
Fast Convergence for Unstable Reinforcement Learning Problems
by Logarithmic Mapping

Wang Zhang 1 Lam M. Nguyen 2 3 Subhro Das 3 Alexandre Megretski 1 Luca Daniel 1 Tsui-Wei Weng 4

Abstract
For many of the reinforcement learning applica-
tions, the system is assumed to be inherently sta-
ble and with bounded reward, state and action
space. These are key requirements for the opti-
mization convergence of classical reinforcement
learning reward function with discount factors.
Unfortunately, these assumptions do not hold true
for many real world problems such as an unstable
linear–quadratic regulator (LQR)1. In this work,
we propose new methods to stabilize and speed up
the convergence of unstable reinforcement learn-
ing problems with the policy gradient methods.
We provide theoretical insights on the efficiency
of our methods. In practice, we achieve good ex-
perimental results over multiple examples where
the vanilla methods mostly fail to converge due to
system instability.

1. Introduction
One of the mainstream methods to solve an RL problem
is policy optimization via gradient descent. However, the
convergence of the policy optimization algorithm heavily
relies on an unapparent yet critical assumption of the sys-
tem dynamics itself: stability2. In addition, to ensure the

1Massachusetts Institute of Technology 2IBM Research,
Thomas J. Watson Research Center 3MIT-IBM Watson AI
Lab 4University of California San Diego. Correspondence to:
Wang Zhang <wzhang16@mit.edu>, Lam M. Nguyen <LamN-
guyen.MLTD@ibm.com>.

Decision Awareness in Reinforcement Learning Workshop at the

39th International Conference on Machine Learning (ICML), Bal-
timore, Maryland, USA, 2022. Copyright 2022 by the author(s).

1By unstable LQR we mean the matrix A in LQR transition
Equation (1) has a spectral norm outside the unit circle.

2In this paper, “stability” denotes “input-to-output” stability,
where a small perturbation of the input signal (control action/state
perturbation) will not lead to a large deviation in the system output
cost. We use model-free methods in this paper, therefore the
system output target is the cost function and input is the policy.
The intrinsic instability brings challenges for optimization and this
paper aims to address it. For formal unstable RL definition, please
refer to Appendix A

convergence of policy optimization, we also require the
Lipschitz property of the cost function and its gradient.
In fact, in many of the existing RL benchmark examples
such as OpenAI’s classical control environments, the state
space/actions/costs are clipped to ensure that the policy
would never move to extreme conditions and costs/states are
bounded, in order to reduce the error derivatives (Mnih et al.,
2015). Unfortunately, similar formulations are not directly
applicable to unstable systems, such as a LQR where the
spectral radius of the state matrix is outside the unit circle,
as the standard policy gradient based methods are likely to
fail.

To address this issue and with the aim to enable and speed up
the convergence of policy gradient methods for unstable RL
problems, in this work we propose a logarithmic mapping
method on loss functions supported by rigorous theoretical
proof and experimental results.

2. Background and Related Work
2.1. Model-free Reinforcement Learning

Distinguished by directly modelling the system dynam-
ics/environments or not, reinforcement learning methods
could be categorized into “model-based” and “model-free”
approach (Arulkumaran et al., 2017). In this work, we
mainly focus on the latter where the agent learns the pol-
icy by directly interacting with the system output such as
rewards/costs, bypassing the inference of the underlying
dynamics. By using a model-free approach, we unify the
stability sources and only consider small policy variance that
may show dramatically different rewards under the unstable
system.

2.2. Value Function Mapping for Reinforcement
Learning

In reinforcement learning, there are a few previous work
mapping the value function to another space for various
purposes. Van Seijen et al. (2019) used Logarithmic Q-
learning to revise the action gaps due to low discount factors.
(Fatemi & Tavakoli, 2022) decomposes the value function
to a linear combination of a class of mapping functions to
facilitate the learning process.

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

2.3. LQR Problem

For a discrete-time linear system, its state equation is repre-
sented by:

xt+1 = Axt +But (1)

where xt 2 Rn and ut 2 Rm denote the system state and
control action at time step t, A 2 Rn⇥n and B 2 Rn⇥m

are the system transition matrices. The feedback gain is
parameterized by matrix K 2 Rm⇥n s.t. ut = �Kxt. The
intermediate cost function is in the quadratic form of state
xt and control ut, where Q 2 Rn⇥n and R 2 Rm⇥m are
given positive definite matrices to parameterize the quadratic
cost. The optimal control problem can be formulated as
minimize

K
Ex0⇠P0

hPT
t=0 x

>
t Qxt + u>

t Rut

i
, where, xt =

(A � BK)tx0, ut = �Kxt and P0 is the distribution of
initial condition x0.

Note that if T ! 1, then the problem is called infinite
horizon LQR, otherwise it is called finite horizon LQR.
According to (Abbeel, 2012), a T -time-step system is con-
trollable if we can reach any target state x⇤ from any initial
state x0. In this paper, we assume the LQR is controllable.

2.4. Convergence of Policy Gradient Methods for LQR
Problems

Fazel et al. (2018) was the first to achieve the global con-
vergence of policy gradient methods for infinite-horizon
LQR problems. Bhandari & Russo (2019) extends the LQR
setup to a more general class of control policies. Perdomo
et al. (2021) proposes to stabilize a dynamical system with
a discounted annealing algorithm by gradually increasing
discount factor � dependent on the system and current pol-
icy. In the scenario of finite horizon LQR and stochastic
noise, Hambly et al. (2021) provides a global linear conver-
gence guarantee. Tu & Recht (2018) studied Least-Squares
Temporal Difference (LSTD) method on LQR and number
of samples needed for LSTD estimator of value function.
Nevertheless, all the above work require the assumption of
the system to be stable under the policy throughout opti-
mization, or equivalently, A � BK has a spectral radius
less than 1. Unfortunately, with an unstable A and random
initialization of policy K, this assumption is mostly invalid.
In contrast, our proposed algorithm target at a finite horizon
setup and could still perform well without this assumption
at all.

