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Abstract. In this paper the authors investigate the q-Schur algebras of type B that
were constructed earlier using coideal subalgebras for the quantum group of type A. The
authors present a coordinate algebra type construction that allows us to realize these
q-Schur algebras as the duals of the dth graded components of certain graded coalgebras.
Under suitable conditions an isomorphism theorem is proved that demonstrates that
the representation theory reduces to the q-Schur algebra of type A. This enables the
authors to address the questions of cellularity, quasi-hereditariness and representation
type of these algebras. Later it is shown that these algebras realize the 1-faithful quasi
hereditary covers of the Hecke algebras of type B. As a further consequence, the authors
demonstrate that these algebras are Morita equivalent to the category O for rational
Cherednik algebras for the Weyl group of type B. In particular, we have introduced a
Schur-type functor that identifies the type B Knizhnik–Zamolodchikov functor.

1. Introduction

1.1.

Schur-Weyl duality has played a prominent role in the representation theory of
groups and algebras. The duality first appeared as a method to connect the
representation theory of the general linear group GLn and the symmetric group
Σd. This duality carries over naturally to the quantum setting by connecting
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the representation theory of quantum GLn and the Hecke algebra Hq(Σd) of the
symmetric group Σd.

Let Uq(gln) be the Drinfeld-Jimbo quantum group. Jimbo showed in [Ji86] that
there is a Schur duality between Uq(gln) and Hq(Σd) on the d-fold tensor space of
the natural representation V of Uq(gln). The q-Schur algebra of type A , SA

q (n, d),

is the centralizer algebra of the Hq(Σd)-action on V ⊗d.
It is well known that the representation theory for Uq(gln) is closely related

to the representation theory for the quantum linear group GLn. The polynomial
representations GLn coincide with modules of SA

q (n, d) with d > 0. The relation-
ship between objects is depicted as below:

K[MA

q (n)]
∗←↩ Uq(gln)

↓ ↓
K[MA

q (n)]
∗
d ' SA

q (n, d)y V ⊗d xHq(Σd)
.

The algebra Uq(gln) embeds in the dual of the quantum coordinate algebra K[MA

q ];

while SA

q (n, d) can be realized as its dth degree component. The reader is referred
to [PW91] for a thorough treatment of the subject.

The Schur algebra SA

q (n, d) and the Hecke algebra Hq(Σd) are structurally
related when n ≥ d.

• There exists an idempotent e ∈ SA

q (n, d) such that eSA

q (n, d)e ' Hq(Σd).
• An idempotent yields the existence of Schur functor

Mod(SA

q (n, d))→ Mod(Hq(Σd)).

• SA

q (n, d) is a (1-faithful) quasi-hereditary cover1 of Hq(Σd).

1.2.

Our paper aims to investigate the representation theory of the q-Schur algebras of
type B that arises from the coideal subalgebras for the quantum group of type A.

We construct, for type B = C, the following objects in the sense that all favorable
properties mentioned in the previous section hold:

K[MB

Q,q(n)]
∗←↩ UB

Q,q(n)

↓ ↓

K[MB

Q,q(n)]
∗
d ' SB

Q,q(n, d)y V ⊗d
B

xHB

Q,q(d)
.

For our purposes it will be advantageous to work in a more general setting with
two parameters q and Q, and construct the analogs K[MB

Q,q(n)] of the quantum

coordinate algebras. Then we prove that the dth degree component of K[MB

Q,q(n)]
∗

is isomorphic to the type B q-Schur algebras. The coordinate approach provides
tools to study the representation theory for the algebra K[MB

Q,q(n)]
∗ and for the q-

Schur algebras simultaneously. The algebra UB

Q,q(n), unlike Uq(gln), does not have

1The algebra SA
q (n, d) is 1-faithful under the conditions that q is not a root of unity,

or if q2 is a primitive `th root of unity, then ` ≥ 4.
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an obvious comultiplication. Therefore, its dual object, K[MB

Q,q(n)], should be

constructed as a coalgebra; while in the earlier situation K[MA

q (n)] is a bialgebra.
Our approach here differs from prior approaches to the subject for type B Hecke

algebras in that we can employ the action on the tensor space to realize the q-Schur
algebra as a subcoalgebra of K[MB

Q,q(n)]
∗. Other earlier investigations have defined

the algebra as an endomorphism algebra on a direct sum of permutation modules.
The relations necessary to realize K[MB

Q,q(n)] as a quotient of the coordinate
algebra on quantum matrix space naturally arise from the coideal relations. As far
as the authors know, this is the first paper to make this important connection.

In the second part of the paper an isomorphism theorem between the q-Schur
algebras of type B and type A (under an invertibility condition) is established:

SB

Q,q(n, d)
∼=





d⊕

i=0

SA

q (r, i)⊗ SA

q (r, d− i) if n = 2r;

d⊕

i=0

SA

q (r + 1, i)⊗ SA

q (r, d− i) if n = 2r + 1.

One can view this as a “lifting” of the Morita equivalence (via the Schur functor)

HB

Q,q(d) '
Mor

d∏

i=0

Hq(Σi)⊗Hq(Σd−i), (1)

between Hecke algebras proved by Dipper–James [DJ92].
There are many cases when the Morita equivalence will hold. The condition for

invertibility entails the non-vanishing of a polynomial (which is an open condition)
so the equivalence will hold in most cases, in particular, when (i) q is generic, (ii)
q is an odd root of unity, or (iii) q is an (even) `th root of unity if ` > 4d.

As a corollary of our isomorphism theorem, we obtain favorable properties
for our coideal Schur algebras, see Section 5–8. In particular, with the Morita
equivalence we are able to show that SB

Q,q(n, d) is a cellular algebra and quasi-
hereditary. Moreover, in Section 7, we are able give a complete classification of the
representation type of SB

Q,q(n, d).
In the following section (Section 8), we are able to demonstrate that under

suitable conditions, the Schur algebra SB

Q,q(n, d) gives a concrete realization of the

quasi-hereditary one-cover for HB

Q,q(d) (as defined by Rouquier). The problem of
concretely realizing these one-covers is in general an open problem for arbitrary
Hecke algebras. Our result, Theorem 8.3.3), exhibits under favorable conditions,
a Morita equivalence between the representation theory of SB

Q,q(n, d) and the
category O for rational Cherednik algebras. In the process, we have introduced
a Schur-type functor F [

n,d : Mod(SB

Q,q(n, d)) → Mod(HB

Q,q(d)) which is roughly

defined by hitting an idempotent, and then identifies F [
n,d with the type B Knizh-

nik–Zamolodchikov functor, which is defined via monodromy.

1.3.

In the one-parameter case (i.e., q = Q), the algebra UB

q (n) is the coideal subalgebra
Uı or U of Uq(gln) in [BW18] as a part of a double centralizer property (see also
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[ES18] for a skew Howe duality viewpoint). The corresponding Schur algebras
therein are denoted by Sı or S to emphasize the fact that they arise from certain
quantum symmetric pairs of type A III/IV associated with involutions ı or  on a
Dynkin diagram of type An. Namely, we have the identification below:

UB

q (n) ≡

{
U

r if n = 2r + 1;

Uı
r if n = 2r,

SB

q (n, d) ≡

{
S(r, d) if n = 2r + 1;

Sı(r, d) if n = 2r.

Note that the algebras S and its Schur duality are introduced first by Green in
[Gr97]. In [BKLW18] is also developed a canonical basis theory for both Schur and
coideal algebras. For two parameters, a Schur duality for UB

Q,q(n) is established in
[BWW18]; while the canonical basis theory can be found in [LL18].

To our knowledge, there is no general theory for finite-dimensional representa-
tions for the coideal subalgebras (see [Wa17] for a classification for type A III;
also see [Le19] for establishing their Cartan subalgebras for arbitrary type), and in
some way our paper aims to establish results about “polynomial” representations
for UB

q (n).
There are other generalizations of the q-Schur duality for type B in the literature.

A comparison of the algebras regarding the aforementioned favorable properties
will be given in Section 9. Since all these algebras are the centralizing partners of
certain Hecke algebra actions, they are different from the ones appearing in the
Schur duality (see [Hu11]) for type B/C quantum groups, and are different from
the coordinate algebras studied by Doty [Do98].

Acknowledgements. We thank Huanchen Bao, Valentin Buciumas, Jie Du, Han-
kyung Ko, Andrew Mathas, Stefan Kolb, Heibing Rui, Leonard Scott, Weiqiang
Wang and Jieru Zhu for useful discussions. We thank Ben Webster for pointing out
several corrections needed in an earlier version, and for his useful feedback. The
first author thanks the Academia Sinica for the support and hospitality during the
completion of this project.

2. Quantum coordinate (co)algebras

2.1. Quantum matrix spaces

Let K be a field containing elements q,Q. Denote the (quantum) commutators by

[A,B]x = AB − xBA (x ∈ K), [A,B] = [A,B]1.

We define the (type A ) quantum matrix spaces following [PW91, §3.5] but with
a shift on the index set as below:

I(n) =

{
[−r, r] ∩ Z if n = 2r + 1;

[−r, r] ∩ Z− {0} if n = 2r.
(2)

Let MA

q = MA

q (n) be the quantum analog of the space of n × n matrices indexed

by I(n), and let K[MA

q ] = K[xij ; i, j ∈ I(n)]/JA

q (n) be the associative K-algebra
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where JA

q (n) is the two-sided ideal of K[xij ] generated by

[xki, xkj ]q−1 , i > j,

[xki, xli]q−1 , k > l,

[xki, xlj ], k > l, i < j,

[xki, xlj ]− (q−1 − q)xlixkj , k > l, i > j.

The comultiplication on K[MA

q ] is given by

∆ : K[MA

q ]→ K[MA

q ]⊗K[MA

q ], xij 7→
∑

k∈I(n)

xik ⊗ xkj .

Let V = V (n) be the n-dimensional vector space over K with basis {vi | i ∈ I(n)}.
As a comodule V has a structure map

τA : V → V ⊗K[MA

q ], vi 7→
∑

j

vj ⊗ xji.

For µ = (µ1, . . . , µd) ∈ I(n)d, set

vµ = vµ1
⊗ . . .⊗ vµd

∈ V ⊗d.

It is easy to see that the set {vµ | µ ∈ I(n)d} forms a K-basis of the tensor space
V ⊗d. The structure map τA induces a structure map

τ⊗d
A

: V ⊗d → V ⊗d ⊗K[MA

q ], vµ 7→
∑

ν∈I(n)d

vν ⊗ xν1µ1
. . . xνdµd

.

In other words, the tensor space V ⊗d admits a K[MA

q ]
∗-action defined by

K[MA

q ]
∗ × V ⊗d → V ⊗d, (f, vµ) 7→

∑

ν∈I(n)d

f(xν1µ1 . . . xνdµd
)vν .

2.2. Hecke algebras of type B

Let HB = HB

Q,q(d) be the two-parameter Hecke algebra of type B over K generated
by T0, T1, . . . , Td−1 subject to the following relations:

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ d− 2,

(T0T1)
2 = (T1T0)

2, TiTj = TjTi, |i− j| > 1,

T 2
0 = (Q−1 −Q)T0 + 1, T 2

i = (q−1 − q)Ti + 1, 1 ≤ i ≤ d− 1.

That is, the corresponding Coxeter diagram is given as:

0 1
. . .

d− 1
===

Let WB(d) be the Weyl group of type B generated by S = {s0, . . . , sd−1}. It
is known that HB

Q,q(d) has a K-basis {Tw | w ∈ WB(d)}, where Tw = Ti1 · · ·TiN

for any reduced expression w = si1 · · · siN . The subalgebra of HB

Q,q(d) generated
by T1, T2, . . . , Td−1 is isomorphic to the Hecke algebra Hq(Σd) of the symmetric
group Σd. Let H

B

q (d) be the specialization of HB

Q,q(d) at Q = q.
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2.3. Type B Schur duality

It is well known that V ⊗d admits an HB

Q,q(d)-action (and hence an Hq(Σd)-action)

defined as follows. For µ = (µi)i ∈ I(n)d, 0 ≤ t ≤ d− 1, let

µ · st =

{
(µ1, . . . , µt−1, µt+1, µt, µt+2, . . . , µd) if t 6= 0;

(−µ1, µ2, . . . , µd) if t = 0.

For 1 ≤ t ≤ d− 1, the right HB

Q,q(d)-action on V ⊗d is defined:

vµTt =





vµ·st if µt < µt+1;

q−1vµ·st if µt = µt+1;

vµ·st + (q−1 − q)vµ if µt > µt+1,

vµT0 =





vµ·s0 if 0 < µ1;

Q−1vµ·s0 if 0 = µ1;

vµ·s0 + (Q−1 −Q)vµ if 0 > µ1.

(3)

The q-Schur algebras of type A (and B, resp.) are denoted by

SA = SA

q (n, d) = EndHq(d)(V
⊗d), SB = SB

Q,q(n, d) = EndHB

Q,q(d)
(V ⊗d). (4)

We denote by SB

q (n, d) the specialization of SB

Q,q(n, d) at Q = q. It is known that

SB

q (n, d) admits a geometric realization (cf. [BKLW18]) as well as a Schur duality,
which is compatible with the type A duality as follows:

K[MA

q (n)]
∗ �K[MA

q (n)]
∗
d'SA

q (n, d)y xHq(d)
∪ V ⊗d ∩

SB

q (n, d)y xHB

q (d)
.

2.4. A coordinate coalgebra approach

In this section, we aim to construct a coideal JB

Q,q(n, d) of the coordinate bialgebra

K[MA

q (n)]d such that SB

Q,q(n, d) can be realized as the dual of the coordinate
coalgebra

K[MB

Q,q(n)]d = K[MA

q (n)]d/J
B

Q,q(n, d). (5)

Remark 2.4.1. When it comes to comparing SB

Q,q(n, d) with variants of q-Schur

algebras of type B (see Section 9), we call SB

Q,q(n, d) a coideal q-Schur algebra due
to this nature.

