor of O(b) and changes
the x1 coordinate of x by at most a factor of b. Therefore the p measure of hyperplanes
hitting I and J is increased by at most a factor of O(b?) = O(372) and the new measure
is bounded uniformly away from zero. This proves the lemma. O

Lemma 3.4. Suppose Q is a dyadic cube in R™ and Q* € D* is cube of the same size and
is a translation of @ by at most £(Q)/3 in each coordinate direction. Then the distance

from 2Q U 2Q* to R™\ (3Q N3Q*) is at least £(Q)/6.

Proof. If z € 2Q U 2Q* then Py(z) € 2I U 2I* = P,(2Q) U P,(2Q*) for every k =
1,...,n, where Py is the orthogonal projection onto the kth coordinate axis. Similarly, if
w ¢ (3Q N3Q*) then Py(z) ¢ 3IN3I* = P(3Q) N P(3Q™*) for some choice of k. But in
dimension 1, the distance between 27 U 2I* and R \ (31 N 3I*) is easily computed to be
((1)/6, e.g., if I =[0,1] and I* = [, 4], then 2/ U2[* = [-%, Y] and 31 N3I* = [-2,2].
Hence |z — w| is at least this big. O

Proof of Lemma 3.2. The idea is simple: by Lemma 3.3 and the fact that any hyperplane
hitting a chord S of a sub-arc v C I also hits +, the estimate reduces to finding two sub-
arcs 71,72 of I' N 3Q with length > ¢(Q)/100 and < £(Q)/2 and so that dist(y1,7v2) >
£(Q)/2, and also whose chords are 8 far from lying on the same line. The separation
property will hold if one chord lies in %Q and the other in 3Q \ 2Q.

By rescaling we may assume @ has side length 1, and that I" hits both @ and 3Q¢. Set
B = pr(22,Q). For any child Q' of Q, 3Q" C 2Q C 222Q, so Br(Q’) < 8 = Br(232,Q).
Thus the S-numbers for the children of @ are all bounded by O(3), and we will show
that this is either O(u(S(Q,T))) or O(u(S(Q*,T))) for some @* € D*(Q). Thus finding
the two chords in I' N @ will actually bound the g numbers for the children of Q.

Choose z € I'N 8Q and define the ball By = B(z, 3;). Choose w € I' N By so that z
and w are connected by a sub-arc y1 C I'NBy. Let S1 = [z, w| be the segment connecting
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25Q

Ly

Fig. 4. In both cases, we can find two segments inside 3Q that have lengths comparable to diam(Q) and are
not both close to common line. Lemma 3.3 them implies at least measure ~ 32 of hyperplanes hit both
segments. For clarity, the pictures are not quite to scale.

them. Then S; C 1%@ and any hyperplane that hits S; must also hit v C I'N I%Q. Let
Ly be the line that contains S; and let W C W be the cylinders of radius 5/1000 and
B/2 respectively, both with axis Ly. Since these radii are less than 3, we know I'N 2%
contains a point outside the cylinder W;. There are two cases to consider, depending on
where this point is.

Case 1: Suppose there is a point
23 1
'n(2— 2— Wo.
v e < 24Q\ 24Q> \ Wo

See left side of Fig. 4. Since T is path connected and has diameter > diam(Q), v can be
connected to a point u € I with |u —v| = 5 (Wwe may assume u and v are connected by
a sub-arc v C I' that stays inside the ball By = B(v, 2—14) by starting at v and following
~ until it first leaves Bs). Let Sy = [u,v] be the segment connecting these two points
and note that any line that hits Sy also hits v C T'N Dy C 3Q \ 2Q. Since Sy has an
endpoint outside Wy, the measure of the set of lines that hits both S; and Sy is > 32 by
Lemma 3.3. Thus u(S(Q,T)) = 32 as well and the lemma is satisfied with Q* = Q.
Case 2: Suppose Case 1 does not hold. Then there must be a point p € I'N (2%@ \ ).
Choose ¢ with [p — ¢q| < % that is connected to p by a sub-arc v3 C I' N B3, where
Bs = B(p, %) C Q%Q. See right side of Fig. 4. Let S3 = [p, q]. As before, any line that
hits S5 must also hit v3. Choose an element Q* € D*(Q) that is the same size as @ and
translated by at most %E (Q) in each coordinate direction (possibly @ itself) and so that
B; C I%Q* (it is easy to check there is at least one such cube @Q* by considering the
projections onto each coordinate).

