
Intelligent Zigbee Protocol Fuzzing via
Constraint-Field Dependency Inference

Mengfei Ren1,3⋆, Haotian Zhang1, Xiaolei Ren1, Jiang Ming2, and Yu Lei1

1 University of Texas at Arlington, Arlington TX 76019, USA
{haotian.zhang, xiaolei.ren}@mavs.uta.edu,

ylei@cse.uta.edu
2 Tulane University, New Orleans, LA 70118, USA

jming@tulane.edu
3 University of Alabama in Huntsville, Huntsville, AL 35899, USA

mengfei.ren@uah.edu

Abstract. Zigbee is one of the global most popular IoT standards widely
deployed by millions of devices and customers. Its fast market growth also
incentivizes cybercriminals. Inference-guided fuzzing has shown promis-
ing results for security vulnerability detection, which infers the relation-
ship between input bytes and path constraints. However, deploying such
a technique on Zigbee protocol implementation is not a trivial task be-
cause of the vendor-specific requirements and particular hardware con-
figuration. In this paper, we propose TaintBFuzz, an intelligent Zigbee
protocol fuzzing by inferring the dependency between message fields and
path constraints. We then use the inference to prioritize the correspond-
ing fields in the mutation process and generate inputs that could explore
untouched branches. We implemented a prototype of TaintBFuzz and
evaluated it on a mainstream Zigbee protocol implementation called Z-
Stack. Compared with state-of-the-art protocol fuzzing tools, including
Boofuzz, Peach, and Z-Fuzzer, TaintBFuzz outperforms them in code
coverage with the assistance of constraint-field dependency inference.
Notably, TaintBFuzz efficiently identifies eight distinct vulnerabilities,
of which two are previously unidentified.

Keywords: Fuzzing · Taint Analysis · IoT Wireless Protocols · Zigbee

1 Introduction

Due to the new sensors and more reliable mobile connectivity, the Internet of
Things (IoT) device market is projected to reach hundreds of millions of dollars
by 2023 [1]. Zigbee protocol [2] is one of the dominant wireless communica-
tion protocols deployed in resource-efficient IoT devices. According to the recent
market report from Connectivity Standards Alliance, about four billion Zigbee

⋆ This research work is completed when the author takes her Ph.D. degree at Univer-
sity of Texas at Arlington.

devices are expected to be sold globally by 2023 [3]. This fast market growth
of Zigbee also incentivizes cybercriminals. Several recent research works have
revealed the security issues on Zigbee protocol [4,5,6,7]. These detected vulner-
abilities could be exploited for DDoS attacks and remote malicious execution.
Therefore, discovering security issues in Zigbee protocol implementations is nec-
essary and practical.

Fuzz testing has shown promising results for finding security vulnerabilities.
Many fuzzers [8,9,10,11,12,13] apply various techniques to infer the relationship
between input bytes and path constraints for generating test inputs efficiently,
which can explore the deeper code of the target program. Data flow analysis
(e.g., dynamic taint analysis) is one of the most adopted methods for dependency
inference. VUzzer [10], and GREYONE [11] utilize it to determine where and how
to mutate inputs. REDQUEEN [14] aims to solve magic values and checksum in
fuzzing, which colors an input seed by replacing each input byte with the largest
number of random bytes possible. Angora [12] uses it to depict the pattern of
input bytes related to path constraints. PATA [13] proposes a path-aware taint
analysis to identify and mutate critical bytes to solve path constraints.

Fig. 1: An example of compiler check deployed in a
system library used by Z-Stack [15], a popular Zig-
bee protocol stack developed by Texas Instruments.

However, it is not a
trivial task to directly de-
ploy those fuzzers to Zig-
bee protocol implementa-
tions. First, they have dif-
ficulty compiling the Zig-
bee protocol. For exam-
ple, as shown in Fig 1,
Texas Instruments (TI)
deploys specific compiler
check in its Zigbee proto-
col stack Z-Stack. It pre-
vents general compilers (e.g., GCC, Clang, and LLVM) compiling the full pro-
tocol stack, which are instead widely used by the existing fuzzing solutions [16].

Moreover, those fuzzing approaches cannot provide a proper simulated ex-
ecution environment for the Zigbee protocol due to the particular hardware
configuration required by the Zigbee protocol vendors. The Zigbee protocol
stack is usually executed in particular system-on-chip (SoC) devices and a bare-
metal program containing a single control loop for scheduling tasks and handling
events [17]. Existing fuzzers with simulation platforms (e.g., QEMU) not only
require a Linux kernel or an abstraction layer for execution but also support
limited embedded devices which are not satisfied the Zigbee protocol vendors’
device requirements [16]. The vendor-specific devices also have particular pe-
ripheral interrupts not supplied in existing simulation solutions [18]. The current
simulation platform cannot, or only with significant engineering effort, provide
support for all device-specific hardware configurations required by the Zigbee
protocol vendors. Hence, these limitations prevent those state-of-the-art fuzzing
methods from directly deploying on the Zigbee protocol implementations.

2

In this paper, we propose TaintBFuzz, an intelligent Zigbee protocol fuzzing
with constraint-field dependency inference. Our solution intends to assist IoT
application developers in evaluating the security threats associated with the
Zigbee protocol implementation in developing their applications. We leverage
static taint analysis to infer the relationship between the message field and the
path constraints. The dependency inference then guides the fuzzing engine to
prioritize the critical message fields for further mutation, which have higher
chance to exercise unvisited branches.

The fuzzing engine of TaintBFuzz is designed based on grammar-based fuzzing
with code coverage heuristics. It constructs the initial test seeds based on the
message format script from scratch. To execute the Zigbee protocol stack in
a simulation environment, we use an industrial embedded device development
platform, IAR Embedded Workbench [19], to interact with the fuzzing engine
of TaintBFuzz. The IAR is used by many Zigbee protocol vendors, such as TI,
Samsung, and Toshiba, and provides a particular compiler and a software simu-
lator. The IAR simulator also supports many vendor-specific embedded devices
with pre-defined hardware interrupt/peripheral configurations. We also develop
a stack driver and a proxy server to bridge the communication gap between the
IAR simulator and the fuzzing engine.

We implemented a prototype of TaintBFuzz and evaluated its effectiveness
in security vulnerability detection on Z-Stack [15], a mainstream Zigbee protocol
stack developed by Texas Instruments. We compare TaintBFuzz with three state-
of-the-art protocol fuzzing tools, Peach [20], Boofuzz [21], and Z-Fuzzer [16].
Peach and Boofuzz are conventional protocol fuzzers widely used in academia
and industry. Z-Fuzzer is a recently proposed coverage-guided protocol fuzzer
specialized for the Zigbee protocol implementation. Our experiment results show
that TaintBFuzz outperforms those fuzzers in terms of the number of unique
edges found and statements covered. TaintBFuzz has also identified eight unique
vulnerabilities in Z-Stack, of which two are previously undiscovered. We have also
reported the detected two crashes to the protocol vendor, which are under review
when writing this paper. To summarize, we make the following contributions:

– We propose a framework to infer the relationship between the message fields
and path constraints by leveraging static taint analysis, which specifically
addresses the Zigbee protocol vendor-specific compiler requirement.