For any K-subspace J of K[MA

q (n)]d, the K[MA

q ]d-comodule V ⊗d admits a

K[MA

q ]d/J-comodule structure with structure map

τ⊗d
J : V ⊗d → V ⊗d⊗K[MA

q ]d/J, vµ 7→
∑

ν=(ν1,...,νd)∈I(n)d

vν ⊗ (xν1µ1
. . . xνdµd

+J).

We define aK-space JB

Q,q(n, d) to be the intersection of allK-subspaces J satisfying
that

(τ⊗d
J (vµ))T0 = τ⊗d

J (vµT0), for all µ ∈ I(n)d. (6)

With JB

Q,q(n, d), the linear space K[MB

Q,q(n)]d is well defined as in (5). We see

from Proposition 2.4.2 that K[MB

Q,q(n)]d admits a coalgebra structure.
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Proposition 2.4.2. The K-space K[MB

Q,q(n)]
∗
d admits a K-algebra structure, and

is isomorphic to the type B q-Schur algebra SB

Q,q(n, d).

Proof. Let Ψ be the K-algebra isomorphism SA

q (n, d)→ K[MA

q ]
∗, and hence

Ψ(SB

Q,q(n, d)) = {φ ∈ K[MA

q (n, d)]
∗ | (φvµ)T0 = φ(vµT0) for all µ ∈ I(n)d}

is a K-subalgebra of K[MA

q (n, d)]
∗. By the definition of JB

Q,q(n, d), as linear spaces,

K[MB

Q,q(n)]
∗
d = {φ ∈ K[MA

q (n, d)]
∗ | φ(r) = 0 for all r ∈ JB

Q,q(n, d)}

= Ψ(SB

Q,q(n, d)).

Hence, K[MB

Q,q(n)]
∗
d is isomorphic to SB

Q,q(n, d) as K-subalgebras of K[MB

Q,q(n)]
∗
d.

As a consequence, the space JB

Q,q(n, d) is a coideal of K[MB

Q,q(n)]
∗
d. �

Let JB

Q,q(n) be the union of the coideals JB

Q,q(n, d) for all d ∈ N, and let

K[MB

Q,q(n)] = K[MA

q (n)]/J
B

Q,q(n).

Corollary 2.4.3. The space K[MB

Q,q(n)] of K[MA

q (n)] is a quotient coalgebra.

Proof. It follows that JB

Q,q(n) is a coideal ofK[MA

q (n)] since its degree d component

JB

Q,q(n, d) is a coideal of K[MA

q (n)]d. �

Below we give a concrete realization of JB

Q,q(n) as a right ideal. It is very

important to observe that in general JB

Q,q(n) is a right ideal and not a two-sided

ideal, so K[MB

Q,q(n)] is a coalgebra but not an algebra.

Proposition 2.4.4. JB

Q,q(n) is the right ideal of K[MA

q (n)] generated by the fol-
lowing elements, for i, j ∈ I(n).

xi,j − x−i,−j , i < 0 < j, (7)

xi,j − x−i,−j − (Q−1 −Q)x−i,j , i, j < 0, (8)

x0,j −Q−1x0,−j , j < 0, (9)

xi,0 −Q−1x−i,0. i < 0. (10)

We remark that I(2r) does not contain 0 and hence JB

Q,q(2r, d) is generated only
by the elements of the form (7) – (8).

Proof. For a fixed d ∈ N, let J be an arbitrary K-subspace of K[MA

q (n)]d. For
simplicity we write xµν = xµν + J . For i, j ∈ I(n) we write

δi<j =

{
1 if i < j;

0 otherwise,
δi>j =

{
1 if i > j;

0 otherwise.
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We first consider the case d = 1. For i ∈ I(n),

(τ⊗1
J (vi))T0

=
∑

j∈I(n)

vjT0 ⊗ xji

=
∑

j∈I(n)

δ0jQ
−1v−j ⊗ xji + δ0<jv−j ⊗ xji + δ0>j(v−j + (Q−1 −Q)vj)⊗ xji

=
∑

j∈I(n)

(δ0jQ
−1vj + δ0<−jvj + δ0>−jvj)⊗ x−j,i + δ0>j(Q

−1 −Q)vj)⊗ xji

=
∑

j∈I(n)

vj ⊗
(
δ0jQ

−1x−j,i + δ0>j(x−j,i + (Q−1 −Qxji) + δ0<jx−j,i

)
.

On the other hand,

τ⊗1
J (viT0) = τ⊗1

J (δ0iQ
−1v−i + δ0<iv−i + δ0>i(v−i + (Q−1 −Q)vi))

=
∑

j∈I(n)

vj ⊗
(
δ0iQ

−1xj,−i + δ0<ixj,−i + δ0>ixj,−i + (Q−1 −Q)xji

)
.

We then see that (6) holds if and only if J contains all the elements (7)–(10).
Now, JB

Q,q(n, 1) is the linear space spanned by elements (7)–(10) since it is the
intersection of all the J ’s satisfying (6).

For general d, since T0 only acts on the first factor of V ⊗d, the linear subspace
JB

Q,q(n, d) of K[MA

q (n)]d is JB

Q,q(n, 1)⊗K[MA

q (n)]d−1. �

Let τB = τ⊗d
JB

Q,q(n,d)
. We say that a right K[MB

Q,q(n)]-comodule V is homogeneous

of degree d if all entries of its defining matrix lie in K[MB

Q,q(n)]d, i.e., for a fixed

basis {vi} of V , τB(vi) =
∑

j vj ⊗ aij for some aij ∈ K[MB

Q,q(n)]d.

Corollary 2.4.5. For d ≥ 0, the category of homogeneous right K[MB

Q,q(n)]-

comodules of degree d is equivalent to the category of left SB

Q,q(n, d)-modules.

2.5. A combinatorial realization of SB

Q,q(n, d)

It is well known that the algebra SB

q (n, d) with equal parameters admits a geometric
realization via isotropic partial flags (cf. [BKLW18]). This flag realization of the
algebra SB

q (n, d) admits a combinatorial/Hecke algebraic counterpart that genera-
lizes to a two-parameter upgrade (cf. [LL18]), i.e.,

SB

Q,q(n, d) =
⊕

λ,µ∈ΛB(n,d)

HomHB

Q,q
(xµH

B

Q,q, xλH
B

Q,q), (11)

where

ΛB(n, d)

=





{
λ = (λi)i∈I(n) ∈ Nn

∣∣∣∣∣
λ0 ∈ 1 + 2Z, λ−i = −λi,∑

i λi = 2d+ 1

}
if n = 2r + 1;

{
λ = (λi)i∈I(n) ∈ Nn

∣∣ λ−i = −λi,
∑

i λi = 2d
}

if n = 2r.

(12)
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Note that in [LL18], the set ΛB(2r, d) is identified as a subset of ΛB(2r + 1, d)
through the embedding

(λi)i∈I(n) 7→ (λ−r, . . . , λ−1, 1, λ1, . . . λr).

For any λ ∈ ΛB(n, d), let Wλ be the parabolic subgroup of WB generated by the
set {

S − {sλ1
, sλ1+λ2

, . . . , sλ1+...+λr−1
} if n = 2r;

S − {sbλ0/2c, sbλ0/2c+λ1
, . . . , sbλ0/2c+λ1+...+λr−1

} if n = 2r + 1.

For any finite subset X ⊂W , λ, µ ∈ ΛB(n, d) and a Weyl group element g, set

TX =
∑

w∈X

Tw, T g
λµ = T(Wλ)g(Wµ), xλ = T 1

λλ = TWλ
. (13)

The right HB

Q,q-linear map below is well defined:

φg
λµ : xµH

B

Q,q → xλH
B

Q,q, xµ 7→ T g
λµ. (14)

The maps φg
λµ with λ, µ ∈ ΛB(n, d), g a minimal length double coset representative

for Wλ\W
B/Wµ form a linear basis for the algebra SB

Q,q(n, d). The multiplication

rule for SB

Q,q(n, d) is given in [LL18], and it is rather involved in general. Here we
only need the following facts:

Lemma 2.5.1. Let λ, λ′, µ, µ′ ∈ ΛB(n, d), and let g, g′ be minimal length double
coset representatives for Wλ\W

B/Wµ. Then

(a) φg
λµφ

g′

λ′µ′ = 0 unless µ = λ′;

(b) φ1
λµφ

g
µµ′ = φg

λµ′ = φg
λµφ

1
µµ′ .

2.6. Dimension of q-Schur algebras

It is well known that SA

q (n, d) has several K-bases indexed by the set

{
(aij)ij ∈ NI(n)2

∣∣∣∣
∑

(i,j)∈I(n)2

ai,j = d

}
,

and hence the dimension is given by

dimK SA

q (n, d) =

(
n2 + d− 1

d

)
. (15)

In [LL18, Lem. 2.2.1] a dimension formula is obtained via several bases of SB

Q,q(n, d)
with the following index set:

{
(aij)ij ∈N

I−

∣∣∣∣
∑

(i,j)∈I−

ai,=d

}
, I− =





[−r,−1]× I(n) if n = 2r;

([−r,−1]× I(n))⋃
({0} × [−r,−1]) if n = 2r + 1.

(16)
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That is, I− ⊂ I(n)2 corresponds to the shaded region below:




a−r,−r a−r,r

. . .

a−1,−1 a−1,1

a1,−1 a11
. . .

ar,−r arr







a−r,−r a−r,r

. . .

a00
. . .

ar,−r arr




if n = 2r if n = 2r + 1

Consequently,

dimK SB

Q,q(n, d) =

(
|I−|+ d− 1

d

)
=

{(
2r2+d−1

d

)
if n = 2r;(

2r2+2r+d
d

)
if n = 2r + 1.

(17)

In the following we provide a concrete description for the 2-dimensional algebra
SB

Q,q(2, 1).

Proposition 2.6.1. The algebra SB

Q,q(2, 1) is isomorphic to the type A Hecke
algebra HQ−1(Σ2).

Proof. The index set here is I(2) = {−1, 1}. The coalgebra K[MB

Q,q(2)]1 has a

K-basis {a = x−1,−1, b = x−1,1 = x1,−1}. Note that x11 = a + (Q − Q−1)b. The
comultiplication is given by

∆(a) =
∑

k=±1

x−1,k ⊗ xk,−1 = a⊗ a+ b⊗ b,

∆(b) = b⊗ a+ (a+ (Q−Q−1)b)⊗ b = b⊗ a+ a⊗ b+ (Q−Q−1)b⊗ b.

Hence, the algebra structure of SB

Q,q(2, 1) = K[MB

Q,q(n)]
∗
1 has a basis {a∗, b∗} such

that

a∗a∗(a) = (a⊗ a)∗(∆(a)) = 1, a∗a∗(b) = (a⊗ a)∗(∆(b)) = 0,

a∗b∗(a) = 0 = b∗a∗(a), a∗b∗(b) = 1 = b∗a∗(b),

b∗b∗(a) = 1, b∗b∗(b) = (Q−Q−1).

Therefore, the multiplication structure of SB

Q,q(2, 1) is given by

a∗a∗ = a∗, a∗b∗ = b∗ = b∗a∗, b∗b∗ = (Q−Q−1)b∗ + a∗. �

Remark 2.6.2. We expect that SB

Q,q(2, d) is isomorphic to K[t]/〈Pd(t)〉 for some
polynomial Pd ∈ K[t], for d ≥ 1.

3. The isomorphism theorem

The entire section is dedicated to the proof of an isomorphism theorem (Theo-
rem 3.1.1) between the Schur algebras of type B and type A that is inspired by a
Morita equivalence theorem due to Dipper and James [DJ92].
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3.1. The statement

We define a polynomial fB

d (Q, q) ∈ K[Q, q] by

fB

d (Q, q) =
d−1∏

i=1−d

(Q−2 + q2i).

We remark that at the specialization Q = q, the polynomial fB

d (Q, q) is invertible
if (i) q is generic, (ii) q2 is an odd root of unity, or (iii) q2 is a primitive (even) `th
root of unity for ` > d.

Theorem 3.1.1. If fB

d (Q, q) is invertible in the field K, then we have an isomor-
phism of K-algebras:

Φ : SB

Q,q(n, d)→

d⊕

i=0

SA

q (dn/2e, i)⊗ SA

q (bn/2c, d− i). (18)

Example 3.1.2. For n = 2, d = 1, Theorem 3.1.1 gives the following isomorphism

SB

Q,q(2, 1)
∼= (SA

q (1, 0)⊗ SA

q (1, 1))⊕ (SA

q (1, 1)⊗ SA

q (1, 0))
∼= K1x ⊕K1y,

where 1x, 1y are identities. We recall basis {a∗, b∗} of SB

Q,q(2, 1) from Proposition
2.6.1. The following assignments yield the desired isomorphism:

a∗ 7→ 1x + 1y, b∗ 7→ −Q−11x +Q1y. (19)

We note that it remains an isomorphism if we replace −Q−11x + Q1y in (19) by
Q1x −Q−11y.

3.2. Morita equivalence of Hecke algebras

Following [DJ92], we define elements u±
i ∈ H

B

Q,q(d), for 0 ≤ i ≤ d, by

u+
i =

i−1∏

`=0

(T` . . . T1T0T1 . . . T` +Q), u−
i =

i−1∏

`=0

(T` . . . T1T0T1 . . . T` −Q−1). (20)

It is understood that u+
0 = 1 = u−

0 . For a, b ∈ N such that a+ b = d, we define an
element va,b by

va,b = u−
b Twa,b

u+
a ∈ H

B

Q,q(d), (21)

where wa,b ∈ Σa+b, in two-line notation, is given by

wa,b =

(
1 · · · a a+ 1 · · · a+ b

b+ 1 · · · b+ a 1 · · · b

)
.

