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Abstract. In this paper the authors investigate the g-Schur algebras of type B that
were constructed earlier using coideal subalgebras for the quantum group of type A. The
authors present a coordinate algebra type construction that allows us to realize these
g-Schur algebras as the duals of the dth graded components of certain graded coalgebras.
Under suitable conditions an isomorphism theorem is proved that demonstrates that
the representation theory reduces to the g¢-Schur algebra of type A. This enables the
authors to address the questions of cellularity, quasi-hereditariness and representation
type of these algebras. Later it is shown that these algebras realize the 1-faithful quasi
hereditary covers of the Hecke algebras of type B. As a further consequence, the authors
demonstrate that these algebras are Morita equivalent to the category O for rational
Cherednik algebras for the Weyl group of type B. In particular, we have introduced a
Schur-type functor that identifies the type B Knizhnik—Zamolodchikov functor.

1. Introduction

1.1.

Schur-Weyl duality has played a prominent role in the representation theory of
groups and algebras. The duality first appeared as a method to connect the
representation theory of the general linear group GL,, and the symmetric group
Y4. This duality carries over naturally to the quantum setting by connecting
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the representation theory of quantum GL,, and the Hecke algebra H,(X4) of the
symmetric group Xg.

Let U,(gl,,) be the Drinfeld-Jimbo quantum group. Jimbo showed in [Ji86] that
there is a Schur duality between U, (gl,,) and H,(34) on the d-fold tensor space of
the natural representation V' of Uy (gl,,). The ¢-Schur algebra of type A | Sl’?(n, d),
is the centralizer algebra of the H,(X4)-action on V®9,

It is well known that the representation theory for U,(gl,) is closely related
to the representation theory for the quantum linear group GL,,. The polynomial
representations GL,, coincide with modules of Sﬁ‘(n, d) with d > 0. The relation-
ship between objects is depicted as below:

KIMAm]* < Uy (al,)
1 + :
KIMMn)l; ~ SHn,d) n VO A Ho(Sq)
The algebra U, (gl,,) embeds in the dual of the quantum coordinate algebra K[M, qA];
while S(?(n, d) can be realized as its dth degree component. The reader is referred
to [PW91] for a thorough treatment of the subject.
The Schur algebra S{;(n, d) and the Hecke algebra ,(¥4) are structurally
related when n > d.
e There exists an idempotent e € S (n,d) such that eSA(n,d)e ~ Hq(aq).
e An idempotent yields the existence of Schur functor

Mod (54 (n, d)) — Mod(Hy(Sa))-

e S2(n,d) is a (1-faithful) quasi-hereditary cover! of H,(24).
1.2.
Our paper aims to investigate the representation theory of the g-Schur algebras of
type B that arises from the coideal subalgebras for the quantum group of type A.

We construct, for type B = C, the following objects in the sense that all favorable
properties mentioned in the previous section hold:

K[M§  (n)]* « U§ ,(n)
1 { .
K[M§ ()5 ~ SB ,(n,d) ~ VT ~HE (d)

For our purposes it will be advantageous to work in a more general setting with
two parameters ¢ and (), and construct the analogs K [MS ,(n)] of the quantum
coordinate algebras. Then we prove that the dth degree component of K [MS q (n)]*
is isomorphic to the type B ¢-Schur algebras. The coordinate approach provides
tools to study the representation theory for the algebra K[M§ ,(n)]* and for the ¢-
Schur algebras simultaneously. The algebra UQB?, 4(n), unlike Uy (gl,,), does not have

!The algebra S,’? (n,d) is 1-faithful under the conditions that ¢ is not a root of unity,
or if q2 is a primitive £th root of unity, then ¢ > 4.
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an obvious comultiplication. Therefore, its dual object, K [M(%,q<n)]7 should be
constructed as a coalgebra; while in the earlier situation K[M/(n)] is a bialgebra.
Our approach here differs from prior approaches to the subject for type B Hecke
algebras in that we can employ the action on the tensor space to realize the ¢-Schur
algebra as a subcoalgebra of K [Mg q(n)]*. Other earlier investigations have defined
the algebra as an endomorphism algebra on a direct sum of permutation modules.
The relations necessary to realize K [Maq(n)] as a quotient of the coordinate
algebra on quantum matrix space naturally arise from the coideal relations. As far
as the authors know, this is the first paper to make this important connection.
In the second part of the paper an isomorphism theorem between the g-Schur
algebras of type B and type A (under an invertibility condition) is established:

d
D 55 (r i) @ 53 (r,d— 1) if n = 2r;
S8 o(n,d) =2 ¢ =0

P SAr+1,i) @ Sh(r,d—i) ifn=2r+1.
=0

One can view this as a “lifting” of the Morita equivalence (via the Schur functor)

d

HE o) = [ Ha(S0) © Hy(Sa-i), (1)
=0

between Hecke algebras proved by Dipper—James [D.J92].

There are many cases when the Morita equivalence will hold. The condition for
invertibility entails the non-vanishing of a polynomial (which is an open condition)
so the equivalence will hold in most cases, in particular, when (i) ¢ is generic, (ii)
q is an odd root of unity, or (iii) ¢ is an (even) £th root of unity if £ > 4d.

As a corollary of our isomorphism theorem, we obtain favorable properties
for our coideal Schur algebras, see Section 5-8. In particular, with the Morita
equivalence we are able to show that Sg,q (n,d) is a cellular algebra and quasi-
hereditary. Moreover, in Section 7, we are able give a complete classification of the
representation type of Sg’q(m d).

In the following section (Section 8), we are able to demonstrate that under
suitable conditions, the Schur algebra SS) (1, d) gives a concrete realization of the
quasi-hereditary one-cover for 7—[8_’ (@) (as defined by Rouquier). The problem of
concretely realizing these one-covers is in general an open problem for arbitrary
Hecke algebras. Our result, Theorem 8.3.3), exhibits under favorable conditions,
a Morita equivalence between the representation theory of Sgﬂ(n,d) and the
category O for rational Cherednik algebras. In the process, we have introduced
a Schur-type functor F;d : Mod(Squ(n,d)) — Mod(?—l%yq(d)) which is roughly
defined by hitting an idempotent, and then identifies Fg’ 4 With the type B Knizh-
nik—Zamolodchikov functor, which is defined via monodromy.

1.3.

In the one-parameter case (i.e., ¢ = Q), the algebra U, ,'13 (n) is the coideal subalgebra
U or U7 of Uy(gl,,) in [BW18] as a part of a double centralizer property (see also
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[ES18] for a skew Howe duality viewpoint). The corresponding Schur algebras
therein are denoted by S* or S7 to emphasize the fact that they arise from certain
quantum symmetric pairs of type A III/TV associated with involutions ¢ or 7 on a
Dynkin diagram of type A,. Namely, we have the identification below:

UB(n) =

: SB(n,d) =

U. ifn=2r

Ul ifn=2r+1,
St(r,d) ifn=2r

{Sj(r,d) if n=2r+1;

Note that the algebras S’ and its Schur duality are introduced first by Green in
[Gr97]. In [BKLW18] is also developed a canonical basis theory for both Schur and
coideal algebras. For two parameters, a Schur duality for U(S) ,(n) is established in
[BWW18]; while the canonical basis theory can be found in [LL18].

To our knowledge, there is no general theory for finite-dimensional representa-
tions for the coideal subalgebras (see [Wal7] for a classification for type A III;
also see [Lel9] for establishing their Cartan subalgebras for arbitrary type), and in
some way our paper aims to establish results about “polynomial” representations
for UqB(n).

There are other generalizations of the ¢-Schur duality for type B in the literature.
A comparison of the algebras regarding the aforementioned favorable properties
will be given in Section 9. Since all these algebras are the centralizing partners of
certain Hecke algebra actions, they are different from the ones appearing in the
Schur duality (see [Hull]) for type B/C quantum groups, and are different from
the coordinate algebras studied by Doty [Do98].

Acknowledgements. We thank Huanchen Bao, Valentin Buciumas, Jie Du, Han-
kyung Ko, Andrew Mathas, Stefan Kolb, Heibing Rui, Leonard Scott, Weigiang
Wang and Jieru Zhu for useful discussions. We thank Ben Webster for pointing out
several corrections needed in an earlier version, and for his useful feedback. The
first author thanks the Academia Sinica for the support and hospitality during the
completion of this project.

2. Quantum coordinate (co)algebras

2.1. Quantum matrix spaces

Let K be a field containing elements ¢, Q). Denote the (quantum) commutators by
[A,B], =AB—zBA (z€K), [A B]=IA, B.

We define the (type A ) quantum matrix spaces following [PW91, §3.5] but with
a shift on the index set as below:

(2)

S A

Let M, qA =M, (’?(n) be the quantum analog of the space of n X n matrices indexed
by I(n), and let K[M[f] = Klx;5;1,j € I(n)]/J(f(n) be the associative K-algebra
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where J2(n) is the two-sided ideal of K[z;;] generated by

[l’ki,ﬁkﬂq—l, T > j7
[xkiaxli]qfla k > la
[xkia-rle k>lal<]7
[

Trir ) — (0" = Qruweg, k> 1i> ]
The comultiplication on K[M, (';‘] is given by
A A A
A KM = K[MN @ KM, @ — > @i @ ap.
kel(n)

Let V = V(n) be the n-dimensional vector space over K with basis {v; | i € I(n)}.
As a comodule V has a structure map

TA:V—)V®K[M:;\], UiHZ’Uj@.Tji.
J
FOYM: (/’L17"'7/J‘d) € I(’I’L)d, set
V=V ® ... @y, € VO

It is easy to see that the set {v, | u € I(n)?} forms a K-basis of the tensor space
V@d, The structure map 7a induces a structure map

7@d . yed _y yed ®K[M$], Uy Z Vy @ Tuypy o+ Togpyg-
vel(n)d
In other words, the tensor space V% admits a K [M[?]*—action defined by
K[M(’f]* x VO 5 v®d (flu,) - Z F(@oips - Togpa) Vo
vel(n)d

2.2. Hecke algebras of type B

Let HB = ’Hg’ ,(d) be the two-parameter Hecke algebra of type B over K generated
by Ty, 11, ..., Ty—1 subject to the following relations:

Tl T = TiaTiTiqa, 1<i<d-2,
(ToTh)? = (Ty)?, T,1; =1Ty1;, li —j > 1,
T2=Q ' '-Q)To+1, TP=(g'—qTi+1, 1<i<d-—1.

That is, the corresponding Coxeter diagram is given as:

O =—0 O
0 1 d—1

Let WB(d) be the Weyl group of type B generated by S = {s0,...,5q_1}. It
is known that ’Hg,q(d) has a K-basis {T,, | w € WB(d)}, where T\, = T}, - -- Ti,
for any reduced expression w = s;, - - - ;. The subalgebra of Hg,q(d) generated
by T1,T5,...,T4—1 is isomorphic to the Hecke algebra H,(24) of the symmetric
group X4. Let 'HE’ (d) be the specialization of Hg7q(d) at Q = q.
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2.3. Type B Schur duality
It is well known that V% admits an Haq(d)—action (and hence an H,(X4)-action)
defined as follows. For p = (u;); € [(n)?, 0 <t <d—1, let

WSy = (/’Lh'"7/1't717/14t+17/1't7/1't+27"'7,ud) lft#ov
Tot — .
(_:ula,UQa"'aIU/d) ift=0.