3. Proposed Methods
3.1. Finite Horizon LQR

Let CK,T = Ex0⇠D

hPT
t=0 x

>
t Qxt + u>

t Rut

i
be the ex-

pected cost of trajectory for T time steps. For unsta-
ble LQR in the infinite horizon, the cost function is not

traceable since CK,T ! 1 when T ! 1. To bypass
this barrier, we focus on a finite horizon case consider-
ing the cost for first T steps. The problem formulation is:
min
K

CK,T s.t. xt+1 = Axt+But, ut = �Kxt. In practice,
infinite horizon cases are also approximated by finite step
trajectories (Fazel et al., 2018) so that the implementations
are identical.

3.2. Finite Horizon Unstable RL

Road-map for convergence rate analysis:
In this section, we provide a theoretical view of convergence
rate bound for unstable RL problems under the vanilla set-
ting and our proposed method. First, we formulate a Markov
decision process (MDP) problem with cost formulation in
Assumption 3.1, where the cost function is allowed to expo-
nentially grow against time t with some base number �. We
also assume the Lipschitz property (Assumption 3.4) and
local strong convexity (Assumption 3.5) of such � against
model parameter ✓. For the optimization process, we view it
as a dynamical system, translating the necessary condition
for monotonic decreasing as bounding the updating step by
the inverse of the spectral norm of the optimization Hessian
matrix. In order to satisfy such condition for convergence,
the learning rate should be bounded and therefore the con-
vergence rate is limited. The final results are summarized
in Theorem 3.8 for vanilla policy gradient and in Theo-
rem 3.10 for our proposed logarithmic mapping. We defer
the proofs and other few supportive theorems and lemmas
to Appendix G.

3.2.1. PROBLEM FORMULATION AND ASSUMPTIONS

To formulate the problem, consider a discrete-time contin-
uous MDP hS,A,P, Ci, where S is the continuous state
space, A is the continuous action space, P(st+1|st, a) is
the transition probability, ct(s, a) is the immediate cost at
time step t and s0 is the initial condition. Assume that
the cost is upper bounded by a polynomial of time step,
s.t., |ct(s, a)|  DCt, with positive constants D > 0 and
C > 0. The target is to find an optimal policy to decrease the
accumulated cost. When C  1, the cost is bounded by D
independent of t and the system is I/O stable with bounded
output being the common setup for RL problems. In this
work, we consider a more general setting with possibility
that C > 1.

We formulate the problem into finite time horizon of step
T 2 Z+, with accumulated cost vT (s, ✓) as a function of
initial state s 2 Rn and policy parameter ✓ 2 Rd.

vT (s, ✓) = Est+1⇠p(st,at),at⇠⇡(st,✓)

"
TX

t=0

(ct|s0 = s)

#
,

VT (✓) = Es⇠D [vT (s, ✓)] .

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

where VT (✓) is the expected cost over the initial state distri-
bution. For a vanilla policy gradient method, we have the
following update step:

✓ ✓ � ⌘r✓VT (✓), (2)

with ⌘ > 0. The Hessian matrix is denoted as:
JT (✓) = r2

✓VT (✓). Denote ⇢max(A) = max{|�| :
� is an eigenvalue of A} as the spectral radius of the state
matrix A.

Assumption 3.1. Assume the step cost can be parameter-
ized by basis function E[ct] ⇠

Pm
k=1 dk�k(✓)t, VT (✓) ⇠Pm

k=1 dk
PT

t=0 �k(✓)t, where dk > 0 and 0  C <
�k(✓)  C.

Remark 3.2. The motivation of such a basis function is
inspired by the departing output trajectories of unstable
systems. Taking the finite horizon LQR example in Sec-
tion 3.1, the step cost x>

t Qxt + u>
t Rut can be rewritten

as x>
0 (A�BK)t

>
(Q + K>RK)(A � BK)tx0, which

is bounded by kx0k2kQ + K>RKkkA � BKk2t. The
kA�BKk2 term corresponds to � in Assumption 3.1 with
exponential growth with time step t and other terms remain
positive constant. Therefore, the finite horizon LQR cost
can be formulated into Assumption 3.1 regardless of sta-
bility. The formulation is also valid for optimal control
problems with polynomial cost functions or other unstable
RL problems with exponentially growing cost as a function
of time.
Remark 3.3. Despite the basis function �k(✓) plays an im-
portant role in optimization and determines the maximum
step size (will be shown in Lemma G.1), their actual value
and gradient properties might not be calculated or even learn-
able from practice. The introduction of such decomposition
is used for theoretical analysis. In experiments, we select
learning rates as hyperparameter for adaptation to different
�k(✓).

Assumption 3.4. Assume �k(✓) is twice differentiable with
Lipschitz constant L2 and the gradient of �k(✓) is also
Lipschitz continuous with L1, s.t.,

kr�k(✓1)�r�k(✓2)k  L1k✓1 � ✓2k,
k�k(✓1)� �k(✓2)k  L2k✓1 � ✓2k.

for L1, L2 2 R+, ✓1, ✓2 2 Rd.