By Lemma 3.4, T' must contain a point u € (3Q N3Q*) \ (2Q U 2Q*) that is at least
distance > % from the boundaries of both 2Q and 3@Q). Therefore the ball By = B(u, i)
is inside of 2%@ \ QiQ. As before, we can find a radius Sy of By so that any line that
hits Sy also hits a sub-arc v4 C I' N By. Since 4 lies inside the very thin cylinder Wy,

the line Ly containing S, is almost parallel to L; (the axis of Wy) and so L4 N 3Q lies
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Fig. 5. Definitions for the proof of Theorem 1.2.

inside a cylinder of radius /4 around L;. Since p is outside the larger cylinder W; we
see that S3 and Sy satisfy Lemma 3.3, hence the measure of the set of lines that hit both
Sy and Sz is > 3% by Lemma 3.3. Thus u(S(Q*,T')) 2 32, as desired. O

This completes the proof of (3.1), and hence of Theorem 1.1. O
4. Proof of Theorem 1.2

Proof. As noted earlier, “>” is immediate from Theorem 1.1 since crd(T") < diam(T").

To prove the other direction, we may assume the 32-sum in (1.4) is finite, for otherwise
there is nothing to prove. Thus we may assume ~ is rectifiable. We may also assume
diam(T") = 1. Let Qg be a dyadic cube hitting I’ with 1 < diam(Qp) < 2, hence " C 3Q.
Suppose fp is a small positive number (chosen to satisfy various conditions described
below). If Br(Qo) > o, then the result is trivially true since then

erd(T) < diam () = 1 < igﬂ%@o)diam@o) < B3(Qo)diam(Q),

(with constant depending on (y) and hence the crd(T") term in (1.4) can be absorbed
into the #2-sum term.

Therefore we may assume fr(Qo) < So. Let S = [z,y] be a diameter segment of T’
and let vo be the open subarc of T' connecting x and y. Then T"\ ~, consists of two arcs,
~1 connecting z to an endpoint z (possibly z = z) and 72 connecting y to the other
endpoint w (possibly w = y).

By rotating and rescaling, we may assume that x = 1,y = —1 are on the x;-axis. See
Fig. 5. Note that

crd(T) > diam(T) — £(y1) — £(2)
and hence using Theorem 1.1 (in particular (2.1)) we get

UT) — exd(T) < 6T — diam () + €(7) + £(72)

<O | > AR(Q)diam(Q) | + €(n) + €(y2)-
Q

Thus Theorem 1.2 will follow if we can show that both ¢(y1) and £(72) are bounded
by a multiple of the 2-sum for I'. Because of (1.2), i.e., the usual form of the traveling
salesman theorem, and the fact that 3., (Q), 3,,(Q) are both at most r(Q), it is enough
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to bound the diameters of these arcs by the ﬂ%-sum; then the diameters can be absorbed
into the sum by making the comparability constant larger. The arguments for both arcs
are the same, so we only discuss 7;.

Let € = diam(vy1). Assume ¢ > 0 (otherwise there is nothing to do). Let Q1,...,Qk
be the nested dyadic cubes containing = with diameters going from diam(Qg) to e. Note
that k ~ log(diam(Qo)/€). If any one of these cubes satisfies Sr(Q;) > By, then

2

Bro,
< Fﬂ(é?;) diam(v1) < 5§(Qj)diam(Qj)7
0

diam(vyy)

and hence diam(v;) is dominated by the 3%-sum, as desired. For the remainder of the
proof we may therefore assume that Sr(Q;) < By for all j € {0,1,...,k}. Let L; be a
best line in the definition of Ar(Q;).

Case 1: Assume that for some j € {1, ..., k}, the line L; makes an angle larger than 108
with the zq-axis. Since the angle between Lo and L; is bounded by O (ZLO B(Qi)>,
and we have normalized so that the best line for Qg is within Sy of the z-axis, we must
have Z =1 Br(Q;) Z Bo 2 1. The Cauchy-Schwarz inequality then implies

2

k k k k
1< (Y @] < ;ﬁ%(Qj)Q’j : lej :2’“263(623')2’]
j= j= j=

j=1

80 Z§:1 BE(Q;)277 2 2% > ¢, and hence

k
e = diam(y1) < ZB (Q;)diam(Q;),
j=1

as desired.

