Algebra Error Classification with Large Language Models

Hunter McNichols, Mengxue Zhang, Andrew Lan

University of Massachusetts Amherst Contact Email: wmcnichols@umass.edu

Abstract. Automated feedback as students answer open-ended math questions has significant potential in improving learning outcomes at large scale. A key part of automated feedback systems is an error classification component, which identifies student errors and enables appropriate, predefined feedback to be deployed. Most existing approaches to error classification use a rule-based method, which has limited capacity to generalize. Existing data-driven methods avoid these limitations but specifically require mathematical expressions in student responses to be parsed into syntax trees. This requirement is itself a limitation, since student responses are not always syntactically valid and cannot be converted into trees. In this work, we introduce a flexible method for error classification using pre-trained large language models. We demonstrate that our method can outperform existing methods in algebra error classification, and is able to classify a larger set of student responses. Additionally, we analyze common classification errors made by our method and discuss limitations of automated error classification.

Keywords: Error Classification \cdot Large Language Models \cdot Math Education

1 Introduction

Quality math education, particularly at a young age, is of crucial importance for students growing into an increasingly technology-driven world. Intelligent tutoring systems (ITSs) have demonstrated their effectiveness in improving math learning outcomes [1,10,24]. Many ITSs have a component that provides automated feedback for students while they solve math questions. This component enables teachers to provide personalized feedback at scale, since they can write feedback once that applies to many students. Moreover, in some ITSs, this feedback can direct a student to the precise error in their problem solving process. This direct, timely feedback enables immediate learning and helps students refine their math skills at their own pace [21].

One crucial part of feedback generation is the task of error classification, i.e., detecting student errors and the class corresponding to the error type. Once detected, the error class then informs the feedback generator which feedback is appropriate to provide to the student. This is especially important for openended math questions, where students have to reason step-by-step and one error

can lead a student away from the correct solution. A related line of work is automated grading of open-ended math responses [15,9,2,3,31], which is closely related to the automated short answer grading (ASAG) and automated essay scoring (AES) tasks [20,5,27,28]. However, student error classification has an important difference from automated scoring: the former operates at a finergrained level, focusing on individual solution steps, while the latter operates at a higher level, focusing on one score for the entire response.

Traditionally, error classification systems require a domain expert to develop hand-crafted rules that outline the different patterns of errors possible in a question [4,13,11]. As a result, these systems are resource-intensive to create and do not generalize to responses that are not foreseen by the system designers. Datadriven methods have the potential to generalize to a wider range of responses, but few have been explored and most methods only process a final solution and not intermediate steps. The leading data-driven method to intermediate error classification relies on a tree embedding method [32]. This method is highly restrictive since it requires mathematical expressions in student responses to be converted to syntax trees [29]. Student solutions (particularly incorrect ones) are not always syntactically valid, which means they cannot be processed by this method. Additionally, this method only uses equations as input and cannot be easily extended to include other student response information, such as natural language text or ITS-recorded interactions.

Contributions In this paper, we propose a method that overcomes the above limitations by using pre-trained Large Language Models (LLMs) for algebra error classification. Our contributions are:

- We outline a method towards using pre-trained LLMs for algebra error classification, which enables us to handle any student response, regardless of syntactic validity.
- We demonstrate the effectiveness of this method through experimental evaluation using an algebra problem-solving dataset. We compare various pretrained LLMs to the existing data-driven baseline, and show that BERT (and no other LLM) outperforms it.
- We showcase the flexibility of our method in that we can easily add more information into our classification system, which results in further performance improvement. We show how one can augment our method by adding ITS-recorded interactions to the input, or through Domain Adapation (DA) that incorporates further domain-specific pre-training to the LLM.
- We perform qualitative analysis on the cause of classification errors in our method and discuss avenues of future work.

2 Methodology

In this section, we outline how we formulate the problem of algebra error classification. Then, we outline our method, which uses a LLM to classify errors.