Assumption 3.5. Assume local ↵-strong convexity of
�k(✓): �k(✓1 + ✓2) � �k(✓1) + ✓>2 r✓�k(✓1) +

↵
2 k✓2k

2.
for all the ✓1, ✓2 2 A and ✓⇤ = argmin

✓2A
�k(✓)

Remark 3.6. The strong convexity assumption is indeed
a “strong” one for many of the unstable RL examples and
policy basis functions. The purpose of such assumption is to
pave the path for convergence rate analysis. Like many other
popular optimization methods in ML field such as gradient

descent, we do not guarantee the algorithm’s convergence
to the global optimal. In practice, the stochastic gradient
method could find a near-optimal result. Besides, we also
assume that all the �k(✓) reach local optimal with the same
✓⇤, since the actual cost function can be decomposed into
more basis functions without the loss of generality.

3.2.2. CONVERGENCE RATE DERIVATION

Theorem 3.7. Suppose VT (✓) satisfies Assump-

tion 3.1 and Assumption 3.4, using the vanilla

gradient descent algorithm from Equation (2), if

⌘ < 1/
Pm

k=1 dk[L1(
PT

t=0 t�k(✓)t�1) + L2
2(
PT

t=0 t(t�
1)�k(✓)t�2], then ⌘ < 2/⇢max(JT (✓)) is satisfied for

monotonic decrease of value function.

By Theorem 3.7, we claim that to stabilize the convergence
for the finite horizon unstable problem, the learning rate ⌘
needs to be smaller than the inverse of polynomial term of
max(�k(✓)), otherwise the optimization is likely to diverge.
Theorem 3.8. Assume �k(✓) is local strong convex as stated

in Assumption 3.5 and the fixed learning rate ⌘ satisfies the

conditions in Theorem 3.7, then if we run gradient descent

for VT (✓), it yields a solution:

k✓l � ✓⇤k2  qlk✓0 � ✓⇤k2, (3)

where
p
q denotes the convergence rate and its square q is

lower bounded, s.t., q � (1 � 2!⇤↵
⇢max(JT (✓0))

), where !⇤ =

min
✓

mX

k=0

dk[(
TX

t=0

t�k(✓)
t�1)].

Our Proposed Logarithmic Mapping of Finite Horizon
Value Function:

In the vanilla setup, the value function of gradient descent
is VT (s, ✓). We propose a logarithmic mapping,

eVT (s, ✓) := log(VT (s, ✓)), (4)

to regularize the spectral radius of gradient Hessian and
gradient variance. The sampled gradient approximation has
the form of beV T (s, ✓) :=

1
b

Pb
j=1 log(vT (sj , ✓)).

Theorem 3.9. Consider the parameterization of VT (✓)
and Lipschitz condition in Assumption 3.1 and Assump-

tion 3.4, if we run gradient descent for logarithm mapped

VT (✓), then ⌘ < VT (✓)/
Pm

k=1 dk[L1(
PT

t=0 t�k(✓)t�1) +

L2
2(
PT

t=0 t(t� 1)�k(✓)t�2] is satisfied for monotonic de-

crease of the value function.

Theorem 3.10. Assume �k(✓) is local strong convex as

stated in Assumption 3.5 and the fixed learning rate ⌘l <
C

L1T+L2
2T (T�1) , then running the gradient descent for log-

arithm mapped eVT (✓) with Equation (4) yields a solution

k✓l+1 � ✓⇤k2  qlk✓l � ✓⇤k2,

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

where the square of the step convergence rate ql has a

varying lower bound s.t. ql � (1� 2!⇤↵
⇢max(JT (✓l))

).

Remark 3.11. Compared with Equation (8), the 2!⇤↵
⇢max(JT (✓))

term is proportional to the inverse of current spectral radius.
Considering an unstable system initialized with random
policy, the initial ⇢max(JT (✓0)) could be much larger than
⇢max(JT (✓l)) for ✓l in the later part of the optimization.
Practically, using the logarithmic mapping achieves a much
faster convergence rate.

3.3. Regulating Spectral Radius as Fast Pre-processing

When an unstable system is controlled by a random policy
and initialized by an arbitrary condition, the states/costs
will most likely grow rapidly due to the diverging nature
of the system. It is computationally costly to optimize the
value function from such initial policy. To speed up the
optimization, we propose a fast pre-processing method in
Algorithm 1 by finding a policy close to the stable zone.
Algorithm 1 is deferred to Appendix. In the pre-process,
we neglect the value function and only regulate the spectral
radius of the system dynamics estimated by power iteration.

4. Experiments
In this section, we use LQR as illustrative examples to
demonstrate the efficacy of our methods. We also apply
these methods to general unstable RL applications in contin-
uous control and defer the results to Appendix F. For each
experiment, we run 3 random seeds for reproducibility.

Figure 1 shows the vulnerability of optimization for unsta-
ble systems with large learning rates. For larger ⇢max, the
optimization is more likely to fail with larger learning rates.
However, a small learning rate could result in slow conver-
gence. Therefore, the major challenge for vanilla policy
gradient method on unstable RL problem is how to find
an optimal learning rate without crashing the optimization.
In our experiments, we test different learning rates by log
intervals such as {1e-1, 1e-2, ... } and select the largest one
without breaking the optimization.

