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ABSTRACT

We redesign the police patrol beat in South Fulton, Georgia, in
collaboration with the South Fulton Police Department (SFPD), us-
ing a predictive data-driven optimization approach. Due to rapid
urban development and population growth, the existing police beat
design done in the 1970s was far from efficient, which leads to low
policing efficiency and long 911 call response time. We balance the
police workload among different city regions, improve operational
efficiency, and reduce 911 call response time by redesigning beat
boundaries for the SFPD. We discretize the city into small geograph-
ical atoms, which correspond to our decision variables; the decision
is to map the atoms into “beats”, the basic unit of the police opera-
tion. We first analyze workload and trend in each atom using the
rich dataset, including police incidents reports and U.S. census data;
We then predict future police workload for each atom using spa-
tial statistical regression models; Lastly, we formulate the optimal
beat design as a mixed-integer programming (MIP) program with
continuity and compactness constraints on the beats’ shape. The
optimization problem is solved using simulated annealing due to its
large-scale and non-convex nature. The simulation results suggest
that our proposed beat design can reduce workload variance among
beats significantly by over 90%.

CCS CONCEPTS

« Applied computing — Multi-criterion optimization and
decision-making; - Mathematics of computing — Combinato-
rial optimization.

KEYWORDS

data-driven optimization, predictive policing, police beat re-
design

1 INTRODUCTION

The City of South Fulton, Georgia, was recently established in May
2017 from previously unincorporated land outside Atlanta. It is
now the third-largest city in Fulton County, Georgia, and serves a
population of over 98,000, among which 91.4% are black, or African
American [33]. South Fulton is a historic area renowned for its art
and activism. Despite this, the city has often faced the challenge
of climbing crime rates and long police response times. In a 2019
survey, 46.48% of residents responded that they do not feel safe in
South Fulton. In the same year, the South Fulton City Council made
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Figure 1: City-wide police district map of South Fulton, GA.
There were 7 beats, which was initially designed in the 1970s.
The city boundary is highly irregular which requires intri-
cate design of police beats.

it clear that their number one priority was to make South Fulton
safer [16].

The South Fulton Police Department (SFPD) is the main policing
force in the city. From 2019 to early 2020, our team worked with
the SFPD to improve their police operation efficiency. Our project
specifically focused on redistricting beat configurations (by com-
pletely re-drawing the beat boundaries and changing the number of
beats), aiming to rebalance SFPD officers’ workload (total amount of
working time). The initial analysis identified that workload unbal-
ance among different areas of the city was caused by an outdated
beat design that had not been changed for over five decades; the
inefficient beat design, in turn, lead to long 911 call response time
in some areas.

Previously, the police operation of South Fulton was according
to seven police beats, which divide the city geographically as shown
in Figure 1. 117 police personnel were allocated to the beats for
patrolling and responding to the 911 calls [7]. Typically, at each shift,
one response unit (usually a police car with one to two officers)
answers all the 911 calls that occurred in a certain beat. If the
response unit is busy handling another incident, nearby available
response units may be dispatched by the operator to answer the
call.
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Figure 2: Distribution of 911 calls-for-services requests in
South Fulton, GA. Blue shaded area is the city limit of South
Fulton. Blue dots are locations of requests. The requests are
unevenly distributed among different regions.

The most recent South Fulton police beat redesign occurred in the
1970s — almost five decades ago. Since then, the area (which even-
tually became the City of South Fulton) has undergone tremendous
urban growth that drastically changes its landscape. The U.S. Cen-
sus Bureau estimated that South Fulton’s population has increased
by 13.7% from 2010 to 2018 [33]. The city’s rapid development has
led to a significant increase in police workload, exacerbated by the
difficulty in officer recruitment and retention faced by the SFPD.
Moreover, demographic and traffic pattern changes also create an
unbalanced workload among different regions. Figure 2 shows the
distribution of 911 calls, recorded by real 911-call reports provided
by SFPD from 2018 to 2019. The figure shows some beats faced
a significantly higher workload than others. For example, police
officers in the city’s southeastern area respond to more calls than
those in the western region.

Since the seminal work by R. Larson and others [17, 20], re-
searchers have recognized that beat configuration may significantly
impact police response time to 911 calls and operational efficiency.
In particular, the area and shape of beats determine the workload
and travel time in that beat. Hence, it is critical to design the bound-
aries of beats to balance the workload.