Finally, when fB

d (Q, q) is invertible, Dipper and James constructed an idempotent

ea,b = z̃−1
b,aTwb,a

va,b, (22)

for a + b = d, where z̃b,a is some invertible element in Hq(Σa × Σb)(see [DJ92,
Definition 3.24]). Below we recall some crucial lemmas used in [DJ92].
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Lemma 3.2.1. Let a, b ∈ N be such that a+ b = d. Then:

(a) The elements u±
d lie in the center of HB

Q,q(d).

(b) For a+ b > d, u−
b H

B

Q,q(d)u
+
a = 0.

(c) For a + b = d, ea,bH
B

Q,q(d)ea,b = ea,bHq(Σa × Σb) and ea,b commutes with
Hq(Σa × Σb).

(d) For a+ d = d, ea,bH
B

Q,q(d) = va,bH
B

Q,q(d).
(e) There is a Morita equivalence

HB

Q,q(d) '
Mor

d⊕

i=0

ei,d−iH
B

Q,q(d)ei,d−i.

3.3. The actions of u+

d and u
−

d

Consider the following decompositions of V into K-subspaces:

V = V≥0 ⊕ V<0 = V>0 ⊕ V≤0,

where

V>0 =
⊕

1≤i≤r

Kvi, V≥0 =





⊕
0≤i≤r

Kvi, if n = 2r + 1;

V>0 if n = 2r,

V<0 =
⊕

−r≤i≤−1

Kvi, V≤0 =





⊕
−r≤i≤0

Kvi, if n = 2r + 1;

V<0 if n = 2r.

Hence, one has the following canonical isomorphisms:

SA

q (dn/2e, d) ' EndHq(Σd)(V
⊗d
≥0 ), SA

q (bn/2c, d) ' EndHq(Σd)(V
⊗d
<0 ). (23)

In the following, we introduce two new bases {w+
I } and {w−

I } for the tensor
space to help us understand the u±

d -action. First define some intermediate elements,
for 0 ≤ i ≤ r, j ∈ N:

w+
i(j) =

{
q−jv−i +Qvi, i 6= 0;

(q−2jQ−1 +Q)vi, i = 0,
and w−

i(j) =

{
q−jv−i −Q−1vi, i 6= 0;

0, i = 0.

For a nondecreasing tuple I = (i1, . . . , id) ∈ ([0, r]∩Z)d, we further define elements
w+

I and w−
I by

w+
(i) = w+

i(0), w−
(i) = w−

i(0),

and then inductively (on d) as below:

w+
I = w+

(i1,...,id−1)
⊗ w+

id(j)
, w−

I = w−
(i1,...,id−1)

⊗ w−
id(j)

,

where j = max{k : id−k = id}. For arbitrary J ∈ ([0, r] ∩ Z)d, there is a shortest
element g ∈ Σd such that g−1J is nondecreasing. We set

w+
J = w+

g−1JTg, w−
J = w−

g−1JTg.
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Lemma 3.3.1.

(a) For I ∈ ([0, r] ∩ Z)d, vIu
+
d = w+

I .
(b) For I ∈ ([1, r] ∩ Z)d, vIu

−
d = w−

I .

Proof. For non-decreasing I, the result follows from a direct computation. For
general I, there exists a shortest element g ∈ Σd such that Ig−1 is non-decreasing.
Then, by Lemma 3.2.1(a),

vIu
±
d = vIg−1Tgu

±
d = vIg−1u±

d Tg = w±
Ig−1Tg = w±

I . �

Example 3.3.2. Let d = 7 and let I = (0, 1, 1, 2, 3, 3, 3). We have

w+
I = w+

0(0) ⊗ w+
1(0) ⊗ w+

1(1) ⊗ w+
2(0) ⊗ w+

3(0) ⊗ w+
3(1) ⊗ w+

3(2).

For J = (0, 2, 1, 1, 3, 3, 3) = Is3s2,

w+
J = w+

I T3T2.

Example 3.3.3. In the following we verify Lemma 3.3.1 for small d’s. Let d = 2,
I = (1, 1) and hence wI = w+

1(0)⊗w+
1(1). Since u

+
2 = (T1T0T1+Q)(T0+Q), we can

check that indeed

vIu
+
2 = (v1 ⊗ v1)(T1T0T1 +Q)(T0 +Q) = (v1 ⊗ w+

1(1))(T0 +Q) = w+
I .

Now we define K-vector spaces

W d
≥0 = V ⊗du+

d , W d
<0 = V ⊗du−

d .

By Lemma 3.2.1(a), u+
d and u−

d are in the center of HB

Q,q(d), hence W d
≥0 and W d

<0

are naturally HB

Q,q(d)-module via right multiplication. Moreover, wT0 = Q−1w for

all w ∈W d
≥0 and wT0 = −Qw for all w ∈W d

<0.

Lemma 3.3.4. We have W d
≥0 = V ⊗d

≥0 u
+
d and W d

<0 = V ⊗d
>0 u

−
d .

Proof. We only give a proof for the first claim, and a proof for the second claim
can be obtained similarly. A direct computation shows that

T0u
+
d = Q−1u+

d . (24)

For 1 ≤ i ≤ d,

(V≥0
⊗(i−1) ⊗ V<0 ⊗ V ⊗(d−i))u+

d

= (V>0 ⊗ V
⊗(i−1)
≥0 ⊗ V ⊗(d−i))T0T1T2 . . . Ti−1u

+
d

= (V>0 ⊗ V
⊗(i−1)
≥0 ⊗ V ⊗(d−i))Q−1T1T2 . . . Ti−1u

+
d Lemma 3.2.1(a) and (24)

⊆ V ⊗i
≥0 ⊗ V ⊗(d−i)u+

d . V ⊗i
≥0 is a Hq(Σi)-module.

Next, an induction proves that for 0 ≤ i ≤ d,

V ⊗i ⊗ V ⊗(d−i) = V ⊗i
≥0 ⊗ V ⊗(d−i),

from which the result follows. �
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Lemma 3.3.5. Let pd : V ⊗d → V ⊗d
≤0 be the projection map. For I ∈ ([0, r] ∩ Z)d

and J ∈ ([1, r] ∩ Z)d, pd(w
+
I ) = cIv−I and pd(w

−
J ) = cJv−J for some invertible

elements cI , cJ ∈ K×.

Proof. When I, J are non-decreasing, and when d = 2, the result follows from a
direct computation. For general I (or J), there exists a shortest element g ∈ Σd

such that Ig−1 (or Jg−1) is non-decreasing. The result follows from an induction
on the length of g. �

Lemma 3.3.6.

(a) The map vI 7→ w+
I gives an isomorphism of Hq(Σd)-modules V ⊗d

≥0 →W d
≥0.

(b) The map vI 7→ w−
I gives an isomorphism of Hq(Σd)-modules V ⊗d

<0 →W d
<0.

Proof. Since u+
d (resp. u−

d ) is in the center of HB

Q,q(d) by Lemma 3.2.1(a), the map

vI 7→ w+
I (resp. vI 7→ w−

I ) is clearly Hq(Σd)-equivariant. Surjectivity of this map
follows from Lemma 3.3.4, and injectivity of this map follows from Lemma 3.3.5.
�

3.4. The actions of va,b

Lemma 3.4.1. For a+ b = d, V ⊗dva,b = (V ⊗b
>0 ⊗ V ⊗a

≥0 )va,b.

Proof. It follows from Eq. (21) and Lemma 3.3.4 that

V ⊗dva,b = (V ⊗b⊗ V ⊗a)u−
b Twa,b

u+
a = (V ⊗b

>0 ⊗ V ⊗a)u−
b Twa,b

u+
a = (V ⊗b

>0 ⊗ V ⊗a)va,b.

For b < i ≤ d,

T0T1T2 · · ·Ti−1va,b

= T−1
1 · · ·T−1

b (Tb · · ·T1T0T1 · · ·Tb)(Tb+1 · · ·Ti−1)u
−
b Twa,b

u+
a Eq. (21)

= T−1
1 · · ·T−1

b (Tb · · ·T0 · · ·Tb)u
−
b (Tb+1 · · ·Ti−1)Twa,b

u+
a by commutivity

= T−1
1 · · ·T−1

b (u−
b+1 +Q−1u−

b )(Tb+1 · · ·Ti−1)Twa,b
u+
a Eq. (20)

= Q−1T−1
1 · · ·T−1

b u−
b (Tb+1 · · ·Ti−1)Twa,b

u+
a Lemma 3.2.1

= Q−1T−1
1 · · ·T−1

b (Tb+1 · · ·Ti−1)u
−
b Twa,b

u+
a by commutivity

= Q−1T−1
1 · · ·T−1

b (Tb+1 · · ·Ti−1)va,b. Eq. (21)

Then, for b < i ≤ d,

(V b
>0 ⊗ V

⊗(i−b−1)
≥0 ⊗ V<0 ⊗ V ⊗(d−i))va,b

= (V>0 ⊗ V ⊗b
>0 ⊗ V

⊗(i−b−1)
≥0 ⊗ V ⊗(d−i))T0T1T2 · · ·Ti−1va,b

= Q−1(V>0 ⊗ V ⊗b
>0 ⊗ V

⊗(i−b−1)
≥0 ⊗ V ⊗(d−i))T−1

1 · · ·T−1
b (Tb+1 · · ·Ti−1)va,b

⊆ (V ⊗b
>0 ⊗ V>0 ⊗ V

⊗(i−b−1)
≥0 ⊗ V ⊗(d−i))(Tb+1 · · ·Ti−1)va,b

⊆ (V ⊗b
>0 ⊗ V

⊗(i−b)
≥0 ⊗ V ⊗(d−i))va,b,
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where the last two inclusions follow from the fact that V
⊗(b+1)
>0 is a Hq(Σb+1)-

module, and V
⊗(i−b)
≥0 is a Hq(Σi−b)-module, respectively. An induction shows that

for b ≤ i ≤ d,

V ⊗b ⊗ V ⊗(b−i) ⊗ V ⊗(d−i)va,b = V ⊗b
>0 ⊗ V

⊗(i−b)
≥0 ⊗ V ⊗(d−i)va,b,

from which the result follows. �

For a+ b = d, define projections

pa,b : V
⊗d → V ⊗a

≤0 ⊗ V ⊗b
<0 , p′a,b : V

⊗d → V ⊗a ⊗ V ⊗b
<0 .

Lemma 3.4.2. Let a+ b = d, I ∈ ([0, r] ∩ Z)a and J ∈ ([−r, r] ∩ Z)b. Then

p′a,b((vJ ⊗ vI)Twa,b
) = cI,JvI ⊗ pb(vJ)

for some cI,J ∈ K×, where pb is defined in Lemma 3.3.5. Moreover,

p′a,b((w
−
J ⊗ vI)Twa,b

) = cI,JcJvI ⊗ v−J

for some cI,J , cJ ∈ K×.

Proof. First note that (vJ ⊗ vI)Twa,b
= cI,J(vJ ⊗ vI)wa,b +

∑
g<wa,b

cg(vJ ⊗ vI)g
for some invertible cI,J ∈ K and some cg ∈ K, where g < wa,b under the Bruhat
order. Hence,

p′a,b((vJ ⊗ vI)Twa,b
) = p′a,b(cI,J(vJ ⊗ vI)wa,b +

∑

g<wa,b

cg(vJ ⊗ vI)g)

= cI,Jp
′
a,b(vI ⊗ vJ) +

∑

g<wa,b

cgp
′
a,b((vJ ⊗ vI)g)

= cI,Jp
′
a,b(vI ⊗ vJ) = cI,JvI ⊗ pb(vJ).

By Lemma 3.3.5, we have pb(w
−
J ) = cJv−J for some cJ ∈ K×. Therefore,

p′a,b((w
−
J ⊗ vI)Twa,b

) = cI,JvI ⊗ pb(w
−
J ) = cI,JcJvI ⊗ v−J . �

Lemma 3.4.3. For I ∈ ([0, r] ∩ Z)a and J ∈ ([1, r] ∩ Z)b, pa,b((vJ ⊗ vI)va,b) =
cv−I ⊗ v−J for some c ∈ K×.

Proof.

pa,b((vJ ⊗ vI)va,b) = pa,b((vJ ⊗ vI)u
−
b Twa,b

u+
a ) Eq. (21)

= pa,b((w
−
J ⊗ vI)Twa,b

u+
a ) Lemma 3.3.1

= pa,b(p
′
a,b((w

−
J ⊗ vI)Twa,b

)u+
a )

= pa,b(cI,JcJ(vI ⊗ v−J)u
+
a ) Lemma 3.4.2

= pa,b(cI,JcJw
+
I ⊗ v−J) Lemma 3.3.1

= cI,JcJpa(w
+
I )⊗ v−J

= cI,JcIcJv−I ⊗ v−J . Lemma 3.3.5 �
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Lemma 3.4.4. For a+ b = d, the map vI ⊗ vJ 7→ (vJ ⊗ vI)va,b gives an isomor-
phism of Hq(Σa)⊗Hq(Σb)-modules V a

≥0 ⊗ V b
>0 → V ⊗dva,b.

Proof. It follows from [DJ89, Lem. 3.10] that

Tiva,b =

{
Ti+a, 1 ≤ i ≤ b;

Ti−b, b+ 1 ≤ i ≤ a+ b− 1.

Hence, the map is Hq(Σa) ⊗ Hq(Σb)-equivariant. The injectivity follows from
Lemma 3.4.3, and the surjectivity follows from Lemma 3.4.1. �

3.5. The proof

Finally, we are in a position to prove the isomorphism theorem.

Proof of Theorem 3.1.1.