In Figure 2 we compare the vanilla gradient method and
its variants with our proposed logarithmic mapping. The
subplots are normalized cost difference towards optimal,
normalized policy difference to the optimal and estimated
spectral norm by power iteration, respectively. Note that the
y-axis of the cost figure is log scale. The optimal policy K?

is the analytical optimal solution for infinite horizon LQR.
When optimizing the model with vanilla sum loss func-
tion from random initialization without any pre-processing,
the system starts from an extremely unstable condition with
large cost. From Lemma G.1, a small learning rate is needed
when the system is unstable with control policy parameters.
In practice, 1e-14 is the maximum learning rate to accommo-

date the instability. If we run an efficient policy pre-process
with a total of 300 episodes, we could use 1e-8 as learning
rate. However, the optimization is impractical because the
controller gradually stabilizes and the fixed learning rate is
then too small for further parameter update. We also tested
other discount factor such as � = 0.5 to shrink the cost
and allow a larger learning rate 1e-7, but this method also
fails because the small � neglect the long term effect of the
dynamics with spectral radius reaching 2. Combining our
proposed pre-process and log-mapped loss function, we are
able to use 1e-2 as learning rate and both cost and policy
parameters approach optimal quickly.

Figure 1. Vanilla PG LQR loss difference to optimal after 100
epochs under different learning rates and spectral radius (missing
point for ⇢max = 1.5, 2 means the cost goes to NaN when opti-
mization crashes)

Figure 2. LQR loss difference to optimal: sum loss vs log mapping,
⇢max(A) = 5

5. Conclusion
In this paper, we focus on the gradient-based optimization
for a special branch of RL problems. Due to the unstable
nature of the system, small deviation leads to exponentially
growing effects on the state evolving trajectory and the
reward/cost function, which raised issues for gradient-based
optimizations. We proposed two methods to alleviate the
effect of instability and their effectiveness is validated from
both theoretical and experimental points of view.

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

References
Abbeel, P. Optimal Control for Linear Dynamical Systems

and Quadratic Cost. 2012.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and
Bharath, A. A. Deep reinforcement learning: A brief
survey. IEEE Signal Processing Magazine, 34(6):26–38,
2017. doi: 10.1109/MSP.2017.2743240.

Bhandari, J. and Russo, D. Global optimality guar-
antees for policy gradient methods. arXiv preprint

arXiv:1906.01786, 2019.

Fatemi, M. and Tavakoli, A. Orchestrated value mapping for
reinforcement learning. arXiv preprint arXiv:2203.07171,
2022.

Fazel, M., Ge, R., Kakade, S. M., and Mesbahi, M. Global
convergence of policy gradient methods for the linear
quadratic regulator. In International Conference on Ma-

chine Learning, pp. 1467–1476. PMLR, 2018.

Hambly, B., Xu, R., and Yang, H. Policy gradient methods
for the noisy linear quadratic regulator over a finite hori-
zon. SIAM Journal on Control and Optimization, 59(5):
3359–3391, 2021.

Lin, F., Zhang, W., and Brandt, R. Robust hovering con-
trol of a pvtol aircraft. IEEE Transactions on Con-

trol Systems Technology, 7(3):343–351, 1999. doi:
10.1109/87.761054.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Perdomo, J. C., Umenberger, J., and Simchowitz, M. Sta-
bilizing dynamical systems via policy gradient methods.
NeurIPS, 2021.

Sontag, E. D. Input to State Stability: Basic Concepts and

Results. 2008.

Sontag, E. D. and Wang, Y. On characterizations of the
input-to-state stability property. Systems & Control Let-

ters, 24(5):351–359, 1995.

Sontag, E. D. and Wang, Y. Notions of input to
output stability. Systems & Control Letters, 38
(4):235–248, 1999. ISSN 0167-6911. doi:
https://doi.org/10.1016/S0167-6911(99)00070-5.
URL https://www.sciencedirect.com/
science/article/pii/S0167691199000705.

Tu, S. and Recht, B. Least-Squares Temporal Difference
Learning for the Linear Quadratic Regulator. In Proceed-

ings of the 35th International Conference on Machine

Learning, pp. 5005–5014. PMLR, 2018.

Van Seijen, H., Fatemi, M., and Tavakoli, A. Using a log-
arithmic mapping to enable lower discount factors in
reinforcement learning. Advances in Neural Information

Processing Systems, 32, 2019.

https://www.sciencedirect.com/science/article/pii/S0167691199000705
https://www.sciencedirect.com/science/article/pii/S0167691199000705

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

Fast Convergence for Unstable Reinforcement Learning Problems by
Logarithmic Mapping

Supplementary Material, ICML 2022 Workshop

A. Formulating Instability
In the dynamical system literature, stability usually denotes the input-to-state (ISS) (Sontag & Wang, 1995) stability in
system dynamics, where a small deviation of system state or control action perturbation will not lead to dramatic change of
future states. Formally, consider a general continuous dynamical system ẋ = f(x, u) with continuously differentiable f(·)
and x(t, x0, u) denote the trajectory of x given initial condition x0 and control feedback u. Then the system is ISS stable if
there exist K function � : R+ ! R+ and KL function � : R+ ⇥ R+ ! R+, s.t.

ISS stable: kx(t, x0, u)k  �(kuk1) + �(kx0k, t). (5)

where kuk1 = sup{ku(t)k} < 1 for t � 0. Function �(·) is called K function if �(·) is continuously increasing and
�(0) = 0, �(·, ·) is called KL function if �(·, t) is K function for all the t � 0.

In this paper, we refer to stability as the input-to-output (I/O) stability (Sontag & Wang, 1999). Let the output y = h(x(t))
be a function of x, for instance, y can be the quadratic function to regulate the error or other system properties we wish
to stabilize. The system is input-to-output (I/O) stable if there exist K function �(·) : R+ ! R+ and KL function
�(·, ·) : R+ ⇥ R+ ! R+, s.t.