Outline. We redesigned the police patrol beats in the City of South
Fulton using a data-driven optimization approach. The outline of
our approach is summarized in Figure 3. Our objective is to bal-
ance police workload in each beat by redrawing beat boundaries.
First, we divided the geographical areas of the city into a large
number of “atoms”. Then, we estimated the workload in each atom
using police reports data and census data, including population and
socio-economic factors. These steps are described in Sec. 2 and 3.
Based on the workload estimation, we developed statistical models
to predict police workload in the next few years (Sec. 4). We then
formulate the beat redesign problem as a clustering problem: each
beat is formed with a cluster of atoms. This clustering problem is
formulated and solved using mixed-integer programming (MIP),
where the objective function is a metric of workload unbalance
(defined as the workload variance across all beats). We also impose
constraints that require beats to be contiguous and compact so
that they are not irregularly shaped. The problem formulation is
described in Sec. 5. To tackle the computational complexity of solv-
ing a large-scale optimization problem, we developed a simulated
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Figure 3: An illustration for data-driven optimization frame-
work of police beat redesign.

annealing based approach with efficient solution exploration. We
also study the districting with the different number of beats and
find the optimal number of beats with the highest cost-effectiveness.
Numerical results (Sec. 6) show that our proposed beat design can
reduce workload variance among different regions by over 90%.
In January 2020, together with the SFPD, we presented our final
redesign plan to the South Fulton city council, which was officially
approved for implementation.

Contribution. Our work proposes a new data-driven framework
that integrates data, statistical prediction, and optimization in the
context of police beat design. Previous works in the predictive
policing literature tend to focus on only the prediction aspect. The
operations research literature often studies police zone design based
on analyzing stochastic models without explicitly considering data
sources. We take advantage of the availability of abundant data and
adopt a new data-driven approach: the workload and other impor-
tant parameters for optimization are estimated and predicted from
data. From a methodological perspective, we use geo-spatial atoms
to define city boundaries and police beat boundaries. This approach
enables accurate workload prediction by correlating historical po-
lice data with the census data and beat design optimization.

Our project also had a significant societal impact and directly im-
proved the police operations of the SFPD and the safety of residents
in South Fulton. It is worth mentioning that although we focus on
the study of police beat redesign in South Fulton, our method can
be applied to other cities facing similar issues.

Related work. Police districting (designing beats or zones) is a
classical problem studied in operations research dating back to the
1970s (see the seminal work [17] and the surveys by [5, 13] for
reviews). [11] is one of the earliest works that study optimal beat
allocation using integer programming. [2] considers the beat allo-
cation problem to minimize response time for police service calls.
In particular, the paper also considers overlapping beats, where
multiple patrol officers share one patrol area. [6, 18] use queueing
models to estimate travel time. In particular, our proposed data-
driven model includes the travel time in the workload calculation.
[19] introduces a heuristic approach to the design of beats with
implementation in Boston. [4] considers fairness issues of police
zone design. We remark that most classical works rely on ana-
lyzing stochastic models for police workload estimation, which
usually requires stringent assumptions, e.g., calls arrive according
to homogeneous Poisson processes (with the notable exception of
[18]). Here, rather than obtained from stochastic models, we take
advantage of the availability of abundant data and adopt a data-
driven approach: the workload and other important parameters for
optimization are estimated and predicted from data.

There is also a large body of works on other types of geographi-
cal districting problems, such as political districting. This includes
the pioneering work [10] studies political districting using integer
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programming. Their method is extended by [31] for other geograph-
ical districting problems. A few other works [8, 23-25, 35, 37] apply
meta-heuristics (e.g., genetic algorithms, simulated annealing) to
geographical districting, which usually lack optimality guarantees.
Geographic districting often include criteria such as contiguity
[10, 14, 22, 23, 26, 35] and compactness [10, 27, 38], which are also
important in the police zone design context. However, political
districting has different considerations than police districting.