2.1 The Algebra Error Classification Task

The setup of the algebra error classification problem in an open-ended math setting is as follows. We have a set of predefined error classes for a category of math questions $C = \{c_1 \dots c_m\}$. We consider a solution that a student provides to a math question as a series of steps $S = \{s_1, \dots, s_n\}$ (for simplicity of exposition, question statement can be included in the first step, s_1). A step encompasses a resulting intermediate equation and descriptions of the process by which a student comes to this result. This description includes, but is not limited to, the application of a theorem, transformation, or intermediate calculation. Assume that, during step s_t , a student makes an error. We aim to identify the type of error c_i made by a student at s_t given the step history $S_t = \{s_1...s_t\}$.

Concretely, we consider a question from an introduction to algebra class:

Solve for
$$x: x+4=8$$

With a student's solution:

Step 1:
$$x + 4 = 8$$

Step 2: $x + 4 + 4 = 8 + 4$
Step 3: $x = 12$

In this case, an error occurs at s_2 , where a student adds to both sides instead of subtracting. While this is a valid algebra, it indicates the student is not progressing towards the solution. The task is to identify the class c_i which corresponds to a "wrong operation" error. As input, we are given $S_t = \{s_1, s_2\}$. A classification could also be done for the addition error at s_3 using $S_t = \{s_1, s_2, s_3\}$.

It is important to note that step information is not limited to the equation. It could include any additional information available about how the student arrived at that equation. For example, notes in the margin between equations or ITS-recorded interactions which indicate student intent.

2.2 Our Method

Our method to solve the algebra error classification task is to fine-tune a pretrained LLM, which we detail below.

Model Architecture We experiment with two main types of LLMs: those pretrained on the masked language modeling (MLM) objective, such as BERT [8], and those pre-trained on next token prediction in an autoregressive way, such as (GPT-2)[22]. Each type requires a different setup to be used as an error classifier.

For MLM-type LLMs, the output contains the vector embedding of a [CLS] token. This token represents the contextual information of the entire input text sequence. As such, these models are designed for sequence classification. To form our classification head, we connect a linear layer from the [CLS] token to a probability space, which is the size of our number of error classes. For autoregressive

4 McNichols et al.

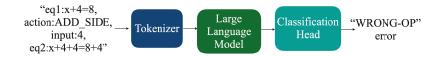


Fig. 1. Architecture diagram for our LLM-based method. Input is an arbitrary string for a set of steps. We depict the action information described in Section 3.1 as additional step information. Output is a class corresponding to error detected in student response.

models, such as GPT-2 [22], there is no [CLS] token. To form our classification head, we instead connect a linear layer from the final hidden state representation (i.e. representation after the entire input sequence is encoded) to a probability space, which is the size of our number of error classes.

As input to the LLM, we tokenize a string that represents the step history. In our experiments, we try different methods of representing step history and compare the results. We note that input formulation is the most flexible part of our architecture and one of the main advantages of this method. First, it does not constrain the student responses to be a valid syntax tree. For example, response of "x + 3 = unicorn" is still a valid string. Second, it can be easily adapted to include further information. In our experiments, we only represent information from two steps s_{t-1} and s_t . This representation is used to provide fair comparison to the leading data-driven method, which only considers the current and prior equation trees. However, this method could be easily extended to include the entire sequence history S_t or responses to prior questions.

Task-specific training To train our model for the task of algebra error classification, we minimize the standard cross-entropy loss[19] for error class predictions. We backpropagate this loss to learn the linear classification head from scratch and fine-tune the LLM. We also experiment with performing DA prior to fine-tuning. In DA, we perform additional pre-training on the LLM to adapt it to the domain-specific vocabulary of our task. This is performed with a domain-related dataset. In our case, we use a subset of the AMPS Mathematica dataset [12] containing solutions to PEMDAS questions generated by Mathematica. This DA step adds additional flexibility to our method, since we can readily adapt the LLM to more complex math questions, such as calculus or probability theory. This pre-training may make the LLM more familiar with advanced mathematical notation and reasoning. We leave this exploration for future work.

