

Open Questions for Empathy-Building Interventions for Inclusive Software Development

Kyle L-Messerle, Samuel Malachowsky, Daniel E. Krutz

Department of Software Engineering

Rochester Institute of Technology, Rochester, NY, USA

{klm3580, samvse, dxkvse}@rit.edu

Abstract

Research has demonstrated that much of the software being created today is not sufficiently inclusive, unbiased and equitable. This has been found to frequently result in real-world implications such as prejudice against women or people of color, and software that is inaccessible to people with disabilities. Preliminary research has found that empathy-focused experiential educational activities can be beneficial for not only creating empathy, but in advancing the participant's interest and knowledge retention over traditional non empathy-building interventions. This work will provide a foundational background on the current research in the intersection of experiential learning and empathy-building interventions in computing education. We will also present several important questions that still must be explored, thus serving as the foundation for future work in this area.

1 Introduction

Research demonstrates that we continue to be deficit in creating inclusive and equitable software [6, 13, 15, 55, 80]. Despite the prevalence and demonstrated capabilities of experiential education [1, 36, 46, 89] and foundational demonstrated benefits of empathy-building interventions [3, 45, 52, 85], the intersections of these topics have not been sufficiently explored [52]. Specifically, we need to investigate and create educational empathy-building interventions to better inform and motivate students to create more inclusive and equitable

software. There are several key areas that require further exploration. These include:

1. Understand the benefits and impacts of empathy-creating interventions in experiential computing education.
2. Recognize appropriate methodologies to include empathy-creating interventions in experiential computing education.
3. Understand if experiential empathy creating interventions can help to reduce bias.

Improved knowledge regarding empathy-creating interventions can directly benefit computing education while exponentially benefiting society through the creation of more fair, unbiased, and inclusive software used by the general population [63, 73, 83]. Potential benefits of empathy-building experiential education modules can contribute to the foundational understanding of experiential education from a theoretical and practical perspective, benefiting a variety of topics in computing education (e.g., general computing, accessibility, artificial intelligent/machine learning, autonomy, software engineering, HCI, etc.).

The rest of the paper is organized as follows: Section 2 provides the motivation and guiding theory, while Section 3 presents related works. Section 4 discusses several important crucial questions to be addressed and Section 5 provides a conclusion.

2 Motivation and Guiding Theory

Motivations from Education: Experiential empathy-creating interventions have been explored in various non-computing domains such as in medicine [31, 44, 57, 87], and for creating tolerance in social situations [18]. Unfortunately, the application of these benefits in experiential computing education is inhibited by a lack of understanding regarding: I) A proper implementation framework [79], II) Their specific pedagogical advantages, and III) The most appropriate pedagogical and technical methods for integrating these into computing curriculum [58]. The potential benefits of empathy-building interventions in experiential computing education has been demonstrated in foundational, preliminary research [52]. Despite these encouraging results, there is currently a lack of knowledge that inhibits the implementation and benefits of empathy-creating interventions at institutions across the United States [38, 52, 63].

The application of empathy-building interventions in experiential computing education has been inhibited by both pedagogical and technical limitations [52]. The hypothesis that creating empathy can increase student interest is supported by the PI's preliminary work in this area [52]. Deeper pedagogical questions also exist, such as appropriate intervention inclusion methods and

their impacts on empathy’s subprocesses (‘mentalizing’, ‘experience sharing’, ‘empathic concern’) [3, 25, 40, 85, 91]. Additionally, technical obstacles must be overcome such as how to properly create an empathy-building experience and how to sufficiently emulate the experiences of other users (*e.g.*, accessibility challenges, racial bias, etc.).