For 1 <t <d -1, the right Hg’q(d)—action on V®4 is defined:

Vpos, if pe < presas

vuTt = qilv,wst if He = He+1;3
v#'St + (qil — q)'l)# if Mt > Ht41, (3)
Vpeso if 0 < py;

'UMTQ = Qilv#.SO if 0 = 13

Vpesy + Q71— Qv if 0> .
The g-Schur algebras of type A (and B, resp.) are denoted by
SA = 8¥(n,d) = Endy,(q)(V®Y), S® =85 ,(n,d) = Endye ,q(d)(v®d). (4)

We denote by Sf(n, d) the specialization of Sg’q(n, d) at Q = q. It is known that
Sg(n,d) admits a geometric realization (cf. [BKLW18]) as well as a Schur duality,
which is compatible with the type A duality as follows:
K[MZn)]" - K[Mn)]; = Sg(n,d)~ A Hy(d)
U y@d n .
B B
S;(n,d) ~ AH(d)
2.4. A coordinate coalgebra approach
In this section, we aim to construct a coideal JS’ q(n, d) of the coordinate bialgebra
K[M}(n)]4 such that qu(n,d) can be realized as the dual of the coordinate
coalgebra
K[MG 4(n)]a = K[Mg(n)]a/J§ 4(n, d). (5)
Remark 2.4.1. When it comes to comparing Squ(n,d) with variants of g-Schur
algebras of type B (see Section 9), we call 55’ (1, d) a coideal g-Schur algebra due
to this nature.
For any K-subspace J of K[MqA(n)]d, the K[M(f]d—comodule V®d admits a
K[M}a/J-comodule structure with structure map

T?d:V®d—>V®d®K[M$]d/J, vy > Z Uy @ ( Ty - Tugpg +J)-
v=(v1,...,vq)EI(n)4

We define a K-space Jaq(n, d) to be the intersection of all K-subspaces J satisfying
that

(90 )T = 794w, Tp), forall € I(n) (6)
With J§ (n,d), the linear space K[Mg  (n)]a is well defined as in (5). We see
from Proposition 2.4.2 that K[Mg,q(n)]d admits a coalgebra structure.
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Proposition 2.4.2. The K -space K[Mg’q(n)]j; admits a K -algebra structure, and
is isomorphic to the type B q-Schur algebra qu(n,d).

Proof. Let ¥ be the K-algebra isomorphism S/'(n,d) — K[M]*, and hence
U(SE ,(n,d)) = {¢ € K[M}n,d)]* | (pv,)To = ¢(v,Tp) for all u € I(n)?}
is a K-subalgebra of K[M?(n, d)]*. By the definition of JS,q (n,d), as linear spaces,

K[Maq(n)]; ={¢¢€ K[M?(n,d)]* | ¢(r) =0 for all r € Jg,q(n, d)}
= V(55 ,(n,d)).
Hence, K[M§ ,(n)]} is isomorphic to S§ ,(n,d) as K-subalgebras of K[M§ ,(n)]}.
As a consequence, the space Jg_’q(n, d) is a coideal of K[M(Syq(n)];. O

Let Jg,q(n) be the union of the coideals ngq (n,d) for all d € N, and let
KIMG o ()] = KM )]/ I, (n).

Corollary 2.4.3. The space K[Maq(n)] of K[M2(n)] is a quotient coalgebra.

Proof. 1t follows that ngq (n) is a coideal of K[MqA (n)] since its degree d component
J§.4(n,d) is a coideal of K[M(n)]g. O

Below we give a concrete realization of Js’q(n) as a right ideal. It is very
important to observe that in general JS, ,(n) is a right ideal and not a two-sided
ideal, so K[ngq(n)] is a coalgebra but not an algebra.

Proposition 2.4.4. Jaq(n) is the right ideal of K[M}(n)] generated by the fol-
lowing elements, for i,j € I(n).

Tij — T—i,—js 1< 0<y, (7)
zij - —(Q ' = Q)w_iy, i,5<0, (8)
zo; — Q 'wo,—j, J <0, 9)
zio—Q 'z io. i<O0. (10)

We remark that I(2r) does not contain 0 and hence J57q(2r, d) is generated only
by the elements of the form (7) — (8).

Proof. For a fixed d € N, let J be an arbitrary K-subspace of K[MJ'(n)]a. For
simplicity we write T, = x,, + J. For i, j € I(n) we write

5 1 ifi<y; o 1 if i > g;
770 otherwise, 7710 otherwise.
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We first consider the case d = 1. For i € I(n),
(75 (v:)To

=Y vThe,

JEI(n)
D 60,Q vy ® T + docjvy @ Ty + Soss(v—j + (@71 = Qvy) ® T3

JeI(n)

= D (60;Q "0y 4 do< vy + G0 jv5) @ T4 + 0055(Q 71 = Q)vy) ® T3
J€I(n)

= Y @ (60;Q T + 60 (T + (Q71 — QT5) + So<;T ) -
JEI(n)

On the other hand,

T?l(UiTo) = TJ (502Q lv— + do<iV—; + 50>1(U— (Q_l - Q)Uz))
= Z v; ® (60:Q ' T5, =5 + So<iTj =i + S0>iTj = + (Q7 — Q)T;) -

jel(n)

We then see that (6) holds if and only if J contains all the elements (7)—(10).
Now, ngq(n, 1) is the linear space spanned by elements (7)—(10) since it is the
intersection of all the J’s satisfying (6).

For general d, since Tp only acts on the first factor of V®?, the linear subspace
J§ 4 (n,d) of K[Mp(n)lais J§ ,(n,1) @ K[M}n)]la—r. O

Let 78 = T®d We say that a right K[Maq(n)]—comodule V is homogeneous

g (:d)”
of degree d if all entries of its defining matrix lie in K[M(S,q(n)}d, i.e., for a fixed
basis {v;} of V, 78(vi) = >_, v; ® a;; for some a;; € K[Mg’q(n)]d.

Corollary 2.4.5. For d > 0, the category of homogeneous right K[Mg’q(n)]—
comodules of degree d is equivalent to the category of left Sg’q(n,d)—modules,

2.5. A combinatorial realization of Sg,q (n,d)

It is well known that the algebra S ('13 (n, d) with equal parameters admits a geometric
realization via isotropic partial flags (cf. [BKLW18]). This flag realization of the
algebra S ('13 (n,d) admits a combinatorial/Hecke algebraic counterpart that genera-
lizes to a two-parameter upgrade (cf. [LL18)), i.e

Sha(nd)= €D  Homys (2,Hf 4 exHB,), (11)
A, u€EAB(n,d)

where

AB(n, d)

M ELTH2Z, )N ==\ .
A= (Ni)i € N» ’ b oifn=2r+1; (12
- Aierm | S A =2d+1 } e (12

{)‘ - zGI (n) e N7 | A; _/\i72i A = 2d} if n =2r.



¢-SCHUR ALGEBRAS OF TYPE B 991

Note that in [LL18], the set AB(2r,d) is identified as a subset of AB(2r + 1,d)
through the embedding

(A’L)ZEI(TL) — ()\_7«, ceey A_l, 1, )\1, . Ar)

For any A € AB(n,d), let W) be the parabolic subgroup of W& generated by the
set

S_{8)\178)\1+>\27"‘78)\1+...+)\T_1} lfn:2r,
S — {S[AO/QPSP\O/?JJH\N .. '7SL>\0/2J+>\1+~-+>\T—1} if n=2r+1.

For any finite subset X C W, A\, u € AB(n,d) and a Weyl group element g, set

Z Tu,, AM = T(W;)g(W ) )\ = Ti/\ = TW)\' (13)
weX

The right H%’ ,linear map below is well defined:
S T HE g = TaH g T T3, (14)

The maps ¢ u with A, 1 € AB(n,d), g a minimal length double coset representative
for WA\\W®/W, form a linear basis for the algebra S§ (n,d). The multiplication
rule for Sg,q (n,d) is given in [LL18], and it is rather involved in general. Here we
only need the following facts:

Lemma 2.5.1. Let A\, X, p, 1’ € AB(n,d), and let g,g' be minimal length double
coset representatives for WA\\W®B/W,. Then

(a) ¢)\l/ , =0 unless p=N;

(b) ¢/\u¢iu = g = iu llm"

2.6. Dimension of g-Schur algebras
It is well known that Sl’?(n, d) has several K-bases indexed by the set

Z A 5 —d},

(4,5)€I(n)?

{(az‘j)ij e NI’

and hence the dimension is given by

2+d-1
dimyc SA(n, d) = (” + . ) (15)
In [LL18, Lem. 2.2.1] a dimension formula is obtained via several bases of Sg ,(n, d)
with the following index set:

[—r,—1] x I(n) if n = 2r;

> w=d}. 1= (or-1) x In) (16)

{(a” i ENT=
(ig)Eel- U0} x [-r,—1]) ifn=2r+1.
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That is, I_ C I(n)? corresponds to the shaded region below:

O ! a_ry] :
Q—p —r I I A—pr
: | |
' <5 | - _- _ _ __ _ __ ‘, — J ,,,,,,,
,,,,,,,, Wil G ] 77777777:11907:7777777
ayp,—1 | a1 | |
: | |
a ‘ a r,—r 1 1 arr
' if n=2r ) ifn=2r+1
Consequently,
2
I|+d-1 Gl ifn= 2y
dimg S _(n,d) = ( ): d ’ 17
K 5q(n.d) d (P2r4d) i — op 41, 17)

In the following we provide a concrete description for the 2-dimensional algebra
SE (2,1).
Q,q\™

Proposition 2.6.1. The algebra 5’5711(2, 1) is isomorphic to the type A Hecke
algebra Heg-1(X2).

Proof. The index set here is 1(2) = {=1,1}. The coalgebra K[M§ ,(2)]1 has a
K-basis {a = x_1,-1,b = x_11 = x1,-1}. Note that x11 = a+ (Q — Q" 1)b. The
comultiplication is given by

Ala) = Z Tk ®@Tp—1 =a®a+b®D,
k=+1
ABD)=b@a+(a+(Q-Q M) ®b=bRa+a@b+ (Q—-Q 1)b®b.

Hence, the algebra structure of Sg,q(Z, 1) = K[Maq(n)]’{ has a basis {a*,b*} such
that

a*a*(a) = (a®a)*(A(a)) =1, a*a*(b) = (a®a)*(A(b)) =0,
a*b*(a) =0=">0%a"(a), a"b*(b)=1="0"a"(b),
b*b*(a) =1, b*b*(b)=(Q—-Q71).

Therefore, the multiplication structure of Sg’q(Q, 1) is given by

a*a* =a*, a*b*=b"=0b*a*, bV =(Q—-Q ) +a". O
Remark 2.6.2. We expect that Squ(2,d) is isomorphic to K[t]/(P4(t)) for some
polynomial Py € K[t], for d > 1.

3. The isomorphism theorem

The entire section is dedicated to the proof of an isomorphism theorem (Theo-
rem 3.1.1) between the Schur algebras of type B and type A that is inspired by a
Morita equivalence theorem due to Dipper and James [DJ92].
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3.1. The statement
We define a polynomial f2(Q,q) € K|[Q, q] by

H Q2+ ¢*).

1=1—

We remark that at the specialization ) = ¢, the polynomial fg (@, q) is invertible
if (i) q is generic, (ii) ¢2 is an odd root of unity, or (iii) ¢? is a primitive (even) (th
root of unity for £ > d.