I/O stable: ky(x(t, x0, u))k  �(kuk1) + �(kx0k, t), (6)

Both ISS and I/O stability indicate bounded inputs leading to bounded system behavior, while there does not exist any causal
relationship between the two with arbitrary choice of output function y(·). For further clarification, we provide a linear
system example in Appendix B. In reinforcement learning setting, the agent always returns an observable ”cost-to-go” but
not necessarily the whole trajectory. This is because the returned cost serves as the evaluation metric for RL algorithm.
Thus, I/O stability is a more suitable stability concept for analyzing RL problems and that’s why it is selected for this work.

B. Example on stability definition
We use the illustrative example from (Sontag, 2008). Consider a n dimension linear system ẋ = Ax + Bu where
A 2 Rn⇥n being full rank matrix, x 2 Rn with initial condition x(0) = x0, B 2 Rn⇥m and u = u(t) 2 Rm. By solving
inhomogeneous ODE, the solution is

x(t) = eAtx0 +

Z t

0
eA(t�⌧)Bu(⌧) d⌧.

Lemma B.1. The system is ISS stable if all the eigenvalues of A are strictly negative.

Proof. let �(x0, t) be keAtkkx0k and �(x0) be kBk
R1
0 ke

A⌧k d⌧ . With all the eigenvalues of A being strictly negative,
both keAtk and kBk

R1
0 ke

A⌧k d⌧ are bounded. kx(t, x0, u)k  keAtkkx0k+ kBk
R1
0 ke

A⌧k d⌧kuk1, therefore satisfies
5.

Consider y(x) := x itself, the system is I/O stable. While if we take y(x) := 1
kxk , then the system is ISS but not I/O stable

with y !1 with x0, u! 0.

Now suppose A has non-negative eigenvalues and AB is not empty matrix, then
R t
0 e

A(t�⌧)Bu(⌧) d⌧ is not bounded by �
function since kBk

R1
0 ke

A⌧k d⌧ when t!1, which also means the effect of previous action u will grow or at least not

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

vanish along the time trajectory. Then the system is not ISS. But the system could be I/O stable if we take trivial output like
y(·) := 0.

In this paper, we consider I/O stability, regardless the problem being ISS or not ISS. While in many of the real-world RL
applications such as target tracking, the output function y(·) is correlated to the norm of x such as using distance to target as
cost function. In this case, I/O stability is dependent on ISS. Specifically, for LQR problems, the eigenvalues of system
matrix A determines the system ISS and also I/O stability(discrete LQR requires the eigenvalue within the unit circle and
continuous LQR requires eigenvalues to left half-plane). Therefore, in the discrete LQR experiments, we use matrix A to
manipulate I/O stability. Since we are dealing with I/O stability, RL scenarios with ISS but not I/O stable system is beyond
the scope of this paper, for instance, a unstable invert pendulum problem with cost clipped to [0, 1].

C. Algorithm for Pre-processing

Algorithm 1 Regulating system spectral norm by power iteration
Input: system state transition function f and policy ✓, finite time step T , batch size b,
Initialize ✓
for l = 1 to N do

Sample {x1
0...x

i
0...x

b
0}

Loss 0
for t = 0 to T do

for i = 1 to b parallel do
xi+1
t f(xi

t, ✓)

Loss Loss+ ReLU(kxi
T k

kxi
T�1k

� 1)

end for
end for
Loss Loss/b
Update parameters: ✓ ✓ � ⌘r✓Loss

end for

D. Comparing logarithmic Mapping with Gradient Normalization
Normalizing gradient is a classical approach to speed up the convergence, where we have the follow update step:

✓ ✓ � ⌘
r✓VT (✓)

kr✓VT (✓)k
,

Compared with logarithmic mapping, the gradient normalization has similar theoretical performance in deterministic case
by controlling the spectral radius of the optimization step. In the stochastic case, the updating step consists of a summation
of gradient over the mini-batch followed by a normalization process. In logarithmic mapping, the log function is applied on
individual examples ahead of summation. Therefore, the outliers with relatively large noise can be “normalized” to prevent
them from dominating sampling summation. Besides, the portion of unstable examples with large loss are expected to
drop during optimization, it is necessary to map the exponentially growing effect of these unstable cases into linear forms.
In practice, our logarithmic mapping outperforms the gradient normalization in the convergence speed, as shown in the
experiment section (Section 4).

Figure 3 are the comparisons between logarithmic mapping and normalizing gradient, where learning rate 1e-1 and 1e0 will
crash the optimization respectively. The plots of ⌘ = 1e-2 for logarithmic mapping and ⌘ = 1e-1 for normalizing gradient
effectively show similar convergence rate with minor fluctuation at the beginning. The logarithmic mapping eventually
reaches a slightly better performance due to normalizing gradient’s trapping in the local minimum. Noticeably, if both
methods are coupled, the initial fluttering disappears and plots are smoother.

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

Figure 3. LQR loss difference to optimal: normalizing gradient vs log mapping, ⇢max(A) = 5

E. More experiments of unstable LQR with different spectral radius
We include additional results for unstable LQR in Figure 4 both with pre-process enabled. ⇢max(A) = 2 is a relatively
moderate case, the vanilla method could use a learning rate of ⌘ = 1e� 4 and slowly converge to optimal. In ⇢max(A) = 10
case, the vanilla method crashes for ⌘ > 1e� 11 and the optimization stagnates for ⌘ = 1e� 12. The logarithmic mapping
has similar performance in ⇢max(A) = 2 case and converges faster than the latter in ⇢max(A) = 10 case.