– We propose an intelligent mutation strategy utilizing the constraint-field
dependency inference to tune the direction of fuzzing, able to prioritize which
message field for mutation.

– We implement a prototype of TaintBFuzz and evaluate it on a mainstream
Zigbee protocol stack, showing that it outperforms several state-of-the-art
protocol fuzzers in terms of code coverage. TaintBFuzz discovers eight vul-
nerabilities in Z-Stack, two of which are previously unknown.

Open Source. To facilitate the reproducibility of the research results, we release
TaintBFuzz’s source code, which is publicly available at https://github.com/
zigbeeprotocol/TaintBFuzz.

3

https://github.com/zigbeeprotocol/TaintBFuzz
https://github.com/zigbeeprotocol/TaintBFuzz

2 Related Work

In this section, we first introduce background knowledge of the Zigbee protocol.
As TaintBFuzz is a protocol fuzzer based on taint inference for the Zigbee proto-
col, we then discuss related work in the security analysis of the Zigbee protocol
and fuzz testing with the taint analysis technique.

2.1 Zigbee Protocol

Application Layer (APL)

Network Layer (NWK)

Medium Access Control Layer (MAC)

Physical Layer (PHY)

Application Support Sublayer (APS)

Zigbee Cluster
Library (ZCL)

Zigbee Device
Object (ZDO)

Connectivity Standards Alliance

IEEE 802.15.4

Connectivity Standards Alliance

IEEE 802.15.4

Fig. 2: Zigbee protocol stack overview [22].

The Connectivity Standard Al-
liance standardizes the Zigbee
protocol as a resource-efficient
two-way wireless communication
protocol for IoT devices [23]. The
protocol stack is shown in Fig 2.
The alliance defines the Applica-
tion Layer (APL) and the Net-
work Layer (NWK) on top of the
IEEE 802.15.4 standard, which
defines the Medium Access Con-
trol Layer (MAC) and the Phys-
ical Layer (PHY). The MAC and
PHY support packet transmission
through the 2.4GHz radio chan-
nel. While the NWK layer administers the Zigbee network and forwards packets,
the APL is in charge of application-level functionality. Zigbee Cluster Library
(ZCL) is a core component in the APL, providing essential API for the manu-
facturers to implement the device functionalities. From the user’s point of view,
the ZCL is a protocol that runs at the application layer and serves as the core
library for the device’s functionalities. Therefore, we will use ZCL as a case study
in the following subsections and remaining parts of this paper.

2.2 Security Analysis on Zigbee

Since the Zigbee protocol was standardized in 2003, various research work has
been published to analyze the security risks of the Zigbee protocol. Specifically,
prior work [5,6,24,25,26,27,4] focuses on the security of the Zigbee network trans-
mission. Z3Sec [5], and Snout [24] utilize penetration testing to assess existing
vulnerabilities in a Zigbee network. To analyze the security of the Zigbee protocol
on specific embedded devices, IoTcube [28], and beSTORM [26] have also been
developed. Akestoridis et al. [27] proposed Zigator to analyze encrypted Zigbee
packets for selective jamming and spoofing attacks. Wang et al. [6] developed
an automated verification tool VEREJOIN via the model checking technique
to evaluate the Zigbee network rejoin procedure. Ronen et al. [4] demonstrated

4

that a worm affecting all Zigbee-enabled lamps might damage the smart light-
ing in a city. Most of these solutions are black-box solutions that monitor and
manipulate Zigbee network traffic to detect security issues.

One of the most well-liked vulnerability identification techniques is fuzz test-
ing (e.g., AFL [29]), which is widely used and researched in the community.
Cui et al. proposed two fuzzing approaches to detect security risks on Zigbee:
FSM-Fuzzing, which is based on a finite state machine [30], and CG-Fuzzing,
which is based on a genetic algorithm [31]. However, both are closed sources
thus we failed to compare with state-of-the-art protocol fuzzers. The most re-
cent approach closest to our method is Z-Fuzzer [16], which leverages the code
coverage heuristic to guide the fuzzing process on a mainstream Zigbee pro-
tocol stack. However, it still has limitations in efficiently exploring the target
program’s deeper code by ignoring the path constraints’ structure.

Compared to the prior work, our work target security issues in Zigbee pro-
tocol implementation rather than the real-time Zigbee network. Specifically, our
work leverages the relationship between the message field and the path con-
straints via the static taint analysis technique to efficiently guide the mutation
of test inputs, which could explore deeper code of the target program.

2.3 Taint Inference Based Fuzz Testing

A significant drawback of mutation-based fuzzers is efficiently generating test
input satisfying complex path constraints. Many fuzzers, such as Driller [8] and
QSYM [32], utilize symbolic execution to resolve the complicated branch condi-
tion constraints. However, they are not scalable to the extensive application due
to the slow execution speed and path explosion issue.

In order to efficiently resolve path constraints, more lightweight solutions
are proposed, which infer the relationship between input bytes and path con-
straints to guide seed mutation. VUzzer [10] focuses on generating test cases
to pass magic value validations. It uses taint analysis to identify critical bytes
mutated to satisfy the path constraints. Angora [12] locates input bytes that
flow into path constraints based on byte-level taint tracking. It then mutates
these bytes with a gradient descent algorithm to satisfy the path constraints.
REDQUEEN [14] aims to solve magic values and checksum in fuzzing. While
reserving the execution path, it colors an input seed by replacing every input
byte with as many random bytes as possible. Matryoshka [33] explores nested
branches for fuzzing based on both control flow and taint flow. GREYONE [11]
utilizes taint analysis to locate the critical input bytes and decides how to mutate
them. PATA [13] proposes a path-awareness taint analysis for fuzzing inferring
taints based on control flow and value changes. TRUZZ [34] infers the relation-
ship between input bytes and validation checks and prevents those bytes being
mutated during the fuzzing.

Though these fuzzers have shown good performance on general applications,
they are hard to directly deploy on the Zigbee protocol implementation due to
the vendor-specific requirements of compiler and underlying hardware configura-
tion [16]. Most of these fuzzers develop their approaches with general compilers

5

 .C .C

 Step 1: Constraint Variables Identification
Message

Format Script

Source Code

RM
Construction

Constraint
Identification

Constr Vars
branchA: var y
branchC: var x
......

 Step 2: Constraint-Field Dependency Inference

Static Taint
Analysis

Dependency
Inference

 Step 3: Inference-guided Mutation

Dependency Result

Guided
Mutation

Taint Tainted
input[0] -> var x
input[2] -> var y

Grammar-based
+ coverage

guided fuzzer

Mutated
Seeds

Candidate Inputs

Crash
Report

RM - Representative Message

Fig. 3: Overall design of TaintBFuzz. The black arrows mean the main workflow
of TaintBFuzz. The red arrows mean the intermediate results generated by the
related components.

such as LLVM or Clang, which are not supported by many Zigbee protocol ven-
dors in their protocol implementations. Compared to these fuzzers, our method
first pre-process the Zigbee protocol implementation with the compiler specified
by the protocol vendor. The pre-processed code is then parsed and type-checked
for the further taint analysis.