Theorem 3.1.1. If f2(Q, q) is invertible in the field K, then we have an isomor-
phism of K -algebras:

d
©: 5§ ,(n,d) — €D Sy ([n/2],0) @ Sp(|n/2),d —i). (18)
i=0

Example 3.1.2. Forn =2,d = 1, Theorem 3.1.1 gives the following isomorphism
56.4(2,1) = (SM1,0)® SA(1,1)) @ (S5(1,1) ® S7(1,0)) = K1, ® K1,,

where 1,, 1, are identities. We recall basis {a*,b*} of Squ(Q, 1) from Proposition
2.6.1. The following assignments yield the desired isomorphism:

at 1,4+ 1, b= Q' +Q1,. (19)

We note that it remains an isomorphism if we replace —Q~'1, + Q1, in (19) by
le - Q_lly-

3.2. Morita equivalence of Hecke algebras

Following [DJ92], we define elements u € He, ,(d), for 0 <i < d, by

1—1 i—1
ul = H(T[ LN T+ Q) up = 1_[(:/}3...T1T0T1 LT —Q7Y. (20
=0 £=0

It is understood that ud = 1 = u, . For a,b € N such that a + b = d, we define an
element v, by
Va,b = Uy Twa b Ya 6 HQ q(d) (21)

where wgp € Xq4p, in two-line notation, is given by

_ 1 e a a+1l -+ a+b
Wab =\ p4+1 -+ bta 1 - b )
Finally, when de(Q, q) is invertible, Dipper and James constructed an idempotent

€ab = E{Ziwawava,bv (22)

for a + b = d, where %, , is some invertible element in H,(3, x X)(see [DJ92,
Definition 3.24]). Below we recall some crucial lemmas used in [DJ92].
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Lemma 3.2.1. Let a,b € N be such that a +b = d. Then:

(a) The elements ui lie in the center of Hg’q(d),

(b) Fora+b>d, u, Hp (d)uf =0.

(¢) Fora+b=d, ea7b7{5’q(d)ea7b = eqpHg(Eq X Xp) and e, commutes with
Hq(Ea X Eb).

(d) Fora+d=d, 6a7b7'[%7q(d) = Ua,bHaq(d)-

(e) There is a Morita equivalence

d
HEo(d) = P eiaiHd (e
=0

3.3. The actions of ujl' and u

Consider the following decompositions of V' into K-subspaces:
V=Vs0® Vo= "Vs0® V<o,

where
P Kvu;, ifn=2r+1,;
Voo = €D Kuvi, Vi = osisr
1<i<r Vso if n = 2r,

P Ku;, ifn=2r+1;
Vo= @ Kvi, Veo={ -r<i<o
—r<i<—1 V<o if n=2r.

Hence, one has the following canonical isomorphisms:
SqA( ’—7’7}/21 ’ d) = End’Hq(Ed) (Vgod)’ SqA( \_n/QJ ’ d) = End’Hq(Zd) (Vgod) (23)

In the following, we introduce two new bases {w; } and {w} } for the tensor
space to help us understand the uf-action. First define some intermediate elements,
for0<i<rjeN:

w+ _ qij'U_i + QU»L‘, 'L # 0, and w_ _ quv_l, _ Qilvi, Z # 0’
O (¢ ¥Q T+ Q)uy, i=0, i)~ Yo, i=0.

For a nondecreasing tuple I = (iy,...,iq) € ([0,7]NZ)%, we further define elements
w} and w; by
+ ot — =
Yo = Yo e T Vi)
and then inductively (on d) as below:

+_ ot + - -
wr = ©w; W = (i)’

(i1, yid—1) ia(4)’ 01yesid—1

)®'LU

where j = max{k : iq_y = iq}. For arbitrary J € ([0,7] N Z)9, there is a shortest
element g € ¥4 such that g—!J is nondecreasing. We set

+ _ .+ - -
wy —wg,lJTg, wy —wg,lJTg.
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Lemma 3.3.1.

(a) For I € ([0,7]NZ)%, vju} = wj.
(b) ForI e ([1,r]NZ)%, viu; =wy .

Proof. For non-decreasing I, the result follows from a direct computation. For
general I, there exists a shortest element g € X4 such that I¢g~! is non-decreasing.
Then, by Lemma 3.2.1(a),

vju;[ = 'U]gfngudi = rUIgfl’U/;:Tg = wlig_ng = wIi O
Example 3.3.2. Let d =7 and let I = (0,1,1,2,3,3,3). We have
wi = war(o) ® wf(o) ® wfr(l) ® w2+(0) ® w;)r(o) ® w?f(l) ® w;)r(z).
For J =(0,2,1,1,3,3,3) = Isgsa,
w}' = w}"Tng

Example 3.3.3. In the following we verify Lemma 3.3.1 for small d’s. Let d = 2,
I=(1,1) and hence w; = wf(o) ®wf(1). Since uj = (T1ToTy +Q)(To + Q), we can
check that indeed

”qu;' = @u)(NiToT1 +Q)To+ Q) = (v1 ® wf'(l))(To +Q) = w?‘
Now we define K-vector spaces
Wiy = Vet Wi, =V
By Lemma 3.2.1(a), v} and u; are in the center of ’Hg’q(d), hence Wgo and W<,

are naturally 7—[57 q(d)—module via right multiplication. Moreover, wTy = Q~'w for
all w € Wgo and wTp = —Qu for all w € W,.

Lemma 3.3.4. We have Wgo = Vgodu;; and Wy = V&7 .

Proof. We only give a proof for the first claim, and a proof for the second claim
can be obtained similarly. A direct computation shows that

Toul = Q tuy. (24)

For 1 <i<d,
(V200D & Ve & VO3

= (Voo @ VD @ VO Ty Ty yuf

= (Voo @ VD @ VEU-)Q I\ Ty ... Ty 1u}  Lemma 3.2.1(a) and (24)

CVE® yEE=iy T VEY is a Hy(35)-module.
Next, an induction proves that for 0 < i < d,

V@i ® V®(d—1’) _ V>®0i ® V@(d—i)7

from which the result follows. O
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Lemma 3.3.5. Let pg : V& — Vgod be the projection map. For I € ([0,7] NZ)?
and J € ([1,7] N Z)%, pa(w]) = civ_; and pa(w;) = cyju_; for some invertible
elements cy,cy € K*.

Proof. When I, J are non-decreasing, and when d = 2, the result follows from a
direct computation. For general I (or J), there exists a shortest element g € ¥ 4
such that Tg~! (or Jg~!) is non-decreasing. The result follows from an induction
on the length of g. O

Lemma 3.3.6.

(a) The map vy — wj gives an isomorphism of H,(X4)-modules V2®0d — W§0'
(b) The map vr — wy gives an isomorphism of Hq(Sq)-modules VES — W

Proof. Since u} (resp. u;) is in the center of 7—[%7(1 (d) by Lemma 3.2.1(a), the map

vy = w} (resp. vy — wy) is clearly H,(X4)-equivariant. Surjectivity of this map

follows from Lemma 3.3.4, and injectivity of this map follows from Lemma 3.3.5.
O

3.4. The actions of v,
Lemma 3.4.1. Fora+b=d, V®uy,;, = (V>®0b ® Vf’o‘l)va,b.

Proof. Tt follows from Eq. (21) and Lemma 3.3.4 that
Ve, = (Ve ® VEYu, Ty, sut = (V& ® VEYu, Ty, ut = (VE @ V).

For b < i <d,

ToTTs - - Ti—1Vap
=17 Ty Ty TToTy -+ To) (Togr - Ti—1)uy T, ,ut  Eq. (21)

=17 Ty Ty To - Ty)uy (Topr - Tym1) T, ud by commutivity
=TTy Ny + QM uy ) (Togr -+ Ti1) T,y ud Eq. (20)

=Q 'y Ty (Tygr -+ Ti1) T, ud Lemma 3.2.1

= QflTl_1 _ Tb_l(TbH _ Tl-_l)ub_Twmbu;r by commutivity
=Q "Iy Ty (Togr - Ti—1)Vap- Eq. (21)

Then, for b < i < d,

(V2@ VETT D @ Vg @ VEE-D)y,,
= (Voo @ VE @ VEL "V @ VBN Ty - Ty yvap
= Q_I(V>O ® V>®0b ® Vfo(i_b_l) & V®(d_i))Tf1 o 'Tbil(waLl o 'Ti—l)va,b
- (V>®o" ® Vso ® Vfo(ifbfl) ® V®(d_i))(Tb+1 T 1)Va b
C (V;%b ® V2®O(i—b) ® V®(d7i))va7b7
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where the last two inclusions follow from the fact that Vf)o(bﬂ) is a Hq(Xpt1)-

module, and V®(z YisaH ¢(Zi—p)-module, respectively. An induction shows that
for b < i <d,

Vet @ Vet @ ey, , = VE @ VI @ VO y,,

from which the result follows. O

For a 4+ b = d, define projections
b VIS VEIQVEY, Pl : V5 VE R VE
Lemma 3.4.2. Leta+b=d, I € ([0,7]NZ)* and J € ([-r,7|NZ)>. Then

Pap((vs @ 01Ty, ,) = crgvr @ py(vy)

for some cr ;€ K*, where py, is defined in Lemma 3.3.5. Moreover,

Pap((wy @ )T, ,) = crycsvr @v_g

for some cr j,c5 € K*.

Proof. First note that (v; ® v1)Tw,, = c1,7(vs @ vr)Wap + zg<wa.b cq(vy @ vr)g
for some invertible ¢; y € K and some ¢, € K, where g < wg; under the Bruhat
order. Hence,

Pop((0g @ 01)Tw, ) =Pl y(crs (Vs @vDwap + Y co(vs @ vr)g)
g<wgq b

= cr Py @vs)+ Y cgbly((vs @ vr)g)
g<Wa b

= c1,.0P,p(vr @ vy) = cr gvr @ pp(v.).

By Lemma 3.3.5, we have py(w;) = cjv_; for some c¢; € K*. Therefore,
pﬁhb((w; (39 ’U[)Twa,b) = C1,JV1 ®pb(wj) = Cr,gCcjvs XRv_yj. O

Lemma 3.4.3. For I € ([0,7]NZ)* and J € ([1,7] N Z)°, pap((vs @ vi)vayp) =
cv_; Qu_y for somec e K*.

Proof.

Pap (V7 @V )vap) = Pap((Vs @ vr)uy Ty, ,ud) Eq. (21)

((
= pap((wy @vr)Tw, ,ul) Lemma 3.3.1
= Pap(Pap (W) ® v1)Tw, ,)ug)
= paplcryes(vr @ v_y)ul) Lemma 3.4.2
= paplerjeqwi @v_y) Lemma 3.3.1
=crscpa(wi) @ v_y
= c1,7C1C -1 @ U_J. Lemma 3.3.5 O
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Lemma 3.4.4. For a+b=d, the map v @ vy — (v; @ V1)Vqp gives an isomor-
phism of He(Ea) © Hq(S)-modules V) @ Vi — VO,

Proof. Tt follows from [DJ89, Lem. 3.10] that

T Ti-i-aa 1S7/§b5
iVa,b =
YT\ T,, bt1<i<atb—l.

Hence, the map is Hy(2,) ® Hq(Zp)-equivariant. The injectivity follows from
Lemma 3.4.3, and the surjectivity follows from Lemma 3.4.1. [

3.5. The proof

Finally, we are in a position to prove the isomorphism theorem.

Proof of Theorem 3.1.1.

56.q(n,d) = Endye () (VE)

= End@“ﬁiéd ei,d—i’HBQ’q(d)ei,d—i(V®d€i7d7i) Lemma 3.2.1(6)

= @ Endei’d_ﬂaq(d)eiyd_i(V®d€i,d—i)
0<i<d

= @ End?—[q(Ei)@Hq(Ed_i)(V®dvi7d—i) Lemma 3.2.1(c)(d)
0<i<d

= @ Endﬂq(zi)®yq(zd7i)(V§()i ® V;X)O(d_i)) Lemma 3.4.4
0<i<d

= @ End%q(gi)(vgoi) ® Enqu(Edfi)(Vf’od*i)
0<i<d

= @ Si([n/21,i) @ Si(|n/2],d ). Eq. (23) O
0<i<d

3.6. Simple modules of Sg’q(n, d)

As an immediate consequence of the isomorphism theorem one obtains a classifica-
tion of irreducible representations for S’g,q(n, d).

