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Abstract. Automated feedback as students answer open-ended math
questions has significant potential in improving learning outcomes at
large scale. A key part of automated feedback systems is an error clas-
sification component, which identifies student errors and enables appro-
priate, predefined feedback to be deployed. Most existing approaches to
error classification use a rule-based method, which has limited capac-
ity to generalize. Existing data-driven methods avoid these limitations
but specifically require mathematical expressions in student responses
to be parsed into syntax trees. This requirement is itself a limitation,
since student responses are not always syntactically valid and cannot be
converted into trees. In this work, we introduce a flexible method for
error classification using pre-trained large language models. We demon-
strate that our method can outperform existing methods in algebra error
classification, and is able to classify a larger set of student responses. Ad-
ditionally, we analyze common classification errors made by our method
and discuss limitations of automated error classification.

Keywords: Error Classification · Large Language Models · Math Edu-
cation

1 Introduction

Quality math education, particularly at a young age, is of crucial importance
for students growing into an increasingly technology-driven world. Intelligent tu-
toring systems (ITSs) have demonstrated their effectiveness in improving math
learning outcomes [1,10,24]. Many ITSs have a component that provides auto-
mated feedback for students while they solve math questions. This component
enables teachers to provide personalized feedback at scale, since they can write
feedback once that applies to many students. Moreover, in some ITSs, this feed-
back can direct a student to the precise error in their problem solving process.
This direct, timely feedback enables immediate learning and helps students refine
their math skills at their own pace [21].

One crucial part of feedback generation is the task of error classification,
i.e., detecting student errors and the class corresponding to the error type. Once
detected, the error class then informs the feedback generator which feedback is
appropriate to provide to the student. This is especially important for open-
ended math questions, where students have to reason step-by-step and one error
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can lead a student away from the correct solution. A related line of work is
automated grading of open-ended math responses [15,9,2,3,31], which is closely
related to the automated short answer grading (ASAG) and automated essay
scoring (AES) tasks [20,5,27,28]. However, student error classification has an
important difference from automated scoring: the former operates at a finer-
grained level, focusing on individual solution steps, while the latter operates at
a higher level, focusing on one score for the entire response.

Traditionally, error classification systems require a domain expert to develop
hand-crafted rules that outline the different patterns of errors possible in a ques-
tion [4,13,11]. As a result, these systems are resource-intensive to create and do
not generalize to responses that are not foreseen by the system designers. Data-
driven methods have the potential to generalize to a wider range of responses,
but few have been explored and most methods only process a final solution and
not intermediate steps. The leading data-driven method to intermediate error
classification relies on a tree embedding method [32]. This method is highly re-
strictive since it requires mathematical expressions in student responses to be
converted to syntax trees [29]. Student solutions (particularly incorrect ones)
are not always syntactically valid, which means they cannot be processed by
this method. Additionally, this method only uses equations as input and cannot
be easily extended to include other student response information, such as natural
language text or ITS-recorded interactions.

Contributions In this paper, we propose a method that overcomes the above
limitations by using pre-trained Large Language Models (LLMs) for algebra
error classification. Our contributions are:

– We outline a method towards using pre-trained LLMs for algebra error clas-
sification, which enables us to handle any student response, regardless of
syntactic validity.

– We demonstrate the effectiveness of this method through experimental eval-
uation using an algebra problem-solving dataset. We compare various pre-
trained LLMs to the existing data-driven baseline, and show that BERT
(and no other LLM) outperforms it.

– We showcase the flexibility of our method in that we can easily add more
information into our classification system, which results in further perfor-
mance improvement. We show how one can augment our method by adding
ITS-recorded interactions to the input, or through Domain Adapation (DA)
that incorporates further domain-specific pre-training to the LLM.

– We perform qualitative analysis on the cause of classification errors in our
method and discuss avenues of future work.