3 Experimental Evaluation

In this section, we detail our experiments and analyses. First, we show our quantitative experiments that compare the performance of our method to the performance of the baseline method. Then, we show quantitative experiments on two variations of our method, which use different strategies to include additional

contextual information. Finally, we perform a qualitative error analysis on our best performing method.

3.1 Dataset Details

For our experiments, we use the CogTutor dataset accessed via PSLC Datashop [14,23]. The dataset contains logs of students' step-by-step responses to questions in an Algebra I course. These logs were recorded during student interactions with an ITS named Cognitive Tutor. In Cognitive Tutor, students select from a set of predefined actions to manipulate an algebra equation. After selecting an action, the student inputs the expected resulting equation. Interactions are present in the dataset for each part of this process. We group the action interaction and the equation writing interactions into a single step.

The Dataset, in total, contains 130,823 interactions. These interactions span 9590 responses across 95 unique students. No demographic information is provided about the students. From the total interactions, we use a grouped subset of 5,744 steps that have a detected student error called BUG [32]. In these cases, the ITS showed an automated feedback message to the student indicating an error made during the equation-solving process. These messages are based on a set of 92 predefined rules in the ITS. The feedback messages vary in length from short hints, such as "Check your sign." to more descriptive feedback, such as "You are dividing a positive by a negative. The result should be negative."

Baseline Labeling. For our initial comparisons, we use the step labeling introduced in the leading data-driven method which has 24 distinct labels [32]. This labeling was present for 3,318 of the 5,744 BUG steps; the remaining 2,426 steps contained equations which were not compatible with the Tree-Embedding approach utilized in the baseline method.

New Labeling. In subsequent experiments, where we compare variations of our method, we utilize our own labeling of the BUG steps, which has 19 labels on 5,339 of the 5,744 BUG steps. The remaining 403 steps were dropped from our analysis since they were either i) system errors not related to math operations or ii) rare errors that were present less than 30 times across the entire dataset. We make this new dataset, called CogTutorBugs, publicly available 1 .

3.2 Metrics and Baselines

For error classification, our primary metric is classification accuracy, i.e., percentage of correctly predicted classes in the test set. We compare the following:

TE+C Best performing baseline method introduced in prior work [32]. This
method converts intermediate equations in student response steps into treeembeddings [29], which are used to learn math operation embeddings. The

¹ https://github.com/umass-ml4ed/CogTutorBugs

operation embeddings are then used in a supervised learning manner for error classification.

- GRU+C Additional method explored in the baseline paper. Concatenates the equations together and passes the combined sequence character-bycharacter into a GRU [6]. Final output state is used for error classification.
- BERT Bidirectional encoder representations from transformers (BERT) [8].
 The predominant MLM-based LLM, with a format that is well-suited for classification tasks.
- GPT-2 Generative Pre-trained Transformer 2 (GPT-2). An autoregressive LLM pre-trained for next sequence prediction instead of MLM. GPT-2 is well-suited for text generation tasks, but can be used for classification [22].
- MathBERT A BERT-based LLM pre-trained on a corpus of mathematics textbooks and course material [26].
- XLM-RoBERTa Multilingual variation of RoBERTa [17], a BERT-based LLM pre-trained on specific natural language processing benchmark tasks such as question answering, reading comprehension, and natural language understanding. XLM-RoBERTa often outperforms BERT on these tasks [7].

3.3 Implementation Details

We perform five-fold cross-validation on the BUG subsets of the CogTutor dataset. We use four folds for fine-tuning the LLMs and reserve the final fold for calculating test accuracy. For all experiments we train our models for 30 epochs. We report the mean and standard deviation in final-epoch test accuracy across the five folds.