SB

Q,q(n, d) = EndHB

Q,q(d)
(V ⊗d)

= End⊕
0≤i≤d ei,d−iHB

Q,q(d)ei,d−i
(V ⊗dei,d−i) Lemma 3.2.1(e)

=
⊕

0≤i≤d

Endei,d−iHB

Q,q(d)ei,d−i
(V ⊗dei,d−i)

=
⊕

0≤i≤d

EndHq(Σi)⊗Hq(Σd−i)(V
⊗dvi,d−i) Lemma 3.2.1(c)(d)

=
⊕

0≤i≤d

EndHq(Σi)⊗Hq(Σd−i)(V
⊗i
≥0 ⊗ V

⊗(d−i)
>0 ) Lemma 3.4.4

=
⊕

0≤i≤d

EndHq(Σi)(V
⊗i
≥0 )⊗ EndHq(Σd−i)(V

⊗d−i
>0 )

=
⊕

0≤i≤d

SA

q (dn/2e, i)⊗ SA

q (bn/2c, d− i). Eq. (23) �

3.6. Simple modules of SB

Q,q(n, d)

As an immediate consequence of the isomorphism theorem one obtains a classifica-
tion of irreducible representations for SB

Q,q(n, d).

Theorem 3.6.1. If fB

d (Q, q) is invertible in the field K then there is a bijection

{Irreducible representations of SB

Q,q(n, d)} ↔ {(λ, µ) ` (d1, d2) | d1 + d2 = d},

where the number of parts of λ and µ is no more than n. In particular, the standard
modules over SB

Q,q(n, d) are of the form ∇(λ)�∇(µ), where ∇(λ) (resp. ∇(λ)) are

standard modules over SA

q (dn/2e, d1) (resp. S
A

q (bn/2c, d2)).

Remark 3.6.2. There are variants of our isomorphism theorem in the literature
related to different Schur algebras. In [GH97] there was established a Morita
equivalence

S(H(WB

d )) '
Mor

d⊕

i=0

SA

q (i, i)⊗ SA

q (d− i, d− i),
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where S(H(WB

d )) is an endomorphism algebra on a q-permutation module involv-
ing r-compatible compositions.

By [Ar99, Thm. 3.2], under a separation condition at the specialization u1 =
−Q, u2 = Q−1, the Sakamoto-Shoji algebra SB

u1,u2,q(dn/2e, bn/2c, d) (see 9.3) is
isomorphic to the right-hand side of Theorem 3.1.1, and hence is isomorphic to
our algebra SB

Q,q(n, d). When the separation condition fails, the two algebras do not
coincide since their dimensions do not match. For instance, in [Ar99, §2, Example]
it is computed that dimSB

u1,u2,q(1, 1, 2) can be 3, 4, 5 and 10 while dimSB

q (2, d) is
always 3.

4. Schur functors

4.1. Schur functors

For type A it is well known that, provided n ≥ d, there is an idempotent eA =
eA(n, d) ∈ SA

q (n, d) such that eASA

q (n, d)e
A ' Hq(Σd), and a Schur functor

FA

n,d : Mod(SA

q (n, d))→ Mod(Hq(Σd)), M 7→ eAM. (25)

In the following proposition we construct the Schur functor for SB

Q,q(n, d) when
bn/2c ≥ d.

Proposition 4.1.1. If bn/2c ≥ d then there is an idempotent eB = eB(n, d) ∈
SB

Q,q(n, d) such that eBSB

Q,q(n, d)e
B ' HB

Q,q(d) as K-algebras, and eBSB

Q,q(n, d) '

V ⊗d as (SB

Q,q(n, d),H
B

Q,q(d))-bimodules..

Proof. Recall ΛB(n, d) from (12) and φg
λµ from (14). Let eB = φ1

ωω, where

ω =





{(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
2d

, 0 . . . , 0) ∈ ΛB(2r, d)} if n = 2r;

{(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
2d+1

, 0 . . . , 0) ∈ ΛB(2r + 1, d)} if n = 2r + 1.

Note that such ω is well defined only when r = bn/2c ≥ d. By Lemma 2.5.1, we
have

eBφg
λµe

B =

{
φg
λµ if λ = ω = µ;

0 otherwise.

Since Wω is the trivial group, xω = 1 ∈ HB

Q,q(d) and hence φg
ωω is uniquely

determined by 1 7→ Tg. Therefore, e
BSB

Q,q(n, d)e
B and HB

Q,q(d) are isomorphic as
algebras.

Now from Section 2.5 we see that there is a canonical identification

V ⊗d '
⊕

µ∈ΛB(n,d)

xµH
B

Q,q '
⊕

µ∈ΛB(n,d)

HomHB

Q,q
(xωH

B

Q,q, xµH
B

Q,q),

and hence the maps φg
ωµ, with µ ∈ ΛB(n, d), g is a minimal length coset representa-

tive for WB/Wµ, form a linear basis for V ⊗d. Again by Lemma 2.5.1, we have

eBφg
λµ =

{
φg
ωµ if λ = ω;

0 otherwise.
(26)
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Hence, eBSB

Q,q(n, d) has a linear basis {φ
g
ωµ} where µ ∈ ΛB(n, d), g a minimal length

double coset representative for Wω\W
B/Wµ. Therefore, V

⊗d and eBSB

Q,q(n, d) are

isomorphic as (SB

Q,q(n, d),H
B

Q,q(d))-bimodules. �

We define the Schur functor of type B by

FB

n,d : Mod(SB

Q,q(n, d))→ Mod(HB

Q,q(d)), M 7→ eBM.

Define the inverse Schur functor by

GB

d : Mod(HB

Q,q(d))→ Mod(SB

Q,q(n, d)),

M 7→ HomeBSB

Q,q(n,d)e
B(eBSB

Q,q(n, d),M).

Below we define a Schur-like functor F [
n,d : Mod(SB

Q,q(n, d)) → Mod(HB

Q,q(d))
using Theorem 3.1.1, under the same invertibility assumption: recall Φ from (48):
let

ε[ = ε[n,d = Φ−1

(
d⊕

i=0

eA(dn/2e, i)⊗ eA(bn/2c, d− i)

)
.

Note that ε[SB

Q,q(n, d)ε
[ '

⊕d
i=0Hq(Σi+1)⊗Hq(Σd−i+1), and hence left multiplica-

tion by ε[ defines a functor Mod(SB

Q,q(n, d))→Mod(
⊕d

i=0Hq(Σi+1)⊗Hq(Σd−i+1)).
Hence, we can define

F [
n,d : Mod(SB

Q,q(n, d))→ Mod(HB

Q,q(d)), M 7→ F−1
H (ε[M), (27)

where FH is the Morita equivalence for the Hecke algebras given by

FH : Mod(HB

Q,q(d))→ Mod
(⊕

i

Hq(Σi+1)⊗Hq(Σd−i+1)
)
. (28)

Under the invertibility condition, one can define an equivalence of categories in-
duced from Φ as below:

FS : Mod(SB

Q,q(n, d))→ Mod

(
d⊕

i=0

SA

q (dn/2e, i)⊗ SA

q (bn/2c, d− i)

)
. (29)

In other words, we have the following commutativity of functors:

Proposition 4.1.2. Assume bn/2c ≥ d ≥ i ≥ 0 and that fB

q is invertible. The
diagram below commutes:

Mod(SB

Q,q(n, d)) Mod
( d⊕

i=0

SA

q (dn/2e, i)⊗ SA

q (bn/2c, d− i)
)

Mod(HB

Q,q(d)) Mod
( d⊕

i=0

Hq(Σi+1)⊗Hq(Σd−i+1)
)

Fs

F [
n,d

d⊕
i=0

F A

dn/2e,i
⊗F A

bn/2c,d−i

FH

. (30)
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Remark 4.1.3. We expect that Proposition 4.1.2 still holds if we replace the functor
F [
n,d therein by FB

n,d.

4.2. Existence of idempotents

We construct additional idempotents in Schur algebras of type B that will be used
later in Section 7.

Proposition 4.2.1. There exists an idempotent e ∈ SB

Q,q(n
′, d) such that

eSB

Q,q(n
′, d)e ' SB

Q,q(n, d)

if either one of the following holds:

(a) n′ ≥ n and n′ ≡ n mod 2;
(b) n′ = 2r′ + 1 ≥ n = 2r.

Proof. We use the combinatorial realization in Section 2.5. For (a) we set

e =
∑

γ

φ1
γγ ,

where γ runs over the set

ΛB(n′, d)|n

=





{γ = (0, . . . , 0, ∗, . . . , ∗︸ ︷︷ ︸
n

, 0 . . . , 0) ∈ ΛB(n′, d)} if (a) holds;

{γ = (0, . . . , 0, ∗, . . . , ∗︸ ︷︷ ︸
r

, 1, ∗, . . . , ∗︸ ︷︷ ︸
r

, 0 . . . , 0) ∈ ΛB(n′, d)} if (b) holds,

where the ∗’s stand for arbitrary entries such that γ ∈ ΛB(n′, d).
By Lemma 2.5.1 we have

eφg
λµe =

{
φg
λµ if λ, µ ∈ ΛB(n′, d)|n;

0 otherwise.

It follows by construction that eSB

Q,q(n
′, d)e and SB

Q,q(n, d) are isomorphic as
algebras. �

4.3. Existence of spectral sequences

Let A be a finite-dimensional algebra over a field k and e be an idempotent in
A. Doty, Erdmann and Nakano [DEN04] established a relationship between the
cohomology theory in Mod(A) versus Mod(eAe). More specifically, they construct
a Grothendieck spectral sequence which starts from extensions of A-modules and
converges to extensions of eAe-modules.

There are two important functors involved in this construction. The first functor
is an exact functor from Mod(A) to Mod(eAe) denoted by F (that is a special
case of the classical Schur functor) defined by F(−) = e(−). The other functor
is a left exact functor from Mod(eAe) to Mod(A), denoted G defined by G(−) =
HomA(Ae,−). This functor is right adjoint to F .

In [DEN04], the aforementioned construction was used in the quantum setting to
relate the extensions for quantum GLn to those for Hecke algebras. For bn/2c ≥ d
there exists an idempotent e ∈ SB

Q,q(n, d) such that HB

Q,q(d)
∼= eSB

Q,q(n, d)e.
Therefore, we obtain a relationship between cohomology of the type B Schur
algebras with the Hecke algebras of type B.

1001



CHUN-JU LAI, DANIEL K. NAKANO, ZIQING XIANG

Theorem 4.3.1. Let bn/2c≥d with M ∈Mod(SB

Q,q(n, d)) and N ∈Mod(HB

Q,q(d)).
There exists a first quadrant spectral sequence

Ei,j
2 = ExtiSB

Q,q(n,d)
(M,RjG(N))⇒ Exti+j

HB

Q,q(d)
(eM,N),

where RjG(−) = Extj
HB

Q,q(d)
(V ⊗d,−).

We can also compare cohomology between SB

Q,q(n, d) and SB

Q,q(n
′, d) where

n′ ≥ n since there exists an idempotent e ∈ SB

Q,q(n
′, d) such that SB

Q,q(n, d)
∼=

eSB

Q,q(n
′, d)e thanks to Proposition 4.2.1.

Theorem 4.3.2. Let M ∈ Mod(SB

Q,q(n
′, d)) and N ∈ Mod(SB

Q,q(n, d)). Assume
that either

(a) n′ ≥ n and n′ ≡ n mod 2;
(b) n′ = 2r′ + 1 ≥ n = 2r.

Then there exists a first quadrant spectral sequence

Ei,j
2 = ExtiSB

Q,q(n
′,d)(M,RjG(N))⇒ Exti+j

SB

Q,q(n,d)
(eM,N).

where RjG(−) = Extj
SB

Q,q(n,d)
(eSB

Q,q(n
′, d),−).

5. Cellularity

5.1. Definition

We start from recalling the definition of a cellular algebra following [GL96]. A
K-algebra A is cellular if it is equipped with a cell datum (Λ,M,C, ∗) consisting
of a poset Λ, a map M sending each λ ∈ Λ to a finite set M(λ), a map C sending
each pair (s, t) ∈ M(λ)2 to an element Cλ

s,t ∈ A, and a K-linear involutory anti-
automorphism ∗ satisfying the following conditions:

(C1) The map C is injective with image being a K-basis of A (called a cellular
basis).

(C2) For any λ ∈ Λ and s, t ∈M(λ), (Cλ
s,t)

∗ = Cλ
t,s.

(C3) There exists ra(s
′, s) ∈ K for λ ∈ Λ, s, s′ ∈ M(λ) such that for all a ∈ A

and s, t ∈M(λ),

aCλ
s,t ≡

∑

s′∈M(λ)

ra(s
′, s)Cλ

s′,t mod A<λ.

Here A<λ is the K-submodule of A generated by the set {Cµ
s′′,t′′ | µ <

λ; s′′, t′′ ∈M(µ)}.

For a cellular algebra A, we define for each λ ∈ Λ a cell module W (λ) spanned by
Cλ

s
, s ∈M(λ), with multiplication given by

aCs =
∑

s′∈M(λ)

ra(s
′, s)C ′

s
. (31)
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For each λ ∈ Λ we let φλ : W (λ)×W (λ)→ K be a bilinear form satisfying

Cλ
s,sC

λ
t,t ≡ φλ(Cs, Ct)C

λ
s,t mod A<λ. (32)

It is known that the type A q-Schur algebras are always cellular, and there
could be distinct cellular structures. See [AST18] for a parallel approach on the
cellularity of centralizer algebras for quantum groups.

Example 5.1.1 (Mathas). Let Λ = ΛA(d) be the set of all partitions of d, and
let Λ′ = Λ′(d) be the set of all compositions of d. For each composition λ ∈ Λ′, let
Σλ be the corresponding Young subgroup of Σd. We set

xλ =
∑

w∈Σλ

Tw ∈ Hq(Σd).

It is known the q-Schur algebra admits the following combinatorial realization:

SA

q (n, d) = EndHq(Σd)(⊕λ∈Λ′xλHq(Σd))

=
⊕

λ,µ∈Λ′

HomHq(Σd)(xµHq(Σd), xλHq(Σd)).