Case 2: Next we assume that all the lines L;, j = 0,...,%k make angle < 1053, with
the z1-axis. Consider a subarc 71 C +; that is contained in, and connects the boundary
components of, the annulus

1 1
{pe R?: 1—0diam(’yl) <lp—=z| < gdiam('yl)}.

Since 7 and ] have comparable diameters, it is enough to bound diam(~}).

For each p € v a dichotomy holds: either every dyadic cube @ containing p with
diam(Q) < diam(y1)/10 satisfies Br(Q) < By or there is a cube @, of this form such
that Or(Qp) > Bo. Let E C 1 be the set of points p where such a @, exists. Since we
can assume ~y; is rectifiable, almost every point of 7 is a tangent point.

Lemma 4.1. If p € v{\ E and p is a tangent point of T, then p has the following “crossing
property”: if Q is a dyadic cube containing p with diam(Q) < diam(vy1)/10 then v must
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3Q

Fig. 6. If all the B’s are small at p, and p is a tangent point of «, then v must cross Q in the sense that the
orthogonal projection of v N 3Q on the line L must cover L N Q, i.e., v can’t “double back” and leave using
the same end of W that it entered.

“cross” @) in the sense that the orthogonal projection of v1 N3Q onto Lg covers Lo N @,
where Lg is a best approzimating line for the definition of Br(Q). In other words, 1
must connect the two components of WN03Q where W is a cylinder of radius 1/10 with
azxis Lo passing through p.

Proof. Note that because p is not in F, that v has small S-number for Q and for every
dyadic subcube of @ that contains p. Using this, we claim we can construct a (n — 1)-
surface o so that

(1) o cuts 3Q into two pieces,

(2) o separates the endpoints of v; N 3Q,

(3) o contains p, but no other points of 71, and

(4) 0N 3Q"\ @ is nearly orthogonal to L¢ for each dyadic Q" with p € Q' C Q.

To do this, choose a (n — 1)-sphere of the n-sphere of radius ¢t = diam(Q)2~" around p
that is nearly orthogonal to the optimal line L, passing through p for the definition of
B(p,2~") and then connecting these (n — 1)-spheres by a surface (e.g., project both onto
the (n — 1)-plane L orthogonal to L™ and connect two points if the projections are on
the same ray in L;}-). See Fig. 6 for the planar picture.

If p is a tangent point of 1, then ¢ has a tangent plane at p that is perpendicular to
~1’s tangent direction. From this we see that v; crosses o, i.e., it hits both components
of 3Q \ 0. Since v; only hits o once, it must leave 3Q through a different component of
0(3Q) N W than it entered through. This implies Lemma 4.1. O

Note in the previous proof, that if I contains two sub-arcs that connect different ends
of the cylinder W, then both sub-arcs must cross through p and hence I' is not a Jordan

curve. This observation will be used later to prove Corollary 5.1.

Lemma 4.2. {(E) = 4(7]).
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Proof. If not, then we can choose a non-empty subset F' C 71 \ E that consists entirely
of tangent points of . Suppose p € F and define d to be the distance from p to 7.
By the assumption that every L; is close to horizontal, we know d = O(8y diam(v1)) <
diam(7y;)/10. Also note that d is positive since p is not on . Let Q,, be the dyadic square
containing p with diameter 2d < diam(Q,) < 4d. Because diam(Q,) < diam(y1)/10, the
argument in the previous paragraph applies, and «; must cross @), inside a cylinder S of
width fpdiam(@Q),). Moreover, since diam(Q,) > 2d, the curve 7, also hits 3¢ and hence
contains a point ¢ in the same cylinder S, and hence 7y is at most distance 8y diam(Q,)
from 7. For By small, this value is much smaller than d, giving a contradiction. Thus
no such p exists, and hence £(F) = £(v}), so Lemma 4.2 holds. O

By the nested property of dyadic cubes, we can find a collection {Q{,} of cubes as in
the definition of E that have disjoint interiors and that covers F. Hence

() = UE) <Y UQINE) S Y |diam(@Q) + Y Ap(Q)diam(Q)
J J QCQ)

where we have applied (1.2), say with § = 1, to each set Qg) N E. Note that usual
formulation of the traveling salesman theorem is to sum over all dyadic cubes in R”,
but if E C @, then it suffices to sum over all cubes contained in @ (including @ itself)
since the A%-sum over all larger cubes that hit F form a geometric series whose sum is
O(8?(Q)diam(Q)). See also Lemma B.2.