In the last decade, we have seen the rise of predictive policing, i.e.,
the use of mathematical and statistical methods in law enforcement
to predict future criminal activity based on past data. Its importance
has been even recognized by Time magazine that in November 2011
named predictive policing as one of the 50 best inventions of 2011
[15]. The RAND Corporation and the National Institute of Justice of
the United States (NIJ) also acknowledge the need for taking a step
forward and developing explicit methodologies and tools to take
advantage of the information provided by predictive policing mod-
els to support decision makers in law enforcement agencies [28].
We remark that most classical works do not leverage the historical
operational data and rely on analyzing stochastic models for police
workload estimation, which usually requires stringent assumptions,
e.g., calls arrive according to homogeneous Poisson processes. Here,
rather than obtained from stochastic models, we take advantage of
the availability of abundant data and adopt a data-driven approach:
the future workload and other essential parameters for optimization
are estimated and predicted from data.

2 DATA

We start by describing the various sources of data used for South
Fulton police beats reconfiguration, including 911 calls-for-service
reports, geographical data of the city, and the socio-economic data
collected by the American Community Survey (ACS) from the U.S.
Census Bureau.

911 calls-for-service data. The SFPD provides comprehensive
911-call reports between May 2018 to April 2019, which contains
69,170 calls in total (Figure 2). The recorded 911 calls cover more
than 600 categories of incidents, including assaults, terrorist threats,
domestic violence, robbery, burglary, larcenies, auto-thefts, etc.
These reports are generated by mobile patrol units in the city, which
handle 911 calls 24/7. Teams of response units (police cars and offi-
cers) are assigned to patrol city streets, and answer calls for service.
When a 911 call for a traffic incident comes in at the call time, a new
incident record will be created at the dispatch center, and the call
location will be recorded. The operator assigns an officer to handle
the call. The unit arrives at the scene and starts the investigation.
Once the police complete the investigation and clear the incident,
the police report will be closed and record the clear time. The time
interval that it takes police to process the call between the call time
and the clear time is called processing time. The police workload is
calculated using both the geolocation data and 911 call processing
time data (The calculation method which will be discussed in more
detail in Sec. 3). The geolocation consists of the GPS location of
reported incidents. From the geographical data of South Fulton, we
are also able to identify which beat each incident is located.

GIS data & beat configuration. Geographic information system
(GIS) data contain the geographical information of the city’s and
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Figure 4: (a-c): Raw data for demographic factors of South
Fulton, GA in 2019, from American Community Survey, or-
ganized by census blocks. (d-f): Corresponding atomized
census data of South Fulton, GA, in 2019.

beats’ boundaries, which are extracted from Fulton County Special
Services District digest parcel data [12]. Geographically, the city
boundary of South Fulton is quite irregular with jagged edges, holes,
and disconnected segments (Figure 1). This irregularity is due to
the formation of the City of South Fulton, with the city being a new
combination of all the unincorporated land in southwest Fulton
County. Currently, there are seven beats in the City of South Fulton.
As shown in figure 1, beat (district) 1, 2, 3, and 4 include larger areas
that are relatively compact, while remaining beats contain smaller
scattered areas. The irregular shape of the city brings difficulty to
police officers while reaching locations of requests and patrolling.
Moreover, as the busiest airport globally, the Hartsfield-Jackson
Atlanta International Airport is situated east of the city, which
significantly adds to the city’s workload disparity.

Census data. The American Community Survey (ACS) collected
by the U.S. Census Bureau provides comprehensive information
about the population, demographic, and economic status of different
Georgia areas. Unlike the census, which takes place every ten years,
the ACS is conducted once per year. Some demographic factors are
useful in predicting future workload (by correlating the city’s socio-
economic profile with the workload). These factors contain essential
information about the development and economic growth of the
city. Besides, census data is organized by census blocks, as shown
in Figure 4 (a - ¢), which is also different from the geographical
atoms we consider for our study. In our discussions with the SFPD,
we selected eight most influential factors that play a vital role in
determining the police workload, such as population and median
rent, school enrollment, and the average year structures were built.
The full list of census factors we are considering has been shown
in Table 1.

3 DATA PREPROCESSING

In this section, we describe three key steps in data preprocessing
before performing the beat design. In particular, we need to address



Figure 5: South Fulton region is partitioned into 1,187 square
geographical atoms. Color indicates the beat membership.

the following challenge in using the data: how to align time resolu-
tion and spatial resolution from the raw data with what we need in
the design.