Motivations from the Community: A lack of empathy among software developers has been attributed to the creation of biased, inequitable software [6, 24, 58]. This necessitates the creation of high-quality empathy-creating educational interventions to support the next generation of software developers in creating more equitable software for society. Research has demonstrated that increasing empathy can lead to software that is developed in a more accessible, inclusive and equitable manner [7, 52, 88]. This prior work provides confidence that improving empathy in computing students can yield similar benefits and help them to understand the necessity of creating inclusive software. Unfortunately, there is a lack of an understanding of how to most effectively teach students empathy-related concepts to construct inclusive software. While bias may be created due to unconscious developer actions or by non-human factors (*e.g.*, incoming data in AI/ML [24, 77]), an objective should be to better understand how participants can more appropriately become cognizant of, and properly address biases when developing software.

Recent US government legislation has called for software that is more inclusive and unbiased [20, 24, 65, 66, 77]. There is also a stated educational demand for easily adoptable interventions that will support the creation of more equitable software, such as software that is created with a greater amount of empathy [6, 17, 61]. Increased empathy is expected to result in the creation of software that is more inclusive, equitable and unbiased [58], while also having a positive impact on the developer’s career [42]. Empathy is being seen as a greater necessity due to the increasingly globalized nature of society [58]. The demand for software with these attributes will continue to grow as more interactions and tasks are performed online [12, 69]. Preliminary observations [52] have demonstrated that the proposed work has the capability to directly contribute to accomplishing these goals.

Guiding Theory: Research demonstrates that we continue to be deficit in creating inclusive and equitable software [6, 13, 15, 35, 39, 55, 80]. Prior work has demonstrated that increased empathy can lead to software that is developed in a more accessible, inclusive and equitable manner [7, 52, 88]. Empathy can be developed, frequently through experiential activities [3, 21, 45, 52, 85, 86]; however, there are no known efforts to examine the integration of experiential learning to create empathy in computing education [52, 85]. Existing works have demonstrated both the capabilities of experiential learning [1, 36, 46, 89] and in empathy creation [3, 21, 45, 85, 86]. It is surmised that this increased

empathy will increase the student’s ambition to create more equitable and inclusive software.

General Scientific Barriers: A key challenge is how to accurately create experiential empathy-creating interventions for both instruction and evaluation in a variety of computing courses, ranging from foundational to more specialized courses. While initial work demonstrates the foundational capability of empathy-creating interventions in several offerings of a CS2 course [52], it has not been widely attempted in other computing curriculum. Although there are various proposed empathy measuring evaluations [32, 33], there do not appear to have been any significant efforts for measuring empathy in computing education, representing another challenge that must be addressed. Ensuring that interventions create empathy and not pity for specific users is another challenge that must be considered.

Preliminary Efforts: Foundational work has demonstrated the potential benefits of experiential empathy-creating interventions [52]. Using a pre-and post-lab survey analysis involving 276 Computer Science 2 (CS2) students, dependent t-tests indicated that empathy-creating interventions increased student feelings that developing accessible software is important. While far from a definitive study, this observation demonstrates the foundational capability of empathy-creating interventions in experiential computing education. Existing works have demonstrated both the capabilities of experiential learning [1, 36, 46, 89] and in empathy creation [3, 21, 45, 85, 86]. However, there are no known significant efforts to examine empathy-creating interventions in experiential computing education.

3 Related Work

3.1 Experiential Education

Experiential learning is commonly used in many educational topics [1, 36, 46, 89] and has routinely demonstrated its benefits [9, 48, 49]. Experiential learning provides a complete learning experience for the student, one where they both understand the concept behind an idea and interactively learn about it [10]. Compared to alternative teaching approaches such as lectures, experiential learning has been demonstrated to be more engaging for students [54], and supports student retention of information [41, 78]. The four stages of Kolb’s Experiential Learning Cycle [50] include ‘Concrete Experience,’ ‘Reflective Observation,’ ‘Abstract Conceptualization,’ and ‘Active Experimentation.’