Now we use (1.2) and the fact that Sg < fr, to show

() <D0 D BRQ)diam(Q),

i QcQl

where we have also used fr (Qg)) ~ 1 to absorb the diam(Q%) terms into the S%-sums.
Since this is a B2-sum over disjoint collections of dyadic cubes, it is dominated by the
full 52-sum, and this completes the proof of Theorem 1.2. O

For the proof of (1.2) we can refer to [16], or note that it is also proven in Appendix A
of this paper. This proof uses a slight modification of the arguments in Section 2 and is
independent of the current argument.

5. Corollaries and questions

Next we derive some consequences of our arguments that are used to derive the char-
acterizations of Weil-Petersson curves given in [5]. As noted in the introduction, such
curves satisfy the condition B%(Q) < oo, where the “diam(Q)” has been dropped
from Jones’s characterization of rectifiable curves.
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\“ e y

Fig. 7. If T does not have bounded turning, then there are points z, w that cannot be connected by a subarc
of diameter O(|z —w|). This means these points lie on disjoint subarcs whose four endpoints are all distance
> |z — w| from z and w.

Corollary 5.1. IfT is a closed Jordan curve and S = Y, B£(Q) < oo, then T has bounded
turning, i.e., there is an M < oo so that any pair z,w € I' is connected by a sub-arc
with diam(y) < M|z — w|. We may take M = O(e©().

Proof. Suppose not. Then given any M < oo there are z,w € I', so that both subarcs
connecting them have diameter > M|z—w|. Rescale so that |z—w| = 1. Then we can find
disjoint arcs z € 1, w € 2 with endpoints 2/, 2" and w’, w” respectively, so that all four
of these points are at least distance M from v = (z+w)/2. Choose a positive integer N so
that M /2 < 2V < M. See Fig. 7. Consider the annuli A,, = {y : 2" < |y —v| < 2"*!} for
n=1,...,N and let Q, be the collection of dyadic cubes that hit A, and have diameter
< 27F1 These collections have bounded overlap, so >~ >0, BE(Q) < C - S, and hence
there is some n so that ) 5 BE(Q) < 1/10, if logM > 10 - C - S. Both components of
v \ {z} cross A,, as do both components of v \ {w}. Thus there is a radial cylinder
of radius 2" /100 and length 2" that connects the two boundary components of A,, and
contains two disjoint sub-arcs of I" that also cross A,,. The proof of Lemma 4.1, however,
shows that there is a point p on in A,, that both arcs must pass through, a contradiction.
Thus T" has the bounded turning property for some M with log M < S = ZQ ﬁ?Y(Q) O

Corollary 5.2. If T is a closed Jordan curve and S = ZQ BE(Q) < oo, then T is chord-
are, i.e., any pair of points z,w € I' are connected by a sub-arc v with £(y) < |z —w|.

Proof. Suppose z,w € I" and v C I" is a sub-arc with endpoints z,w and diam(y) <
M|z — w| = Mcrd(y), with M = O(exp(O(S)) as in the previous corollary. Then by
Theorem 1.2 and the fact that it suffices to sum over cubes @ with diam(Q) < diam(y)
we get
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((y) < crd(l) + O 252 Q)diam(Q)

dlam diam(Q)

<crd(y) + diam(y 262 Tam(y)

< crd(y) + Merd(y Z,BQ
=crd(y) - (1+ O(MS)) =crd(y) - (14+ O(Sexp(0O(S)))). O

The corollaries fail if I" is not a closed arc, e.g., take a circle with an e-long arc
removed. Is it true that if 3, B% < oo for a Jordan arc T, then I' is a subarc of a
chord-arc curve I'? Tt seems likely that an argument similar to the proof of Lemma 4.1
can be used to extend I' past an endpoint on scales where (§ is small, but something
more clever is needed on scales where (3 is large. More generally, if E is a general set
and o BH(E) < 00, is E a subset of a curve ' with Y fR(E) < co? Jones’s traveling
salesman theorem shows this is true for sums of the form }_, B3 (E)diam(Q). What
about sets satisfying B3 (E)diam*(Q) for 0 < s < 17