Theorem 3.6.1. If f3(Q,q) is invertible in the field K then there is a bijection
{Irreducible representations of Sgﬂ(n,d)} = {(\p) F(dy,da) | dy + do = d},

where the number of parts of A and u is no more than n. In particular, the standard
modules over Sg)q(n, d) are of the form V(\)RV (u), where V(X) (resp. V(X)) are
standard modules over S§([n/2],dy) (resp. SH(|n/2],d2)).

Remark 3.6.2. There are variants of our isomorphism theorem in the literature
related to different Schur algebras. In [GH97] there was established a Morita
equivalence

d

S(H(WE)) =~ P sii.i) @ Spd—i,d - i),
=0
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where S(H(WP)) is an endomorphism algebra on a g-permutation module involv-
ing r-compatible compositions.

By [Ar99, Thm. 3.2], under a separation condition at the specialization u; =
—Q,uz = Q', the Sakamoto-Shoji algebra S7, ,, .([n/2],[n/2],d) (see 9.3) is
isomorphic to the right-hand side of Theorem 3.1.1, and hence is isomorphic to
our algebra Sg’ q(n7 d). When the separation condition fails, the two algebras do not
coincide since their dimensions do not match. For instance, in [Ar99, §2, Example]
it is computed that dim SEhu%q(l, 1,2) can be 3, 4, 5 and 10 while dim ,S’qB(Q7 d) is
always 3.

4. Schur functors

4.1. Schur functors
For type A it is well known that, provided n > d, there is an idempotent e =
e*(n,d) € SH(n,d) such that e*SH(n,d)e® ~ Hy(Sq), and a Schur functor
F} g Mod(S5(n,d)) = Mod(Hy(Sa)), M+ e*M. (25)

In the following proposition we construct the Schur functor for Sa 4(n, d) when
[n/2] > d.
Proposition 4.1.1. If [n/2| > d then there is an idempotent e® = €B(n,d)
Sgﬁq(n,d) such that eBSqu(n,d)eB ~ ’H(B?yq(d) as K-algebras, and eBSCB?’q(n, d)
Ve as (Sg ,(n,d), He ,(d))-bimodules..

Proof. Recall AB(n,d) from (12) and ¢3,, from (14). Let eB = ¢l . where

ww?

R m

{(0,...,0,1,...,1,0...,0) € AB(2r,d)} if n=2r;
N—_——
W= 2d
{(0,...,0,1,...,1,0...,0) € AB(2r + 1,d)} ifn=2r+1.
N——
2d+1

Note that such w is well defined only when r = |[n/2| > d. By Lemma 2.5.1, we

have
g

ifA=w=pu;
B95ue® = M o
0 otherwise.
Since W, is the trivial group, z, = 1 € Hg,q(d) and hence ¢¢  is uniquely
determined by 1+ Tj,. Therefore, e®S§ (n,d)e® and H (d) are isomorphic as
algebras.
Now from Section 2.5 we see that there is a canonical identification
®d ~ B B B
Ve ~ @ T HG 4 @ Homygq(waqu, T HE )
HEAB(n,d) nEAB(n,d)
and hence the maps ¢9 ,, with u € AB(n,d), g is a minimal length coset representa-

W
tive for WB/W,,, form a linear basis for V<. Again by Lemma 2.5.1, we have

T
e%ﬁf{% S (26)

0 otherwise.
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Hence, eBSg’q(n, d) has a linear basis {¢,,} where u € A®(n, d), g a minimal length
double coset representative for W,,\WB/W,. Therefore, V®¢ and eBSqu(n, d) are
isomorphic as (Sg’q(n, d),?—[%’q(d))—bimodules. O

We define the Schur functor of type B by
FP 4« Mod(Sg, ,(n, d)) — Mod(Hg, ,(d)), M + M.
Define the inverse Schur functor by

Gg : Mod(Hg ,(d)) — Mod(Sg ,(n, d)),
M +— Hom e Squ(n,d)es(eBSS’q(n, d), M).

Below we define a Schur-like functor F, ; : Mod(S§ (n,d)) — Mod(Hg (d))
using Theorem 3.1.1, under the same invertibility assumption: recall ® from (48):

let
eb—end— (@e [n/2],4 (Ln/2J,d—i)>.

Note that eng’q(n, d)e® ~ @z‘:o Hy(Bit1)@Hq(Eg—i+1), and hence left multiplica-
tion by € defines a functor Mod(Squ (n,d))— MOd(EB?ZO He(Bit1)OHg(Ea—it1))-
Hence, we can define

F} 4+ Mod(SE ,(n,d)) = Mod(H§) ,(d)), M — Fg'(eM), (27)

where Fp is the Morita equivalence for the Hecke algebras given by

Fu : Mod(H3, (d)) — Mod( D H(Sir1) ® ’Hq(Zd_iH)) . (28)

Under the invertibility condition, one can define an equivalence of categories in-
duced from ¢ as below:

d
Fs : Mod(S§ ,(n, d))—>Mod<@SA [n/2],4) ® SH(|n/2], d—z)) (29)

=0

In other words, we have the following commutativity of functors:

Proposition 4.1.2. Assume [n/2] > d > i > 0 and that f2 is invertible. The
diagram below commutes:

Mod(SB_(n,d)) L Mod(@sA [n/2],i) @ SA(|n/2), d—z))

[ B e 0
d
Mod(HB, ,(4) —T*— Mod( @ Hy(Sis1) & Hy(Sa-it1))
1=0
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Remark 4.1.3. We expect that Proposition 4.1.2 still holds if we replace the functor
thd therein by Fﬁd.
4.2. Existence of idempotents

We construct additional idempotents in Schur algebras of type B that will be used
later in Section 7.

Proposition 4.2.1. There exists an idempotent e € Sg’q(n’, d) such that
eSg.4(n',d)e ~ Sg ,(n,d)
if either one of the following holds:

(a) n' >n and n’ =n mod 2;
(b) n' =2r"+1>n="2r.

Proof. We use the combinatorial realization in Section 2.5. For (a) we set
_ 1
€= Z ¢'w’
¥
where v runs over the set
AB(n',d)|n
{y=1(0,...,0,%,...,%0...,0) € AB(n/,d)} if (a) holds;
——
T =0, 05w Lk %,0...,0) € AB(, )} if (b) holds,
—_— =
where the #’s stand for arbitrary entries such that v € AB(n/, d).
By Lemma 2.5.1 we have

g : B,/ .
edd ¢ — o3, A peA (), d)ln;
H 0 otherwise.

It follows by construction that eSg,q(n' ,d)e and Squ(n,d) are isomorphic as
algebras. [

4.3. Existence of spectral sequences
Let A be a finite-dimensional algebra over a field £ and e be an idempotent in
A. Doty, Erdmann and Nakano [DENO04] established a relationship between the
cohomology theory in Mod(A) versus Mod(eAe). More specifically, they construct
a Grothendieck spectral sequence which starts from extensions of A-modules and
converges to extensions of eAe-modules.

There are two important functors involved in this construction. The first functor
is an exact functor from Mod(A) to Mod(eAe) denoted by F (that is a special
case of the classical Schur functor) defined by F(—) = e(—). The other functor
is a left exact functor from Mod(eAe) to Mod(A), denoted G defined by G(—) =
Hom 4 (Ae, —). This functor is right adjoint to F.

In [DENO04], the aforementioned construction was used in the quantum setting to
relate the extensions for quantum GL,, to those for Hecke algebras. For [n/2| > d
there exists an idempotent e € S (n,d) such that Hg, (d) = eS§ (n,d)e.
Therefore, we obtain a relationship between cohomology of the type B Schur
algebras with the Hecke algebras of type B.
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Theorem 4.3.1. Let [n/2]>d with M € Mod(Sg, ,(n,d)) and N € Mod(Hg, ,(d)).
There exists a first quadrant spectral sequence

EY = Extg%’q(n’d)(M, RIG(N)) = Ext !

! 4)(eM,N),

where RIG(—) = Extg_[ (ved -,

8,q(d)
We can also compare cohomology between qu(n,d) and ngq(n’,d) where

n' > n since there exists an idempotent e € S§ (n/,d) such that S§ (n,d) =
6557[1(77,/, d)e thanks to Proposition 4.2.1.

Theorem 4.3.2. Let M € Mod(Sg ,(n/,d)) and N € Mod(Sg, ,(n,d)). Assume
that either

(a) n’ >n and n’ =n mod 2;
by ' =2r"+1>n=2r.

Then there exists a first quadrant spectral sequence

By’ = Extis (4 (M, R/G(N)) = Ext?gq(m o (€M, N).

where RIG(—) = ExtéB

5) q(n,d) (esg,q (TL’, d), *).

5. Cellularity

5.1. Definition

We start from recalling the definition of a cellular algebra following [GL96]. A
K-algebra A is cellular if it is equipped with a cell datum (A, M, C, ) consisting
of a poset A, a map M sending each A € A to a finite set M(A), a map C sending
each pair (s,t) € M(\)? to an element C2, € A, and a K-linear involutory anti-
automorphism * satisfying the following conditions:

(C1) The map C is injective with image being a K-basis of A (called a cellular
basis).
(C2) For any A € A and s,t € M()), (C2)* = C,.
(C3) There exists r,(s',5) € K for A € A, 5,5 € M()) such that for all a € A
and s,t € M (),
aCy( = Z ro(s',8)C%  mod Acy.

s'€M(N)

Here Ay is the K-submodule of A generated by the set {Cl, ., | p <
Ns” e M(p)}.

For a cellular algebra A, we define for each A € A a cell module W (\) spanned by
C2, s € M()\), with multiplication given by

aCs = Z ro(s’,5)CL. (31)

s'€M ()
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For each A € A we let ¢y : W(A) x W(A) — K be a bilinear form satisfying
Cs:\,gct):t = oa(Cs, C{)C;t mod Ac. (32)

It is known that the type A ¢-Schur algebras are always cellular, and there
could be distinct cellular structures. See [AST18] for a parallel approach on the
cellularity of centralizer algebras for quantum groups.

Example 5.1.1 (Mathas). Let A = A%(d) be the set of all partitions of d, and
let A’ = A’(d) be the set of all compositions of d. For each composition A € A’; let
3y be the corresponding Young subgroup of ;. We set

Ty = Z Ty € ’Hq(Ed)

wWEX N

It is known the g-Schur algebra admits the following combinatorial realization:
S(/I'\(n, d) = Endﬂq(zd)(@)\e/\/i)\%q(zd))
= @ HOmrH(I(Zd)($H’HQ(Ed),I)\Hq(zd)).

A EN
The finite set M()) is given by M(A) = ||, SSTD(A, p), where
SSTD(A, ) = {semi-standard A-tableaux of shape p}. (33)

For i+ d, denote the set of shortest right coset representatives for ¥, in ¥4 by
D, ={w e ;| l(gw) = l(w)+ {(g) for all g € X, }.

Let t* be the canonical A-tableau of shape A, then for all A-tableau t there is
a unique element d(t) € D) such that td(t) = t. The cellular basis element, for
A€ A s €sstd(\, p), t € sstd(\, v), is given by

C;t(l‘ah) = 6(1,;1 ZTd(s)*lx/\Td(t)hv (34)

s,t
where the sum is over all pairs (s,¢) such that p(s) =s,v(t) =t.