The finite set M(λ) is given by M(λ) =
⊔

µ∈Λ′ SSTD(λ, µ), where

SSTD(λ, µ) = {semi-standard λ-tableaux of shape µ}. (33)

For µ ` d, denote the set of shortest right coset representatives for Σµ in Σd by

Dµ = {w ∈ Σd | `(gw) = `(w) + `(g) for all g ∈ Σµ}.

Let tλ be the canonical λ-tableau of shape λ, then for all λ-tableau t there is
a unique element d(t) ∈ Dλ such that td(t) = t. The cellular basis element, for
λ ∈ Λ, s ∈ sstd(λ, µ), t ∈ sstd(λ, ν), is given by

Cλ
s,t(xαh) = δα,µ

∑

s,t

Td(s)−1xλTd(t)h, (34)

where the sum is over all pairs (s, t) such that µ(s) = s, ν(t) = t.

Example 5.1.2 (Doty–Giaquinto). The poset Λ is the same as the one in Ex-
ample 5.1.1, and we have Λ = ΣdΛ

+. It is known that the algebra SA

q (n, d) admits
a presentation with generators Ei, Fi(1 ≤ i ≤ n− 1) and 1λ(λ ∈ Λ). The map ∗ is
the anti-automorphism satisfying

E∗
i = Fi, F ∗

i = Ei, 1∗λ = 1λ.

For each λ ∈ Λ we set Λ+
λ = {µ ∈ Λ+ | µ ≤ λ}. Note that Λ+

λ is saturated and
it defines a subalgebra Sq(Λ

+
λ ) of SA

q (n, d) with a basis {xs | 1 ≤ s ≤ dλ} for

some dλ ∈ N. Let xs ∈ SA

q (n, d)
− be the preimage of xs under the projection

SA

q (n, d)→ Sq(Λ
+
λ ) that is the identity map except that it kills all 1µ where µ 6≤ λ.

The finite set M(λ) is given by

M(λ) = {1, 2, . . . , dλ}. (35)

Finally, for λ ∈ Λ, s, t ∈M(λ), we set

Cλ
s,t = xs1λx

∗
t
. (36)
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5.2. Cellular structures on SB

Q,q(n, d)

We show that the isomorphism theorem produces a cellular structure for SB

Q,q(n, d)
using any cellular structure on the q-Schur algebras of type A. For any n, d, we fix
a cell datum (Λn,d,Mn,d, Cn,d, ∗) for S

A

q (n, d). Define

ΛB = ΛB(n, d) =

d⊔

i=0

Λdn/2e,i × Λbn/2c,d−i, (37)

as a poset with the lexicographical order. For λ = (λ(1), λ(2)) ∈ ΛB, we define MB

by

MB(λ) =
d⊔

i=0

Mdn/2e,i(λ
(1))×Mbn/2c,d−i(λ

(2)).

The map CB is given by, for s = (s(1), s(2)), t = (t(1), t(2)) ∈ Mdn/2e,i(λ
(1)) ×

Mbn/2c,d−i(λ
(2)) ⊂MB(λ),

(CB)λ
s,t = (Cdn/2e,i)

λ(1)

s(1),t(1) ⊗ (Cbn/2c,d−i)
λ(2)

s(2),t(2) .

Finally, the map ∗ is given by

∗ : (Cdn/2e,i)
λ(1)

s(1),t(1) ⊗ (Cbn/2c,d−i)
λ(2)

s(2),t(2)

7→ (Cdn/2e,i)
λ(1)

t(1),s(1) ⊗ (Cbn/2c,d−i)
λ(2)

t(2),s(2) .
(38)

Corollary 5.2.1. If the invertibility condition in Theorem 3.1.1 holds, then the
algebra SB

Q,q(n, d) is a cellular algebra with cell datum (ΛB,MB, CB, ∗).

Proof. Condition (C1) follows from the isomorphism theorem; while Condition
(C2) follows directly from (38). Condition (C3) follows from the type A cellular
structure as follows: for a1 ∈ SA

q (dn/2e, i) and a2 ∈ SA

q (bn/2c, d− i),

a1(Cdn/2e,i)
λ(1)

s(1),t(1) ≡
∑

u(1)∈Mdn/2e,i(λ
(1))

r(1)a1
(u(1), s(1))(Cdn/2e,i)

λ(1)

u(1),t(1) mod A1,

a2(Cbn/2c,d−i)
λ(2)

s(2),t(2) ≡
∑

u(2)∈Mr,d−i(λ(2))

r(2)a2
(u(2), s(2))(Cbn/2c,d−i)

λ(2)

u(2),t(2) mod A2,

where

A1 = SA

q (dn/2e, i)(< λ(1)),

A2 = SA

q (bn/2c, d− i)(< λ(2)).

That is, for a = a1 ⊗ a2 ∈ SA

q (dn/2e, i)⊗ SA

q (bn/2c, d− i) ⊂ SB

q (n, d), we have

a(CB)λ
s,t ≡

∑

u=(u(1),u(2))

∈Mdn/2e,i(λ
(1))×Mbn/2c,d−i

(λ(2))

rBa (u, s)(C
B)λ

u,t mod SB

q (n, d)(< λ),

where rBa (u, s) = r
(1)
a1 (u

(1), s(1))r
(2)
a2 (u

(2), s(2)) is independent of t. �
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6. Quasi-hereditary structure

6.1. Definition

Following [CPS88], a K-algebra A is called quasi-hereditary if there is a chain of
two-sided ideals of A:

0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In = A

such that each quotient Jj = Ij/Ij−1 is a hereditary ideal of A/Ij−1. It is known
[GL96] that if A is cellular and φλ 6= 0 (cf. (32)) for all λ ∈ Λ then A is quasi-
hereditary.

An immediate corollary of our isomorphism theorem is that SB

Q,q(n, d) is quasi-
hereditary under the invertibility condition. We conjecture that this is a sufficient
and necessary condition and provide some evidence for small n.

Corollary 6.1.1. If the invertibility condition in Theorem 3.1.1 holds, then the
algebra SB

q (n, d) is quasi-hereditary.

Proof. Let φA

ν with ν ∈ Λr,j be such a map for SA

q (r, j). Fix λ = (λ(1), λ(2)) ∈

Λdn/2e,i × Λbn/2c,d−i ⊂ ΛB, and fix

s = (s(1), s(2)), t = (t(1), t(2)) ∈Mdn/2e,i(λ
(1))×Mbn/2c,d−i(λ

(2)) ⊂MB(λ),

we have

Cλ
s,sC

λ
t,t =(Cdn/2e,i)

λ(1)

s(1),s(1)(Cdn/2e,i)
λ(1)

t(1),t(1)⊗(Cbn/2c,d−i)
λ(2)

s(2),s(2)(Cbn/2c,d−i)
λ(2)

t(2),t(2)

≡φA

λ(1)(C
(1)
s , C

(1)
t

)φA

λ(2)(C
(2)
s , C

(2)
t

)Cλ
s,t mod SB

q (n, d)(< λ). �

Recall that in Proposition 2.6.1 we see that SB

Q,q(2, 1) ' HQ−1(Σ2). In the
following we show that the known cellular structure (due to Geck/Dipper–James)
fails when fB = Q−2 + 1 is not invertible.

Example 6.1.2. Let SB

Q,q(2, 1) ' HQ−1(Σ2) = K[t]/〈t2 − (Q−1 − Q)t + 1〉. We
have

Λ =
{
λ = � µ =

}
, M(λ) = {t = 1 2 },M(µ) =

{
s = 1

2

}
.

The cellular basis elements are

Cλ
tt
=
∑

w∈Σ2

Q−`(w)Tw = 1 +Q−1t, Cµ
ss

=
∑

w∈Σ1×Σ1

Q−`(w)Tw = 1.

Firstly, we have Cµ
ssC

µ
ss=1=Cµ

ss and hence φµ is determined by φµ(Cs, Cs)=1,
which is nonzero. For λ, we have

Cλ
tt
Cλ

tt
= 1−Q−2 + (Q−2 + 1)Q−1t ≡ (Q−2 + 1)Cλ

tt
mod A<λ.

That is, φλ is determined by φµ(Ct, Ct) = (Q−2 + 1), which can be zero when
fB = Q−2 +1 = 0. Therefore, SB

Q,q(2, 1) is not quasi-hereditary in an explicit way.

One can also see that SB

Q,q(2, 1) is not quasi-hereditary because if it were then
it would have finite global dimension. However, HQ−1(Σ2) is a Frobenius algebra
with infinite global dimension.

Conjecture 6.1.3. The algebra SB

Q,q(n, d) is quasi-hereditary if and only if the

polynomial fB

d (Q, q) is invertible.
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7. Representation type

7.1.

Let A be a finite-dimensional algebra over a field K. A fundamental question
one can ask about A is how to describe its representation type. The algebra A is
semisimple if and only if every finite-dimensional module (i.e., M ∈ mod(A)) is a
direct sum of simple modules. This means that indecomposable modules for A are
simple. If A admits finitely many finite-dimensional indecomposable modules, A
is said to be of finite representation type. If A does not have finite representation
type A is of infinite representation type.

A deep theorem of Drozd states that finite-dimensional algebras of infinite
representation type can be split into two mutually exclusive categories: tame or
wild. An algebra A has tame representation type if for each dimension there exists
finitely many one-parameter families of indecomposable objects in mod(A). The
indecomposable modules for algebras of tame representation type are classifiable.
On the other hand, the algebras of wild representation type are those whose repre-
sentation theory is as difficult to study as the representation theory of the free
associative algebra k〈x, y〉 on two variables. How to classify the finite-dimensional
k〈x, y〉-modules is very much an open question.

7.2. Summary: type A results

The following results from [EN01, Thm. 1.3(A)–(C)] summarize the representation
type for the q̄-Schur algebra for type A over K. Assume that p = char(K), q̄ ∈ K×

has multiplicative order l and q̄ 6= 1.

Theorem 7.2.1. The algebra SA

q̄ (n, r) is semisimple if and only if one of the
following holds:

(i) n = 1;
(ii) q̄ is not a root of unity;
(iii) q̄ is a primitive lth root of unity and r < l;
(iv) n = 2, p = 0, l = 2 and r is odd;
(v) n = 2, p ≥ 3, l = 2 and r is odd with r < 2p+ 1.

Theorem 7.2.2. The algebra SA

q̄ (n, r) has finite representation type but is not
semi-simple if and only if q̄ is a primitive lth root of unity with l ≤ r, and one of
the following holds:

(i) n ≥ 3 and r < 2l;
(ii) n = 2, p 6= 0, l ≥ 3 and r < lp;
(iii) n = 2, p = 0 and either l ≥ 3, or l = 2 and r is even;
(iv) n = 2, p ≥ 3, l = 2 and r even with r < 2p, or r is odd with 2p+ 1 ≤ r <

2p2 + 1.

Theorem 7.2.3. The algebra SA

q̄ (n, r) has tame representation type if and only if
q̄ is a primitive lth root of unity and one of the following holds:

(i) n = 3, l = 3, p 6= 2 and r = 7, 8;
(ii) n = 3, l = 2 and r = 4, 5;
(iii) n = 4, l = 2 and r = 5;
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(iv) n = 2, l ≥ 3, p = 2 or p = 3 and pl ≤ r < (p+ 1)l;
(v) n = 2, l = 2, p = 3 and r ∈ {6, 19, 21, 23}.

7.3.

In this section we summarize some of the fundamental results that are used to
classify the representation type of Schur algebras. The first proposition can be
verified by using the existence of the determinant representation for SA

q̄ (n, r1) (cf.
[EN01, Prop. 2.4B]).

Proposition 7.3.1. If SA

q̄ (n, r1)⊗S
A

q̄ (n, r2) have wild representation type then the

tensor product SA

q̄ (n, r1 + n)⊗ SA

q̄ (n, r2) has wild representation type.

Next we can present a sufficient criteria to show that the tensor product of type
A Schur algebras has wild representation type.

Proposition 7.3.2. Suppose that the Schur algebras SA

q̄ (n, r1) and SA

q̄ (n, r2) are

non-semisimple algebras. Then SA

q̄ (n, r1)⊗ SA

q̄ (n, r2) has wild representation type.

Proof. First note that SA

q̄ (n, r) is a quasi hereditary algebra and if SA

q̄ (n, r) is not
semisimple then it must have a block with at least two simple modules.

Suppose that S1, S2, S3 are three simple modules in SA

q̄ (n, r1) with

Ext1SA
q̄ (n,r1)

(S1, S2) 6= 0, Ext1SA
q̄ (n,r1)

(S2, S3) 6= 0.

Note that via the existence of the transposed duality,

Ext1SA
q̄ (n,r1)

(Si, Sj) ∼= Ext1SA
q̄ (n,r1)

(Sj , Si)

for i, j = 1, 2, 3. Similarly, let T1, T2 be two simple modules for SA

q̄ (n, r2) with

Ext1SA
q̄ (n,r2)

(T1, T2) 6= 0. Then the Ext1-quiver for SA

q̄ (n, r1) ⊗ SA

q̄ (n, r2) will have

a subquiver of the form as in Figure 1 below. This quiver cannot be separated
into a union of Dynkin diagrams or extended Dynkin diagrams. Consequently,
SA

q̄ (n, r1)⊗ SA

q̄ (n, r2) must has wild representation type.

• • •

• • •

-� -�

-� -�

6

?

6

?

6

?

Figure 1.

The other case to consider is when the blocks of SA

q̄ (n, r1) and SA

q̄ (n, r2) have

at most two simple modules. Let Bj be a block of SA

q̄ (n, rj) for j = 1, 2 with two
simple modules. There are four simple modules in B1 ⊗ B2 and the structure of
the projective modules is the same as of a regular block for category O for the Lie
algebra of type A1 × A1 (cf. [FNP01, 4.2]). The argument in [FNP01, Lem. 4.2]
can be used to show that B1 ⊗ B2 has wild representation type. �
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7.4.