2 Methodology

In this section, we outline how we formulate the problem of algebra error classi-
fication. Then, we outline our method, which uses a LLM to classify errors.
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2.1 The Algebra Error Classification Task

The setup of the algebra error classification problem in an open-ended math set-
ting is as follows. We have a set of predefined error classes for a category of math
questions C = {c1 . . . cm}. We consider a solution that a student provides to a
math question as a series of steps S = {s1, . . . , sn} (for simplicity of exposition,
question statement can be included in the first step, s1). A step encompasses
a resulting intermediate equation and descriptions of the process by which a
student comes to this result. This description includes, but is not limited to, the
application of a theorem, transformation, or intermediate calculation. Assume
that, during step st, a student makes an error. We aim to identify the type of
error ci made by a student at st given the step history St = {s1...st}.

Concretely, we consider a question from an introduction to algebra class:

Solve for x : x+ 4 = 8

With a student’s solution:

Step 1: x+ 4 = 8

Step 2: x+ 4 + 4 = 8 + 4

Step 3: x = 12

In this case, an error occurs at s2, where a student adds to both sides in-
stead of subtracting. While this is a valid algebra, it indicates the student is not
progressing towards the solution. The task is to identify the class ci which corre-
sponds to a “wrong operation” error. As input, we are given St = {s1, s2}. A clas-
sification could also be done for the addition error at s3 using St = {s1, s2, s3}.

It is important to note that step information is not limited to the equation.
It could include any additional information available about how the student
arrived at that equation. For example, notes in the margin between equations
or ITS-recorded interactions which indicate student intent.

2.2 Our Method

Our method to solve the algebra error classification task is to fine-tune a pre-
trained LLM, which we detail below.

Model Architecture We experiment with two main types of LLMs: those pre-
trained on the masked language modeling (MLM) objective, such as BERT [8],
and those pre-trained on next token prediction in an autoregressive way, such as
(GPT-2)[22]. Each type requires a different setup to be used as an error classifier.

For MLM-type LLMs, the output contains the vector embedding of a [CLS]
token. This token represents the contextual information of the entire input text
sequence. As such, these models are designed for sequence classification. To form
our classification head, we connect a linear layer from the [CLS] token to a prob-
ability space, which is the size of our number of error classes. For autoregressive
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Fig. 1. Architecture diagram for our LLM-based method. Input is an arbitrary string
for a set of steps. We depict the action information described in Section 3.1 as additional
step information. Output is a class corresponding to error detected in student response.

models, such as GPT-2 [22], there is no [CLS] token. To form our classification
head, we instead connect a linear layer from the final hidden state representation
(i.e. representation after the entire input sequence is encoded) to a probability
space, which is the size of our number of error classes.

As input to the LLM, we tokenize a string that represents the step history.
In our experiments, we try different methods of representing step history and
compare the results. We note that input formulation is the most flexible part
of our architecture and one of the main advantages of this method. First, it
does not constrain the student responses to be a valid syntax tree. For example,
response of “x + 3 = unicorn” is still a valid string. Second, it can be easily
adapted to include further information. In our experiments, we only represent
information from two steps st−1 and st. This representation is used to provide
fair comparison to the leading data-driven method, which only considers the
current and prior equation trees. However, this method could be easily extended
to include the entire sequence history St or responses to prior questions.

Task-specific training To train our model for the task of algebra error clas-
sification, we minimize the standard cross-entropy loss[19] for error class pre-
dictions. We backpropagate this loss to learn the linear classification head from
scratch and fine-tune the LLM. We also experiment with performing DA prior to
fine-tuning. In DA, we perform additional pre-training on the LLM to adapt it
to the domain-specific vocabulary of our task. This is performed with a domain-
related dataset. In our case, we use a subset of the AMPS Mathematica dataset
[12] containing solutions to PEMDAS questions generated by Mathematica. This
DA step adds additional flexibility to our method, since we can readily adapt the
LLM to more complex math questions, such as calculus or probability theory.
This pre-training may make the LLM more familiar with advanced mathematical
notation and reasoning. We leave this exploration for future work.

3 Experimental Evaluation

In this section, we detail our experiments and analyses. First, we show our quan-
titative experiments that compare the performance of our method to the per-
formance of the baseline method. Then, we show quantitative experiments on
two variations of our method, which use different strategies to include additional
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contextual information. Finally, we perform a qualitative error analysis on our
best performing method.