3.2 Empathy-Building Interventions

Research demonstrates that people frequently fail to empathize with a particular target group because they are unwilling to empathize [74, 90]. Fortunately, research suggests that empathy can be developed, frequently through experiential activities [3, 21, 45, 52, 85, 86]. An identified challenge in driving people to empathize are ‘avoidance motives’ which make empathizing more of a difficulty [29, 47, 51, 59]. An example of an avoidance motive is when people believe that addressing empathy-created concerns will be too costly [16, 67, 75] or painful [26]. Therefore, when striving to create empathy, it is imperative to demonstrate how empathy will align with, and not obstruct the project’s goals [37, 75]. There are generally at least three related, but distinct subprocesses that comprise empathy [85]. ‘Mentalizing’ is the ability to draw inferences about a target’s feelings and thoughts. ‘Experience sharing’ is when a person vicariously experiences another person’s emotional state [40]. ‘Empathic concern’ focuses on a perceiver’s desire to alleviate the target’s distress [2]. There are several forms of empathy, including *cognitive*, *emotional*, *affective*, and *somatic* [19, 43, 60, 76]. This work will primarily focus on cognitive empathy since it is the form that is most amiable to a computing-oriented experiential environment.

There are two primary forms of empathy interventions, *Experience-based* and *Expression-based* interventions. Experience-based interventions often allow the perceiver to encounter a scenario through the target’s perspective using either a hands-on or theoretical activity. This form of intervention has been traditionally used to build empathy through a deeper understanding of the target’s thoughts and feelings [85]. Examples of such interventions involve medical students staying in a hospital overnight to experience a hospitalization from a patient’s perspective [87], or asking participants to imagine life and feelings of a member of a stigmatized group [4]. Expression-based interventions teach participants to recognize the internal states of the participant and respond appropriately. These interventions are frequently implemented in scenarios where it is difficult to identify distress in others, or when a perceiver is impaired in conveying empathy for a target [85]. Expression-based interventions have been used in a variety of areas, such as in medical students identifying when a patient is in pain [5, 71], and helping autistic adolescents improve their affective empathy by recognizing emotional traits in others [23, 34].

4 Open Questions

There are several key questions that should be addressed in order to better understand the intersection of experiential learning for building empathy.

1. Understand the benefits and impacts of empathy-creating interventions in experiential computing education: Although there have been a large amount of existing research that demonstrates the benefits of experiential learning [1, 36, 46, 89] and empathy-building interventions [3, 21, 45, 52, 85, 86], there is far less work that examines the intersection of these two important topics, especially in computing education [52]. We hypothesize that empathy-creating interventions in experiential computing education will increase student interest, motivation and information retention, which are crucial for retention and encouraging students to pursue STEM careers [56, 84]. We also hypothesize that increasing empathy for diverse users will support students in understanding the need to create more equitable software. An additional question to be explored are the potential benefits of experiential vs expression-based interventions.

A better understanding of the potential benefits of empathy-creating interventions in experiential computing education can be attained using short interventions and t-tests. Measured variables may include motivation, interest and knowledge retention. A primary consideration is to ensure that a properly diverse group of students (*e.g.*, demographics, experience levels, etc.) are included in any such evaluation.

2. Recognize appropriate methodologies to include empathy-creating interventions in experiential computing education: There are several potential methodologies that may be taken to both evaluate and include experiential empathy-building interventions in computing education. We argue for small, self-contained and easily adoptable modules and interventions that can be utilized at institutions across the United States. We hypothesize that these short interventions will support the inclusion and subsequent evaluation of these topics, as short self-contained interventions have demonstrated their effectiveness in numerous other computing educational areas [64, 72, 81]. We believe in reasonably brief (*i.e.*, \approx 30-60 minute interventions) since foundational computing courses are typically already packed with topics and that many institutions (especially those that are resource constrained) will not have the ability to develop entire courses focusing on this area.

3. Understand if experiential empathy creating interventions can help to reduce bias: Forms of bias include prejudice, stereotypes, affective reactions, and discrimination [30]. Bias comes in many shapes and forms ranging from overtly bias human beings, to algorithms that unintentionally contain bias [24, 77]. The adverse impacts of bias continue to be detrimental, despite the cause.