The results in [EN01, Thm. 1.3(A)–(C)] entail using a different parameter q̄ than
the parameter q in our paper. The relationship is given by q̄ = q−2 or equivalently
q2 = (q̄)−1 with SA

q (n, d)
∼= SA

q̄ (n, d). This means that

• q is generic if and only if q̄ is generic,
• q2 is a primitive lth root of unity if and only if q̄ is a primitive lth root of

unity;
• if q is a primitive (2s)th root of unity if and only if q̄ is a primitive sth root

of unity;
• if q is a primitive (2s + 1)th root of unity if and only if q̄ is a primitive
(2s+ 1)th root of unity.

Now let n′ ≥ n. By Proposition 4.2.1, under suitable conditions on n′ and n,
there exists an idempotent e ∈ SB

Q,q(n
′, d) such that SB

Q,q(n, d)
∼= eSB

Q,q(n
′, d)e. By

using the proof in [EN01, Prop. 2.4B], one has the following result.

Proposition 7.4.1. Let n′ ≥ n with n′ ≥ n and n′ ≡ n mod 2.

(a) If SB

Q,q(n, d) is not semisimple then SB

Q,q(n
′, d) is not semisimple.

(b) If SB

Q,q(n, d) has wild representation type then SB

Q,q(n
′, d) has wild represen-

tation type.

7.5. Type B results

Throughout this section, let SB

Q,q(n, d) be the q-Schur algebra of Type B under

the condition that the polynomial fB

d (Q, q) 6= 0. Moreover, assume that q2 6= 1
(i.e., q 6= 1 or a primitive 2nd root of unity). One can apply the isomorphism in
Theorem 3.1.1 to determine the representation type for SB

Q,q(n, d) from the Type
A results stated in Section 7.2.

Theorem 7.5.1. The algebra SB

Q,q(n, d) is semisimple if and only if one of the
following holds:

(i) n = 1;
(ii) q is not a root of unity;
(iii) q2 is a primitive lth root of unity and d < l;
(iv) n = 2 and d arbitrary.

Proof. The semisimplicity of (i)–(iii) follow by using Theorem 3.1.1 with Theo-
rem 7.2.1. The semisimplicity of (iv) follows by Theorem 3.1.1 and the fact that
SA

q (1, d) is always semisimple.
Now assume that q2 is a primitive lth root of unity, d ≥ l, n ≥ 3 and l ≥ 3.

Consider the case when n = 3. From Theorem 3.1.1,

SB

Q,q(3, d)
∼=

d⊕

i=0

SA

q (2, i)⊗ SA

q (1, d− i). (39)

If d ≥ l then SA

q (2, l) appears as a summand of SB

Q,q(3, d) (when i = d−l). For l ≥ 3,

SA

q (2, l) ' SA
q̄ (2, l) is not semisimple. It follows that SB

Q,q(3, d) is not semisimple
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for d ≥ l. One can repeat the same argument for n = 4 to show that SB

Q,q(4, d) is

not semisimple for d ≥ l. Now apply Proposition 7.4.1(a) to deduce that SB

Q,q(n, d)
is not semisimple for n ≥ 3 and d ≥ l. �

Theorem 7.5.2. The algebra SB

Q,q(n, d) has finite representation type but is not

semisimple if and only if q2 is a primitive lth root of unity with l ≤ d, and one of
the following holds:

(i) n ≥ 5, l ≤ d < 2l;
(ii) n = 3, p = 0 and l ≤ d;
(iii) n = 3, p ≥ 2 and l ≤ d < lp;
(iv) n = 4, p = 0, l = 2 and d ≥ 4 with d odd;
(v) n = 4, p ≥ 3, l = 2 and 4 < d ≤ 2p− 1 with d odd.

The algebra SB

Q,q(n, d) has tame representation type if and only if

(vi) n = 3, l = 2, p = 3 and d = 6;
(vii) n = 3, l ≥ 3, p = 2 or 3 and lp ≤ d < l(p+ 1);
(viii) n = 4, l = 2, p = 3 and d = 7.

Proof. We first reduce our analysis to the situation where n = 3 and 4. Assume that
n ≥ 5 so dn/2e ≥ 3 and bn/2c ≥ 2. By Theorem 7.2.1, the algebras SA

q (2, l) and

SA

q (i, l+j) are not semisimple for i ≥ 3, j ≥ 0, and hence neither are SA

q (dn/2e, l+j)

and SA

q (bn/2c, l) for n ≥ 5, j ≥ 0. Therefore, SA

q (dn/2e, l + j) ⊗ SA

q (bn/2c, l) has

wild representation type by Proposition 7.3.2. It follows that SB

Q,q(n, d) has wild
representation type for d ≥ 2l, n ≥ 5. When l ≤ d < 2l and n ≥ 5, one can
use Theorem 3.1.1 in conjunction with Theorem 7.2.2 to prove that SB

Q,q(n, d) has
finite representation type.

Now consider the case when n = 3. The isomorphism (39) indicates that
we can reduce our analysis to considering SA

q (2, r). From this isomorphism and

Theorem 7.2.2, one can verify (i) when char K = 0 then SB

Q,q(3, d) has finite
representation type (but is not semisimple) for l ≤ d; (ii) when char K = p > 0
then SB

Q,q(3, d) has finite representation type (but is not semisimple) for l ≤ d < lp;

and (iii) when char K = p > 0, SB

Q,q(3, d) has infinite representation type for
d ≥ lp.

For n = 3, one can also see that under conditions (vi) and (vii), SB

Q,q(3, d)

has tame representation type. Moreover, one can verify that SB

Q,q(3, d) has wild
representation type in the various complementary cases.

Finally let n = 4. From Proposition 7.3.2, SA

q (2, l) ⊗ SA

q (2, l) and SA

q (2, l) ⊗

SA

q (2, l + 1) has wild representation type for l ≥ 3. Therefore, SB

Q,q(4, d) has wild
representation type for d ≥ 2l and l ≥ 3. For l = 2, the same argument can be
used to show that SB

Q,q(4, d) has wild representation type for d-even and d ≥ 4.

This reduces us to analyzing SB

Q,q(4, d) when l = 2 and d ≥ 4 is odd. By

analyzing the components of SB

Q,q(4, d) via the isomorphism in Theorem 3.1.1,

one can show that for d odd: (i) SB

Q,q(4, d) has finite representation type (not

semisimple) for 4 ≤ d ≤ 2p− 1 and p ≥ 3, (ii) SB

Q,q(4, d) has finite representation

type (not semisimple) for d ≥ 4 and p = 0, (iii) SB

Q,q(4, d) has wild representation
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type for d ≥ 2p + 1 for p ≥ 5, and (iv) SB

Q,q(4, d) has wild representation type

for d ≥ 2p + 3 for p = 3. One has then to show that SB

Q,q(4, 7) for p = 3, l = 2

has tame representation type since the component SA

q (2, 6) ⊗ SA

q (2, 1) has tame
representation type, and the remaining components have finite representation type.
�

Note that for the case q̄ = 1 (i.e., q2 = 1) one obtains the classical Schur
algebra for type A, and can use the results in [Er93] [DN98] [DEMN99] to obtain
classification results in this case for SB

Q,q(n, d).

8. Quasi-hereditary covers

In this section we first recall results on 1-faithful quasi-hereditary covers due
to Rouquier [Ro08]. Then we demonstrate that our Schur algebra is a 1-faithful
quasi-hereditary cover of the type B Hecke algebra via Theorem 3.1.1. Hence, its
module category identifies the category O for the rational Cherednik algebra of
type B, see Theorem 8.3.3. A comparison of our Schur algebra with Rouquier’s
Schur-type algebra is also provided.

8.1. 1-faithful covers

Let C be a category equivalent to the module category of a finite dimensional
projective K-algebra A, and let ∆ = {∆(λ)}λ∈Λ be a set of objects of C indexed
by an interval-finite poset structure Λ. Following [Ro08], we say that C (or (C,∆))
is a highest weight category if the following conditions are satisfied:

(H1) EndC(∆(λ)) = K for all λ ∈ Λ;

(H2) If HomC(∆(λ),∆(µ)) 6= 0 then λ ≤ µ;

(H3) If HomC(∆(λ),M) = 0 for all λ ∈ Λ then M = 0;

(H4) For each ∆(λ) ∈ ∆ there is a projective module P (λ) ∈ C such that
ker(P (λ)→ ∆(λ)) has a ∆-filtration, i.e., finite filtrations whose quotients
are isomorphic to objects in ∆.

Let A-mod be the category of finitely generated A-modules. The algebra A is
called a quasi-hereditary cover of B if the conditions below hold:

(C1) A-mod admits a highest weight category structure (A-mod,∆).

(C2) B = EndA(P ) for some projective P ∈ A-mod.

(C3) The restriction of F = HomA(P,−) to the category of finitely generated
projective A-modules is fully faithful.

Quasi-hereditary covers are sometimes called highest weight covers since the
notion of highest weight category corresponds to that of split quasi-hereditary
algebras [Ro08, Thm. 4.16]. We also say that (A,F ) is a quasi-hereditary cover
of B. Moreover, a category C (or the pair (C, F )) is said to be a quasi-hereditary
cover of B if C ' A-mod for some quasi-hereditary cover (A,F ) of B.

Following [Ro08], a quasi-hereditary cover A of B is i-faithful if
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ExtjA(M,N) ' ExtjB(FM,FN) for j ≤ i, (40)

and for allM,N ∈ A-mod admitting ∆-filtrations. Furthermore, a quasi-hereditary
cover (C, F ) of B is said to be i-faithful if the diagram below commutes for some
quasi-hereditary cover (A,F ′) of B:

C A-mod

B-mod

F

'

F ′
.

Rouquier proved in [Ro08, Thm. 4.49] a uniqueness theorem for the 1-faithful
quasi-hereditary covers which we paraphrase below:

Proposition 8.1.1. Let B be a finite projective K-algebra that is split semisimple,
and let (Ci, Fi) for i = 1, 2 be 1-faithful quasi-hereditary covers of B with respect
to the partial order ≤i on Irr(B). If ≤1 is a refinement of ≤2 then there is an
equivalence C1 ' C2 of quasi-hereditary covers of B inducing the bijection Irr(C1) '
Irr(B) ' Irr(C2).

8.2. Rational Cherednik algebras

Let (W,S) be a finite Coxeter group, and let AW be the corresponding rational
Cherednik algebra over C[hu;u ∈ U ] as in [Ro08], where U =

⊔
s∈S{s}×{1, . . . , es}

and es is the size of the pointwise stabilizer in W of the hyperplane corresponding
to s. If W = WB(d) and S = {s0, s1} then U = {(si, j) | 0 ≤ i, j ≤ 1}. In this case
we assume that

h(s1,0) = h, h(s1,1) = 0, h(s0,i) = hi for i = 0, 1. (41)

Remark 8.2.1. In [EG02] the rational Cherednik algebra Ht,c is defined for a
parameter t ∈ C, and a W -equivariant map c : S → C. The two algebras, AW

and Ht,c, coincide if t = 1, h(s,0) = 0 and h(s,1) = c(s) for all s ∈ S.

Following [Ro08, §5.1.2, §5.2], let m be a maximal ideal of C[hu;u ∈ U ] and K ′

be the completion at m, and let O′
W be the deformed category of finitely generated

AW -modules that are locally nilpotent for S(V ). Let OW = K⊗K′O′
W . It is proved

in [GGOR03] that (OW ,∆W ) is a highest weight category of H(W )-mod

∆W = {∆(E) := AW ⊗S(V )oW E | E ∈ Irr(W )}.

See [Ro08, 3.2.1–3] for the partial order ≤ on Irr(W ). Let Λ+
2 (d) be the poset of

all bipartitions of d on which the dominance order � is given by λ � µ if, for all
s ≥ 0,

s∑

j=1

|λ
(1)
j | ≤

s∑

j=1

|µ
(1)
j |, |λ(1)|+

s∑

j=1

|λ
(r)
j | ≤ |µ

(1)|+

s∑

j=1

|µ
(r)
j |.
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For λ ∈ Λ+
2 (d), set

WB

λ (d) = Cd
2 o (Σλ(1) × Σλ(2)).

Set

Iλ(1) = {1, . . . , |λ
(1)|}, Iλ(2) = {|λ

(1)|+ 1, . . . , d}.

Following [Ro08, 6.1.1], there is a bijection

Λ+
2 (d)→ Irr(WB(d)), λ = (λ(1), λ(2)) 7→ χλ = Ind

W B(d)

W B

λ
(d)

(χλ(1) ⊗ φ(2)χλ(2)),

where χλ is the irreducible character of WB(d) corresponding to λ, and φ(2) is the

1-dimensional character of C
Iλ(2)
2 o ΣIλ(2) whose restriction to C

Iλ(2)
2 is det and

the restriction to ΣIλ(2) is trivial.
Rouquier showed that the order ≤ is a refinement of the dominance order �

under an assumption on the parameters h, hi’s for the rational Cherednik algebra
as follows:

Lemma 8.2.2 ([Ro08, Prop. 6.4]). Assume that W = WB(d), h ≤ 0 and h1 −
h0 ≥ (1− d)h (see (41)). Let λ, µ ∈ Λ+

2 (d). If λ� µ, then χλ ≤ χµ on Irr(W ).

Remark 8.2.3. The assumption in Lemma 8.2.2 on the parameters is equivalent to
c(s0) = h1 ≥ 0 using Etingof-Ginzburg’s convention.

Let KZW and KZ ′
W be the KZ functor on OW and O′

W , respectively. We
paraphrase [Ro08, Thm. 5.3] in our setting as below:

Proposition 8.2.4. If W = WB(d) and H(W ) = HB

Q,q(d), then (OW ,KZW )
is a quasi-hereditary cover of H(W )-mod. Moreover, (O′

W ,KZ ′
W ) is a 1-faithful

quasi-hereditary cover if (q2 + 1)(Q2 + 1) 6= 0.