Example 5.1.2 (Doty—Giaquinto). The poset A is the same as the one in Ex-
ample 5.1.1, and we have A = X AT It is known that the algebra Sﬁ(n, d) admits
a presentation with generators F;, F;(1 <i <n—1) and 15(A € A). The map * is
the anti-automorphism satisfying

Ef=F, F'=FE, 1;=1,.

For each A € A we set A] = {u € A* | u < A}. Note that A} is saturated and
it defines a subalgebra S;(AY) of S{?(md) with a basis {Zs | 1 < s < dy)} for
some dy € N. Let x5 € Sé\(n, d)~ be the preimage of Z; under the projection
S (n,d) = S, (AY) that is the identity map except that it kills all 1,, where p £ A.
The finite set M (A) is given by

M) ={1,2,...,dx}. (35)
Finally, for A € A,s,t € M(\), we set

C’:\’t =z lrz]. (36)

5
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5.2. Cellular structures on Sg’q(n,d)

We show that the isomorphism theorem produces a cellular structure for 5'57 .(n:d)
using any cellular structure on the g-Schur algebras of type A. For any n, d, we fix
a cell datum (A, g, My, 4, Cp 4, *) for Sé\(n7 d). Define

A® — 2%(0.0) = | Aguyy X Mg (37)
=0

as a poset with the lexicographical order. For A = (A1), A\(?)) € AB, we define M®
by

MBO) = | | My 91, (AM) x My, ) 4 i(AP).

i=0
The map C® is given by, for s = (s(1),5®),t = (tW,2)) € M, 57,(AV) x
My 21.4-i(A®)) € MB(N),

(C®)oi = = (Crny21, )5<(1> (@ ® (Cln/2),a- 1)5).\((22)) (@)

Finally, the map * is given by
A

(C(n/Q] )5(1) e (CLn/2j d— 1)5(2> 2

o (38)

= (Crny2, ){(1) s @ (Clny2],d=i) i@ o -

Corollary 5.2.1. If the invertibility condition in Theorem 3.1.1 holds, then the
algebra Sg,q(n, d) is a cellular algebra with cell datum (AB, MB OB x).

Proof. Condition (C1) follows from the isomorphism theorem; while Condition
(C2) follows directly from (38). Condition (C3) follows from the type A cellular
structure as follows: for a; € S'([n/2],i) and ay € SH(|n/2],d — i),

ey
al(C(n/QM);\u),t(n = Z 7‘((111)(11(1)75(1))( /2], )u<1> (1 mod Ay,
u(1>€M"n/2'|1i(A(1))
(2) (2)
a2(Cln /2] a—i)e@ g = > r@ W, 5P (Clp2)a-i)ae o mod Ay,
ueM, q4_;(A(2)
where
Ay = Sp([n/2],i)(< AW),
Ay = SH([n/2],d — i) (< A@).
That is, for a = a1 ® ag € SH([n/2],i) ® SH(|[n/2],d — i) C SP(n,d), we have
a(C®)} = > re (1,8)(C®)a ¢ mod SF(n,d)(< ),

u:(u(1>7ll(2))
EM[p, 191 ,AN)XM 91, (AP)

where rB(u, ) = ri (u®, sMW)r{2 1?5 is independent of t. O
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6. Quasi-hereditary structure

6.1. Definition

Following [CPS88], a K-algebra A is called quasi-hereditary if there is a chain of
two-sided ideals of A:
ochclhc---cl,=A

such that each quotient J; = I;/I;_1 is a hereditary ideal of A/I;_;. It is known
[GL96] that if A is cellular and ¢y # 0 (cf. (32)) for all A € A then A is quasi-
hereditary.

An immediate corollary of our isomorphism theorem is that 557 (1, d) is quasi-
hereditary under the invertibility condition. We conjecture that this is a sufficient
and necessary condition and provide some evidence for small n.

Corollary 6.1.1. If the invertibility condition in Theorem 3.1.1 holds, then the
algebra SqB(n, d) is quasi-hereditary.
Proof. Let ¢} with v € A, ; be such a map for SH(r,j). Fix A = (A1, A@) €
Arpya1,i X Mnj2)a—i © AB and fix

5= (s",5@), t = (1 t3)) € My, ) ,AV) x MYy o) 4, (AP)) € MB(N),

we have
e ) @ @
C2:C0 = (Chya1.0)50).50 (Crnya1.0) i . D (Clisal d—i)ae o (Cln2) ai) i @

= (CV, o) (€D, CP)C2 mod SB(n,d)(< \). O

Recall that in Proposition 2.6.1 we see that 557(1(2,1) ~ Hg-1(82). In the
following we show that the known cellular structure (due to Geck/Dipper—James)
fails when fB = Q=2 + 1 is not invertible.

Example 6.1.2. Let S§ (2,1) ~ Ho-1 (%) = K[t]/(t* — (@' — Q)t +1). We
have

A= {r=rmea=H} w0y = =m0 - {s =3}

The cellular basis elements are

Ca= > Q'™r,=1+Q™"t, Cl= > Q@ ‘1,=1
wESo wWEX XX
Firstly, we have C%,Ct, =1=C%, and hence ¢, is determined by ¢,,(Cs, Cs) =1,
which is nonzero. For A\, we have
CHCi=1-Q 2+ (Q*+1)Q 't=(Q2+1)C mod A.,.
That is, ¢, is determined by ¢, (Ci,C) = (Q~2 + 1), which can be zero when
fB =0Q 2 +1=0. Therefore, Sg’q (2,1) is not quasi-hereditary in an explicit way.

One can also see that Sg}q(l 1) is not quasi-hereditary because if it were then
it would have finite global dimension. However, Hg-1(X2) is a Frobenius algebra
with infinite global dimension.

Conjecture 6.1.3. The algebra Sg’q(n,d) is quasi-hereditary if and only if the
polynomial f2(Q,q) is invertible.
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7. Representation type
7.1.

Let A be a finite-dimensional algebra over a field K. A fundamental question
one can ask about A is how to describe its representation type. The algebra A is
semisimple if and only if every finite-dimensional module (i.e., M € mod(A4)) is a
direct sum of simple modules. This means that indecomposable modules for A are
simple. If A admits finitely many finite-dimensional indecomposable modules, A
is said to be of finite representation type. If A does not have finite representation
type A is of infinite representation type.

A deep theorem of Drozd states that finite-dimensional algebras of infinite
representation type can be split into two mutually exclusive categories: tame or
wild. An algebra A has tame representation type if for each dimension there exists
finitely many one-parameter families of indecomposable objects in mod(A). The
indecomposable modules for algebras of tame representation type are classifiable.
On the other hand, the algebras of wild representation type are those whose repre-
sentation theory is as difficult to study as the representation theory of the free
associative algebra k(z,y) on two variables. How to classify the finite-dimensional
k{x,y)-modules is very much an open question.

7.2. Summary: type A results

The following results from [ENO1, Thm. 1.3(A)—(C)] summarize the representation
type for the g-Schur algebra for type A over K. Assume that p = char(K), g € K*
has multiplicative order [ and g # 1.

Theorem 7.2.1. The algebra S(’;(n,r) is semisimple if and only if one of the
following holds:

() n=1;
(ii) q is not a root of unity;
(iii) q is a primitive lth root of unity and r < I;
(iv) n=2,p=0,1=2 and r is odd;
(V) n=2,p>3,1=2 andr is odd with r < 2p + 1.

Theorem 7.2.2. The algebra S{;(nm) has finite representation type but is not
semi-simple if and only if @ is a primitive [th root of unity with | < r, and one of
the following holds:

(i) n>3 and r < 2I;

(i) n=2,p#0,1>3 and r < lp;

(iii) n =2, p=0 and either > 3, orl =2 and r is even;

(iv) n=2,p>3,1=2 and r even with r < 2p, orr is odd with 2p+1 <r <
2p? + 1.

Theorem 7.2.3. The algebra Sg(n, r) has tame representation type if and only if
q is a primitive lth root of unity and one of the following holds:

i) n=3,1=3,p#2andr=1,8;
(i) n=3,1=2andr =4,5;
(iii) n=4,1=2 and r = 5;
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(iv) n=2,1>3,p=2o0orp=3andpl <r < (p+1);
(v) n=2,1=2,p=3 and r € {6,19,21,23}.
7.3.

In this section we summarize some of the fundamental results that are used to
classify the representation type of Schur algebras. The first proposition can be
verified by using the existence of the determinant representation for S?(n, r1) (cf.
[ENO1, Prop. 2.4B]).

Proposition 7.3.1. If Sg‘(n, r1)®S§(n, r9) have wild representation type then the
tensor product S(?(n, r+n)® Sg(n, r9) has wild representation type.

Next we can present a sufficient criteria to show that the tensor product of type
A Schur algebras has wild representation type.

Proposition 7.3.2. Suppose that the Schur algebras S?(n, r1) and Sg(n, ro) are

non-semisimple algebras. Then Sg(m r1)® Sg(n, r9) has wild representation type.

Proof. First note that Sg‘(n, r) is a quasi hereditary algebra and if S?(n, r) is not
semisimple then it must have a block with at least two simple modules.
Suppose that S, S5, S3 are three simple modules in Sg(n, r1) with

EXt}qu(n,Tl)(Sl, Sg) 7é 0, EXt}qu(n,Tl)(SQ, 53) 7é 0.
Note that via the existence of the transposed duality,
EXt}SqA(n,Tl)(Sia S]) = EXt.ls‘g(n,rl) (Sja SZ)

for 4,7 = 1,2,3. Similarly, let 77,75 be two simple modules for Sg(n, r9) with
EXt}gg(nM)(TMTQ) # 0. Then the Ext'-quiver for S52(n,r1) ® S2(n,r2) will have
a subquiver of the form as in Figure 1 below. This quiver cannot be separated
into a union of Dynkin diagrams or extended Dynkin diagrams. Consequently,
S?(n, r1) ® SqA(n, r9) must has wild representation type.

FIGURE 1.

The other case to consider is when the blocks of S&(n,r1) and S&(n,r2) have
at most two simple modules. Let B; be a block of S?(n,rj) for j = 1,2 with two
simple modules. There are four simple modules in By ® By and the structure of
the projective modules is the same as of a regular block for category O for the Lie
algebra of type A; x Ay (cf. [FNPO1, 4.2]). The argument in [FNPO1, Lem. 4.2
can be used to show that B; ® By has wild representation type. O
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7.4.

The results in [ENO1, Thm. 1.3(A)—(C)] entail using a different parameter g than
the parameter ¢ in our paper. The relationship is given by § = g2 or equivalently
q® = (q)~! with S{?(n,d) = Sg(n,d). This means that

e ¢ is generic if and only if g is generic,

e ¢? is a primitive [th root of unity if and only if g is a primitive Ith root of
unity;

e if ¢ is a primitive (2s)th root of unity if and only if g is a primitive sth root
of unity;

e if ¢ is a primitive (2s + 1)th root of unity if and only if g is a primitive
(2s + 1)th root of unity.

Now let n’ > n. By Proposition 4.2.1, under suitable conditions on n’ and n,
there exists an idempotent e € Sg’q(n’, d) such that Sg’q(n,d) = eSgﬁq(n’, d)e. By
using the proof in [ENO1, Prop. 2.4B], one has the following result.

Proposition 7.4.1. Letn/ > n withn’ > n and n’ =n mod 2.

(a) If Squ(n,d) is not semisimple then Sgﬂ(n’, d) is not semisimple.
(b) If S§ ,(n,d) has wild representation type then Sg, ,(n',d) has wild represen-
tation type.