Figure 4. LQR loss difference to optimal, left: ⇢max(A) = 2, right: ⇢max(A) = 10

F. General Unstable RL
Figure 5 shows 3 customized unstable environments: unstable cart-pole, unstable mountain car and Planar Vertical Take-off
and Landing (PVTOL) aircraft. We use a single hidden layer neural network with 64 hidden neurons and ReLU activation
functions. The input layer and output layer has the same dimension of environment state and action space respectively.
Similar to LQR experiments, we search a largest learning rate without crashing the optimization. Each experiment is
performed under 3 random seeds. The lower half of variance is omitted for visualization in log-scale plots.

Figure 5. Unstable RL examples: modified cart-pole, modified mountain car, PVTOL aircraft

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

F.1. Modified cart-pole

Compared with standard cart-pole problem from OpenAI Gym package, we use a continuous force input and enlarged
its force magnitude to introduce more instability to the input-output system (a small amount of control feedback could
dramatically change the system behavior). Besides, we allow the agent to simulate fixed 20 time steps instead of terminating
the episode if the agent runs into an undesired zone. The cost function is defined in the quadratic form of the distance
between current state towards target position, instead of using the 0/1 reward depending on whether the episode is done or
not.

Figure 6 shows the cost against epochs for cart-pole problem with and without pre-process. For vanilla sum loss without
pre-process, ⌘ = 1e-8 is the maximum allowed learning rate and there is a significant difference in convergence speed
compared with other two. The logarithmic mapped cost is higher but close to sum loss with normalizing gradient. With a
pre-processed policy, the system is more stable at the beginning and therefore larger learning rates are allowed. All three
methods could reach the optimal. To remark on the cart-pole problem, the instability mostly comes from the large force
magnitude instead of the unbounded state space because there exists local equilibrium when the pole sticks downward.
Therefore, compared to the following 2 environments, it is less challenging and could be addressed with vanilla sum loss
with a simple pre-process.

Figure 6. Unstable cart-pole

F.2. Modified mountain car

Similar to the cart-pole treatment, we remove the terminal conditions and re-define the cost function in the quadratic
form. The control target is to drive the car to a certain location and stabilize it. We manipulate a steep slope by adding
an acceleration term proportional to the cube of horizontal displacement from the peak and there does not exist any local
equilibrium point.
The results are shown in Figure 7. Both vanilla sum loss and normalizing gradient require small learning rate, the logarithmic
mapping outperforms the other two methods. When pre-processing is engaged, the vanilla sum loss still converges slowly,
the other two methods share similar performance and achieve a smaller cost compared with the optimal results without the
pre-process.

F.3. PVTOL Aircraft

The Planar Vertical Take-off and Landing (PVTOL) aircraft (Lin et al., 1999) is a simplified 2D model of realistic aircraft
maneuver. The aircraft state includes the lateral/vertical displacement of the gravity center and roll angle. The control
feedback Ut and Um are longitudinal thrust and lateral rolling force. Notice Um provides both force and rolling moment to
the airplane. The target is to control and airplane to certain state and cost function is also in the quadratic form.

Similar to the unstable mountain car example, both vanilla sum loss and normalizing gradient show slow convergence when
pre-process is not engaged. The logarithmic mapping is capable to achieve optimal results regardless of the pre-treatment.

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

Figure 7. Unstable mountain car

Figure 8. PVTOL

G. More theoretical results on unstable RL
Lemma G.1. Update the value function VT (✓) by policy gradient method with ✓ ✓ � ⌘r✓VT (✓), choose step size

⌘ < 2/max
⇠

⇢max(JT (✓ + ⇠⌘rJT (✓))) for ⇠ 2 [0, 1], then VT (✓) is monotonically decreasing.

Proof. Let ⇠ 2 [0, 1] be a scalar, denote s = �⌘rVT (✓), g(⇠) = VT (✓ + ⇠s), we have

VT (✓ + ⇠s)� VT (✓) = g(1)� g(0) =

Z 1

0

dg

d⇠
d⇠

=

Z 1

0
s>rVT (✓ + ⇠s) d⇠


Z 1

0
s>rVT (✓) d⇠ + |

Z 1

0
s>(rVT (✓)�rVT (✓ + ⇠s)) d⇠|

 s>rVT (✓) +

Z 1

0
kskk(rVT (✓)�rVT (✓ + ⇠s))k d⇠

 s>rVT (✓) + ksk2max
⇠

⇢max(JT (✓ + ⇠⌘s))/2.

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

substitute s = ⌘rVT (✓) into the equation, we have

VT (✓ + ⇠s)� VT (✓)  �⌘(1�
⌘

2
max

⇠
⇢max(JT (✓ + ⇠⌘rJT (✓))))krVT (✓)k2 < 0.

when (1� ⌘
2max

⇠
⇢max(JT (✓ + ⌘rJT (✓)))) term is negative.

Theorem G.2. If VT (✓) satisfies Assumption 3.1 and Assumption 3.4, using the vanilla gradient descent algorithm from

Equation (2), then ⇢max(JT (✓)) <
Pm

k=1 dk[L1(
PT

t=0 t�k(✓)t�1) + L2
2(
PT

t=0 t(t� 1)�k(✓)t�2]

Proof.

r✓VT (✓) =
mX

k=1

dk(
TX

t=0

t�k(✓)
t�1)

@�k(✓)

@✓
,

Hessian JT (✓) = r2
✓VT (✓)

=
mX

k=1

Jk
T (✓).

where

Jk
T (✓) = dk[(

TX

t=0

t�k(✓)
t�1)

@2�k(✓)

@✓2

+ (
TX

t=0

t(t� 1)�k(✓)
t�2)

@�k(✓)

@✓

@�k(✓)

@✓

>
].