All pre-trained LLMs are sourced from the HuggingFace [30] transformers library. For fine-tuning we use the AdamW optimizer [18], batch size of 300, and learning rate of $5 \cdot 10^{-5}$. We do not perform hyperparameter tuning and use fixed hyperparameters across all models. All models were fine-tuned for 30 epochs. We found this number of epochs was sufficient to obtain optimal performance. All models were fine-tuned on a single NVIDIA RTX 8000 GPU. For each fold, fine-tuning took between 4 and 9 minutes, depending on the selected LLM.

3.4 Results and Analysis

Table 1. Classification accuracy, using the error labeling in [32], for our method with selected LLMs and the baseline methods. **Bold** indicates the best result.

Method	Accuracy ↑
GRU+C	75.35 ± 1.41
TE+C	78.71 ± 1.74
BERT	80.68 ± 1.1
GPT-2	71.10 ± 2.58
	72.66 ± 2.21
XLM-RoBERTa	72.75 ± 1.54

Comparison to Baseline Methods. We report the accuracy of our method with each LLM and the baseline methods in Table 1. We observe that BERT has the best performance across all LLMs and is a slight improvement over the leading baseline method (TE+C). Moreover, it achieves this performance without needing the tree-embeddings of the response equations used in TE+C. Perhaps surprisingly, other LLMs do not perform as well as either baseline method. This observation suggests that the choice of the LLM architecture and initial weights configuration is crucial for the success of LLMs in classification tasks. BERT appears to be more robust in fine-tuning for the specific task of algebra error classification. On the contrary, GPT-2 isn't well-suited for classification likely due to its autoregressive design. XLM-RoBERTa and MathBERT are pre-trained on other tasks and show limited ability to generalize to our task. Their less competitive performance suggests that pre-training an LLM for one task may degrade performance in another, completely different task. We find it surprising that MathBERT, which is specifically designed for mathematical content, does not perform well on our task. One possible explanation is that MathBERT was pre-trained on textbook content, which can be different from problem-solving content. It also is pre-trained on student work in other ITSs, which may differ in structure to Cognitive Tutor.

Table 2. Classification accuracy, using our new error labeling, for our method with selected LLMs. **Control** is the accuracy only with equation information in the input. **Action Inc.** is the accuracy with additional student action context provided by Cognitive Tutor ITS logs. **Bold** indicates the best result.

Language Model	Control \uparrow	Action Inc. ↑
BERT	82.02 ± 1.09	85.90 ± 1.86
GPT-2	76.46 ± 1.47	74.21 ± 2.08
MathBERT	76.08 ± 2.05	81.27 ± 0.32
XLM-RoBERTa	77.73 ± 2.59	84.23 ± 2.65

Use of Additional Context. An advantage in using a LLM-based method for the error classification task is the flexibility of the input. Therefore, we experiment with including information about the student-selected action in the input (in addition to the step equations). This action information is recorded by Cognitive Tutor and provides context on student intent. We report the classification accuracy for the selected LLMs in Table 2. For these experiments, we use our new feedback labeling. We observe that introducing action information improves the performance of all MLM models significantly. XLM-RoBERTa, in particular, has the largest improvement of 6.5%. We note that GPT-2 actually shows a small performance deterioration when action information is included. This deterioration is small and could be explained by random noise in the experiments. Another potential explanation is that GPT-2 is pre-trained on natural language text, but the action information is programmatic, system log text.

Domain Adaptation LLMs, such as BERT and GPT-2, are pre-trained on a variety of textual data but do not have domain-specific vocabulary for middle-

Table 3. Classification accuracy for BERT with various degrees of Domain Adaptation (DA). For example, BERT + 3 Epoch DA indicates 3 epochs of DA before classification fine-tuning and testing.