3 Design of TaintBFuzz

Figure 3 presents the overall design of TaintBFuzz. As the ZCL is the core
library of Zigbee protocol stack to implement an IoT device’s functionalities, we
will deploy it to present the details of each step in the following subsections.

3.1 Constraint Variable Identification

The first challenge of TaintBFuzz design is to identify the constraint variables
reasonably. A constraint variable consists of a set of program variables used in a
path constraint. To address this challenge, TaintBFuzz collects program variables
used in all constraints based on the AST analysis of the program. A program
variable can directly or indirectly influence a constraint. Notably, a temporary
variable saves an intermediate result that can be used in the following con-
straints, e.g., in the statements temp = Function A(x, y); if(temp)..., the result
of a function call is saved as a temporary variable that impacts the IF condition.
In addition to the regular conditional constraint statements like IF, LOOP, and
SWITCH, TaintBFuzz also collects program variables used in every function call

6

ZCL Payload
Frame Control

(fc)
Manufacturer Code

(manu)
Transaction Sequence Number

(tranSeq)
Command Identifier

(cmdID)

ZCL Header

Fig. 4: ZCL frame format [22].

to address the temporary variable propagation. Accordingly, a constraint vari-
able is defined as a tuple (V, t, loc), where V is a set of program variables, t ∈ T
that T is a set of pre-defined constraint types (IF, LOOP, SWITCH, CALL),
and loc is a statement line number of a constraint. A path constraint can be
parsed as several sub-constraints during the AST analysis; thus, we save loc to
assemble a completed dependent fields list during the following inference phase.

Additionally, TaintBFuzz constructs a set of Representative Messages (RM)
based on the given protocol message format script 1. An RM is defined as a
tuple (F,Len, data), where F = (F1, ..., Fn) is a set of message fields defined in
the script, Len = (L1, ..., Ln) is the length of every message field, and data is
a real ZCL message. Each RM represents a unique type of ZCL message. The
generated RMs will be used for taint analysis to identify the critical fields that
impact program variables.

3.2 Constraint-Field Dependency Inference

The second challenge of TaintBFuzz is inferring the relationship between the
message fields and the path constraints. A standard solution is utilizing dy-
namic taint analysis (DTA) to identify which input bytes are used in branch
instructions. However, it could fail to compile the Zigbee protocol because of
the vendor-specific compiler requirement as shown in Fig 1. To tackle this chal-
lenge, TaintBFuzz performs static taint analysis on a pre-processed source code
compiled by the protocol vendor-specific compiler to distinguish the dependency
between message fields and path constraints.

Algorithm 1 illustrates the primary process for the dependency inference.
First, we track an external input’s impact on the program execution through
static taint analysis. For each RM, we taint each message value (e.g., input[0]
whose value is 4 as shown in Figure 3) and perform static taint analysis to
collect the tainted variables (lines 4-6). After collecting the taint analysis result,
we perform dependency inference based on the constraint variables collected
from Step 1 and the taint analysis result. For each constraint variable, we first
identify if its program variable exists in the tainted variables (line 10).

If a variable is a tainted variable, then we collect its tainted record (line 11)
including the tainted label like input[0] in Step 2 and the message value like
the array [4,1,1,0,0] in Step 1. Then the tainted record is used to search the
corresponding message field in the set of RMs (line 12). Finally, we gather all
message fields related to the program variables used in a path constraint, e.g.,
constraint A is impacted by the message field cmdID as shown in Figure 3. The
collected result is saved as a map where the key is the constraint, and the value is

1 An example of the message format script is presented in Appendix A.

7

Algorithm 1: Constraint-Field Dependency Inference

Input : A set of representative message: R,
A set of constraint variables: P,
Preprocessed source code: S

Output: Hashmap(constraint → fields): Deps

1 tainted← ∅
2 Deps← ∅
3 foreach rm ∈ R do
4 taint← taintField (rm)
5 taint vars← taintAnalysis (S, taint)
6 tainted← tainted ∪ (taint, taint vars, rm.data)

7 end

8 foreach constraint ∈ P do
9 foreach var ∈ constraint.V do

10 if isTainted (var, tainted) then
11 tainted record← getTainted (var, tainted)
12 field← searchField (R, tainted record)
13 Deps[constraint]← Deps[constraint] ∪ field

14 end

15 end

16 end
17 Deps← assembleDependency (Deps)

the message fields influencing the constraint. As a path constraint could consist
of several sub-constraints, we combine all constraint-field dependencies based on
the constraint’s loc value as the final dependency inference result and pass it to
the mutation engine (line 17).

3.3 Inference-guided Mutation

The main challenge of TaintBFuzz is effectively leveraging dependency analysis
results, which implicates inference-guided mutation. Our objective is to enhance
the mutation process through dependency inference when a fuzzer is hard to
explore more paths of a program. Remarkably, we use coverage-guided fuzzing
(CGF) in our main fuzzing engine because it is low-cost and efficiently covers
the majority of easy-to-cover branches. Only for hard-to-cover branches, we in-
troduce the constraint-field dependency to augment the mutation process and
generate diversified seeds. Algorithm 2 shows the primary process of coverage-
guided fuzzing with constraint-field dependency inference. A threshold is a pre-
defined value of the number of mutations since the last updated code coverage,
indicating when to utilize the constraint-field dependency for mutation on a
particular path to explore more uncovered branches.

Grammar Based with Coverage Guided Fuzzing. TaintBFuzz uses a gram-
mar based fuzzer with coverage-guided feedback as its fuzzing engine. We gen-

8

Algorithm 2: Fuzzing Process with Constraint-Field Dependency In-
ference
Input : Input seed: s, Inference result: Infer,

Control flow graph: G, Timeout: timeout
Program for coverage tracking: P,
Program for inference tracking: P ′

Output: Detected crash: crash

1 execPath← ∅
2 crash← ∅
3 threshold← user predefined value

4 def main():
5 while not timeout do
6 cov, execPath, crash← execCheckCoverage (s,P)
7 if noUpdate (cov, threshold) then
8 s← mutateWithInfer (s, cov, execPath)
9 else

10 s← mutate (s)

11 end

12 def mutateWithInfer (s, cov, execPath):
13 pid← len (execPath)
14 uncovered← checkPath (cov, execPath, pid,G)
15 inferF ields← getInferFields (uncovered, Infer)
16 while pid ≥ 0 do
17 foreach f ∈ inferF ields do
18 s′,mutated← mutate (s, f)
19 if mutated then
20 break

21 end
22 cov′, path′, crash← executeGetCovered (s′,P ′)
23 if hasCovered (uncovered, cov′) then
24 return s′

25 else if callStackChanged (execPath, path′) then
26 inferF ields← updateFieldState (s, execPath, inferF ields)
27 else if not mutated then
28 pid← pid− 1
29 uncovered← checkPath (cov′, execPath, pid,G)
30 inferF ields← getInferFields (uncovered, Infer)

31 end

32 end

erate the initial seed corpus based on the given protocol message script from
scratch so that each seed would satisfy the sanity check of message processing.
If a new edge is discovered, the seed is saved as a favored test case with higher
prioritization in the following mutations. The fuzzer also monitors the protocol
stack execution result and reports any detected crashes. If the code coverage

9

has not been updated after several seed mutations (threshold), we utilize the
inference result for mutation optimization.