There has been a substantial amount of work to address bias and prejudice [14, 22, 53, 70], and studies that demonstrate the potential benefits of experiential-based interventions in addressing bias [11, 62, 68, 82]. However,

there are no known significant efforts to evaluate or demonstrate the impact of empathy-creating interventions in computing education in addressing prejudice.

A primary challenge will be how to effectively measure bias since it occurs both unconsciously and intentionally [8,27]. Additionally, even if a student does recognize their own bias, they may be unlikely to truthfully admit any notions of this on a survey instrument. To address this challenge, a participant’s bias could be implicitly measured, using mechanisms such as understanding affective reactions using Likert-scales to measure the range of experienced emotions [28], along with evaluating the produced artifact (*e.g.*, source code, algorithm, etc.) for aspects of bias or prejudice. These measurements could be evaluated in settings such as conventional classrooms, outreach events or small group activities using instruments such as pre-post test measures.

Despite the challenges of measuring bias, we believe that this continues to be an important and worthwhile area that warrants further exploration. This is due to the potential benefits that can be provided from the knowledge produced from further understanding how to reduce bias.

5 Conclusion

Experiential education has demonstrated its benefits in a wide variety of application areas. Additionally, empathy-building interventions have demonstrated their foundational capabilities in preliminary research [52]. Unfortunately, there is a significant amount of research in important areas that intersect these topics that still need to be explored.

Acknowledgements

This material is based upon work supported by the United States National Science Foundation under grant #1825023, #2111152 and #2145010.

References

- [1] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by poking: Experiential learning of intuitive physics. In *Advances in neural information processing systems*, pages 5074–5082, 2016.
- [2] C Daniel Batson. These things called empathy: eight related but distinct phenomena. *MIT press*, 2009.

- [3] C. Daniel Batson, Johee Chang, Ryan Orr, and Jennifer Rowland. Empathy, attitudes, and action: Can feeling for a member of a stigmatized group motivate one to help the group? *Personality and Social Psychology Bulletin*, 28(12):1656–1666, 2002.
- [4] C Daniel Batson, Marina P Polycarpou, Eddie Harmon-Jones, Heidi J Imhoff, Erin C Mitchener, Lori L Bednar, Tricia R Klein, and Lori Highberger. Empathy and attitudes: Can feeling for a member of a stigmatized group improve feelings toward the group? *Journal of personality and social psychology*, 72(1):105, 1997.
- [5] Janet B Bavelas, Alex Black, Charles R Lemery, and Jennifer Mullett. "i show how you feel": Motor mimicry as a communicative act. *Journal of personality and social psychology*, 50(2):322, 1986.
- [6] Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie Houde, Kalapriya Kannan, Pranay Lohia, Sameep Mehta, Aleksandra Mojsilovic, and Seema Nagar. Think your artificial intelligence software is fair? think again. *IEEE Software*, 36(4):76–80, 2019.
- [7] Cynthia L Bennett and Daniela K Rosner. The promise of empathy: Design, disability, and knowing the "other". In *Proceedings of the 2019 CHI conference on human factors in computing systems*, pages 1–13, 2019.
- [8] Irene V Blair. Implicit stereotypes and prejudice. In *Cognitive social psychology: The Princeton symposium on the legacy and future of social cognition*, pages 359–374, 2001.
- [9] Wagner Tanaka Botelho, Maria das Graças Bruno Marietto, João Carlos da Motta Ferreira, and Edson Pinheiro Pimentel. Kolb's experiential learning theory and belhot's learning cycle guiding the use of computer simulation in engineering education: A pedagogical proposal to shift toward an experiential pedagogy. *Computer Applications in Engineering Education*, 24(1):79–88, 2016.
- [10] David Boud, Rosemary Keogh, and David Walker. *Reflection: Turning experience into learning*. Routledge, 2013.
- [11] Cherie R Brown and George J Mazza. Peer training strategies for welcoming diversity. *New directions for student services*, 56:39–51, 1991.
- [12] Dana Brownlee. *Twitter, Square Announce Work From Home Forever Option: What Are The Risks?*, May 2020 (accessed July 3, 2020).