7.5. Type B results

Throughout this section, let Sgﬂ(n, d) be the ¢-Schur algebra of Type B under
the condition that the polynomial ff(Q,q) = 0. Moreover, assume that ¢? # 1
(i.e., ¢ # 1 or a primitive 2nd root of unity). One can apply the isomorphism in
Theorem 3.1.1 to determine the representation type for SS, 4(n, d) from the Type
A results stated in Section 7.2.

Theorem 7.5.1. The algebra Sgg(n,d) is semisimple if and only if one of the
following holds:

(i) n=1;

(ii) g is not a root of unity;
(iii) ¢2 is a primitive Ith root of unity and d < I;
(iv) n =2 and d arbitrary.

Proof. The semisimplicity of (i)—(iii) follow by using Theorem 3.1.1 with Theo-
rem 7.2.1. The semisimplicity of (iv) follows by Theorem 3.1.1 and the fact that
Sé\(l, d) is always semisimple.

Now assume that ¢? is a primitive Ith root of unity, d > I, n > 3 and [ > 3.
Consider the case when n = 3. From Theorem 3.1.1,

d
8§ ,(3.d) = €D 55(2,4) @ Sp (1, d — ). (39)

i=0
If d > [ then SqA(Q, 1) appears as a summand of Sg’q(& d) (when ¢ = d—1). Forl > 3,
S(?‘(Q7 ) ~ S{;‘(Q, [) is not semisimple. It follows that Squ(?), d) is not semisimple
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for d > . One can repeat the same argument for n = 4 to show that Squ(él, d) is

not semisimple for d > I. Now apply Proposition 7.4.1(a) to deduce that 5'57(1(717 d)
is not semisimple forn > 3 and d >1. O

Theorem 7.5.2. The algebra Sgﬂ(n, d) has finite representation type but is not
semisimple if and only if ¢* is a primitive lth root of unity with | < d, and one of
the following holds:

(i) n>51<d<2;

(i) n=3,p=0andl <d;

(iii) n=3,p>2and 1l < d < lp;

(iv) n=4,p=0,1=2 and d > 4 with d odd;

(v)y n=4,p>3,1=2and 4 <d<2p—1 with d odd.

The algebra Sg,q(n, d) has tame representation type if and only if

(vij n=3,1=2,p=3 and d =6;
(vii) n=3,1>3,p=2o0or3 andlp<d<li(p+1);
(vili) n=4,1=2,p=3 and d=1T1.

Proof. We first reduce our analysis to the situation where n = 3 and 4. Assume that
n >5so [n/2] > 3 and |n/2] > 2. By Theorem 7.2.1, the algebras S7(2,1) and
Sé\(i, [+7) are not semisimple for ¢ > 3, j > 0, and hence neither are SqA( [n/2],147)
and S(|n/2],1) for n > 5,j > 0. Therefore, S9([n/2],1 + j) @ SA(|n/2],1) has
wild representation type by Proposition 7.3.2. It follows that SB q(n d) has wild
representation type for d > 2l,n > 5. When | < d < 2] and n > 5, one can
use Theorem 3.1.1 in conjunction with Theorem 7.2.2 to prove that SQ’q(n7 d) has
finite representation type.

Now consider the case when n = 3. The isomorphism (39) indicates that
we can reduce our analysis to considering S{?(Q,r). From this isomorphism and
Theorem 7.2.2, one can verify (i) when char K = 0 then Sg7q(3,d) has finite
representation type (but is not semisimple) for [ < d; (ii) when char K = p > 0
then Squ(i’), d) has finite representation type (but is not semisimple) for [ < d < Ip;
and (iii) when char K = p > 0, Sg,q(i‘},d) has infinite representation type for
d > Ip.

For n = 3, one can also see that under conditions (vi) and (vii), qu(?),d)
has tame representation type. Moreover, one can verify that Sg}q(B, d) has wild
representation type in the various complementary cases.

Finally let n = 4. From Proposition 7.3.2, S)'(2,1) ® S7(2,1) and S)(2,1) ®
S?(Q,l + 1) has wild representation type for [ > 3. Therefore, 5'6'327(1(47 d) has wild
representation type for d > 21 and [ > 3. For [ = 2, the same argument can be
used to show that Sg’q(él, d) has wild representation type for d-even and d > 4.

This reduces us to analyzing Squ(él,d) when | = 2 and d > 4 is odd. By
analyzing the components of Sg}q(él,d) via the isomorphism in Theorem 3.1.1,
one can show that for d odd: (i) Sg7q(4,d) has finite representation type (not
semisimple) for 4 < d <2p —1 and p > 3, (ii) Sg’q(él, d) has finite representation
type (not semisimple) for d > 4 and p = 0, (iii) Sg,q(él, d) has wild representation
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type for d > 2p + 1 for p > 5, and (iv) Sgﬁq(él,d) has wild representation type
for d > 2p + 3 for p = 3. One has then to show that 557(1(4,7) forp=3,1=2

has tame representation type since the component S%(2,6) ® S7'(2,1) has tame

representation type, and the remaining components have finite representation type.
U

Note that for the case ¢ = 1 (i.e., ¢> = 1) one obtains the classical Schur
algebra for type A, and can use the results in [Er93] [DN98] [DEMN99] to obtain
classification results in this case for Squ(n, d).

8. Quasi-hereditary covers

In this section we first recall results on 1-faithful quasi-hereditary covers due
to Rouquier [Ro08]. Then we demonstrate that our Schur algebra is a 1-faithful
quasi-hereditary cover of the type B Hecke algebra via Theorem 3.1.1. Hence, its
module category identifies the category O for the rational Cherednik algebra of
type B, see Theorem 8.3.3. A comparison of our Schur algebra with Rouquier’s
Schur-type algebra is also provided.

8.1. 1-faithful covers

Let C be a category equivalent to the module category of a finite dimensional
projective K-algebra A, and let A = {A(X)}aea be a set of objects of C indexed
by an interval-finite poset structure A. Following [Ro08], we say that C (or (C,A))
is a highest weight category if the following conditions are satisfied:

(H1) End¢(A(N)) = K for all X € A;

(H2) If Home (A(N), A(p)) # 0 then A < p;

(H3) If Home(A(X), M) =0 for all A € A then M = 0;

(H4) For each A(M\) € A there is a projective module P(A\) € C such that
A(A

ker(P(\) — )) has a A-filtration, i.e., finite filtrations whose quotients
are isomorphic to objects in A.

Let A-mod be the category of finitely generated A-modules. The algebra A is
called a quasi-hereditary cover of B if the conditions below hold:

(C1) A-mod admits a highest weight category structure (A-mod, A).

(C2) B = End4(P) for some projective P € A-mod.

(C3) The restriction of F' = Homu (P, —) to the category of finitely generated
projective A-modules is fully faithful.

Quasi-hereditary covers are sometimes called highest weight covers since the
notion of highest weight category corresponds to that of split quasi-hereditary
algebras [Ro08, Thm. 4.16]. We also say that (A, F') is a quasi-hereditary cover
of B. Moreover, a category C (or the pair (C, F)) is said to be a quasi-hereditary
cover of B if C ~ A-mod for some quasi-hereditary cover (4, F') of B.

Following [Ro08], a quasi-hereditary cover A of B is i-faithful if
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Ext’, (M, N) ~ Ext},(FM,FN) for j <i, (40)

and for all M, N € A-mod admitting A-filtrations. Furthermore, a quasi-hereditary
cover (C,F) of B is said to be i-faithful if the diagram below commutes for some
quasi-hereditary cover (A, F’) of B:

A-mod

. -
N e

B-mod

Rouquier proved in [Ro08, Thm. 4.49] a uniqueness theorem for the 1-faithful
quasi-hereditary covers which we paraphrase below:

Proposition 8.1.1. Let B be a finite projective K -algebra that is split semisimple,
and let (C;, F;) for i = 1,2 be 1-faithful quasi-hereditary covers of B with respect
to the partial order <; on Irr(B). If <; is a refinement of <o then there is an
equivalence C1 ~ Cy of quasi-hereditary covers of B inducing the bijection Irr(Cy) =~

Irr(B) ~ Irr(Ca).
8.2. Rational Cherednik algebras

Let (W, S) be a finite Coxeter group, and let Ay be the corresponding rational
Cherednik algebra over C[h,;u € U] as in [Ro08], where U = | |,cg{s}x{1,...,es}
and e is the size of the pointwise stabilizer in W of the hyperplane corresponding
tos. If W = WB(d) and S = {sg,s1} then U = {(s;,7) | 0 < 4,7 < 1}. In this case
we assume that

h’(s1,0) = h7 h(sl,l) = 07 h(su,i) = hl fOI’ i = 0, 1. (41)

Remark 8.2.1. In [EGO02] the rational Cherednik algebra H, . is defined for a
parameter ¢ € C, and a W-equivariant map ¢ : S — C. The two algebras, Ay
and Hy ., coincide if £ = 1, hs 9y = 0 and h(, 1) = c(s) for all s € S.

Following [Ro08, §5.1.2, §5.2], let m be a maximal ideal of C[h,;u € U] and K’
be the completion at m, and let Of;, be the deformed category of finitely generated
Aw-modules that are locally nilpotent for S(V'). Let Oy = K®g Oj. It is proved
in [GGORO3] that (Ow, Aw ) is a highest weight category of H(W)-mod

Aw ={A(FE) := Ay QS(V)uw E|E €Trr(W)}.
See [Ro08, 3.2.1-3] for the partial order < on Irr(W). Let AJ (d) be the poset of

all bipartitions of d on which the dominance order < is given by A < p if, for all
s >0,

1 1 r r
ST ST L AT < @]+ 3T ).
Jj=1 Jj=1 Jj=1 j=1
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For A € AJ(d), set
W/l\g(d) = CQd X (2)\(1) X Z)\(z)).

Set
L) ={1,.... A"}, L@ ={AD]+1,....d}.

Following [Ro08, 6.1.1], there is a bijection
+ B — (AW @ — Ind"V @ @
A2 (d) - II‘I‘(W (d))v A= ()‘ a/\ ) =X\ = Indwf(d) (X/\(l) & ¢ XA(%);

where Y is the irreducible character of W&(d) corresponding to A, and @) is the
1-dimensional character of 021*(2)
the restriction to X, (2) is trivial.

Rouquier showed that the order < is a refinement of the dominance order <
under an assumption on the parameters h, h;’s for the rational Cherednik algebra

as follows:

X X1, (2) whose restriction to CQIA(Q) is det and

Lemma 8.2.2 ([Ro08, Prop. 6.4]). Assume that W = WB(d), h < 0 and h; —
ho > (1 —d)h (see (41)). Let A, ju € A (d). If X < p, then xa < x, on Irr(W).

Remark 8.2.3. The assumption in Lemma 8.2.2 on the parameters is equivalent to
¢(sp) = h1 > 0 using Etingof-Ginzburg’s convention.

Let KZw and KZj, be the KZ functor on Ow and Oy, respectively. We
paraphrase [Ro08, Thm. 5.3] in our setting as below:

then (Ow, KZW)

Proposition 8.2.4. If W = W8(d) and H(W) = Hg ,(d),
VK Zy,) is a 1-faithful

is a quasi-hereditary cover of H(W)-mod. Moreover, ( {,V
quasi-hereditary cover if (¢*> + 1)(Q* + 1) # 0.

It is shown in [Ro08] that under suitable assumptions, Ows(q) is equivalent to
the module category of a Schur-type algebra ST(d) which does not depend on n
using the uniqueness property Proposition 8.1.1. Below we give an interpretation
in our setting.