It is shown in [Ro08] that under suitable assumptions, OW B(d) is equivalent to

the module category of a Schur-type algebra SR(d) which does not depend on n
using the uniqueness property Proposition 8.1.1. Below we give an interpretation
in our setting.

Let Λ2(d) be the set of all bicompositions of d. In [DJM98b] a cyclotomic Schur
algebra over Q(q,Q,Q1, Q2) for each saturated subset Λ ⊂ Λ2(d), which specializes
to cyclotomic Schur algebras SQ(Λ) over K is defined (see Section 9.2). Moreover,
in [Ro08] an algebra SQ(Λ) is defined that is Morita equivalent to SQ(Λ) as given
below:

SR(d) := EndHB

Q,q(d)
(Pd), Pd :=

⊕

λ∈Λ+
2 (d)

mλH
B

Q,q(d),

where mλ is defined in (46). Note that SR(d) does not depend on n. Set

FR
d = HomSR(d)(Pd,−) : S

R(d)-mod→ HB

Q,q(d)-mod.
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Proposition 8.2.5 ([Ro08, Thm. 6.6]).

(a) The category Mod(SR(d)) is a highest weight category for the dominance
order.

(b) (SR(d), FR
d ) is a quasi-hereditary cover of HB

Q,q(d).

(c) The cover (SR(d), FR
d ) is 1-faithful if

(q2 + 1)(Q2 + 1) 6= 0, and fB

Q,q(d) ·

d∏

i=1

(1 + q2 + · · ·+ q2(i−1)) 6= 0. (42)

The category O for the type B rational Cherednik algebra together with its KZ
functor can then be identified by combining Propositions 8.1.1, 8.2.4 and 8.2.5. In
other words, the following diagram commutes if (42) holds:

OW B(d) SR(d)-mod

HB

Q,q(d)-mod

KZ
WB(d)

'

FR
d

.

8.3. 1-faithfulness of SB

Q,q(n, d)-mod

Let ` be the multiplicative order of q2 in K×. In this section we use the following
assumptions:

fB

d (Q, q) =
d−1∏

i=1−d

(Q−2 + q2i) ∈ K×, r := bn/2c ≥ d, ` ≥ 4. (43)

As a consequence, there exists a type B Schur functor by Proposition 4.1.1.
For type A, it is known in [HN04] that the q-Schur algebra is a 1-faithful quasi-
hereditary cover of the type A Hecke algebra if ` ≥ 4. Moreover, Theorem 3.1.1
applies and hence we will see shortly that SB

Q,q(n, d) is a 1-faithful quasi-hereditary

cover of HB

Q,q(d). Furthermore, Proposition 8.1.1 implies that we have a concrete
realization for the category O for the type B rational Cherednik algebra together
with its KZ functor using our Schur algebra.

Corollary 8.3.1. If fB

d ∈ K×, then SB

Q,q(n, d)-mod is a highest weight category.

Proof. It follows immediately from the isomorphism with the direct sum of type
A q-Schur algebras that SB

Q,q(n, d)-mod is a highest weight category. �

Below we characterize a partial order for highest weight category SB

Q,q(n, d)-
mod obtained via Corollary 8.3.1 and the dominance order for type A. Denote the
set of all N -step partitions of D by ΛA(N,D). Set

∆A

N,D = {∆A(λ) | λ ∈ ΛA(N,D)}.

Now ∆A

N,D is a poset with respect to the dominance order � on ΛA(N,D). It is

well known that for all non-negative integers N and D, (SA

q (N,D)-mod,∆A

N,D) is
a highest weight category.

1013



CHUN-JU LAI, DANIEL K. NAKANO, ZIQING XIANG

Recall FS from (29) and ΛB(n, d) from (37). Set

∆B

n,d = {∆B(λ) := F−1(∆A(λ(1))⊗∆A(λ(2))) | λ = (λ(1), λ(2)) ∈ ΛB(n, d)}. (44)

Now ∆B

n,d is a poset with respect to the dominance order (also denoted by �)

on ΛB(n, d) ⊂ Λ+
2 (d). Hence, (SB

q (n, d)-mod,�) is a highest weight category.

Lemma 8.3.2. Assume that SB

Q,q(n, d) is a quasi-hereditary cover of HB

Q,q(d). If
(43) holds, then the cover is 1-faithful.

Proof. Write A= SB

Q,q(n, d), B =HB

Q,q(d), S
′ = SA

q (dn/2e, i), S
′′ = SA

q (bn/2c, d − i)

for short. We need to show that, for all M,N admitting ∆B-filtrations,

ExtiA(M,N) ' ExtieAe(F
[
n,dM,F [

n,dN), i ≤ 1.

Recall FS from (29). Write FSM =
⊕

i M
′
i ⊗M ′′

i and FSN =
⊕

i N
′
i ⊗N ′′

i for
some M ′

i , N
′
i ∈ Mod(S′) and M ′′

i , N
′′
i ∈ Mod(S′′). From construction we see that

all M ′
i ,M

′′
i , N

′
i , N

′′
i admit ∆A-filtrations since M,N have ∆B-filtrations.

For bn/2c ≥ d ≥ i ≥ 0, we abbreviate the type A Schur functors (see (25)) by
F ′ = FA

dn/2e,i, F
′′ = FA

bn/2c,d−i
. Since the type A q-Schur algebras are 1-faithful

provided ` ≥ 4, for j ≤ 1 we have

ExtjS′(M
′
i , N

′
i) ' ExtjHq(Σi+1)

(F ′M ′
i , F

′N ′
i),

ExtjS′′(M
′′
i , N

′′
i ) ' ExtjHq(Σd−i+1)

(F ′′M ′′
i , F

′′N ′′
i ).

We show first it is 0-faithful. We have

HomA(M,N) ' Hom⊕
d
i=0 S′⊗S′′

(
FSM,FSN

)

'

d⊕

i=0

HomS′(M ′
i , N

′
i)⊗HomS′′(M ′′

i , N
′′
i )

'
d⊕

i=0

HomHq(Σi+1)(F
′M ′

i , F
′N ′

i)⊗HomHq(Σd−i+1)(F
′′M ′′

i , F
′′N ′′

i )

'

d⊕

i=0

HomHq(Σi+1)⊗Hq(Σd−i+1)

(
F ′M ′

i ⊗ F ′M ′′
i , F

′′N ′
i ⊗ F ′′N ′′

i

)

'
d⊕

i=0

HomHq(Σi+1)⊗Hq(Σd−i+1)(FHF [
n,dM,FHF [

n,dN)

' HomB(F
[
n,dM,F [

n,dN).

Note that the second last isomorphism follows from Proposition 4.1.2.
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For 1-faithfulness, we have

Ext1A(M,N)

'

d⊕

i=0

(
(Ext1S′(M ′

i , N
′
i)⊗HomS′′(M ′′

i , N
′′
i ))

⊕ (HomS′(M ′
i , N

′
i)⊗ Ext1S′′(M ′′

i , N
′′
i ))
)

'
d⊕

i=0

(
(Ext1Hq(Σi+1)(F

′M ′
i , F

′N ′
i)⊗HomHq(Σd−i+1)(F

′′M ′′
i , F

′′N ′′
i ))

⊕ (HomHq(Σi+1)(F
′M ′

i , F
′N ′

i)⊗ Ext1Hq(Σd−i+1)
(F ′′M ′′

i , F
′′N ′′

i ))
)

'

d⊕

i=0

Ext1Hq(Σi+1)⊗Hq(Σd−i+1)
(FHF [

n,dM,FHF [
n,dN)

' Ext1B(F
[
n,dM,F [

n,dN). �

Theorem 8.3.3. Assume that W = WB(d), h ≤ 0, h1 − h0 ≥ (1 − d)h (see
(41)) and (q2 + 1)(Q2 + 1) ∈ K×. If (43) holds, then there is an equivalence
OW ' SB

Q,q(n, d)-mod of quasi-hereditary covers. In other words, the following
diagram commutes:

OW SB

Q,q(n, d)-mod

HB

Q,q(d)-mod

KZW

'

F [
n,d

.

Proof. The theorem follows by combining Proposition 8.1.1, Proposition 8.2.4,
Lemma 8.2.2, and Lemma 8.3.2. �

Remark 8.3.4. The uniqueness theorem for 1-faithful quasi-hereditary covers also
applies on our Schur algebras and Rouquier’s Schur-type algebras. That is, the
following diagram commutes provided (42) and (43) hold:

SR(d)-mod SB

Q,q(n, d)-mod

HB

Q,q(d)-mod

FR
d

'

F [
n,d

.

9. Variants of q-Schur algebras of type B/C

It is interesting that the type A q-Schur algebra admits quite a few distinct
generalizations in type B/C in the literature. This is due to the fact that the type A
q-Schur algebra can be realized differently through the following realizations of the
tensor space (Kn)⊗d: (1) a combinatorial realization as a quantized permutation
module (cf. [DJ89]); (2) a geometric realization as the convolution algebra on GLn-
invariant pairs consisting of a n-step partial flag and a complete flag over finite
field (cf. [BLM90]).
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In the following sections we provide a list of q-Schur duality/algebras of type B/C
in literature, paraphrased so that they are all over K, and with only one parameter
q. These algebras are all of the form EndHB

q(d)
(V ⊗d) for some tensor space that

may have a realization V ⊗d '
⊕

λ∈I M
λ via induced modules. Considering the

specialization at q = 1, we have

Mλ
∣∣
q=1

= ind
W B(d)
Hλ

U, Hλ ≤WB(d) is a subgroup,

where U is usually (not always) the trivial module. We summarize the properties
of the q-Schur algebras in the following table:

coideal q-Schur Algebra cyclotomic Schur algebra Sakamoto–Shoji algebra
SB

q (n, d) Sq(Λ) SB

q (a, b, d)

index set I compositions bicompositions unclear
λ = (λi)i∈I(n) λ = (λ(1), λ(2))

with constraints on λi

subgroup Hλ WB(λ0)× Σ(λ1,...λr) (C
|λ(1)|
2 × C

|λ(2)|
2 )o Σλ unknown

module U trivial nontrivial
Schur duality (UB

q (n),H
B

q (d)) partial (Uq(gla × glb),H
B

q (d))
cellularity new [LNX] known [DJM98b] unknown

quasi-heredity new [LNX] known [DJM98b] unknown
Schur functor new [LNX] known [JM00] unknown
1-faithful cover new [LNX] known [We17] unknown

For completeness, we remark that there is studied in [DS00] a more involved
“type B” q-Schur algebra (referred as the q-Schur2 algebras), which admits a Morita
equivalence theorem (see [DR00]). We also distinguish the coideal q-Schur algebras
from the slim cyclotomic Schur algebras constructed in [DDY18].

9.1. The coideal Schur algebra SB

q (n, d)

This is the main object in this paper which we have been calling the q-Schur algebra
of type B. To distinguish it from the other variants we call them for now the coideal
Schur algebras since they are homomorphic images of coideal subalgebras.

For the equal-parameter case, a geometric Schur duality is established between
HB

q (d) and the coideal subalgebra UB

q (n) as below (cf. [BKLW18]):

UB

q (n)
↓

SB

q (n, d)y TB

geo(n, d) ' (Kn)⊗d ' TB

alg(n, d)xH
B

q (d)
.

Note that a construction using type C flags is also available, and it produces
isomorphic Schur algebras and hence coideals. A combinatorial realization TB

alg(n, d)
as a quantized permutation module is also available along the line of Dipper–James.

For the case with two parameters, the algebra SB

Q,q(n, d), when n is even, was
first introduced by Green and it is called the hyperoctahedral q-Schur algebra
[Gr97]. A two-parameter upgrade for the picture above is partially available – a
Schur duality is obtained in [BWW18] between the two-parameter Hecke algebra
HB

Q,q(d) and the two-parameter coideal UB

n over the tensor space Q(Q, q); a two-

parameter upgrade for TB

alg(n, d) is studied in [LL18] – while a two-parameter
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upgrade for TB

geo(n, d) remains unknown since dimension counting over finite fields
does not generalize to two parameters naively.

To our knowledge, this is the only q-Schur algebras for the Hecke algebras of
type B that admit a coordinate algebra type construction and a notion of the Schur
functors with the existence of appropriate idempotents.

9.2. Cyclotomic Schur algebras

The readers will be reminded shortly that the cyclotomic Hecke algebra H(r, 1, d)
of type G(r, 1, d) is isomorphic to HB

q (d) at certain specialization when r = 2. For
each saturated subset Λ of the set of all bicompositions, Dipper–James–Mathas
(cf. [DJM98b]) define the cyclotomic Schur algebra S(Λ):

Sq(Λ) = EndHB
q(d)

T (Λ),

where T (Λ) is a quantized permutation module that has no known identification
with a tensor space. This generalizes the (Q, q)-Schur algebras introduced in the
paper [DJM98a], which is the special case when Λ is the set of all bicompositions
and r = 2.

While a cellular structure (and hence a quasi-heredity) is obtained for Sq(Λ), it
is unclear if it has an analogue of full Schur duality.

We also remark that there is no known identification of TB

alg(n, d) with a T (Λ)
for some Λ.

Let R = Q(q,Q,Q1, Q2). The cyclotomic Hecke algebra (or Ariki-Koike algebra)
H = H(2, 1, d) is the R-algebra generated by T∆

0 , . . . , T∆
d−1 subject to the relations

below, for 1 ≤ i ≤ d− 1, 0 ≤ j < k − 1 ≤ d− 2:

(T∆
0 −Q1)(T

∆
0 −Q2) = 0, (T∆

i + 1)(T∆
0 − q∆) = 0,

(T∆
0 T∆

1 )2 = (T∆
1 T∆

0 )2, T∆
i T∆

i+1T
∆
i = T∆

i+1T
∆
i T∆

i+1, T∆
k T∆

j = T∆
j T∆

k .

Next we rewrite the setup in loc. cit. using the following identifications:

q∆ ↔ q−2, T∆
i ↔ q−1Ti.