- [13] Sheryl Burgstahler. Designing software that is accessible to individuals with disabilities. <http://www.washington.edu/doit/designing-software-accessible-individuals-disabilities>.
- [14] Michelle M Byrne. Instructional bias—awareness and reduction in peri-operative education. *Aorn Journal*, 75(4):808–816, 2002.
- [15] Rocio Calvo, Faezeh Seyedarabi, and Andreas Savva. Beyond web content accessibility guidelines: Expert accessibility reviews. In *Proceedings of the 7th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion*, DSAI 2016, pages 77–84, New York, NY, USA, 2016. ACM.
- [16] C Daryl Cameron and B Keith Payne. Escaping affect: how motivated emotion regulation creates insensitivity to mass suffering. *Journal of personality and social psychology*, 100(1):1, 2011.
- [17] Noel Carroll. Key success factors for smart and connected health software solutions. *Computer*, 49(11):22–28, 2016.
- [18] Gerald L Clore and Katharine M Jeffery. Emotional role playing, attitude change, and attraction toward a disabled person. *Journal of personality and social psychology*, 23(1):105, 1972.
- [19] Douglas Cohen and Janet Strayer. Empathy in conduct-disordered and comparison youth. *Developmental psychology*, 32(6):988, 1996.
- [20] Federal Communications Commission. Twenty-first century communications and video accessibility act.
- [21] Paul Condon, Gaëlle Desbordes, Willa B Miller, and David DeSteno. Meditation increases compassionate responses to suffering. *Psychological science*, 24(10):2125–2127, 2013.
- [22] Elizabeth D Cramer and Kyle D Bennett. Implementing culturally responsive positive behavior interventions and supports in middle school classrooms: Narrating the experience of a young classroom teacher who collaborates with an experienced special education teacher to reduce subtle assumptions filled with cultural bias, this article reveals important implications for managing student behavior in more productive and culturally sensitive ways. *Middle School Journal*, 46(3):18–24, 2015.
- [23] Mark Richard Dadds, Avril Jessica Cauchi, Subodha Wimalaweera, David John Hawes, and John Brennan. Outcomes, moderators, and mediators of empathic-emotion recognition training for complex conduct problems in childhood. *Psychiatry research*, 199(3):201–207, 2012.

[24] Jeffrey Dastin. Amazon scraps secret ai recruiting tool that showed bias against women. [https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scaps-secret-ai-recruiting-tool-that-showed-bias-against-women](https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scaps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKBN13C19C), October 2018.

[25] Mark H Davis. Measuring individual differences in empathy: Evidence for a multidimensional approach. *Journal of personality and social psychology*, 44(1):113, 1983.

[26] Mark H Davis, Kyle V Mitchell, Jennifer A Hall, Jennifer Lothert, Tyra Snapp, and Marnee Meyer. Empathy, expectations, and situational preferences: Personality influences on the decision to participate in volunteer helping behaviors. *Journal of personality*, 67(3):469–503, 1999.

[27] Patricia G Devine. Stereotypes and prejudice: Their automatic and controlled components. *Journal of personality and social psychology*, 56(1):5, 1989.

[28] John F Dovidio, Samuel L Gaertner, Tracie L Stewart, Victoria M Esses, Marleen ten Vergert, and Gordon Hodson. From intervention to outcome: Processes in the reduction of bias. *Education programs for improving intergroup relations: Theory, research, and practice*, pages 243–265, 2004.

[29] Carol S Dweck and Ellen L Leggett. A social-cognitive approach to motivation and personality. *Psychological review*, 95(2):256, 1988.

[30] Mark E Engberg. Improving intergroup relations in higher education: A critical examination of the influence of educational interventions on racial bias. *Review of educational research*, 74(4):473–524, 2004.