Let Ay(d) be the set of all bicompositions of d. In [DJM98b] a cyclotomic Schur
algebra over Q(q, @, Q1, Q2) for each saturated subset A C Az(d), which specializes
to cyclotomic Schur algebras Sg(A) over K is defined (see Section 9.2). Moreover,
in [Ro08] an algebra Sq(A) is defined that is Morita equivalent to Sg(A) as given
below:

S™(d) = Endyp (g (Pa), Pai= B mard ),
AEAT (d)

where m,, is defined in (46). Note that S®(d) does not depend on n. Set

F}* = Homgr (g (Py, —) : S¥(d)-mod — H%vq(d)—mod.
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Proposition 8.2.5 ([Ro08, Thm. 6.6]).

(a) The category Mod(S®(d)) is a highest weight category for the dominance
order.

(b) (SR(d), FY) is a quasi-hereditary cover of 'H%,q(d).

(c) The cover (S®(d), FY) is 1-faithful if

d
(@ + 1)@ +1)#0, and f5,(d)-[JA+a*+-+¢V)#0. (42)
=1

The category O for the type B rational Cherednik algebra together with its KZ
functor can then be identified by combining Propositions 8.1.1, 8.2.4 and 8.2.5. In
other words, the following diagram commutes if (42) holds:

~

OWB(d) SR(d)-mOd

KZWB(@\A /F5l

’H%yq(d)—mod

8.3. 1-faithfulness of Sg’q(n, d)-mod

Let ¢ be the multiplicative order of ¢ in K*. In this section we use the following
assumptions:

d—1
=[] @2+¢)eK”, r=[n/2]>d, >4 (43)
i=1—d

As a consequence, there exists a type B Schur functor by Proposition 4.1.1.
For type A, it is known in [HNO04] that the g-Schur algebra is a 1-faithful quasi-
hereditary cover of the type A Hecke algebra if ¢ > 4. Moreover, Theorem 3.1.1
applies and hence we will see shortly that Sg’ q(n, d) is a 1-faithful quasi-hereditary
cover of H%,q (d). Furthermore, Proposition 8.1.1 implies that we have a concrete
realization for the category O for the type B rational Cherednik algebra together
with its KZ functor using our Schur algebra.

Corollary 8.3.1. If f® € K*, then Sg’q(n, d)-mod is a highest weight category.

Proof. 1t follows immediately from the isomorphism with the direct sum of type
A ¢-Schur algebras that ngq(n, d)-mod is a highest weight category. [

Below we characterize a partial order for highest weight category Squ(md)—
mod obtained via Corollary 8.3.1 and the dominance order for type A. Denote the
set of all N-step partitions of D by AA(N, D). Set

AN p ={A*N) | A€ AA(N,D)}.

Now A]AV’D is a poset with respect to the dominance order < on AA(N, D). Tt is

well known that for all non-negative integers N and D, (S#(N, D)-mod, A?\,,D) is
a highest weight category.
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Recall Fg from (29) and AB(n,d) from (37). Set

AB = {ABN) = FHAMAW) @ ARA@)) [ X = (AW NP € AB(n,d)}. (44)

Now AE,d is a poset with respect to the dominance order (also denoted by <)
on AB(n,d) C AJ (d). Hence, (S2(n,d)-mod, <) is a highest weight category.

Lemma 8.3.2. Assume that S ., d) is a quasi-hereditary cover of ’HQ ). If
(43) holds, then the cover is 1 fazthful

Proof. Write Azsg’q(n,d),B:HCBM( ), 8" =58(n/2],i),58" =5M(|n/2],d — i)
for short. We need to show that, for all M, N admitting AB-filtrations,

Ext’y(M,N) ~ Ext! , (F’

P aM F)  N), i<

Recall Fg from (29). Write FgM = @, M ® M and FsN =P, N ® N/ for
some M/, N/ € Mod(S’) and M/, N/’ € Mod(S"”). From construction we see that
all M/, M!", N/, N!" admit AA-filtrations since M, N have AB-filtrations.

For Ln/?] >d>i > 0, we abbreviate the type A Schur functors (see (25)) by

F = (n/2] L= Ln/zj 4, Since the type A g-Schur algebras are 1-faithful

provided £ > 4, for j < 1 we have
Ext]S,(M' N}) ~ Ext?
Ext,, (M, N!') ~ Ext}

(ML PN,
F//M(/ F//N‘”).

Ha (i

Hq(Ba- +1)(
We show first it is 0-faithful. We have
Hom (M, N) ~ Homgys g0 (]-'SM, ]-'SN)
d

~ @ HOIHS/(M{, Nl/) ® Homgn (Mi//a Nz//)

d
~ @ Homyy, (s, (F'M], F'N}) @ Homgy, (s,_,.,)(F"M]', F"N}')
=0

~ @D Homyy, s, e, (a o) (F/M] @ /M, F'N| @ F'N/)
=0
d
= @ Homﬂq(2i+1)®7{q(2d_i+1)(‘FHF:,dM’ ‘FHFZ,dN)
=0
~ Homp(F) ;M. F) ,N).

n

Note that the second last isomorphism follows from Proposition 4.1.2.



¢-SCHUR ALGEBRAS OF TYPE B 1015

For 1-faithfulness, we have
Ext’ (M,N)

~

-

@
I
=

((Ext§ (M],N}) ® Homgn (M, N{'))
® (Homg: (M}, N}) @ Extk, (M, N!')))

((EXt%{q (Zi+1) (F/MZ/7 F/NZ/) ® Hoqu(Ed_q‘,+1) (FHMiH? F”Ni//))

-

~
Il
=]

@ (Homyy, (s, ,) (F'Mj, F'N}) ® Exty (s, . (F"M]', F"N]")))
d
= @ EXt’lHq(Ei-H)@Hq(Ed—HO(‘FHFrbL,dMa -FHFZ@N)
=0
~ Extg(F) ;M. F, ,N). O

Theorem 8.3.3. Assume that W = WB(d), h < 0, hy — hg > (1 — d)h (see
(41)) and (¢*> + 1)(Q? + 1) € K*. If (43) holds, then there is an equivalence
Ow =~ ngq(n,d)-mod of quasi-hereditary covers. In other words, the following
diagram commutes:

Ow = Sg}q(n, d)-mod

Km /FZd

Hg ,(d)-mod

Proof. The theorem follows by combining Proposition 8.1.1, Proposition 8.2.4,
Lemma 8.2.2, and Lemma 8.3.2. [

Remark 8.3.4. The uniqueness theorem for 1-faithful quasi-hereditary covers also
applies on our Schur algebras and Rouquier’s Schur-type algebras. That is, the
following diagram commutes provided (42) and (43) hold:

S (d)-mod = qu(n, d)-mod

H%7q(d)—mod

9. Variants of g-Schur algebras of type B/C

It is interesting that the type A ¢-Schur algebra admits quite a few distinct
generalizations in type B/C in the literature. This is due to the fact that the type A
g-Schur algebra can be realized differently through the following realizations of the
tensor space (K™)®9: (1) a combinatorial realization as a quantized permutation
module (cf. [DJ89]); (2) a geometric realization as the convolution algebra on GL,,-
invariant pairs consisting of a n-step partial flag and a complete flag over finite
field (cf. [BLM90]).
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In the following sections we provide a list of ¢-Schur duality/algebras of type B/C
in literature, paraphrased so that they are all over K, and with only one parameter
q. These algebras are all of the form Endﬂg(d)(V‘@d) for some tensor space that
may have a realization V®¢ ~ @, ; M* via induced modules. Considering the
specialization at ¢ = 1, we have

M/\’q:1 = ind;{V;(d)Ua Hy < WB(d) is a subgroup,

where U is usually (not always) the trivial module. We summarize the properties
of the ¢-Schur algebras in the following table:

coideal ¢-Schur Algebra

cyclotomic Schur algebra

Sakamoto—Shoji algebra

SB(n,d) Sq(A) SB(a,b,d)
index set I compositions bicompositions unclear
A= (Nier(n) A= (A0, A@)
with constraints on \;
subgroup Hy WEB(\g) x Zat,eAr) (C;)‘m| X C‘Q/\m‘) X By unknown

module U trivial nontrivial
Schur duality (UB(n), HE(d)) partial (Uy(gl, x gly), HE(d))
cellularity new [LNX] known [DJM9S8b] unknown
quasi-heredity new [LNX] known [DJM98b] unknown
Schur functor new [LNX] known [JMO00] unknown
1-faithful cover new [LNX] known [Wel7] unknown

For completeness, we remark that there is studied in [DS00] a more involved
“type B” g-Schur algebra (referred as the g-Schur? algebras), which admits a Morita
equivalence theorem (see [DR00]). We also distinguish the coideal ¢g-Schur algebras
from the slim cyclotomic Schur algebras constructed in [DDY18].

9.1. The coideal Schur algebra Sg(n, d)

This is the main object in this paper which we have been calling the g-Schur algebra
of type B. To distinguish it from the other variants we call them for now the coideal
Schur algebras since they are homomorphic images of coideal subalgebras.

For the equal-parameter case, a geometric Schur duality is established between
HE(d) and the coideal subalgebra Ug(n) as below (cf. [BKLW18]):

Ug (n)
! .
Sg(n,d) ~ Tgo(n,d) =~ (K™)®? = T3 (n,d) ~H(d)

Note that a construction using type C flags is also available, and it produces
isomorphic Schur algebras and hence coideals. A combinatorial realization Tflg(n7 d)
as a quantized permutation module is also available along the line of Dipper—James.

For the case with two parameters, the algebra Sgﬂ(n, d), when n is even, was
first introduced by Green and it is called the hyperoctahedral ¢-Schur algebra
[Gr97]. A two-parameter upgrade for the picture above is partially available — a
Schur duality is obtained in [BWW18] between the two-parameter Hecke algebra
H%’q(d) and the two-parameter coideal UB over the tensor space Q(Q,q); a two-
parameter upgrade for Tﬁg(n,d) is studied in [LL18] — while a two-parameter
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upgrade for TgB,‘30 (n, d) remains unknown since dimension counting over finite fields
does not generalize to two parameters naively.

To our knowledge, this is the only g-Schur algebras for the Hecke algebras of
type B that admit a coordinate algebra type construction and a notion of the Schur
functors with the existence of appropriate idempotents.

9.2. Cyclotomic Schur algebras

The readers will be reminded shortly that the cyclotomic Hecke algebra H(r, 1, d)
of type G(r,1,d) is isomorphic to 'HqB (d) at certain specialization when r = 2. For
each saturated subset A of the set of all bicompositions, Dipper—-James—Mathas
(cf. [DIJM98D]) define the cyclotomic Schur algebra S(A):

Sq(A) = Endyeg)T(A),

where T'(A) is a quantized permutation module that has no known identification
with a tensor space. This generalizes the (Q, q)-Schur algebras introduced in the
paper [DJM98a], which is the special case when A is the set of all bicompositions
and r = 2.

While a cellular structure (and hence a quasi-heredity) is obtained for S, (A), it
is unclear if it has an analogue of full Schur duality.

We also remark that there is no known identification of T, Sg
for some A.

Let R = Q(¢, Q, Q1, Q2). The cyclotomic Hecke algebra (or Ariki-Koike algebra)
H = H(2,1,d) is the R-algebra generated by TOA, e ,TdA_l subject to the relations
below, for 1 <i<d—-1,0<j<k—-1<d-—2:

(n,d) with a T(A)

(Tg = Q(T5 = Q2) =0, (T +1)(T3" — ga) =0,
(T9TE)? = (TRTE)?, TETETY = Tan T TR, TET) = TRTE

)

Next we rewrite the setup in loc. cit. using the following identifications:

qn <> q727 EA A qiszV

Under the identification, the Jucy-Murphy elements are, for m > 1,
L= (qga)*™T5 ... T8 ... TS,
= (Tn1) - (T5) - (aT7)

= 1Lm-1 ---T0-~-Tm—1~

Then the cyclotomic relation is

(¢'To —Q)(g 'To—Q2) =0, or (Tp—qQ1)(To —qQ2) = 0.