3.1 Dataset Details

For our experiments, we use the CogTutor dataset accessed via PSLC Datashop
[14,23]. The dataset contains logs of students’ step-by-step responses to questions
in an Algebra I course. These logs were recorded during student interactions with
an ITS named Cognitive Tutor. In Cognitive Tutor, students select from a set of
predefined actions to manipulate an algebra equation. After selecting an action,
the student inputs the expected resulting equation. Interactions are present in
the dataset for each part of this process. We group the action interaction and
the equation writing interactions into a single step.

The Dataset, in total, contains 130,823 interactions. These interactions span
9590 responses across 95 unique students. No demographic information is pro-
vided about the students. From the total interactions, we use a grouped subset of
5,744 steps that have a detected student error called BUG [32]. In these cases,
the ITS showed an automated feedback message to the student indicating an
error made during the equation-solving process. These messages are based on a
set of 92 predefined rules in the ITS. The feedback messages vary in length from
short hints, such as “Check your sign.” to more descriptive feedback, such as
“You are dividing a positive by a negative. The result should be negative.”

Baseline Labeling. For our initial comparisons, we use the step labeling in-
troduced in the leading data-driven method which has 24 distinct labels [32].
This labeling was present for 3,318 of the 5,744 BUG steps; the remaining 2,426
steps contained equations which were not compatible with the Tree-Embedding
approach utilized in the baseline method.

New Labeling. In subsequent experiments, where we compare variations of our
method, we utilize our own labeling of the BUG steps, which has 19 labels on
5,339 of the 5,744 BUG steps. The remaining 403 steps were dropped from our
analysis since they were either i) system errors not related to math operations
or ii) rare errors that were present less than 30 times across the entire dataset.
We make this new dataset, called CogTutorBugs, publicly available 1.

3.2 Metrics and Baselines

For error classification, our primary metric is classification accuracy, i.e., per-
centage of correctly predicted classes in the test set. We compare the following:

– TE+C Best performing baseline method introduced in prior work [32]. This
method converts intermediate equations in student response steps into tree-
embeddings [29], which are used to learn math operation embeddings. The

1 https://github.com/umass-ml4ed/CogTutorBugs

https://github.com/umass-ml4ed/CogTutorBugs
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operation embeddings are then used in a supervised learning manner for
error classification.

– GRU+C Additional method explored in the baseline paper. Concatenates
the equations together and passes the combined sequence character-by-
character into a GRU [6]. Final output state is used for error classification.

– BERT Bidirectional encoder representations from transformers (BERT) [8].
The predominant MLM-based LLM, with a format that is well-suited for
classification tasks.

– GPT-2 Generative Pre-trained Transformer 2 (GPT-2). An autoregressive
LLM pre-trained for next sequence prediction instead of MLM. GPT-2 is
well-suited for text generation tasks, but can be used for classification [22].

– MathBERT A BERT-based LLM pre-trained on a corpus of mathematics
textbooks and course material [26].

– XLM-RoBERTa Multilingual variation of RoBERTa [17], a BERT-based
LLM pre-trained on specific natural language processing benchmark tasks
such as question answering, reading comprehension, and natural language
understanding. XLM-RoBERTa often outperforms BERT on these tasks [7].

3.3 Implementation Details

We perform five-fold cross-validation on the BUG subsets of the CogTutor
dataset. We use four folds for fine-tuning the LLMs and reserve the final fold for
calculating test accuracy. For all experiments we train our models for 30 epochs.
We report the mean and standard deviation in final-epoch test accuracy across
the five folds.

All pre-trained LLMs are sourced from the HuggingFace [30] transformers
library. For fine-tuning we use the AdamW optimizer [18], batch size of 300, and
learning rate of 5 ·10−5. We do not perform hyperparameter tuning and use fixed
hyperparameters across all models. All models were fine-tuned for 30 epochs. We
found this number of epochs was sufficient to obtain optimal performance. All
models were fine-tuned on a single NVIDIA RTX 8000 GPU. For each fold,
fine-tuning took between 4 and 9 minutes, depending on the selected LLM.

3.4 Results and Analysis

Table 1. Classification accuracy, using the error labeling in [32], for our method with
selected LLMs and the baseline methods. Bold indicates the best result.