[31] Jennifer M Frank, Laura Brierton Granruth, Heather Girvin, and Anna VanBuskirk. Bridging the gap together: Utilizing experiential pedagogy to teach poverty and empathy. *Journal of Social Work Education*, pages 1–14, 2019.

[32] Karen E Gerdes, Cynthia A Lietz, and Elizabeth A Segal. Measuring empathy in the 21st century: Development of an empathy index rooted in social cognitive neuroscience and social justice. *Social Work Research*, 35(2):83–93, 2011.

[33] Karen E Gerdes, Elizabeth A Segal, and Cynthia A Lietz. Conceptualising and measuring empathy. *British Journal of Social Work*, 40(7):2326–2343, 2010.

- [34] Ofer Golan and Simon Baron-Cohen. Systemizing empathy: Teaching adults with asperger syndrome or high-functioning autism to recognize complex emotions using interactive multimedia. *Development and psychopathology*, 18(2):591–617, 2006.
- [35] Ramiro Gonçalves, José Martins, Jorge Pereira, Manuel Au-Yong Oliveira, and João José P. Ferreira. Enterprise web accessibility levels amongst the forbes 250: Where art thou o virtuous leader? *Journal of Business Ethics*, 113(2):363–375, Mar 2013.
- [36] Sandra Grace, Ev Innes, Narelle Patton, and Lynette Stockhausen. Ethical experiential learning in medical, nursing and allied health education: A narrative review. *Nurse education today*, 51:23–33, 2017.
- [37] Adam M Grant and David A Hofmann. It’s not all about me: motivating hand hygiene among health care professionals by focusing on patients. *Psychological science*, 22(12):1494–1499, 2011.
- [38] Hans Guerrero and Vianca Vega. Usability analysis: Is our software inclusive? In *International Conference on Software Process Improvement*, pages 221–230. Springer, 2017.
- [39] Vicki L. Hanson and John T. Richards. Progress on website accessibility? *ACM Trans. Web*, 7(1):2:1–2:30, March 2013.
- [40] Elaine Hatfield, John T Cacioppo, and Richard L Rapson. Emotional contagion. *Current directions in psychological science*, 2(3):96–100, 1993.
- [41] Kim Hawtrey. Using experiential learning techniques. *The Journal of Economic Education*, 38(2):143–152, 2007.
- [42] Patricia A Hecker. Successful consulting engineering: a lifetime of learning. *Journal of management in engineering*, 13(6):62–65, 1997.
- [43] Robert Hogan. Development of an empathy scale. *Journal of consulting and clinical psychology*, 33(3):307, 1969.
- [44] Jessica Delano Holden. Improving nursing student empathy with experiential learning, 2018.
- [45] Hooria Jazaieri, Kelly McGonigal, Thupten Jinpa, James R Doty, James J Gross, and Philippe R Goldin. A randomized controlled trial of compassion cultivation training: Effects on mindfulness, affect, and emotion regulation. *Motivation and Emotion*, 38(1):23–35, 2014.