Mutation with Dependency Inference. Once no more new codes are ex-
plored after the pre-defined threshold, we mutate the seed based on the constraint-
field dependency of the current execution path. Assume a sample input’s message
fields are [fc,manu, seqID, cmd, attrId, type, data] and a covered basic block se-
quence is [B1, B2, B4, B6, B7]. In order to explore deeper of the path, TaintBFuzz
backtracks the block sequence to identify the last uncovered block in the current
path by examining the control flow graph and coverage feedback (lines 12-14),
e.g., B6 is the predecessor block of B7 that contains a condition check and has
an uncovered block B8. Then TaintBFuzz searches the corresponding constraint
of B6 in the dependency inference result. For example, we find the fields [fc and
cmd] that influence the constraint. TaintBFuzz sequentially mutates each field
to generate new inputs (lines 16-20), and executes the program with the new
inputs (line 21). If the block B8 has been accessed (lines 22-23) indicating the
code coverage is increased, then we return to regular coverage-guided fuzzing
with the new input.

A mutation on the dependent field may change the predecessor block se-
quence of the previously uncovered block. For example, the predecessor block
sequence of B8 is B1 → B2 → B4 → B6. A new value of the inferred field
cmd leads to a new execution path that does not exercise B6 any more. Then,
TaintBFuzz first tries other candidate values of the field cmd and checks if the
previously predecessor block sequence can be re-accessed (line 25). The worst
case is that all candidate values of the field never explore the uncovered branch.
In that case, TaintBFuzz restores the original value of this field and filters out
this field from the inferred fields list without further mutation. Furthermore,
suppose mutations on all dependent fields of a constraint fail to access the un-
covered branch, i.e., the variable mutated is FALSE, indicating the completed
mutation on the fields (line 26). In that case, TaintBFuzz then back-traces to
the next uncovered block in the path to mutate with the inferred fields until all
blocks in the block sequence have been traversed (lines 27-29).

4 Implementation

The purpose of TaintBFuzz is to assist Zigbee protocol vendors and IoT appli-
cation manufacturers in avoiding security risks during their development phase.
Thus, the Zigbee protocol message format and related IoT device configuration
are assumed to be aware and configured in the format script. As Fig 3 shows,
the constraint variables identifier, the constraint-field dependency inferrer, and
the inference-guided mutator are the three main components of TaintBFuzz. We
illustrated the details of each component as follows.

The representative message constructor is implemented using the message
generator of Boofuzz [21] with a pre-defined message format script that con-
forms to protocol format definition [35]. The constraint variables identifier and

10

taint analysis tool are developed based on Frama-C [36]. Frama-C is an open-
source platform dedicated to source-code analysis of C software and perform
static analysis based on abstract syntax tree (AST). The constraint variable col-
lector is performed with a pre-processing file of the source code that is compiled
with the IAR compiler to avoid compiler check problem. We modify Frame-C to
analyze pre-processed code with the vendor-specific syntax that are not initially
supported (e.g., intrinsic, nounwind, #Pragma rtmodel and so on) for AST
analysis. We also implement a script using Ocaml to analyze AST and collects
the constraint variables used in IF, LOOP, SWITCH, and CALL statements.

The constraint-field dependency inferrer implements Algorithm 1. According
to the generated RMs and taint analysis result, it maps message fields to several
message fields that could impact the condition decision. The inference-guided
mutator implements Algorithm 2. Suppose no more new edges are explored after
several mutations (a threshold). In that case, it evaluates each input seed along
its execution path and collects constraint variables helpful in exploring new
branches. Then it mutates the critical fields to generate new seeds to explore
the deeper of the path. We currently set up the threshold as 50 based on our
experiment results.

Moreover, several message fields in Zigbee are enumerated types with pre-
defined values defined in the Zigbee protocol specification. The protocol checks if
such a field has a particular value that requires a specific handling process. Exist-
ing protocol fuzzers mutate such a field by the following methods: (a). randomly
selecting values (e.g., selecting any value between [0, 255] if the field is byte
type), (b). enumerating all possible values based on the field size, (c). selecting
values based on their fuzzing dictionary defined according to human heuristics.
Such mutation methods lead to ineffective fuzzing performance. To tackle this
problem, we customize the fuzzing dictionary of those message fields by con-
sidering their pre-defined values in the protocol specification along with several
negative values to reduce the searching space.

The coverage-guided fuzzing engine is developed based on Z-Fuzzer’s fuzzing
engine that considers the code coverage feedback. We integrate our inference-
guided mutator with its fuzzing engine. We utilize the embedded device simulator
C-SPY [37] of IAR Workbench to execute the Zigbee protocol stack. We also
create a proxy server to enable the connection between the fuzzing engine and the
simulator, as the simulator lacks a network interface for sending test messages.
According to the static analysis result, we noticed that some functions do not
have any callers, which would be used depending on the IoT application vendor’s
device feature requirements. Thus, we also add corresponding handlers in the
source code to fuzz these corner cases.

5 Evaluation

In this section, we evaluate TaintBFuzz through multiple experiments. The ex-
periments are designed to answer the following research questions:

11

– RQ1: Can TaintBFuzz achieve better fuzzing performance compared to
state-of-the-art protocol fuzzers?

– RQ2: How efficient is TaintBFuzz at detecting vulnerabilities compared to
state-of-the-art protocol fuzzers?

We illustrate the novelty and efficiency of TaintBFuzz in comparison with
three baseline protocol fuzzers, Peach [20], Boofuzz [21], and Z-Fuzzer [16]. Boo-
fuzz is the successor of Sulley [38], an industry-standard protocol fuzzer more
actively maintained than Sulley. Both are open source and have been used in
existing research papers [39,40]. Z-Fuzzer is a device-agnostic fuzzing tool for Zig-
bee protocol implementation that leverages code coverage heuristic on grammar-
based fuzzing. Boofuzz and Peach do not initially work with the Zigbee protocol.
Hence, we incorporated them with our proxy server and simulation platform to
send test inputs for Zigbee protocol execution.