An earlier draft of this paper asked if Theorem 1.2 is true in Hilbert space. This has
since been verified by Jared Krandel in [19]. Does this theorem hold in other metric
spaces where the usual TST is known to hold? Does (1.2) hold for general sets in a
metric space if (1.1) does? What about (1.3)? These questions seem analogous to the
fact, proven independently by Arora [2] and Mitchell [23], that one can compute (1 + ¢)-
approximations to the classical traveling salesman problem in polynomial time for finite
sets in Euclidean space, but this is unknown for € < 1/2 in metric spaces, and computing
any bounded approximation is NP hard for general weighted graphs. What is the proper
“analytic” version of this?

Appendix A. The TST for general sets

We have done most of the work needed to prove the traveling salesman theorem for
general sets F C R™, not just for Jordan curves. For the convenience of the reader, we
explain how to prove (1.2) by modifying the argument in Section 2.

The only change is in the splitting procedure. As before, we start with I'y the convex
hull of E. In general, we will have a collection of convex sets R, and line segments
S, whose union is a closed, connected set I';, that contains E. As before, each convex,
compact set R € R,, will be convex hull of R N E. The intersection I' = NI, is a
compact, connected set containing £ and we wish to bound its 1-dimensional Hausdorff
measure.

Given R € R,, we take a diameter segment I and split it into three equal thirds:
the middle segment Jy and the two ends Jy, Jo. If the orthogonal projection of RN E
contains a point v € Jy, then cut I into two pieces I7, Is using this point and replace
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R by two pieces R;, Rs that are the convex hulls of the parts of RN E that project
onto I, Iy respectively. If the projection of onto Jy is empty, then define Ry, Ry as the
convex hulls of the parts of R N E that project onto Jy, Jo respectively and a shortest
possible line segment S connecting R, and R,. The union of the nth generation sets and
segments is clearly a connected compact covering of E, so the sum of the diameters of
these sets and segments is an upper bound for the shortest connected set containing E
(shortest in the sense of 1-dimensional Hausdorff measure).
The only change needed in the earlier proof is to Lemma 2.1. It becomes

Lemma A.1. If R is split into Ry, Re sets and a segment S as above, and § > 0, then

diam(R;) + diam(Ry) + (1 — §)£(S) < diam(R) + O(=)B*(R)diam(R).

| =

Proof. For the first case of the new splitting procedure, there is no segment S and each
subset has diameter comparable to R, and the proof of Lemma 2.1 is the same as before.
For the second case, first note that if S(R) > 6/20, then

diam(R;) + diam(Rsy) + (1 — 6)¢(S) < £(J1) + £(J2) + £(Jp) + 68(R)diam(R)
120

< diam(R) + 752 (R)diam(R)

If B(R) < 0/6, then because ¢(Jy) = diam(R)/3,
diam(R;) + diam(Ry) + (1 — 8)£(S) < £(J1) + £(J3) + 832 (R)diam(R)
+(1 = 8)(€(Jo) +45*(R)|R])
<(1- g)diam(R) + 124%(R)diam(R)
<(1- g)diam(R) +12(6/6)*diam(R)
< diam(R).
This proves the lemma. 0O

The rest of the proof now proceeds as before, except that since

D> US) D),

n SeS,

we can replace (2.3) by

n

(1—0)/(I) < diam(T) + limsup »  diam(R) + Y Y (1—38)¢(S)

" ReR, k=1S€S,
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< diam(T Z Z ﬂ R)diam(R).

n RERn

Dividing both sides by (1 — d) proves (1.2). This implies the smallest connected set T’
containing a set F satisfies

4 ZBE Q)diam(Q) < {(T) — diam(F) < (1 + d)diam(E ZBE Q)diam(Q),

for some constants 0 < C7,Cy < oo, since the proof of the lower bound in Section 3
applies to any curve I' containing F.

Appendix B. Equivalent formulations of TST

There are several formulations of Peter Jones’s traveling salesman theorem and it is
folklore that they are all equivalent to one another. Responding to requests from readers
of an earlier draft of this paper, I give a precise formulation and proof of this “well
known” fact.