Geographical atoms. To accurately capture changing demograph-
ics and determine the new boundaries for each police beat, we define
high-resolution geographical atoms by creating artificial polygons
of identical size as our geographical atoms to break up the city. The
optimal beat design can be found by aggregating multiple adjacent
polygons. The size of geographical atoms is essential to our design’s
performance since it determines the number of variables in the op-
timization and the precision of the workload estimation. There is
a trade-off between computational efficiency and model accuracy
in determining the size of geographical atoms. If the atoms’ size is
too large, then we are unable to capture community demographics
accurately; if the size of the atoms is too small, then the problem
will become computationally intractable. After rounds of discus-
sion with the SFPD, we decide atoms to be a square area with a
side length of 0.345 miles, roughly the city block size. This allows
us to estimate the local workload accurately while resulting in a
reasonable number of decision variables in our optimization prob-
lem. The atomized map of the city was generated by intersecting
the city boundary with a grid of atoms, resulting in a new grid of
1,187 geographical atoms, as shown in Figure 5. The police work-
load estimation and prediction will be performed based on these
predefined geographical atoms. Formally, let i € .# = {1,...,I}
denote the i-th atom and k € # = {1,...,K} denote the k-th
beat in our design. Let the binary decision variable d;; € {0,1}
denote whether or not atom i is assigned to beat k. A particular
beat design is a unique graph partition determined by a matrix
D = {dy} € {0,1}7*K_ For each i, it satisfies 2115:1 dir = 1. Given
the beat design D, the set of atoms assigned to beat k is denoted by
I (D) = {i:dj =1} C .. Figure 5 also shows the discretization
of the existing beat configuration, where atoms with the same color
represent a police beat.

Census data atomization. A major challenge for estimating the
socio-economic data for each geographical atom using census data
is the inconsistency between census blocks and geographical atoms,
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where, as shown in Figure 4 (a-c), census blocks usually have a much
larger area than geographical atoms. Here we need to perform a
spatial interpolation to align the census data with our geographical
atoms. Specifically, we assume the census data, such as population,
in the same geographical atom, are evenly distributed. The data
of each census factor in a geographical atom can be estimated by
proportionally dividing the value in the census block where the
atom falls into. The weight of the portion that an atom takes from
a census block can be measured by the proportion between their
areas. As shown in Figure 4 (d - f), the census data collected by
census blocks have been discretized into geographical atoms. Given
historical census data in the month ¢ € [L — Ly, L], where L and
Ly denote the last month and the time span of the historical data,
respectively. The preprocessed census data is denoted as a tensor
X = {xitm} € RPLoM wwhere each entry xipm, indicates the value
of the census factor m € .# = {1, ..., M} in atom i and month ¢.

911 calls-for-service data preprocessing. We estimate the po-
lice workload for each geographical atom using the 911 calls-for-
service dataset. The workload of each 911 call is evaluated by its
processing time, i.e., the total time that the police spend on travel-
ing and the investigation. We calculate the workload by two steps:
(1) count the number of 911 calls occurred in the i-th atom in £-th
month, denoted as Nj¢; (2) estimate the total workload for the i-th
atom in the ¢-th month by multiplying Nj, by the average pro-
cessing time, denoted as wj,. The count of 911 calls will be further
used as the predictor in our spatial regression model, which will be
discussed in Sec. 4.

4 POLICE WORKLOAD PREDICTION

Predicting the police workload is particularly challenging. Although
we assumes the call arrival rates are time-homogeneous, we ob-
serve in the actual data that the call arrival rates have a significant
seasonality pattern and yearly trend, as well as correlation over ad-
jacent geographical areas. Therefore, we propose a spatio-temporal
model to predict future call arrival rates. We assume that the call
arrival rate A;, for atom i in a month ¢ is a constant. Thus, each beat
is a homogeneous Poisson process with rate A;¢. The arrival rates
A={Aig} € RLXLO can be approximated by Nj,, where Ly = 12. We
learned from the SFPD that, the occurrence of 911 calls is highly
correlated with population and economic status of the beat and its
neighborhood. We predict the arrival rate 4;¢ in the future month
¢=L+tt=12,... using a linear model that regresses the arrival
rate to other endogenous variables (arrival rates in other beats) and
exogenous factors (demographic factors). As shown in Table 1, we
consider M = 8 demographic factors, which are statistically veri-
fied to be good predictors, including population, education level,
and household income. Specifically, we use the spatially lagged
endogenous regressors [30] defined as

p
Aie = Z aij/lj[+ﬂ0/1i,f—1+z B Xip—t+ei, Vee[L-LoL],
(i) et =1

where p is the total number of past months of data that we consider
for fitting the regressor, which in our case was 1. The adjacency
matrix A = {a;;} € R specifies adjacency relationships between
atoms. The temporal coefficient ffy € R specifies the influence of
the last month. The coefficient B, € RM,V1 < t < p specifies
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Table 1: Variables used for workload prediction