All of our experiments were performed on a machine with eight cores (Intel®

CoreTM i7-6700 CPU @ 3.40GHz) and 32 GB memory running the Windows 10
Pro operating system and IAR Embedded Workbench for ARM 8.3. We use a
widespread Zigbee protocol implementation Z-Stack [15] as the target program,
developed by Texas Instruments with various sample project code bases, and its
source code is available. From the user’s point of view, the ZCL is a protocol
that runs at the application layer and serves as the core library for the Zigbee
protocol stack. We employ ZCL as a case study in our evaluation. We ran each
fuzzer on Z-Stack over 24 hours. All experiments were repeated ten times. We
also set the threshold for inference-guided mutation as 50 when compared with
other protocol fuzzers.

5.1 Fuzzing Performance

Table 1: Evaluation results of fuzzing performance
of all fuzzers on Z-stack in 10 runs.

Fuzzer
Unique

Test Cases
Statement Coverage Edge Coverage
total % total %

TaintBFuzz 12,493 1111 68.88% 800 74.42%
Z-Fuzzer 61,386 971 63.18% 769 71.53%
Boofuzz 16,756 912 59.33% 680 63.26%
Peach 18,271 850 55.30% 628 58.42%

To answer RQ1, we per-
formed a set of fuzzing ex-
periments on each fuzzer
to examine their gener-
ated test cases, statement
coverage, and edge cover-
age. The fuzzers produce
test cases with the given
message format script us-
ing the user-specific or
pre-defined fuzzing dictionary, for which the total number of test cases is fi-
nite. Results2 are presented in Table 1. The results show that TaintBFuzz is
more effective than state-of-the-art protocol fuzzers.

2 During our evaluation, we noticed that existing research has incorrect percentage
calculations on state-of-the-art fuzzers. Thus, we recalculate them and show in Ta-
ble 1.

12

0 1000 2000 3000 4000 5000 6000
10

20

30

40

50

60

70

80 Peach Z-Fuzzer
 Boofuzz TaintBFuzz

0 20 40 60 80 100
10

20

30

40

50

60

St
at

em
en

t C
ov

er
ag

e
(%

)

Test Case (#)

(a) Statement Coverage

0 1000 2000 3000 4000 5000 6000
10

20

30

40

50

60

70

80

0 20 40 60 80 100
10

20

30

40

50

60

 Peach Z-Fuzzer
 Boofuzz TaintBFuzz

Ed
ge

 C
ov

er
ag

e
(%

)

Test Case (#)

(b) Edge Coverage

Fig. 5: Statement coverage and edge coverage achieved by fuzzers over 10 runs.
The X-axis represents the median number of test cases. The Y-axis represents
the percentage of statement coverage and edge coverage on average. We also
display a zoomed-in graph in the left corner of the coverage variation in the first
100 test cases for each coverage graph.

Test Case Generation. We examine the uniqueness of the test cases produced
by all fuzzers. TaintBFuzz can achieve higher code coverage than other fuzzers
with fewer test cases, especially with five times fewer test cases than Z-Fuzzer,
due to the reduced input space of several message fields with the customized
fuzzing dictionary. In addition, to differentiate between different fuzzers on test
case creation, we classify test cases according to the Zigbee protocol standard us-
ing the field Command Identification in the ZCL header. TaintBFuzz generated
194 distinct types of test cases in total, of which only 34 of them can be gener-
ated by other fuzzers. More than half of these distinct types are generated after
mutating the dependent fields in the constraint-field dependency inference. We
also measure how the constraint-field dependency inference impacts the test case
generation, i.e. when to consider the dependency inference to augment mutation
for generating more diversified test cases. The result is shown in Appendix B

Code Coverage. We measure the code coverage on all fuzzers. Peach and
Boofuzz cannot directly work with Z-Stack execution, so we integrated them
with our protocol simulation platform via the proxy server. As shown in Table 1,
TaintBFuzz can achieve higher statement coverage and edge coverage with fewer
test cases. As we reduced the searching space of several message fields with pre-
defined values in the Zigbee protocol specification, TaintBFuzz can efficiently
generate test seeds with dependency inference to explore more paths in the target
program. Our primary focus is on effectively creating test cases that conform to
the Zigbee protocol specification’s message format and exploring more normal
execution paths. As a result, we cannot fully cover the exception-handling code
in the protocol implementation.

Fig 5 presents the variation of code coverage of fuzzing in all fuzzers. For
better result presentation, we plot the coverage trend of the first 6000 test cases
generation to show in Fig 5. The zoomed-in graph in the lower left corner display

13

more details about how the code coverage varies in the first 100 test cases. It
shows that Boofuzz, Z-Fuzzer and TaintBFuzz quickly proliferated at an early
phase. Minor changes in the header can significantly impact the code and path
that is performed since the Zigbee protocol first validates a ZCL header before
processing any other fields of the message. Peach slowly increased its code cover-
age because it randomly fuzzed a message field. The other three fuzzers started
mutation from the first message field resulting in the rapid code coverage incre-
ment in the early phase.

Notably, the coverage increment of TaintBFuzz is the fastest due to the guid-
ance from the constraint-field dependency inference. Boofuzz mutated a single
field at a time based on their placement order in the format script, in which the
field is reset to the initial value after mutation completes. Therefore, it can enu-
merate a limited number of ZCL header types. Though Z-Fuzzer leverages code
coverage to prioritize the favored test cases for further mutation, it is hard to
consider all possible header values by only considering the coverage feedback. For
example, a test case whose Command Identifier is 0x05 triggers a new edge and
is saved as a favored test case for further mutation. In contrast, the field Frame
Control is reset to the initial value 0x00. Z-Fuzzer continues fuzzing succeeding
fields of Command Identifier, which does not explore any new codes. However,
a path constraint requires a particular value of Frame Control to trigger an-
other branch. With the guidance from the constraint-field dependency inference,
TaintBFuzz efficiently generates such a test case to explore the uncovered branch.

Summary. TaintBFuzz’s constraint-field dependency inference allows it to at-
tain a greater code coverage rate than Peach, Boofuzz, and Z-Fuzzer. We ob-
served that many ZCL functions handle the message payload value for the higher-
level application object. To run more in-depth code in those functions, they could
need a test case to meet specific branch conditions. The values of specific message
fields, which may meet such a dependence condition, are neglected throughout
the fuzzing process by Peach, Boofuzz, and Z-Fuzzer. TaintBFuzz, on the other
hand, can deduce such a correlation from the constraint-field dependency infer-
ence. The inferred message fields have higher priority for the further mutation to
generate test cases, which satisfy those specific requirements and covering more
codes and edges.

5.2 Vulnerability Detection

We measure the number of unique vulnerabilities discovered by all fuzzers to
answer RQ2. On each fuzzer, we performed the experiments ten times and pre-
sented the result in Table 2. The vulnerabilities are distinguished by comparing
the call stack and performing manual analysis.

As shown in Table 2, TaintBFuzz can detect the known vulnerabilities and
two new crashes. We cross-checked the vulnerabilities detected by all fuzzers.
Though Z-Fuzzer has generated more test cases for discovering CVE-2020-27891
and CVE-2020-27892 than TaintBFuzz, only 11% of them can be manually re-
produced. Instead, most test cases generated by TaintBFuzz for the detected

14

vulnerabilities are reproducible. For CVE-2020-27892, TaintBFuzz has fewer test
cases than Z-Fuzzer because we reduced the input space of several message fields
in the ZCL payload by customizing the fuzzing dictionary with pre-defined values
in the protocol specification. Z-Fuzzer regards these fields as a regular byte or
word variable and mutates it with a more extensive fuzzing dictionary, in which
many test cases instead have no impact on path exploration and bug detection.