A multi-resolution family in a metric space X is a collection of bounded sets {X} in
X such that there are N, M < oo so that

(1) For each r > 0, the sets with diameter between r and Mr cover X,

(2) each bounded subset of X hits at most N of the sets Xj with diam(X)/M <
diam(Xy) < Mdiam(X).

(3) any subset of X with positive, finite diameter is contained in at least one X; with
diam(X;) < Mdiam(X).

Dyadic intervals do not form a multi-resolution family, e.g., X = [—1,1] C R is not
contained in any dyadic interval, violating (3) above. However, the family of triples of all
dyadic intervals (or cubes) do form a multi-resolution family. Similarly, if we “triple” the
collection of dyadic intervals by adding all translates by +1/3, we get a multi-resolution
family (this is sometimes called the “%—trick”, [27]). The analogous construction for
dyadic cubes in R™ is to take all translates by elements of {—%,0, %} on each of the
coordinates; this gives 3™ families of translates of D (including D itself). The union of
these families is denoted D*.

We often deal with functions « that map a collection of sets into the non-negative
reals (the S-numbers are an example), and we will wish to decide if the sum 3 a(X;)
over some multi-resolution family converges or diverges. The following observation allows
us to switch between various multi-resolution families without comment.

Lemma B.1. Suppose {X;}, {Yi} are two multi-resolution families on a space X and that
a is a function mapping subsets of X to [0,00) that satisfies a(E) < aF), whenever
E C F and diam(F) < diam(E). Then
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3Q

Fig. 8. Three equivalent versions of the S-numbers.

Z a(X;) ~ Z a(Yy).
k

J

Proof. By Condition (3) in the definition of a multi-resolution family, each X is con-
tained in some set Y}, () of comparable diameter. Hence o (X;) S «(Y}(;)) by assumption.
By Condition (2), each Yj can only contain a bounded number of X,’s of compa-
rable size, so each Y is only chosen a bounded number of times as a Yj(;. Thus
>j(X;) S X a(Yx). The opposite direction follows by reversing the roles of the
two families. O

It is often convenient to consider several different formulations of the S-numbers. For
xz € R" and t > 0, define

1
Br(z,t) = i iILlf max{dist(z,L) : z € T, |x — 2| < t},

where the infimum is over all lines hitting the ball B = B(z,t) and let Br(x,t) be the
same, but where the infimum is only taken over lines L hitting x. Since this is a smaller
collection, clearly B(z,t) < B(z,t) and it is not hard to prove that 5(z,t) < 28(z,t) if
x € I'. See the center picture in Fig. 8.

Given a Jordan arc v with endpoints z,w we let

max{dist(z,L) : z € v}
|2 = wl

)

B(y) =

where L is the line passing through z and w. See the right side of Fig. 8.

Lemma B.2. Suppose —1 < s < 2 and T' C R™ is bounded Jordan curve (either closed or
an arc). Then the following are equivalent:

> BR(Q)diam(Q)* < oo, (B.1)

QeD

dxdt
// B2(x,t th — s < . (B.2)

0 R»
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If T is chord-arc, then (B.1) and (B.2) are also equivalent to

/ / B, 1) ot < oo, (B.3)

Zﬂ2 j)diam(T';)® < oo, (B.4)

where dx is volume measure on R™, ds is arclength measure on T, and the sum in (B.4)
is over a multi-resolution family {I';} for T'. All four quantities are comparable with
constants that depend only on the dimension n. Moreover, convergence or divergence in
(B.2) and (B.3) is not changed if fooo is replaced by fOM (for any M > 0) and the values
are all comparable for M > diam(~). The convergence of the sum in (B.1) is unchanged
if we only sum over cubes of diameter < M, for any M > 0 and are comparable for all
values M > diam(T).

Since B(z,t) ~ B(x,t) if z € T, the integral in (B.3) is finite iff it is finite with 3
replacing E However, putting B into (B.2) gives a divergent integral for every closed
Jordan curve I'. The case s = 1 in the lemma corresponds to Peter Jones’s traveling
salesman theorem characterizing rectifiable curves, and s = 0 corresponds to the charac-
terization of Weil-Petersson curves in [5]. Do other values of s correspond to interesting
curve families?