PrEDICTOR REGRESSION COEFFICIENT  P-VALUE

PoruraTION 439.558 0.007
NUMBER OF HOUSING UNITS 158.440 0.019
ScHOOL ENROLLMENT 79.236 0.008
MEDIAN HOUSEHOLD INCOME 59.420 0.000
MEeDIAN NUMBER OF Rooms -10.560 0.006
MEDIAN AGE -7.421 0.001
MEDIAN HOUSE PRICE -16620 0.000
AVERAGE YEAR BuiLt 170.140 0.003

correlations with census factors and error term ¢; are spatially
correlated. The set of adjacency pairs is defined by &7 = {(i, j) :
i, j are adjacentin G; i,j € #}. The graph G is given by associ-
ating a node with every atom and connecting two nodes by an
edge whenever the corresponding atoms are geographically adja-
cent. Here, we capture the spatial correlation between data using
the standard spatial statistics approach, by assuming ¢; to be spa-
tially correlated with correlation depending distance between two
locations [29].

5 BEAT REDESIGN OPTIMIZATION

In this section, we introduce our objective and solution methods to
the beat redesign optimization problem. We develop an optimization
framework to shift beat boundaries, where artificial geographical
atoms were assigned to beats while balancing the workload. We
formulate this problem as minimizing the workload variance by re-
configuring the beat plan with constraints, including the continuity
and compactness of beats.

5.1 Objective

Our goal is to shift beat boundaries and make inter-beat work-
load distribution even. Based on the discussion with the police,
we choose the objective function as the workload variance among
different zones, which quantitatively measure the police workload
imbalance between zones from a macro view. The objective of this
problem can be formulated as minimizing the inter-beat workload
variance Z(D) given a beat design D:

K K 2
L 2=y Wit (D)
mlngmze Z(D) = Z wie(D) — —x
k=1
K 1)
subject to Z dip =1, Vi

k=1
contiguity and compactness for each beat.

Recall that the matrix D = {d;} € {0, 1}'*K represents decision
variables, where binary variable d;. € {0,1} indicates whether
or not geographical atom i is assigned to beat k; and wy,(D) =
2iic.#,. (D) Wit represents the total workload in beat k = 1,--- ,K
in month ¢. The variance is a quadratic function of the workload
in each beat, which implies that the objective function is convex
with respect to the decision variables. A smaller variance indicates
a more balanced inter-beat police workload. The constraints will
be explicitly defined in Sec. 5.2.

5.2 Compactness and contiguity constraints

In addition to balancing the police workload, it is desirable that the
beat shapes are contiguous and compact. In fact, the police never
used a quantitative measure of compactness to declare the plans
unsuitable. Instead, the police have simply disallowed plans with
long and thin or snakelike districts. In other words it appears that
the police have evaluated compactness only visually. Since it is
not obvious how to determine an acceptable compact design, we
choose to minimize the workload variance based on the discussion
with the police; but it should be understood that compactness is in
reality a loose constraint rather than an objective. Therefore, we
formulate the contiguity and compactness criteria as a set of linear
constraints [10, 27, 32, 38] by introducing additional variables: f;
is the flow from atom i to atom j in beat k; h;; equals to 1 if atom
i € 7 is selected as a sink in beat k € %, otherwise 0; q is the
maximum beat capacity. Hence, there are 21,170,145 variables with
63,421,410 constraints in total.

Contiguity constraints. Contiguity constraints are imposed on
each beat using the flow method [32]. For each beat k, there is a
flow f;jx on the graph, where f; ;i denotes flow from i to j. Each
beat has a hub vertex whose net flow is at most the number of
vertices in the beat, less one. Each other vertex in the beat has a
net flow of at most —1. This ensures that there is a path of positive
flow from any vertex in the beat to the hub, implying contiguity.