Under the identification, the Jucy-Murphy elements are, for m ≥ 1,

Lm = (q∆)
1−mT∆

m−1 . . . T
∆
0 . . . T∆

m−1

= (qT∆
m−1) . . . (qT

∆
0 ) . . . (qT∆

m−1)

= Tm−1 . . . T0 . . . Tm−1.

Then the cyclotomic relation is

(q−1T0 −Q1)(q
−1T0 −Q2) = 0, or (T0 − qQ1)(T0 − qQ2) = 0.

This is equivalent to our Hecke relation at the specialization below:

Q1 = −q−1Q, Q2 = q−1Q−1.

In summary we have the following isomorphism of K-algebras.
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Proposition 9.2.1. The type B Hecke algebra HB

Q,q(d) is isomorphic to the cyclo-

tomic Hecke algebra H(2, 1, d) at the specialization Q1 = −q−1Q,Q2 = q−1Q−1.

For a composition λ = (λ1, . . . , λ`) ∈ N` of ` parts write

|λ| = λ1 + · · ·+ λ`, and `(λ) = `.

A bicomposition of d is a pair λ = (λ(1), λ(2)) of compositions such that |λ(1)| +
|λ(2)| = d. We denote the set of bicompositions of d by Λ2 = Λ2(d). A bicomposition
λ is a bipartition if λ(1), λ(2) are both partitions. The set of bipartitions of d is
denoted by Λ+

2 = Λ+
2 (d).

Following [DJM98b], the cyclotomic Schur algebras can be defined for any
saturated subset Λ of the set Λ2(d) of all bicompositions of d. That is, any subset
Λ of Λ2 satisfying the condition below:

if µ ∈ Λ, ν ∈ Λ+
2 (d) and ν B µ, then ν ∈ Λ.

For each Λ we define a cyclotomic Schur algebra S(Λ) = EndH
(⊕

λ∈Λ mλH
)
,

where

mλ = u+
`(λ(1))

xλ, u+
`(λ(1))

=

`(λ(1))∏

m=1

(Lm −Q2), xλ =
∑

w∈Σλ

Tw, (45)

and Σλ = Σ
(1)
λ × Σ

(2)
λ is the Young subgroup of Σd. The specialization SQ(Λ) of

S(Λ) at Q1 = −q−1Q,Q2 = q−1Q−1 is then given by

SQ(Λ) = EndHB

Q,q

(⊕

λ∈Λ

mλH
B

Q,q

)
,

where
mλ = (L1 − q−1Q−1) · · · (L`(λ(1)) − q−1Q−1)xλ. (46)

Remark 9.2.2. There seems to be a common misconception that the type B Schur
algebras SB

q (n, d) is a special case of the cyclotomic Schur algebras, just as the
Hecke algebras of type B are a special case of cyclotomic Hecke algebras (see
Proposition 9.2.1).

It is known in [DM02] that the cyclotomic Schur algebras admit a Morita
equivalence under an invertibility condition. Below we give a paraphrase of [DM02,
Thm. 1.5] using our specialization:

SQ(Λ2(d)) '
Mor

d⊕

i=0

SA

q (i, i)⊗ SA

q (d− i, d− i), (47)

where Λ2(d) is the set of all bicompositions of d. For convenience, let us repeat the
assertion of our Theorem 3.1.1 below:

SB

Q,q(n, d) '

d⊕

i=0

SA

q (dn/2e, i)⊗ SA

q (bn/2c, d− i). (48)

We remark that, while the invertibility conditions in Theorem 3.1.1 and (47) are
the same under our specialization,
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• the left-hand sides of (47) and (48) are not Morita equivalent in general;
• the right-hand sides of (47) and (48) are not Morita equivalent in general.

It is better to understand our Theorem 3.1.1 as an independent result, compared
to [DM02, Thm. 1.5], as they do not generalize to each other.

Without an algebra isomorphism, one can achieve at best the following Morita
equivalence:

Proposition 9.2.3. If fB

d is invertible in the field K and n ≥ 2d, then the type
B Schur algebra SB

Q,q(n, d) is Morita equivalent to the cyclotomic Schur algebra
SQ(Λ2(d)) at the specialization

Q1 = −q−1Q,Q2 = q−1Q−1,

where Λ2(d) is the set of all bicompositions of d.

Proof. In light of the algebra isomorphism (48) and the Morita equivalence (47),
SB

Q,q(n, d) is Morita equivalent to SQ(Λ2(d)) if there are Morita equivalences

SA

q (dn/2e, i)⊗ SA

q (bn/2c, d− i) '
Mor

SA

q (i, i)⊗ SA

q (d− i, d− i)

for all 0 ≤ i ≤ d. The condition n ≥ 2d is imposed so that, for 0 ≤ i ≤ d, we have
both dn/2e ≥ i and bn/2c ≥ d− i. It follows that

SA

q (dn/2e, i) '
Mor

SA

q (i, i)

and
SA

q (bn/2c, d− i) '
Mor

SA

q (d− i, d− i).

This concludes the proof. �

Below we describe a basis for the cyclotomic Schur algebras, and then use it to
distinguish SB

Q,q(n, d) from the cyclotomic ones (See Example 9.2.4).
Let T0(λ, µ) be the set of semi-standard λ-tableaux of type µ, that is, any

T = (T (1), T (2)) ∈ T0(λ, µ) satisfies the conditions below:

(S0) T is a λ-tableau whose entries are ordered pairs (i, k), and the number of

(i, j)’s appearing is equal to µ
(k)
i ;

(S1) entries in each row of each component T (k) are non-decreasing;
(S2) entries in each column of each component T (k) are strictly increasing;
(S3) entries in T (2) must be of the form (i, 2).

We note that the dimension of the cyclotomic Schur algebra Λ is given by

dimSQ(Λ) =
∑

λ∈Λ+
2 (d)

µ,ν∈Λ

|T0(λ, µ)| · |T0(λ, ν)|.

It is then defined as a “tensor space” TQ(Λ) =
⊕

λ∈Λ mλH
B

Q,q which has an obvious

Sq(Λ)-H
B

q (d)-bimodule structure.
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Example 9.2.4. Let

Λa,b = Λa,b(d) = {λ = (λ(1), λ(2)) ∈ Λ2(d) | `(λ
(1)) ≤ a, `(λ(2)) ≤ b}.

Recall that the dominance partial order in Λ+
2 (1) is given by µ2 = ( ,∅) �

µ1 = (∅, ), and hence Λ0,1(1),Λ1,1(1) are saturated, while Λ1,0(1) is not. The
cardinality of |T0(µ•, µ•)| is given as below:

|T0(µ1, µ1)| = 1 = |T0(µ2, µ1)| = |T0(µ2, µ2)|, |T0(µ1, µ2)| = 0.

Note that T0(µ1, µ2) is empty since the only µ2-tableau of type µ1 is (∅, 1 2 ),
which violates (S3). Hence, the dimensions of these cyclotomic Schur algebras are

Sq(Λ0,1(1)) = 1, Sq(Λ0,1(1)) = 3.

For d = 2, the dominance order in Λ+
2 (2) is given by

λ5 = ( ,∅)� λ4 =
(

,∅
)
� λ3 = ( , )� λ2 = (∅, )� λ1 =

(
∅,

)
.

The sets Λ0,2(2),Λ1,2(2), and Λ2,2(2) are saturated. The cardinality of |T0(λ•, λ•)|
is given in the following table

type\shape λ5 λ4 λ3 λ2 λ1

λ5 1 0 0 0 0
λ4 1 1 0 0 0
λ3 1 1 1 0 0
λ2 1 0 1 1 0
λ1 1 1 2 1 1

Hence, the dimensions are

dimSq(Λ0,2(2)) = 3, dimSq(Λ1,2(2)) = 7, dimSq(Λ2,2(2)) = 15.

Recall that dimSB

q (2, d) = d+ 1 for all d, hence the algebras SB

q and Sq(Λ) small
ranks do not match in an obvious way.

9.3. Sakamoto–Shoji Algebras

The cyclotomic Hecke algebra H(r, 1, d) admits a Schur-type duality (cf. [SS99])
with the algebra Uq(gln1

×· · ·×glnr
) where n1+ · · ·+nr = n. Hence, it specializes

to the following double centralizer properties, for a+ b = n:

Uq(gla × glb)
↓

SB

q (a, b, d) y T (a, b, d) = (Kn)⊗d xHB

q (d)
.

We will see in (49) that T0 acts as a scalar multiple on T (a, b, d), which is
different from our T0-action (3). Consequently, the duality is different from the
geometric one. We could not locate an identification between SB

q (a, b, d) and Sq(Λ)
for some Λ in the literature.

Now we set up the compatible version of the cyclotomic Schur duality introduced
in [SS99]. Let R′ = Q(Q, q′, u1, u2), and let Hd,2 be the the R′-algebra generated
by a1, . . . , ad subject to the relations below, for 2 ≤ i ≤ d, 1 ≤ j < k − 1 ≤ d− 1:

(a1 − u1)(a1 − u2) = 0, (ai − q′)(ai + (q′)−1) = 0,

(a1a2)
2 = (a2a1)

2, aiai+1ai = ai+1aiai+1, akaj = ajak.

With the identifications below one has the following result:

ai ↔ Ti−1, q′ ↔ q−1.
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Proposition 9.3.1. The type B Hecke algebra HB

Q,q(d) is isomorphic to the al-

gebra Hd,2 at the specialization u1 = −Q, u2 = Q−1.

Let TQ(a, b, d) = V ⊗d
a,b where Va,b = Ka ⊕ Kb is the natural representation of

Uq(gla×glb) with bases {v
(1)
1 , . . . , v

(1)
a } ofKa and {v

(2)
1 , . . . , v

(2)
b } ofK

b. The tensor
space TQ(a, b, d) admits an obvious action of the type A Hecke algebra generated
by T1, . . . , Td−1. The T0-action on T (a, b, d) is more subtle as defined by

T0 = T−1
1 ◦ · · · ◦ T−1

d−1 ◦ Sd−1 ◦ · · · ◦ S1 ◦$ ∈ End(T (a, b, d)), (49)

where $ is given by

$(x1 ⊗ · · · ⊗ xd) =

{
−Qx1 ⊗ · · · ⊗ xd if x1 = v

(1)
i for some i;

Q−1x1 ⊗ · · · ⊗ xd if x1 = v
(2)
i for some i,

and that Si is given by

Si(x1 ⊗ · · · ⊗ xd)

=

{
Ti(x1 ⊗ · · · ⊗ xd) if xi, xi+1 both lies in Ka or Kb;

· · ·xi−1 ⊗ xi+1 ⊗ xi ⊗ xi+2 ⊗ · · · otherwise.

Define

SB

Q,q(a, b, d) = EndHB

Q,q(d)
(TQ(a, b, d)) .

It is proved in [SS99] that there is a Schur duality as below:

Uq(gla × glb)
↓

SB

q (a, b, d) y T (a, b, d)xHB

q (d)
.

In [Ar99, Thm. 3.2] there is also proved an isomorphism theorem under a
separation condition on u1, u2 and q. Note that the separation condition is equiva-
lent to our invertibility condition at the specialization u1 = −Q, u2 = Q−1.

Proposition 9.3.2. If fB

d (Q, q) is invertible in the field K, then we have an
isomorphism of K-algebras:

SB

Q,q(dn/2e, bn/2c, d)→

d⊕

i=0

SA

q (dn/2e, i)⊗ SA

q (bn/2c, d− i).

As a consequence, SB

Q,q(dn/2e, bn/2c, d) is isomorphic to the coideal q-Schur al-

gebra SB

Q,q(n, d) under the invertibility condition.

In the example below we show that the two algebras do not coincide when the
invertibility condition fails.
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Example 9.3.3. Let a = b = 1, d = 2. Then TQ(1, 1, 2) has a basis {v :=

v
(1)
1 , w := v

(2)
1 }. The T0-action is given by

(v ⊗ v)T0 = −Qv ⊗ v,

(v ⊗ w)T0 = −Qv ⊗ w,

(w ⊗ v)T0 = Q−1(w ⊗ v + (q−1 − q)v ⊗ w),

(w ⊗ w)T0 = Q−1w ⊗ w.

Note that this is essentially different from the T0-action for the coideal Schur
algebra given in (3).

Following [Ar99, §2, Example], the dimension of SB

Q,q(1, 1, 2) is either 3,4 or 5.

Note that 10 is excluded since at our specialization u1 = −Q, u2 = Q−1 it is not
possible that u1 = u2 = 0. In contrast, SB

Q,q(2, d) is always of dimension 3.

9.4. Slim cyclotomic Schur algebras

The slim cyclotomic Schur algebra S(u1,...,ur)(n, d) introduced in [DDY18] is a
different attempt to establish a Schur duality for the cyclotomic Hecke algebra
H(r, 1, d). When r = 2, the algebra S(u1,u2)(n, d) has the same dimension as the

coideal q-Schur algebra SB

Q,q(2n, d); while there is no counterpart for the algebra

SB

Q,q(2n+ 1, d).
It is conjectured in [DDY18] that there is a weak Schur duality between the

cyclotomic Hecke algebras and certain Hopf subalgebras Uq(ŝln)
(t) of Uq(ĝln) for

an integer t to be determined. In our setting it can be phrased as follows:

Uq(ĝln))Uq(ŝln)
(t)

↓

SÂ

q (n, d) →S(q,q)(n, d)yΩ⊗d xHB

q (d)

.

Here S(q,q)(n, d) = EndHB
q(d)

(T(q,q)(n, d)) is the centralizer algebra of the HB

q (d)-

action on a finite dimensional q-permutation module T(q,q)(n, d), while Ω is the

(infinite-dimensional) natural representation of Uq(ĝln).
We remark that it is called a weak duality in the sense that there are epimor-

phisms Uq(ŝln)
(t) � S(q,q)(n, d) and HB

q (d) � EndS(q,q)(n,d)(Ω
⊗d); while it is not

a genuine double centralizer property.
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