(7)

Denote the eigenvalues of @2�k(✓)
@✓2 , @�k(✓)

@✓
@�k(✓)

@✓

>
, Jk

T (✓), as µk
1 > ... > µk

n, �k
1 > ... > �k

n, ⌫k1 > ... > ⌫kn respectively.

Notice @�k(✓)
@✓

@�k(✓)
@✓

>
is positive semi-definite and has same non-zero eigenvalue with @�k(✓)

@✓

> @�k(✓)
@✓ , then �k

1  L2
2 by

Lipschitz condition. To bound the eigenvalues of @2�k(✓)
@✓2 ,

|µk
i |  k

@2�k(✓)

@✓2
vk/kvk

= lim
h!0

kr�k(✓ + hv)�r�k(✓)k
|h|kvk

 L1khvk
|h|kvk

 L1.

Notice @2�k(✓)
@✓2 and @�k(✓)

@✓
@�k(✓)

@✓

>
are Hermitian, by Weyl’s inequality to bound:

⌫k1  dk[L1(
TX

t=0

t�k(✓)
t�1) + L2

2(
TX

t=0

t(t� 1)�k(✓)
t�2)],

⌫kn � dk[�L1(
TX

t=0

t�k(✓)
t�1)].

⇢max(J
k
T (✓)) = max(|⌫k1 |, |⌫kn|)

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

 dk[L1(
TX

t=0

t�k(✓)
t�1) + L2

2(
TX

t=0

t(t� 1)�k(✓)
t�2)].

⇢max(JT (✓)) 
mX

k=1

dk[L1(
TX

t=0

t�k(✓)
t�1) + L2

2(
TX

t=0

t(t� 1)�k(✓)
t�2)].

Lemma G.3. If function f(x) : Rm ! R+ is L1 smooth and L2 Lipschitz and non-negative for x 2 S ⇢ Rm
, then its

polynomial f(x)n is (nfS
n�1

L1 + n(n� 1)fS
n�2

L2
2) smooth on S, where fS = max

x2S
[f(x)]

Proof. With function f(x) being L1 smooth, equivalently

krf(x)�rf(y)k  L1kx� yk

()g(x) =
L1

2
x>x� f(x) is convex

()L1I ⌫
@2f(x)

@x2
.

With function f(x) being L2 Lipschitz, krf(x)k  L2,

for polynomial f(x)n,

@2[f(x)n]

@x2
= nf(x)n�1 @

2f(x)

@x2
+ n(n� 1)f(x)n�2rf(x)rf(x)>

� (nfS
n�1

L1 + n(n� 1)fS
n�2

L2
2)I.

where the L2
2 term comes from the fact that rf(x)rf(x)> has same non-zero eigenvalue with rf(x)>rf(x).

Therefore, f(x)n is locally (nfS
n�1

L1 + n(n� 1)fS
n�2

L2
2) smooth on the support S.

Lemma G.4.
VT (✓)� VT (✓⇤)

kr✓VT (✓)k2
� 1

2L0 .

where

L0 =
mX

k=1

dk

TX

t=0

[t�k(✓)
t�1L1 + t(t� 1)�k(✓)

t�2L2
2].

where

�k(✓) = max
⇠

[�k(✓⇤ + ⇠(✓ � ✓⇤))] for ⇠ 2 [0, 1].

Proof. With Assumption 3.4 on �k(✓), apply Lemma G.3 on the straight line from ✓ to ✓⇤, VT (✓) ⇠
Pm

k=1 dk
PT

t=0 �k(✓)t

is L0 smooth on the straight line.

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

VT (✓⇤)  min
⇠

VT (✓ � ⇠rVT (✓))

 min
⇠

[VT (✓)� ⇠krVT (✓)k2 +
L0

2
⇠2krVT (✓)k2]

 min
⇠

[VT (✓) + krVT (✓)k2(
L0

2
(⇠ � 1

L0)
2 � 1

2L0)]

 VT (✓)�
1

2L0 krVT (✓)k2.

where second inequality comes from the L0 smoothness on the straight line from ✓ to ✓⇤.
therefore,

VT (✓)� VT (✓⇤)

kr✓VT (✓)k2
� 1

2L0 .

Remark G.5. If �k(✓⇤ + ⇠(✓ � ✓⇤)) is monotonically increasing on ⇠, then

�k(✓)  �k(✓),

L0 
mX

k=1

dk

TX

t=0

[�k(✓)
t�1L1 + t(t� 1)�k(✓)

t�2L2
2].

then the smoothness along the updated step is bounded by the spectral radius of the Hessian on ✓, as ⇢max(JT (✓)) in
Theorem G.2.
Proposition G.6. For twice-differentiable f , f is ↵-strong convexity function if and only if r2f(x) < ↵I for some ↵ > 0
and x 2 Rd

.

Proof. For a twice-differentiable function, ↵-strong convexity is equivalent to the smallest eigenvalue of Hessian of f being
lower bounded by ↵.

Theorem 3.7 (Restated). Suppose VT (✓) satisfies Assumption 3.1 and Assumption 3.4, using the vanilla gradient de-

scent algorithm from Equation (2), if ⌘ < 1/
Pm

k=1 dk[L1(
PT

t=0 t�k(✓)t�1) + L2
2(
PT

t=0 t(t � 1)�k(✓)t�2], then

⌘ < 2/⇢max(JT (✓)) is satisfied for monotonic decrease of value function.