- [46] Sara Jose, Patricia G Patrick, and Christine Moseley. Experiential learning theory: the importance of outdoor classrooms in environmental education. *International Journal of Science Education, Part B*, 7(3):269–284, 2017.
- [47] Daniel Kahneman. Prospect theory: An analysis of decisions under risk. *Econometrica*, 47:278, 1979.
- [48] Kristian Kiili. Digital game-based learning: Towards an experiential gaming model. *The Internet and higher education*, 8(1):13–24, 2005.
- [49] Alice Y Kolb and David A Kolb. Learning styles and learning spaces: Enhancing experiential learning in higher education. *Academy of management learning & education*, 4(2):193–212, 2005.
- [50] David A Kolb. *Experiential learning: Experience as the source of learning and development*. FT press, 2014.
- [51] Ziva Kunda. The case for motivated reasoning. *Psychological bulletin*, 108(3):480, 1990.
- [52] Accessible Learning Labs. Accessible learning labs. <http://all.rit.edu>.
- [53] Sajal Lahiri and Sharmistha Self. Gender bias in education: the role of inter-household externality, dowry and other social institutions. *Review of Development Economics*, 11(4):591–606, 2007.
- [54] Linda Laird and Ye Yang. Engaging software estimation education using legos: A case study. In *Proceedings of the 38th International Conference on Software Engineering Companion*, ICSE ’16, pages 511–517, New York, NY, USA, 2016. ACM.
- [55] Nicol Turner Lee. Detecting racial bias in algorithms and machine learning. *Journal of Information, Communication and Ethics in Society*, 2018.
- [56] Jaime León, Juan L Núñez, and Jeffrey Liew. Self-determination and stem education: Effects of autonomy, motivation, and self-regulated learning on high school math achievement. *Learning and Individual Differences*, 43:156–163, 2015.
- [57] Tracy Levett-Jones, Robyn Cant, and Samuel Lapkin. A systematic review of the effectiveness of empathy education for undergraduate nursing students. *Nurse education today*, 2019.
- [58] Meira Levy and Irit Hadar. The importance of empathy for analyzing privacy requirements. In *2018 IEEE 5th International Workshop on Evolving Security & Privacy Requirements Engineering (ESPRE)*, pages 9–13. IEEE, 2018.

- [59] Kurt Lewin. Group decision and social change. *Readings in social psychology*, 3(1):197–211, 1947.
- [60] Albert Mehrabian and Norman Epstein. A measure of emotional empathy. *Journal of personality*, 1972.
- [61] Chrystalla Mouza, Alison Marzocchi, Yi-Cheng Pan, and Lori Pollock. Development, implementation, and outcomes of an equitable computer science after-school program: Findings from middle-school students. *Journal of Research on Technology in Education*, 48(2):84–104, 2016.
- [62] Lori J. Nelson. Effects of participation in an intergroup communication program: An assessment of shippensburg university’s building bridges program. In *Annual Meeting of the Eastern Psychological Association*. ERIC, 1994.
- [63] Irina Niculescu, Huibin Mary Hu, Christina Gee, Chewy Chong, Shivam Dubey, and Paul Luo Li. Towards inclusive software engineering through a/b testing: A case-study at windows. In *2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)*, pages 180–187. IEEE, 2021.
- [64] Salaheddin Odeh, Shatha Abu Shanab, and Mahasen Anabtawi. Augmented reality internet labs versus its traditional and virtual equivalence. *International Journal of Emerging Technologies in Learning*, 10(3), 2015.
- [65] Association of Assistive Technology Act Programs. Assistive technology act law.
- [66] US Dept of Justice Civil Rights Division. The ada and section 508. <https://508compliantdocumentconversion.com/americans-with-disabilities-act/>.
- [67] S Mark Pancer, Linda M McMullen, Randal A Kabatoff, Kent G Johnson, and Carole A Pond. Conflict and avoidance in the helping situation. *Journal of Personality and Social Psychology*, 37(8):1406, 1979.
- [68] Dan J Pence and J Arthur Fields. Teaching about race and ethnicity: Trying to uncover white privilege for a white audience. *Teaching Sociology*, 27(2):150–158, 1999.
- [69] Nathan Pettijohn. *Can We Just Work From Home Forever?*, May 2020 (accessed July 3, 2020).