This is equivalent to our Hecke relation at the specialization below:
Q=—q¢'Q, Q=q'Q"

In summary we have the following isomorphism of K-algebras.
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Proposition 9.2.1. The type B Hecke algebra H%)q(d) is tsomorphic to the cyclo-
tomic Hecke algebra H(2,1,d) at the specialization Q1 = —q~'Q, Q2 = ¢ Q1.

For a composition A = (A1,...,\;) € N of £ parts write
Al=X+--+X, and £()\) =L

A bicomposition of d is a pair A = (A1), X)) of compositions such that [A(1)] 4
IA?)| = d. We denote the set of bicompositions of d by Ay = Ay(d). A bicomposition
X is a bipartition if A, A\(?) are both partitions. The set of bipartitions of d is
denoted by AJ = AJ (d).

Following [DJM98b], the cyclotomic Schur algebras can be defined for any
saturated subset A of the set As(d) of all bicompositions of d. That is, any subset
A of As satisfying the condition below:

if u€ A,v e AJ(d) and v > p, then v € A.

For each A we define a cyclotomic Schur algebra S(A) = Endy (P, maH),
where

Z(A(l))
mx = UZ_(A(l))ih uz_(k(l)) = H (Lm - QQ); Ty = Z Tw, (45)
m=1 wWEX

and Xy = 2&1) X 2&2) is the Young subgroup of X4. The specialization Sg(A) of
S(A) at Q1 = —¢7'Q, Q2 = ¢~ 'Q™" is then given by

Sq(A) = Endyg ( &b mAng) ;

AEA

where
my=(L1—q¢'Q7 ")+ (Lyny — ¢ QM (46)

Remark 9.2.2. There seems to be a common misconception that the type B Schur
algebras Sf(n, d) is a special case of the cyclotomic Schur algebras, just as the
Hecke algebras of type B are a special case of cyclotomic Hecke algebras (see
Proposition 9.2.1).

It is known in [DMO02] that the cyclotomic Schur algebras admit a Morita
equivalence under an invertibility condition. Below we give a paraphrase of [DM02,
Thm. 1.5] using our specialization:

d
P si.i)@Spd—i.d—1i), (47)

=0

Sa(Aa(d) =
where Ay (d) is the set of all bicompositions of d. For convenience, let us repeat the
assertion of our Theorem 3.1.1 below:

d
S 4(n,d) ~ @D SM([n/2],i) @ Sp(|n/2],d ). (48)
i=0
We remark that, while the invertibility conditions in Theorem 3.1.1 and (47) are
the same under our specialization,
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o the left-hand sides of (47) and (48) are not Morita equivalent in general;
e the right-hand sides of (47) and (48) are not Morita equivalent in general.

It is better to understand our Theorem 3.1.1 as an independent result, compared
to [DMO02, Thm. 1.5], as they do not generalize to each other.

Without an algebra isomorphism, one can achieve at best the following Morita
equivalence:

Proposition 9.2.3. If ff 1s invertible in the field K and n > 2d, then the type
B Schur algebra S’aq(n, d) is Morita equivalent to the cyclotomic Schur algebra
Sq(A2(d)) at the specialization

Ql = _q_1Q7Q2 = q_lQ_la
where Ao(d) is the set of all bicompositions of d.

Proof. In light of the algebra isomorphism (48) and the Morita equivalence (47),
qu(n, d) is Morita equivalent to Sg(As(d)) if there are Morita equivalences

Sa([n/2],4) ® SA(|n/2],d — i) = S i) ® SP(d —i,d — i)
for all 0 < i < d. The condition n > 2d is imposed so that, for 0 < i < d, we have
both [n/2] >4 and [n/2] > d —i. It follows that

SA(n/21,0) = S8(ii)

and

SA(In/2],d — 1) = SAd —i,d —1).

q
This concludes the proof. [

Below we describe a basis for the cyclotomic Schur algebras, and then use it to
distinguish SB (1, d) from the cyclotomic ones (See Example 9.2.4).
Let To(A, ,u) be the set of semi-standard A-tableaux of type p, that is, any
= (TW,T@)) € To(\, p) satisfies the conditions below:

(SO) T is a A-tableau whose entries are ordered pairs (4, k), and the number of

(i,7)’s appearing is equal to u( ).
(S1) entries in each row of each component T®*) are non-decreasing;
(S2) entries in each column of each component T*) are strictly increasing;
(S3) entries in T®) must be of the form (i, 2).

We note that the dimension of the cyclotomic Schur algebra A is given by

dim So(A) = > [T w)]- [To(A,v)l-

AEAT (d)
mvEA

It is then defined as a “tensor space” Tg(A) = @Pycp m ,\Hg, o Which has an obvious
Sg(A)-HE(d)-bimodule structure.
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Example 9.2.4. Let
Aap = Aap(d) = {A = AV, AP) € Ay(d) [ €(AD) < a, 0(AP)) < b}
Recall that the dominance partial order in AJ (1) is given by ps = ((, @) >
1 = (&, ]), and hence Ag1(1),A1,1(1) are saturated, while Aq (1) is not. The
cardinality of |7 (te, tte)| is given as below:
| To(pa, 1) = 1 = [To(p2, pa)| = [To(pz, p2)l,  [To(pa, p2)| = 0.

Note that To(p1, u2) is empty since the only ps-tableau of type p; is (&,[1]2]),
which violates (S3). Hence, the dimensions of these cyclotomic Schur algebras are

Sq(Ao,1(1)) =1, Sg(Aoa(1)) = 3.
For d = 2, the dominance order in A7 (2) is given by
X = (132) > M= (H2) o re = (L) > =@ T)e M= (2.

The sets Ag2(2), A1,2(2), and Ag 2(2) are saturated. The cardinality of [To(Ae, Ae)|
is given in the following table

type\shape | As A4 Az A2 A
A5 1 0 0 0 O
A4 1 1 0 0 0
A3 1 1 1 0 0
Ao 1 0 1 1 0
A1 1 1 2 1 1

Hence, the dimensions are

dim Sq(AO)Q(Q)) = 3, dim Sq(ALQ(Q)) = 7, dim Sq(A272(2)) = 15.
Recall that dim S2(2,d) = d + 1 for all d, hence the algebras SE and Sy(A) small
ranks do not match in an obvious way.

9.3. Sakamoto—Shoji Algebras

The cyclotomic Hecke algebra H(r, 1,d) admits a Schur-type duality (cf. [SS99])
with the algebra U,(gl,,, x---xgl, ) where ny +---+n, = n. Hence, it specializes
to the following double centralizer properties, for a + b = n:

Uq(gl, < gly)
1

SB(a,b,d) ~T(a,b,d) = (K")®" ~AHE(d)

We will see in (49) that Ty acts as a scalar multiple on T'(a,b,d), which is
different from our Tp-action (3). Consequently, the duality is different from the
geometric one. We could not locate an identification between S2(a, b, d) and S, (A)
for some A in the literature.

Now we set up the compatible version of the cyclotomic Schur duality introduced
in [SS99]. Let R’ = Q(Q, ¢, u1,uz2), and let Hy o be the the R’-algebra generated
by aq,...,aq subject to the relations below, for 2 <i<d,1<j<k—-1<d—-1:

(a1 —ur)(a1 —u2) =0, (a; —q')(a; + (¢)7) =0,
(a1a2)® = (a2a1)?,  @;Qi410; = Ai410:0541,  ARa; = a;ak.
With the identifications below one has the following result:

! —1
a; <> Ticq, q <q .
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Proposition 9.3.1. The type B Hecke algebra H%’q(d) is isomorphic to the al-
gebra Hy o at the specialization uy = —Q,us = Q1.

Let Tg(a,b,d) = Vf?bd where V,, = K@ K is the natural representation of

U, (gl, x gl) with bases {vgl), . ,vl(ll)} of K* and {vgz), . 7véz)} of K°. The tensor
space Tg(a, b, d) admits an obvious action of the type A Hecke algebra generated
by Ti,...,T4—1. The Tp-action on T'(a,b,d) is more subtle as defined by

To=T7"0-0T;' 0S4 1008 0w € End(T(a,b,d)), (49)

where w is given by

—Qr® - Qxg ifx = oV for some 7

_ . 2 .
Q' ® - Ry 1fx1:vl)forsomez,

I~

w(x1®---®xd):{

~

and that S; is given by

Si(xl [N l’d)
T @ @ xa) if 24, 2;41 both lies in K¢ or K?;
- “Tim1 ®Tip1 QT @ Tigpo ® -+ otherwise.

Define
56,q(a;b,d) = Endys () (To(a,b,d)).

It is proved in [SS99] that there is a Schur duality as below:

Ug(al, x gly)
1 .
SB(a,b,d) ~T(a,b,d)~HE(d)

In [Ar99, Thm. 3.2] there is also proved an isomorphism theorem under a
separation condition on ui,us and q. Note that the separation condition is equiva-
lent to our invertibility condition at the specialization u; = —Q, us = Q1.

Proposition 9.3.2. If f3(Q,q) is invertible in the field K, then we have an
isomorphism of K-algebras:

d

56.4([n/2], [n/2],d) = @ S ([n/2],4) ® Sp([n/2),d — ).

=0
As a consequence, Sgﬁq(fn/ﬂ, [n/2],d) is isomorphic to the coideal q-Schur al-
gebra Sg,q (n,d) under the invertibility condition.

In the example below we show that the two algebras do not coincide when the
invertibility condition fails.
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Example 9.3.3. Let a« = b = 1,d = 2. Then T(1,1,2) has a basis {v :=
vgl), w = v§2)}. The Tp-action is given by
(ve@v)T) = —-QuRuw,
(v@w)Ty = —Qv w,
(wev)Ty=Q Y wav+ (¢! —qvew),
(wew)T) =Q 'wew.

Note that this is essentially different from the Ty-action for the coideal Schur
algebra given in (3).

Following [Ar99, §2, Example], the dimension of Sg’q(l, 1,2) is either 3,4 or 5.
Note that 10 is excluded since at our specialization u; = —Q,us = Q™! it is not
possible that u; = uy = 0. In contrast, Sg7q(2, d) is always of dimension 3.

9.4. Slim cyclotomic Schur algebras

The slim cyclotomic Schur algebra S(,, .. 4,.)(n,d) introduced in [DDY18] is a
different attempt to establish a Schur duality for the cyclotomic Hecke algebra
H(r,1,d). When r = 2, the algebra S(ulyw)(n, d) has the same dimension as the
coideal g-Schur algebra Squ@n, d); while there is no counterpart for the algebra
Sg’q(2n +1,d).

It is conjectured in [DDY18] that there is a weak Schur duality between the
cyclotomic Hecke algebras and certain Hopf subalgebras U, (sl,)® of U,(gl,,) for
an integer ¢ to be determined. In our setting it can be phrased as follows:

Uy(gl,) 2 Uy(s,)®
1 .
S?(TL, d) — S(qu) (n, d) A QO A 7‘[? (d)

Here S(4,q)(n,d) = Endﬂg(d)(T(%q)(n,d)) is the centralizer algebra of the g (d)-
action on a finite dimensional g-permutation module T(, 4 (n,d), while Q is the

(infinite-dimensional) natural representation of Ug(gl,, ).

We remark that it is called a weak duality in the sense that there are epimor-
phisms Uq(sl,)® — S(4.4)(n,d) and HE(d) — Ends,, . (n,a)(Q%%); while it is not
a genuine double centralizer property.
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