Table 2: Summary of unique vulnerabilities detected all
fuzzers over ten fuzzing runs in 24 hours. We present
the total amount of test cases triggering the vulnera-
bility on average.

Vulnerability Peach Boofuzz Z-Fuzzer TaintBFuzz
CVE-2020-27890 ✗ ✗ 96 103
CVE-2020-27891 1 57 71 17
CVE-2020-27892 4 10 47 10
zclParseInReportCmd ✗ ✗ 2 3
zclParseInReadRspCmd ✗ ✗ 3 2
zclProcessInWriteCmd 2 ✗ 5 2
zcl SendReadReportCfgCmd ✗ ✗ ✗ 2
zcl SendCommand ✗ ✗ ✗ 2
Total 7 67 224 141

Moreover, TaintB-
Fuzz has detected two
new crashes in func-
tions zcl SendReadRe-
portCfgCmd and
zcl SendCommand,
which are corner cases
that have not been
tested before in previ-
ous research. The root
cause is the long list
of attribute identifiers
whose value is random.
In practice, an IoT de-
vice may have a few defined features (e.g., less than 20), each having a unique
attribute identifier to perform the device functionalities. The protocol vendor
usually customized their memory management functions rather than using func-
tions from the standard C library, e.g., Z-Stack use zcl mem alloc() instead of
malloc() from libc, due to the limited hardware resources on IoT devices. When
the attribute list is too long, the protocol stack requires more memory space to
process them, which results in memory corruption when allocating space using
the above self-implemented memory function. We have also reported these two
new crashes to the protocol vendor, which are under review when writing this
paper.

Table 3: The constraints and message fields assisting
TaintBFuzz to trigger the vulnerabilities, in which fc
represents the field Frame Control, cmdID represents
the field Command Identifier, attrID represents the
field Attribute Identifier as shown in Fig 4.

Vulnerability Constraints & Fields
CVE-2020-27890 cmdID == 0x05
CVE-2020-27891 fc == 0x08 ∧ cmdID == 0x09
CVE-2020-27892 cmdID ∈ [0x12, 0x14]
zclParseInReportCmd cmdID == 0x0A ∧ (attrID ∈ [0x7fff, 0x7ff7])
zclParseInReadRspCmd cmdID == 0x01 ∧ attrID == 0x7ff9
zclProcessInWriteCmd cmdID == 0x02
zcl SendReadReportCfgCmd cmdID == 0x08
zcl SendCommand cmdID == 0x08 ∧ (hdr.fc.type == 0x00)

We also evaluate
how the constraint-field
dependency inference as-
sists TaintBFuzz in de-
tecting the vulnerabil-
ities. The constraints
and corresponding mes-
sage fields are shown
in Table 3. All vulnera-
bilities are triggered by
messages with random
payload values, which
also satisfy the listed
constraints. We noticed
that all detected vulnerabilities are influenced by the message field Command

15

Identifier, which is reasonable since the Zigbee protocol takes different message
parser and processor based on the Command Identifier. Moreover, for the two
newly discovered bugs, mainly the vulnerable function zcl SendCommand, there
is a constraint to validate the device operation based on the ZCL message type,
which returns failure if not satisfied. TaintBFuzz can generate proper test cases
satisfying the constraint with the constraint-field dependency inference, which
guides the fuzzer to mutate the field Frame Control.

Summary. TaintBFuzz can efficiently discover vulnerabilities compared to state-
of-the-art protocol fuzzers for known vulnerabilities and new crashes in Z-Stack.
We notice that most vulnerabilities are caused by the memory allocation func-
tion developed by the Zigbee protocol vendors, which takes the place of the
C library’s standard functions. It is difficult for resource-efficient IoT devices
to support all C standard API because of the hardware and computing power
limitation. Such customized system API from protocol vendors may bring more
potential security risks during the IoT application development, which the de-
velopers may not be aware of before releasing their applications. The mitigation
of potential security risks now depends on whether the vendors are active or not
for the reported issues [41]. This situation is what inspired us to propose this
approach to help IoT application developers identify possible security issues in
advance during the development phase.

6 Conclusion

This paper presents TaintBFuzz, an intelligent Zigbee protocol fuzzing with
constraint-field dependency inference. It first identifies the path constraint vari-
ables and generates representative messages based on the Zigbee protocol format
specification. Then it leverages static taint analysis to infer which critical mes-
sage field impacts the constraint variables. Finally, with the constraint-field de-
pendency inference, TaintBFuzz precisely mutates the critical field of constraint
variables to explore the uncovered statements. In terms of code coverage, TaintB-
Fuzz outperforms several state-of-the-art protocol fuzzers on a mainstream Zig-
bee protocol implementation called Z-Stack developed by Texas Instruments.
Particularly, TaintBFuzz can identified eight unique vulnerabilities in Z-Stack,
two of them are previously unknown.

Acknowledgments. We would like to thank the anonymous paper reviewers
for their insight and helpful feedback. This work was supported by the National
Science Foundation (NSF) under grant CNS-2128703. Jiang Ming was also sup-
ported by Carol Lavin Bernick Faculty Grant.

References

1. Allied Market Research. IoT Device Market Expected to Reach $413.7 Billion By
2031. https://www.globenewswire.com/news-release/2022/08/08/2493893/0/

16

https://www.globenewswire.com/news-release/2022/08/08/2493893/0/en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-Research.html
https://www.globenewswire.com/news-release/2022/08/08/2493893/0/en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-Research.html

en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-
Research.html, 2022.

2. The Connectivity Standards Alliance. Zigbee: The Full-Stack Solution for All
Smart Devices. https://csa-iot.org/all-solutions/zigbee/, 2015.

3. BusinessWire. Analysts Confirm Half a Billion Zigbee Chipsets Sold, Igniting IoT
Innovation; Figures to Reach 3.8 Billion by 2023. https://www.businesswire.com/
news/home/20180807005170/en/Analysts-Confirm-Half-a-Billion-Zigbee-
Chipsets-Sold-Igniting-IoT-Innovation-Figures-to-Reach-3.8-Billion-by-2023,
2018.

4. Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi-Or Weingarten. IoT Goes
Nuclear: Creating a ZigBee Chain Reaction. In Proceedings ot the 38th IEEE
Symposium on Security and Privacy (S&P ’17), pages 195–212, Piscataway, NJ,
USA, 2017. IEEE.

5. Philipp Morgner, Stephan Mattejat, Zinaida Benenson, Christian Müller, and Fred-
erik Armknecht. Insecure to the Touch: Attacking ZigBee 3.0 via Touchlink Com-
missioning. In Proceedings of the 10th ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec ’17), page 230–240, New York, NY, USA,
2017. Association for Computing Machinery.