Proof of Lemma B.2. Without loss of generality we may assume diam(T") = 1.
(B.1) & (B.2): If Q is a dyadic cube and z € @, then diam(Q) > /nt implies then
B(z,t) C 3Q. In this case S(z,t) < v/nB(Q). Therefore

diam(Q)/2

2o, 0) 2 < 52(0) MDD < 20y am()
s 4 P 1) s S Q) g S P (@)

Since the domains of integration on the left are disjoint for distinct (but not necessarily
disjoint) dyadic cubes @, we see that

dxdt
// ﬂthth SNZBZ Q)diam(Q)".

Conversely, if # € Q and ¢ > 2diam(Q), then 3Q C D(x,t), so B(z,t) > £3(Q). This
shows the 32-integral is also bounded below by a multiple of the 32-sum.

(B.1) = (B.3): Assume (B.1) holds and that I is chord-arc. If x € T, 0 < ¢ < diam(T),
then ¢(I' N D(x,t)) ~t. If v C T is a subarc of length ¢, then its diameter is at most ¢
and we can choose a dyadic cube @ containing x and so that 2¢ < diam(Q) < 4¢. Then
B(z,t) C 3Q and so B(z,t) < B(Q), and hence (if ds denotes arclength measure on I'),
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diam(Q)/2

~ dsdt _ diam(Q)B%(Q)
/BQ(x’t)tQ*S S diam(Q)!~—*

< B3(Q)diam(Q)*.

diam(Q)/4 v

Now divide I into dyadic subintervals, {7,} and let Q; be the dyadic cube associated to
~; as above. Then

0(v;)/

[[resttos | [ress
0

T e /2 73

~ ZBQ(Qj)diam(Qj)s
< ZBQ Q)diam(Q)?,

where the last line holds if we know that each dyadic @ is only chosen a bounded number
of times as a Q);. But if ) is chosen for 7; then 7; hits @) and has length comparable to
diam(@Q). By the chord-arc condition, only a bounded number of such arcs can hit @, for
otherwise the arclength of I' N 3Q) would be too large. This proves the arclength integral
is bounded by the sum.

(B.3) = (B.4): For each element I'; of the multi-resolution family, choose a dyadic arc
v& C T that hits I'; and has comparable length. Since S(I';) < B(z, 2diam(T';)),

2diam(T";)
() diam(T';)* < / B (1) 2
diam(T';) Yk

Since each 7 can be associated to at most O(1) arcs I'y, (I'; can only hit a bounded
number of dyadic arcs of comparable size), the multi-resolution sum over the whole
family is bounded by the E—integral over all T and all scales.

(B.4) = (B.2): Suppose T is chord-arc, that @ is a dyadic cube, z € @, and that
diam(Q) < t < 2diam(Q). Let X = I' N 9Q and let I'; be a member of the multi-
resolution family containing X and having comparable diameter. Then

crd(T';)

Blat) < (T, - 25

< B(T),

since crd(I';) ~ t by the chord-arc condition. The integral in (B.2) is obtained by sum-
ming all the integrals over product sets of the form @ x [diam(Q), 2diam(Q)], and each
such integral is bounded by 3%(I'j)diam(T';)* for the corresponding I';. Since I'; can only
hit a bounded number of dyadic cubes with diam(Q) ~ diam(I';), we see that each I';
is used only a bounded number of times, hence the sum bounds the integral.
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Changing limits of integration: Recall that we have assumed diam(T") = 1. To see that
(B.2) is equivalent to

diam(T")

/ /52 tffldt < 0, (B.5)

we simply note that for any « € T' and ¢ > diam(I'), that 3(z,t) < 18(z,1) and that
B(x,1) ~ B(y,1) for any x,y € T'. Hence

2( dxdt <5 dxdt
ﬁ t”'H s tn+3 s

1 D(z,2t)
< ﬁQ(m,l)/t_3+sdt
1
d:cdt
2
// B ’ tn+1—s

1/2 Rn

d:rdt
2
// ﬁ ’ tn+l s

This is where we use the assumption s < 2, so that —3 + s < —1 and the integral above
converges. Thus truncating the integral cannot convert it from divergent to convergent.
A similar argument works for truncating the sum in (B.1) or the integral in (B.3). O
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