Method Accuracy ↑
GRU+C 75.35± 1.41
TE+C 78.71± 1.74
BERT 80.68± 1.1
GPT-2 71.10± 2.58
MathBERT 72.66± 2.21
XLM-RoBERTa 72.75± 1.54
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Comparison to Baseline Methods. We report the accuracy of our method
with each LLM and the baseline methods in Table 1. We observe that BERT has
the best performance across all LLMs and is a slight improvement over the lead-
ing baseline method (TE+C). Moreover, it achieves this performance without
needing the tree-embeddings of the response equations used in TE+C. Perhaps
surprisingly, other LLMs do not perform as well as either baseline method. This
observation suggests that the choice of the LLM architecture and initial weights
configuration is crucial for the success of LLMs in classification tasks. BERT ap-
pears to be more robust in fine-tuning for the specific task of algebra error clas-
sification. On the contrary, GPT-2 isn’t well-suited for classification likely due
to its autoregressive design. XLM-RoBERTa and MathBERT are pre-trained
on other tasks and show limited ability to generalize to our task. Their less
competitive performance suggests that pre-training an LLM for one task may
degrade performance in another, completely different task. We find it surprising
that MathBERT, which is specifically designed for mathematical content, does
not perform well on our task. One possible explanation is that MathBERT was
pre-trained on textbook content, which can be different from problem-solving
content. It also is pre-trained on student work in other ITSs, which may differ
in structure to Cognitive Tutor.

Table 2. Classification accuracy, using our new error labeling, for our method with
selected LLMs. Control is the accuracy only with equation information in the input.
Action Inc. is the accuracy with additional student action context provided by Cog-
nitive Tutor ITS logs. Bold indicates the best result.

Language Model Control ↑ Action Inc. ↑
BERT 82.02± 1.09 85.90± 1.86
GPT-2 76.46± 1.47 74.21± 2.08
MathBERT 76.08± 2.05 81.27± 0.32
XLM-RoBERTa 77.73± 2.59 84.23± 2.65

Use of Additional Context. An advantage in using a LLM-based method
for the error classification task is the flexibility of the input. Therefore, we ex-
periment with including information about the student-selected action in the
input (in addition to the step equations). This action information is recorded
by Cognitive Tutor and provides context on student intent. We report the clas-
sification accuracy for the selected LLMs in Table 2. For these experiments, we
use our new feedback labeling. We observe that introducing action information
improves the performance of all MLM models significantly. XLM-RoBERTa, in
particular, has the largest improvement of 6.5%. We note that GPT-2 actually
shows a small performance deterioration when action information is included.
This deterioration is small and could be explained by random noise in the exper-
iments. Another potential explanation is that GPT-2 is pre-trained on natural
language text, but the action information is programmatic, system log text.

Domain Adaptation LLMs, such as BERT and GPT-2, are pre-trained on a
variety of textual data but do not have domain-specific vocabulary for middle-
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Table 3. Classification accuracy for BERT with various degrees of Domain Adaptation
(DA). For example, BERT + 3 Epoch DA indicates 3 epochs of DA before classification
fine-tuning and testing.

Model Accuracy ↑
BERT 82.02± 1.09
BERT + 3 epoch DA 81.10± 2.40
BERT + 10 epoch DA 81.00± 1.72

Fig. 2. Test accuracy comparison of DA methods. We observe only a slight improve-
ment in initial epochs with DA and no significant difference in final performance (com-
pared to no DA). The graph only shows first 15 epochs for clearer observation of early
epochs. Shaded regions indicate range of accuracy across all folds. Best viewed in color.

school-level math. To adapt the LLM to better understand domain-specific vo-
cabulary, we perform additional pre-training with in-domain but not task-related
data. This step is done prior to task-specific fine-tuning and often called Domain
Adaptation (DA). In Table 3, we detail our experiments on performing DA with
the PEMDAS subset of the AMPS Mathmatica dataset [12]. We observe no sig-
nificant change in overall accuracy with the introduction of either 3 or 10 epochs
of DA. One possible explanation is the small vocabulary size of our domain: only
numbers and fundamental math operations: +,−, /, ∗,=, (). However, we do see
a non-trivial performance improvement in initial epochs of training as depicted
in Figure 2. This observation suggests that DA does provide some context on ba-
sic math vocabulary and mathematical reasoning, but this context is sufficiently
learned from task fine-tuning within the first few epochs.