Specifically, constraints (2a) represent the net outflow from each
beat. The two terms on the left indicate, respectively, the total
outflow and total inflow of atom i. If atom i is included in beat k
but is not a sink, then we have d;; = 1, h;; = 0, and thus atom i
must have supply > 1. If atom i is included in beat k and is a sink,
then we have d;; = 1, h;; = 1, and thus atom i can have demand
(negative net outflow) < g—1.If atom i is not included in beat k and
is not a sink, then we have d;;. = 0, h; = 0, and thus atom i must
have supply 0. If atom i is not included in beat k but is a sink, then
we have d;;. = 0, h;;. = 1, and the rest of d ;. are forced to be 0, that
is, no atoms are selected. Constraints (2b) specify the number of
atoms that can be used as sinks. Constraints (2c) ensure that each
beat must have only one sink. Constraints (2d) ensure that there is
no flow into any atom i from outside of beat k (where d;;. = 0), and
that the total inflow of any atom in beat k (where d;;. = 1) does not
exceed g — 1. Constraints (2e) make sure unless a atom i is included
in beat k, the atom i cannot be a sink in beat k. Constraints (2f) and
(2g) ensure that there are no flows (inflows and outflows) between
different beats which forces eligible contiguity.

D fik— D, fik = dic— ghi ik,  (2a)

(i,j)edd (i,j)esd
K N
D i =K, (2b)
ki
N
Dhig=1, Vk,  (20)
1
D fik < (@D vk, (2d)
(i,j)esd
hix — dig < 0, Vik,  (2)

fiji + fjik < (@ = Ddy, Vi, k, (2f)



fijk + fjik < (g = Ddjg, Vik, (2
dik> hir € {0,1}, Vi, k, (2h)
fijk 20, Vi, j, k, (21)

Compactness constraints. Compactness is defined as geographi-
cal compactness with distance compactness and shape compactness
[27, 38]. For distance compactness, a district is feasible only if the
distance between population units must be less than a specified
upper bound. For shape compactness, a district is feasible only if the
square of the distance’s maximum diameter divided by the district’s
area must be less than another upper bound [10].

Following the existing literatures, we add two additional linear
constraints (3a), (3b) to ensure the compactness of beats. For each
atom i, let A; be the area of i, and for each pair of atoms i and j,
let [;; be the square of the distance between the centroids of the
beats. We also have a parameter cq, c2 > 0 controlling the degree
of compactness.

A

Lijeijr < c1, Vi, j. k, (32)

K
Ljeijk < c2 ) digAs, Vi, j.k, (3b)
i=1

5.3 Heuristic approximation

Three methods were discussed in our experiments to search for
optimal police beat design. The greedy algorithm serves to generate
new beats iteratively and confirms the optimal number of beats
for the future redesign. Following the greedy redesign, we adopt a
heuristic optimization approach to find the beat design in contrast
to the mixed-integer programming (MIP) approach.

Greedy search. To determine the optimal number of beats in the
final design, we perform an iterative greedy algorithm, which at-
tempts to generate new beat greedily for the design for each iter-
ation while preserving the original structure of the existing beat
as much as possible. Intuitively, more beats may result in a more
balanced workload distribution. However, the manpower of the
SFPD and resources of the South Fulton City Council are limited. It
is unrealistic to deploy such a design with a large number of beats.
Hence, we adopt the Greedy algorithm to explore the optimal num-
ber of beats in our design. The procedure for “Greedily” creating
new beat designs is demonstrated as follows.

For the n-th iteration, we define D, as the beat design, and K is
the number of beats at the last iteration. For the predicted workload
in month ¢, the greedy algorithm can be performed by selecting the

beat k in D, with the largest workload, i.e., arg maxg {wi;(Dn) } ke oz -

Then we split up the beat k evenly into two beats using the K-means
algorithm, where each atom in the beat is considered as a point. This
will lead to generating a new beat, i.e., K := K+1and J# = % UK.
The above process can be carried out iteratively until we find the
design with the optimal number of beats.

We visualize our greedy design with different number of beats
in Figures 8. As seen from the result, the beat with the highest
workload, shown in red, is split in each iteration as a result. We also
examine the variance of beat workload versus number of beats, and
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find the optimal number of beats, which will be further discussed
in Sec. 6.