6. Jingcheng Wang, Zhuohua Li, Mingshen Sun, and John C.S. Lui. Zigbee’sNetwork
Rejoin Procedure for IoT Systems: Vulnerabilities and Implications. In Proceed-
ings of the 25th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID ’22), New York, NY, USA, 2022. Association for Computing Ma-
chinery.

7. Common Vulnerabilities and Exposures. Zigbee CVE Records. https://
cve.mitre.org/cgi-bin/cvekey.cgi?keyword=zigbee, 2022.

8. Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting Fuzzing through Selective Symbolic Execution. In Proceedings
of the 23rd Network and Distributed Systems Security Symposium (NDSS ’16),
pages 1–16, San Diego, CA, USA, 2016. Network and Distributed Systems Security
Symposium.

9. Mingi Cho, Seoyoung Kim, and Taekyoung Kwon. Intriguer: Field-level Constraint
Solving for Hybrid Fuzzing. In Proceedings of the 26th ACM SIGSAC Conference
on Computer and Communications Security (CCS ’19), pages 515–530, New York,
NY, USA, 2019. Association for Computing Machinery.

10. Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. VUzzer: Application-aware Evolutionary Fuzzing. In Proceedings of
the 24th Network and Distributed Systems Security Symposium (NDSS ’17), vol-
ume 17, pages 1–14, San Diego, CA, USA, 2017. Network and Distributed Systems
Security Symposium.

11. Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu, and
Zuoning Chen. GREYONE: Data flow sensitive fuzzing. In Proceedings of the 29th
USENIX Security Symposium (USENIX Security ’20), pages 2577–2594, Berkeley,
CA, USA, August 2020. USENIX Association.

12. Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Principled Search. In
Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P ’18),
pages 711–725, Piscataway, NJ, USA, 2018. IEEE.

13. Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang, Jianzhong Liu,
Zhe Liu, and Jiaguang Sun. PATA: Fuzzing with Path Aware Taint Analysis. In
Proceediings of the 43rd IEEE Symposium on Security and Privacy (S&P ’22),
pages 154–170, Piscataway, NJ, USA, 2022. IEEE.

17

https://www.globenewswire.com/news-release/2022/08/08/2493893/0/en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-Research.html
https://www.globenewswire.com/news-release/2022/08/08/2493893/0/en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-Research.html
https://www.globenewswire.com/news-release/2022/08/08/2493893/0/en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-Research.html
https://www.globenewswire.com/news-release/2022/08/08/2493893/0/en/IoT-Device-Market-Expected-to-Reach-413-7-Billion-By-2031-Allied-Market-Research.html
https://csa-iot.org/all-solutions/zigbee/
https://www.businesswire.com/news/home/20180807005170/en/Analysts-Confirm-Half-a-Billion-Zigbee-Chipsets-Sold-Igniting-IoT-Innovation-Figures-to-Reach-3.8-Billion-by-2023
https://www.businesswire.com/news/home/20180807005170/en/Analysts-Confirm-Half-a-Billion-Zigbee-Chipsets-Sold-Igniting-IoT-Innovation-Figures-to-Reach-3.8-Billion-by-2023
https://www.businesswire.com/news/home/20180807005170/en/Analysts-Confirm-Half-a-Billion-Zigbee-Chipsets-Sold-Igniting-IoT-Innovation-Figures-to-Reach-3.8-Billion-by-2023
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=zigbee
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=zigbee

14. Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. REDQUEEN: Fuzzing with Input-to-State Correspondence. In
Proceedings of the 26th Network and Distributed Systems Security Symposium
(NDSS ’19), volume 19, pages 1–15, San Diego, CA, USA, 2019. Network and
Distributed Systems Security Symposium.

15. Texas Instruments. A fully compliant ZigBee 3.x solution: Z-Stack. http://
www.ti.com/tool/Z-STACK, 2018.

16. Mengfei Ren, Xiaolei Ren, Huadong Feng, Jiang Ming, and Yu Lei. Z-fuzzer:
Device-agnostic fuzzing of zigbee protocol implementation. In Proceedings of the
14th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec ’21), page 347–358, New York, NY, USA, 2021. Association for Computing
Machinery.

17. Drew Gislason. Zigbee Wireless Networking, 1st Edition. Newnes, London, UK,
2008.

18. Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David
Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.
HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation. In
Proceedings of the 29th USENIX Security Symposium (USENIX Security’20), pages
1201–1218, Berkeley, CA, USA, August 2020. USENIX Association.

19. IAR System. IAR Embedded Workbench. https://www.iar.com/products/
architectures/arm/iar-embedded-workbench-for-arm/, [online].

20. Peach Tech. Peach Fuzzer: Discover unknown vulnerabilities. https://
www.peach.tech/, [online].

21. Joshua Pereyda. Boofuzz: Network Protocol Fuzzing for Humans. https://
boofuzz.readthedocs.io/en/latest/, 2020.

22. Zigbee Alliance. Zigbee Specification. https://zigbeealliance.org/wp-content/
uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf, August 5, 2015.

23. BusinessWire. ZigBee Alliance Accelerates IoT Unification with 20 ZigBee 3.0 Plat-
form Certifications From Eight Silicon Providers. https://www.businesswire.com/
news/home/20161206005020/en/ZigBee-Alliance-Accelerates-IoT-Unification-
with-20-ZigBee-3.0-Platform-Certifications-From-Eight-Silicon-Providers, 2016.

24. John Mikulskis, Johannes K Becker, Stefan Gvozdenovic, and David Starobinski.
Snout - An Extensible IoT Pen-Testing Tool. Poster presented at: the 26th ACM
SIGSAC Conference on Computer and Communications Security (CCS ’19), 2019.

25. Philipp Morgner, Stephan Mattejat, and Zinaida Benenson. All your bulbs are
belong to us: Investigating the Current State of Security in Connected Lighting
Systems. CoRR, abs/1608.03732, 2016.

26. Beyond Security. Dynamic, Black Box Testing on the ZigBee. https://
beyondsecurity.com/dynamic-fuzzing-testing-zigbee.html?cn-reloaded=1, 2021.

27. Dimitrios-Georgios Akestoridis, Madhumitha Harishankar, Michael Weber, and
Patrick Tague. Zigator: Analyzing the Security of Zigbee-enabled Smart Homes. In
Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec’20), pages 77–88, New York, NY, USA, 2020. Association
for Computing Machinery.

28. IoTcube. Blackbox-testing zfuzz. https://iotcube.net/userguide/manual/zfuzz,
2021.

29. Michal Zalewski. American fuzzy lop. http://lcamtuf .coredump.cx/afl, 2015.
30. Baojiang Cui, Shurui Liang, Shilei Chen, Bing Zhao, and Xiaobing Liang. A Novel

Fuzzing Method for Zigbee based on Finite State Machine. International Journal
of Distributed Sensor Networks, 10(1):762891, 2014.