Qualitative Error Analysis We now analyze the cases when our best trained
method (BERT + Action) mis-classifies student errors in a sample cross-
validation fold. We show a mis-classification heatmap in Figure 3. We observe
two major causes of mis-classification: between two error classes where intent is
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Fig. 3. Mis-classification heatmap for qualitative error analysis of our method. Value
in each cell is the ratio of the predicted class count to total number of actual class
instances in the test set (each row sums to 1). Best viewed in color.

ambiguous and between classes that are equivalent, but vary in level of speci-
ficity. Detailed information about each class mentioned is provided in Table 4.

The most frequent mis-classification is between error class #4 and #8 (RE-
VERSED SIDES and WRONG OPERATION respectively). Class #4, 41% of
the time, is incorrectly classified as class #8. 18% of the time the reverse mis-
classification occurs. We observe that, in some scenarios, a REVERSED SIDES
error is equivalent to a WRONG OPERATION error. Consider the question
y + 5 = −2 and a student response y = −3. The student could have attempted
to subtract 5 from both sides, but dropped the negative on -2. Equivalently, the
student could have attempted to subtract -5 from both sides, erroneously think-
ing subtraction of -5 would cancel the 5 on the left hand side and confusing the
rules of subtracting negatives. Both error classes can be appropriate, depending
on the student’s thought process. However, the true student intent is unknown,
so it’s ambiguous which class is correct.

Other frequent mis-classifications occur between classes that are al-
most the same but different in level of specificity. For example, class #12
(FORGOT NEGATIVE) is 23.6% of the time mis-classified as class #8
(WRONG OPERATION). In the case of addition and subtraction, a sign er-
ror can be explained by the selection of an incorrect operation. In that case,
an operation error is a more specific error than the sign error. A similar type
of mis-classification occurs 13.2% of the time from class #15 to class #18, and
11% of the time from class #3 to class #13.
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Table 4. Example feedback templates for classes described in qualitative error analysis.
The actual feedback students see have question-specific values for A,B, and expression.

# Class Label Sample Feedback

4 REVERSED SIDES “expression is equal to A minus B. You need to
calculate −A minus B.”

8 WRONG OPERATION “expression is equal to A plus B. You need to
calculate A minus B.”

12 FORGOT NEGATIVE “You forgot the negative sign.”
15 CHECK YOUR SIGN “expression Check your sign.”
3 MULTIPLY TO SIMPLIFY “Put the expression in its simplest form by per-

forming multiplication on the right side.”
13 SIMPLIFY FRACTION “Simplify the fraction expression”

Through this qualitative analysis, we observe the most frequent mis-
classifications of our method are explainable. They often occur because of am-
biguous or overlapping classes. These observations suggest our method may be
performing better than the accuracy metrics indicate. The observations also
suggest that there is an upper limit to the performance possible on our chosen
dataset, depending on how error classes are defined. Furthermore, the feedback
selected by the rules of the Cognitive Tutor ITS should not be seen as the ab-
solute truth. Without a perfect knowledge of student intent for each step of a
response, it is impossible to have certainty about the true cause of student error.
This is a general limitation which underlies all error classification systems.

4 Discussion, Conclusion, and Future Work

In this paper, we detailed a large language model-based method for the task
of math error classification in open-ended questions. We now discuss our key
observations and outline avenues for future work. First, we observe that our
method, when combined with BERT, performs better than the best-performing,
data-driven method for math error classification. Additionally, since it does not
rely on syntactically correct responses, the method can operate on a wider range
of student responses than the baseline method. Second, we observe that that in-
corporating additional information about student intent is easily achievable with
our method and can provide a significant performance improvement. We hypoth-
esize that providing further contextual information, such as student knowledge
levels, will continue to improve performance, e.g., using models that can under-
stand open-ended responses [16,25]. Third, we observe, through our qualitative
analysis, that the errors made by our method are mainly due to ambiguous error
class labels. This observation suggests an avenue for future exploration, where
we extend our method to generate feedback, rather than classify errors.
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