Model	Accuracy ↑
BERT	82.02 ± 1.09
BERT + 3 epoch DA	81.10 ± 2.40
BERT + 10 epoch DA	81.00 ± 1.72

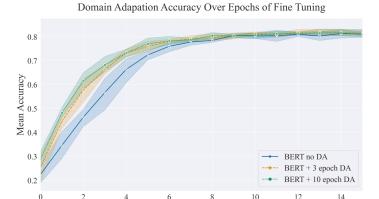


Fig. 2. Test accuracy comparison of DA methods. We observe only a slight improvement in initial epochs with DA and no significant difference in final performance (compared to no DA). The graph only shows first 15 epochs for clearer observation of early epochs. Shaded regions indicate range of accuracy across all folds. Best viewed in color.

Epochs

school-level math. To adapt the LLM to better understand domain-specific vocabulary, we perform additional pre-training with in-domain but not task-related data. This step is done prior to task-specific fine-tuning and often called Domain Adaptation (DA). In Table 3, we detail our experiments on performing DA with the PEMDAS subset of the AMPS Mathmatica dataset [12]. We observe no significant change in overall accuracy with the introduction of either 3 or 10 epochs of DA. One possible explanation is the small vocabulary size of our domain: only numbers and fundamental math operations: +,-,/,*,=,(). However, we do see a non-trivial performance improvement in initial epochs of training as depicted in Figure 2. This observation suggests that DA does provide some context on basic math vocabulary and mathematical reasoning, but this context is sufficiently learned from task fine-tuning within the first few epochs.

Qualitative Error Analysis We now analyze the cases when our best trained method (BERT + Action) mis-classifies student errors in a sample cross-validation fold. We show a mis-classification heatmap in Figure 3. We observe two major causes of mis-classification: between two error classes where intent is

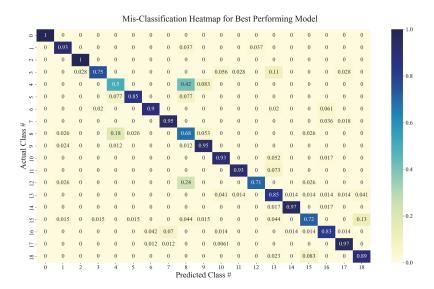


Fig. 3. Mis-classification heatmap for qualitative error analysis of our method. Value in each cell is the ratio of the predicted class count to total number of actual class instances in the test set (each row sums to 1). Best viewed in color.

ambiguous and between classes that are equivalent, but vary in level of specificity. Detailed information about each class mentioned is provided in Table 4.

The most frequent mis-classification is between error class #4 and #8 (RE-VERSED_SIDES and WRONG_OPERATION respectively). Class #4, 41% of the time, is incorrectly classified as class #8. 18% of the time the reverse mis-classification occurs. We observe that, in some scenarios, a REVERSED_SIDES error is equivalent to a WRONG_OPERATION error. Consider the question y+5=-2 and a student response y=-3. The student could have attempted to subtract 5 from both sides, but dropped the negative on -2. Equivalently, the student could have attempted to subtract -5 from both sides, erroneously thinking subtraction of -5 would cancel the 5 on the left hand side and confusing the rules of subtracting negatives. Both error classes can be appropriate, depending on the student's thought process. However, the true student intent is unknown, so it's ambiguous which class is correct.

Other frequent mis-classifications occur between classes that are almost the same but different in level of specificity. For example, class #12 (FORGOT_NEGATIVE) is 23.6% of the time mis-classified as class #8 (WRONG_OPERATION). In the case of addition and subtraction, a sign error can be explained by the selection of an incorrect operation. In that case, an operation error is a more specific error than the sign error. A similar type of mis-classification occurs 13.2% of the time from class #15 to class #18, and 11% of the time from class #3 to class #13.

Table 4. Example feedback templates for classes described in qualitative error analysis. The actual feedback students see have question-specific values for A, B, and expression.