- [70] Lindsay Redpath. Confronting the bias against on-line learning in management education. *Academy of Management Learning & Education*, 11(1):125–140, 2012.
- [71] Helen Riess, John M Kelley, Robert W Bailey, Emily J Dunn, and Margot Phillips. Empathy training for resident physicians: a randomized controlled trial of a neuroscience-informed curriculum. *Journal of general internal medicine*, 27(10):1280–1286, 2012.
- [72] Elio Sanchristobal, Manuel Castro, Sergio Martin, Mohamed Tawkif, Alberto Pesquera, Rosario Gil, Gabriel Díaz, and Juan Peire. Remote labs as learning services in the educational arena. In *2011 IEEE Global Engineering Education Conference (EDUCON)*, pages 1189–1194. IEEE, 2011.
- [73] Anthony Savidis and Constantine Stephanidis. Inclusive development: Software engineering requirements for universally accessible interactions. *Interacting with Computers*, 18(1):71–116, 2006.
- [74] Karina Schumann, Jamil Zaki, and Carol S Dweck. Addressing the empathy deficit: Beliefs about the malleability of empathy predict effortful responses when empathy is challenging. *Journal of personality and social psychology*, 107(3):475, 2014.
- [75] Laura L Shaw, C Daniel Batson, and R Matthew Todd. Empathy avoidance: Forestalling feeling for another in order to escape the motivational consequences. *Journal of Personality and Social Psychology*, 67(5):879, 1994.
- [76] Adam Smith. Cognitive empathy and emotional empathy in human behavior and evolution. *The Psychological Record*, 56(1):3–21, 2006.
- [77] Jacob Snow. Amazon’s face recognition falsely matched 28 members of congress with mugshots. <https://www.aclu.org/blog/privacy-technology/surveillance-technologies/amazons-face-recognition-falsely-matched-28>, July 2018.
- [78] Linda B Specht and Petrea K Sandlin. The differential effects of experiential learning activities and traditional lecture classes in accounting. *Simulation & Gaming*, 22(2):196–210, 1991.
- [79] Johannes Strobel, Justin Hess, Rui Pan, and Carrie A Wachter Morris. Empathy and care within engineering: Qualitative perspectives from engineering faculty and practicing engineers. *Engineering Studies*, 5(2):137–159, 2013.

[80] Shea Swauger. Software that monitors students during tests perpetuates inequality and violates their privacy. <https://www.technologyreview.com/2020/08/07/1006132/software-algorithms-proctoring-online-tests-ai-ethics/>, 2020.

[81] Robert F Tinker. *Microcomputer-based labs: educational research and standards*, volume 156. Springer Science & Business Media, 2012.

[82] Sadhana Vohra, Emil Rodolfa, Arnold de la Cruz, and Chris Vincent. A cross-cultural training format for peer counselors. *Journal of College Student Development*, 1991.

[83] Mihaela Vorvoreanu, Lingyi Zhang, Yun-Han Huang, Claudia Hildebrand, Zoe Steine-Hanson, and Margaret Burnett. From gender biases to gender-inclusive design: An empirical investigation. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*, pages 1–14, 2019.

[84] Xueli Wang. Why students choose stem majors: Motivation, high school learning, and postsecondary context of support. *American Educational Research Journal*, 50(5):1081–1121, 2013.

[85] Erika Weisz and Jamil Zaki. Empathy building interventions: A review of existing work and suggestions for future directions. *The Oxford handbook of compassion science*, pages 205–217, 2017.

[86] Helen Y Weng, Andrew S Fox, Alexander J Shackman, Diane E Stodola, Jessica ZK Caldwell, Matthew C Olson, Gregory M Rogers, and Richard J Davidson. Compassion training alters altruism and neural responses to suffering. *Psychological science*, 24(7):1171–1180, 2013.

[87] Michael Wilkes, Etan Milgrom, and Jerome R Hoffman. Towards more empathetic medical students: a medical student hospitalization experience. *Medical education*, 36(6):528–533, 2002.

[88] Peter Wright and John McCarthy. Empathy and experience in hci. In *Proceedings of the SIGCHI conference on human factors in computing systems*, pages 637–646, 2008.

[89] Scott Wurdinger and Pete Allison. Faculty perceptions and use of experiential learning in higher education. *Journal of e-learning and Knowledge Society*, 13(1), 2017.

[90] Jamil Zaki and Mina Cikara. Addressing empathic failures. *Current Directions in Psychological Science*, 24(6):471–476, 2015.

[91] Jamil Zaki and Kevin N Ochsner. The neuroscience of empathy: progress, pitfalls and promise. *Nature neuroscience*, 15(5):675–680, 2012.