Mixed-integer programming. Mathematical programming mod-
els are essential tools for modeling and solving redistricting prob-
lems, which can guarantee the optimality of the obtained solutions,
are mostly based on mixed-integer programming (MIP). However,
as shown in Sec. 5.2, the problem involves a large number of vari-
ables, including 21,134,535 continuous variables and 35,610 binary
variables, as well as a set of additional linear constraints needed
to be satisfied. In practice, the problem itself of searching for the
global optimal design is computationally intractable and hard to be
implemented on a large scale.

Heuristic search. A metaheuristic method, simulated annealing
(see, e.g., [3]), has been widely adopted in solving the large-scale
combinatorial optimization problem. The simulated annealing al-
gorithm explores the neighborhood of the current solution and
decides a better substitution randomly. Simulated annealing can
achieve reasonable performance in practice for various settings,
although there are very limited theoretical performance guarantees
[1, 21, 34]. In particular, in our setting, we use the current/existing
partition as an initial solution. Based on this, a new solution can
be founded by selecting from a set of candidate solutions. The set
of candidate solutions is typically constructed as “neighboring”
solutions to the current solution without breaking contiguity.

Specifically, in the n-th iteration, our simulated annealing algo-
rithm performs the following acceptance-rejection sampling. Sup-
pose the starting partition is #,. For instance, we can take the
existing partition as an initialization. The next partition Pp4; is
selected from a set of candidate partitions defined as Sp41 and
Pn+1 € Sn+1. The candidate partitions in Sp41 satisfy contiguity
and balance constraints. We randomly choose one of these candi-
date partitions Pp4+1 € Sp+1, and evaluate a score

L Z(Pns1) < Z(Pp),
P(Pus1, PnlT) = ( n+1.) (Pn)
exp{|Z(Pn+1) — Z(Pn)|/T}, otherwise.

where Z(-) denotes the cost associated with a partition (e.g., the
compactness shown in (2)), T is a pre-specified temperature pa-
rameter that determines the speed of convergence, and the P is
the acceptance probability. We generate an independent uniform
random variable U € [0, 1]. The proposed partition is accepted if
P(Pn+1,Pn|T) = U. We refer to an update of the proposed parti-
tion as a transition. Note that there is a chance that the transition
happens from a “low-cost” partition to a “high-cost” partition, and
this “perturbation” will prevent the algorithm from being trapped
at a local sub-optimal solution. The choice of the set candidate par-
titions Sy41 is critical for the performance of simulated annealing,
which involves the trade-off between exploration and exploitation.
Below, we introduce two strategies for candidate partitions and
explore two types of “neighbor” partitions based on square and
hexagonal grids, respectively.

As illustrated in Figure 6, we first consider the following simple
heuristic in constructing the candidate set. This allows us to search
for local optimal partitions at a reasonable computational cost [36].
The candidate set contains all partitions that swap a single vertex
assignment at the boundary of the current partition. This simple
heuristic is easy to implement since the number of such candidate
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Figure 6: Illustrations of two approaches for candidate parti-
tions based on one-swapping neighborhoods. Red and blue
boxes represent vertices in different parts. The thick black
line represents the boundary of two parts. The left panel
shows the current partitions #,; the middle and the right
panels show the candidate partition sets for the next itera-
tion Sy41.

(a) 2020 prediction  (b) 2021 prediction

(c) 2022 prediction

Figure 7: Workload prediction where dark lines outline
boundaries of beats and the color depth represents the level
of the atom workload in each year.

partitions is usually small (because we only swap one end of the
boundary edge). However, on the other hand, such candidate sets
may contain partitions that are still too similar to the current parti-
tion. Therefore, we will consider the following alternative strategy.

6 RESULTS

In this section, we present our numerical results and final beat
redesign for the City of South Fulton.

Workload analysis and prediction. The most important metric
for evaluating imbalance we considered is workload variance over
beats. As we defined in Sec. 5, the variance is the sum of the squared
deviation of the beat workload from its mean. To fully understand
the workload imbalance situation, it is necessary to show how
the existing configuration exacerbates the unbalance of workload
over beats in the past and how the existing configuration will
impact the future. Figures 7 summarizes the predicted workload
distribution over the entire city for the next four years from 2020
to 2022. As we can see from the map, there is a clear trend that
the general workload level continues to increase, and the major
workload concentrates on particular areas (such as College Park in
the east of the city and I-285 & I-20 in beat 4). Due to the increasing
growth of South Fulton and urban sprawl, this trend is leading to a
police workload imbalance.