18

http://www.ti.com/tool/Z-STACK
http://www.ti.com/tool/Z-STACK
https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/
https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/
https://www.peach.tech/
https://www.peach.tech/
https://boofuzz.readthedocs.io/en/latest/
https://boofuzz.readthedocs.io/en/latest/
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-21-0csg-zigbee-specification.pdf
https://www.businesswire.com/news/home/20161206005020/en/ZigBee-Alliance-Accelerates-IoT-Unification-with-20-ZigBee-3.0-Platform-Certifications-From-Eight-Silicon-Providers
https://www.businesswire.com/news/home/20161206005020/en/ZigBee-Alliance-Accelerates-IoT-Unification-with-20-ZigBee-3.0-Platform-Certifications-From-Eight-Silicon-Providers
https://www.businesswire.com/news/home/20161206005020/en/ZigBee-Alliance-Accelerates-IoT-Unification-with-20-ZigBee-3.0-Platform-Certifications-From-Eight-Silicon-Providers
https://beyondsecurity.com/dynamic-fuzzing-testing-zigbee.html?cn-reloaded=1
https://beyondsecurity.com/dynamic-fuzzing-testing-zigbee.html?cn-reloaded=1
https://iotcube.net/userguide/manual/zfuzz
http://lcamtuf.coredump.cx/afl

31. Baojiang Cui, Ziyue Wang, Bing Zhao, and Xiaobing Liang. CG-Fuzzing: A Com-
prehensive Fuzzy Algorithm for ZigBee. International Journal of Ad Hoc and
Ubiquitous Computing, 23(3-4):203–215, 2016.

32. Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. {QSYM}: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security ’18), pages 745–761,
Berkeley, CA, USA, 2018. USENIX Association.

33. Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: Fuzzing Deeply Nested
Branches. In Proceedings of the 26th ACM SIGSAC Conference on Computer and
Communications Security (CCS ’19), pages 499–513, New York, NY, USA, 2019.
Association for Computing Machinery.

34. Kunpeng Zhang, Xi Xiao, Xiaogang Zhu, Ruoxi Sun, Minhui Xue, and Sheng Wen.
Path Transitions Tell More: Optimizing Fuzzing Schedules via Runtime Program
States. Proceedings of the 44th International COnference on Software Engineering
(ICSE ’22), 2022.

35. Boofuzz. Boofuzz Protocol Definition. https://boofuzz.readthedocs.io/en/stable/
user/protocol-definition.html, 2020.

36. Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-C: A Software Analysis Perspective. Formal Aspects of Com-
puting, 27(3):573–609, 2015.

37. IAR Systems. C-SPY Debugging Guide for Amr cores. https://wwwfiles.iar.com/
arm/webic/doc/EWARM DebuggingGuide.ENU.pdf, [2015].

38. Ganesh Devarajan. Unraveling SCADA Protocols: Using Sulley Fuzzer. Defon 15
Hacking Conference, 2007.

39. Zhengxiong Luo, Feilong Zuo, Yuheng Shen, Xun Jiao, Wanli Chang, and Yu Jiang.
ICS Protocol Fuzzing: Coverage Guided Packet Crack and Generation. In the 57th
ACM/IEEE Design Automation Conference (DAC ’20), pages 1–6, New York, NY,
USA, 2020. ACM/IEEE.

40. Bo Yu, Pengfei Wang, Tai Yue, and Yong Tang. Poster: Fuzzing IoT Firmware
via Multi-Stage Message Generation. In Proceedings of the 21st ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19), CCS ’19, page
2525–2527, New York, NY, USA, 2019. Association for Computing Machinery.

41. Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. SoK: Security
Evaluation of Home-Based Iot Deployments. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (S&P’19), pages 1362–1380, Piscataway, NJ,
USA, 2019. IEEE.

42. Zigbee Alliance. Zigbee Cluster Library Specification. https://zigbeealliance.org/
wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf ,
Jan 14, 2016.

19

https://boofuzz.readthedocs.io/en/stable/user/protocol-definition.html
https://boofuzz.readthedocs.io/en/stable/user/protocol-definition.html
https://wwwfiles.iar.com/arm/webic/doc/EWARM_DebuggingGuide.ENU.pdf
https://wwwfiles.iar.com/arm/webic/doc/EWARM_DebuggingGuide.ENU.pdf
https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf

Appendix A Representative Messages Generation

1 s_initialize("ZCLMessage")
2 s_group("frame_control", values=<USER_GIVEN_VALUES>)

3
with s_block("manuCode", dep="frame_control", dep_values =
 <USER_GIVEN_VALUES>): 

4 s_word(0, endian='<', name="manu") 
5 s_static(1, name="tranSeq") 
6 s_group("commandId", values=<USER_GIVEN_VALUES>) 

7 with s_block("payload", dep="commandId", values =
 <USER_GIVEN_VALUES>):

8

Fig. 6: Pseudo-code of Message Format Script.

To generate highly structured
test cases and Representa-
tive Messages, we developed
a message format script based
on the ZCL specification [42]
to generate test corpus. Fig-
ure 6 presents an exam-
ple of message format script
that generates ZCL messages
based on the format definition shown in Fig 4. In the script, the message fields
are defined according to their data types, such as enumerations (enum). For
those enumerated fields, we created the fuzzing dictionary with candidate val-
ues defined in the specification. For the remaining fields, we concretized them
with random values during the fuzzing process. It’s worth noting that all the
fuzzers utilized the same format script for the initial seed construction, ensuring
consistency in the initial test case generation across the different fuzzing tools.

Appendix B Threshold Tuning

Table 4: Summary of test cases generated by TaintB-
Fuzz for different inference threshold.

Threshold=10 Threshold=25 Threshold=50
Favored Test Cases 50 49 52
Test Case Types 36 22 57
Type Difference 29 35 (base)

In this study, we pro-
pose an intelligent Zigbee
protocol fuzzing TaintB-
Fuzz by inferring the de-
pendency between mes-
sage fields and path con-
straints. When the fuzzer
reaches a point where no new execution paths are being explored over a certain
period of time, TaintBFuzz employs the constraint-field dependency to augment
the mutation process and generate diversified seeds.

To simplify the implementation, we defined a threshold as the number of
mutation times since the last updated code coverage to represent the timeout.
Thus, we performed an empirical experiments to decide the proper value of the
threshold. In our experiment, we compared three different threshold values 10,
25, 50 and found that fuzzing performs achieves better result when setting the
threshold as 50.

Table 4 presents the comparison results. We categorized all generated test
cases based on the field Command Identifier. The result indicates that there are
more different test cases types when threshold setting to 50, in which 29 are
not generated by threshold 10 and 35 are not generated by threshold 25, while
threshold 50 can generate all types in other two sets. The diversity of generated
test cases also provides the fuzzer more probability to access more codes and
paths in the target program. Therefore, we use threshold 50 for the TaintBFuzz’s
mutation when comparing the fuzzing performance with state-of-the-art fuzzers.

20

	Intelligent Zigbee Protocol Fuzzing via Constraint-Field Dependency Inference