The proof is completed by substituting Theorem G.2 into Lemma G.1 and taking ⇠ = 0.
Theorem 3.8 (Restated). Assume �k(✓) is local strong convex as stated in Assumption 3.5 and the fixed learning rate ⌘
satisfies the conditions in Theorem 3.7, then if we run gradient descent for VT (✓), it yields a solution:

k✓l � ✓⇤k2  qlk✓0 � ✓⇤k2, (8)

where !⇤ = min
✓

mX

k=0

dk[(
TX

t=0

t�k(✓)
t�1)] ,

p
q denotes the convergence rate and its square q is lower bounded s.t.

q � (1� 2!⇤↵
⇢max(JT (✓0))

)

Proof. by Proposition G.6, @2�k(✓)
@✓2 < ↵I . From (7),

Jk
T (✓) < dk[(

TX

t=0

t�k(✓)
t�1)]↵I,

JT (✓) <
mX

k=0

dk[(
TX

t=0

t�k(✓)
t�1)]↵I

< min
✓

mX

k=0

dk[(
TX

t=0

t�k(✓)
t�1)]↵I = !⇤↵I.

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

by Proposition G.6, VT (✓) is !⇤↵ strong convex:

VT (✓1 + ✓2) � VT (✓1) + ✓>2 r✓VT (✓1) +
!⇤↵

2
k✓2k2. (9)

k✓l+1 � ✓⇤k2

= k✓l � ⌘lr✓VT (✓l)� ✓⇤k2

= k✓l � ✓⇤k2 � 2⌘lr✓VT (✓l)
>(✓l � ✓⇤) + ⌘2l kr✓VT (✓l)k2

(9)
 k✓l � ✓⇤k2(1� ⌘l!

⇤↵)� 2⌘l(VT (✓l)� VT (✓⇤))

+ ⌘2l kr✓VT (✓l)k2

 k✓l � ✓⇤k2(1� ⌘l!
⇤↵) when ⌘l < 2

VT (✓l)� VT (✓⇤)

kr✓VT (✓l)k2
(10)

where the inequality condition is satisfied with our analysis in Lemma G.4 and Remark G.5 when

⌘l < 1/
mX

k=1

dk[L1(
TX

t=0

t�k(✓l)
t�1) + L2

2(
TX

t=0

t(t� 1)�k(✓l)
t�2] (conditions in Theorem 3.7)

 1

L0

 2
VT (✓l)� VT (✓⇤)

kr✓VT (✓l)k2
.

Since we have a non-increasing step size, ⌘l is upper bounded by 2
⇢max(JT (✓0))

, (1�⌘l!⇤↵) is greater than (1� 2!⇤↵
⇢max(JT (✓0))

).

Theorem 3.10 (Restated). Assume �k(✓) is local strong convex as stated in Assumption 3.5 and the fixed learning rate

⌘l <
C

L1T+L2
2T (T�1) , then if we run gradient descent for logarithmic mapped VT (✓) with Equation (4), it yields a solution:

k✓l+1 � ✓⇤k2  qlk✓l � ✓⇤k2.

where the the square of the step convergence rate ql has a varying lower bound s.t. ql � (1� 2!⇤↵
⇢max(JT (✓l))

)

Proof.

k✓l+1 � ✓⇤k2

= k✓l �
⌘l

VT (✓l)
r✓VT (✓l)� ✓⇤k2

= k✓l � ✓⇤k2 � 2
⌘l

VT (✓l)
r✓VT (✓l)

>(✓l � ✓⇤) +
⌘l

VT (✓l)

2
kr✓VT (✓l)k2

 k✓l � ✓⇤k2(1�
⌘l

VT (✓l)
!⇤↵)� 2

⌘l
VT (✓l)

(VT (✓)� VT (✓⇤)) +
⌘l

VT (✓l)

2
kr✓VT (✓l)k2

 k✓l � ✓⇤k2(1�
⌘l

VT (✓l)
!⇤↵) when

⌘l
VT (✓l)

 2
VT (✓l)� VT (✓⇤)

kr✓VT (✓l)k2

where the inequality condition is satisfied with our analysis in Lemma G.4 and Remark G.5 when
⌘l

VT (✓l)
< 1/

Pm
k=1 dk[L1(

PT
t=0 t�k(✓l)t�1) + L2

2(
PT

t=0 t(t � 1)�k(✓l)t�2]. The latter is valid because

Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping

VT (✓l)/
Pm

k=1 dk[L1(
PT

t=0 t�k(✓l)t�1) + L2
2(
PT

t=0 t(t� 1)�k(✓l)t�2] is lower bounded by a constant

min
l

VT (✓l)Pm
k=1 dk[L1(

PT
t=0 t�k(✓l)t�1) + L2

2(
PT

t=0 t(t� 1)�k(✓l)t�2]

= min
l

Pm
k=1 dk[(

PT
t=0 �k(✓l)t)Pm

k=1 dk[L1(
PT

t=0 t�k(✓l)t�1) + L2
2(
PT

t=0 t(t� 1)�k(✓l)t�2)

� min
l

min
k

�k(✓l)

L1T + L2
2T (T � 1)

>
C

L1T + L2
2T (T � 1)

> ⌘l.

Because

⌘l
VT (✓l)

< 1/
mX

k=1

dk[L1(
TX

t=0

t�k(✓l)
t�1) + L2

2(
TX

t=0

t(t� 1)�k(✓l)
t�2]

<
2

⇢max(JT (✓l))
. (11)

we have (1� ⌘l

VT (✓l)
!⇤↵) > (1� 2!⇤↵

⇢max(JT (✓l))
).