#	Class Label	Sample Feedback
4	REVERSED_SIDES	" $expression$ is equal to A minus B . You need to
		calculate $-A$ minus B ."
8	WRONG_OPERATION	" $expression$ is equal to A plus B . You need to
		calculate A minus B."
12	FORGOT_NEGATIVE	"You forgot the negative sign."
15	CHECK_YOUR_SIGN	"expression Check your sign."
3	MULTIPLY_TO_SIMPLIFY	"Put the expression in its simplest form by per-
		forming multiplication on the right side."
13	SIMPLIFY_FRACTION	"Simplify the fraction expression"

Through this qualitative analysis, we observe the most frequent misclassifications of our method are explainable. They often occur because of ambiguous or overlapping classes. These observations suggest our method may be performing better than the accuracy metrics indicate. The observations also suggest that there is an upper limit to the performance possible on our chosen dataset, depending on how error classes are defined. Furthermore, the feedback selected by the rules of the Cognitive Tutor ITS should not be seen as the absolute truth. Without a perfect knowledge of student intent for each step of a response, it is impossible to have certainty about the true cause of student error. This is a general limitation which underlies all error classification systems.

4 Discussion, Conclusion, and Future Work

In this paper, we detailed a large language model-based method for the task of math error classification in open-ended questions. We now discuss our key observations and outline avenues for future work. First, we observe that our method, when combined with BERT, performs better than the best-performing, data-driven method for math error classification. Additionally, since it does not rely on syntactically correct responses, the method can operate on a wider range of student responses than the baseline method. Second, we observe that that incorporating additional information about student intent is easily achievable with our method and can provide a significant performance improvement. We hypothesize that providing further contextual information, such as student knowledge levels, will continue to improve performance, e.g., using models that can understand open-ended responses [16,25]. Third, we observe, through our qualitative analysis, that the errors made by our method are mainly due to ambiguous error class labels. This observation suggests an avenue for future exploration, where we extend our method to generate feedback, rather than classify errors.

5 Acknowledgements

The authors thank the NSF (grants 1917713, 2118706, 2202506, 2215193) for partially supporting this work.

References

- Aleven, V., McLaughlin, E.A., Glenn, R.A., Koedinger, K.R.: Instruction based on adaptive learning technologies. Handbook of research on learning and instruction pp. 522–560 (2016)
- 2. Baral, S., Botelho, A.F., Erickson, J.A., Benachamardi, P., Heffernan, N.T.: Improving automated scoring of student open responses in mathematics. International Educational Data Mining Society (2021)
- 3. Baral, S., Seetharaman, K., Botelho, A.F., Wang, A., Heineman, G., Heffernan, N.T.: Enhancing auto-scoring of student open responses in the presence of mathematical terms and expressions. In: International Conference on Artificial Intelligence in Education. pp. 685–690. Springer (2022)
- Brusilovsky, P., Peylo, C.: Adaptive and intelligent web-based educational systems. International Journal of Artificial Intelligence in Education 13(2-4), 159–172 (2003)
- 5. Burstein, J.: The e-rater® scoring engine: Automated essay scoring with natural language processing. (2003)
- Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)
- Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V.: Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116 (2019)
- Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding (2018), https://arxiv.org/ abs/1810.04805
- 9. Erickson, J.A., Botelho, A.F., McAteer, S., Varatharaj, A., Heffernan, N.T.: The automated grading of student open responses in mathematics. In: International Conference on Learning Analytics & Knowledge. p. 615–624 (2020)
- 10. Fancsali, S.E., Ritter, S.: Context personalization, preferences, and performance in an intelligent tutoring system for middle school mathematics. In: International conference on learning analytics and knowledge. pp. 73–77 (2014)
- Heeren, B., Jeuring, J., Sosnovsky, S.A., Drijvers, P., Boon, P., Tacoma, S., Koops, J., Weinberger, A., Grugeon-Allys, B., Chenevotot-Quentin, F., van Wijk, J., van Walree, F.: Fine-grained cognitive assessment based on free-form input for math story problems. In: Pammer-Schindler, V., Pérez-Sanagustín, M., Drachsler, H., Elferink, R., Scheffel, M. (eds.) Lifelong Technology-Enhanced Learning 13th European Conference on Technology Enhanced Learning, EC-TEL 2018, Leeds, UK, September 3-5, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11082, pp. 262–276. Springer (2018). https://doi.org/10.1007/978-3-319-98572-5_20, https://doi.org/10.1007/978-3-319-98572-5_20
- Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., Steinhardt, J.: Measuring mathematical problem solving with the math dataset. NeurIPS (2021)
- Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education 8, 30–43 (1997)
- Koedinger, K.R., Baker, R.S., Cunningham, K., Skogsholm, A., Leber, B., Stamper,
 J.: A data repository for the edm community: The pslc datashop. Handbook of educational data mining 43, 43–56 (2010)
- Lan, A.S., Vats, D., Waters, A.E., Baraniuk, R.G.: Mathematical language processing: Automatic grading and feedback for open response mathematical questions.
 In: Proceedings of the ACM conference on learning@scale. pp. 167–176 (2015)

- Liu, N., Wang, Z., Baraniuk, R., Lan, A.: Open-ended knowledge tracing for computer science education. In: Conference on Empirical Methods in Natural Language Processing. pp. 3849–3862 (2022)
- 17. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining approach (2019). https://doi.org/10.48550/ARXIV.1907.11692, https://arxiv.org/abs/1907.11692
- 18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
- 19. Murphy, K.P.: Machine learning: A probabilistic perspective. MIT Press (2021)
- 20. Page, E.B.: The imminence of grading essays by computer. The Phi Delta Kappan 47(5), 238–243 (1966)
- Pane, J.F., Griffin, B.A., McCaffrey, D.F., Karam, R.: Effectiveness of cognitive tutor algebra i at scale. Educational Evaluation and Policy Analysis 36(2), 127–144 (2014)
- 22. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)
- Ritter, S., Anderson, J.R., Koedinger, K.R., Corbett, A.: Cognitive tutor: Applied research in mathematics education. Psychonomic bulletin & review 14(2), 249–255 (2007)
- 24. Roschelle, J., Feng, M., Murphy, R.F., Mason, C.A.: Online mathematics homework increases student achievement. AERA open 2(4), 2332858416673968 (2016)
- 25. Scarlatos, A., Lan, A.: Tree-based representation and generation of natural and mathematical language. In: Association for Computational Linguistics (ACL) (2023, preprint: https://arxivorg/abs/230207974)
- 26. Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N.T., Wu, X., Lee, D.: Mathbert: A pre-trained language model for general NLP tasks in mathematics education. CoRR abs/2106.07340 (2021), https://arxiv.org/abs/2106.07340
- 27. Uto, M., Uchida, Y.: Automated short-answer grading using deep neural networks and item response theory. In: International Conference on Artificial Intelligence in Education. pp. 334–339 (2020)
- 28. Wang, Z., Lan, A., Waters, A., Grimaldi, P., Baraniuk, R.: A meta-learning augmented bidirectional transformer model for automatic short answer grading. In: Proc. 12th Int. Conf. Educ. Data Mining (EDM). pp. 1–4 (2019)
- 29. Wang, Z., Lan, A.S., Baraniuk, R.G.: Mathematical formula representation via tree embeddings. In: iTextbooks@ AIED. pp. 121–133 (2021)
- 30. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S., Drame, M., Lhoest, Q., Rush, A.M.: Huggingface's transformers: State-of-the-art natural language processing (2019). https://doi.org/10.48550/ARXIV.1910.03771, https://arxiv.org/abs/1910.03771
- 31. Zhang, M., Baral, S., Heffernan, N., Lan, A.: Automatic short math answer grading via in-context meta-learning. arXiv preprint arXiv:2205.15219 (2022)
- Zhang, M., Wang, Z., Baraniuk, R.G., Lan, A.S.: Math operation embeddings for open-ended solution analysis and feedback. CoRR abs/2104.12047 (2021), https://arxiv.org/abs/2104.12047