Optimal beat number. When creating a beat design, the most
important metric for evaluating imbalance is the workload variance
over beats. However, for determining the optimal number of beats in
the design, we also need to consider the cost associated with adding
more beats, which includes the cost of additional training, hiring

new officers, and so on. Therefore, there is a trade-off to minimize
the workload variance while avoiding unnecessary costs for adding
new beats. Figure 8 presents comparisons between existing beat
design, designs generated by greedy exploration algorithm, and the
proposed design. Figure 9 shows that as we first begin to increase
the number of beats, the workload variance decreases sharply before
15 beats. We have shown that there are diminishing returns as we
further increase the number of beats beyond 15. Therefore, we
call 15 the optimal number of beats and the corresponding 15-beat
greedy design will be used as an initialization of the simulated
annealing for further refinement.

Proposed beat design. The initial report in 2019 contained beat-
wise workload prediction for the next three years (2020, 2021 and
2022), and proposed three candidate designs with similar beat shifts
that all attains the best workload balance. In Table 2, we list the
predicted annual workload in each beat, total workload, and work-
load variance. After the plans were reported to the police, we met
several times to deliberate the various trade-offs, and held police-
engagement meetings to elicit feedback from the patrol force. Police
Deputy Chief and couples of key senior officers also participated in
these discussions and voiced comments. The new design and the
previous existing design have been both presented in Figure 8. This
design is preferred by the police for three major reasons: (2) this
plan makes the minimal changes based on the existing police zone
configuration in comparison with other candidate plans, which
minimizes the implementation cost in practice; (2) the workload
variance has been drastically reduced by 89% ~ 92% by increasing
the number of beats to 15; (3) the proposed plan achieves a lower
level of workload variance as well as a smaller variance increment
in the future year 2021.

Staffing level analysis. We quantify our potential police response
workload by converting the workload in each beat into hours per
day. Table 2 shows real workload distribution in 2019 and predicted
workload distribution in 2021 under different designs, respectively.
Entries of the table suggest the number of hours per day, a police
officer would expect to be responding to 911 calls. As we can see,
our proposed beat design drastically reduces the beatwise workload.
In particular, the proposed design results in a decrease in workload

Table 2: Summarization of workload per beat.

BEAT NUMBER WORKLOAD IN 2019 WORKLOAD IN 2021

(HOURS/DAY) (HOURS/DAY)
ExisTING GREEDY REFINED GREEDY REFINED
1 38.59 17.15 17.15 18.05 18.05
2 24.84 24.84 23.56 27.09 25.61
3 32.84 18.78 20.08 17.91 19.91
4 34.44 17.45 17.08 16.83 16.14
5 65.94 22.10 20.31 21.40 19.32
6 38.44 14.69 18.30 14.54 16.73
7 34.96 17.55 19.99 17.67 20.01
8 N/A 12.51 12.51 11.66 11.66
9 N/A 10.79 10.79 11.10 11.10
10 N/A 21.45 21.87 21.45 21.87
11 N/A 23.75 19.33 22.2 22.62
12 N/A 17.41 17.41 23.40 21.60
13 N/A 17.00 16.82 16.70 15.87
14 N/A 20.53 18.89 19.99 17.81
15 N/A 14.06 15.94 13.18 15.93
VARIANCE 142.91 15.12 10.13 18.269 13.15
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Figure 8: Greedy beat designs where dark lines outline boundaries of beats and the color depth represents the level of the beat

workload. The scale is adjusted in each image.

variance of over 85% comparing to the existing design, making
policing more equitable in the city.

In the City of South Fulton council meeting, the city council
emphasizes the importance of community engagement from the
police force. Thanks to our beat design, the police workload per
day in each beat can be reduced drastically; this will allow police
officers to participate in community events and start pro-active
patrols. This is a huge difference from the past 50 years, where
police officers have been going from call to call on their entire
shift. Additionally, the staffing level prediction gives the SFPD how
many officers they need to handle the 911 calls in a beat. They
then can recruit more officers for the sole purpose of community
engagement and pro-active patrolling if they desire.

7 IMPLEMENTATION

In January 2020, we submitted the final report to the South Fulton
Police Department and the South Fulton City Council. The report
was reviewed by Police Chief Meadows, Deputy Police Chief Rogers,
and Mayor Bill Edwards. Our report analyzed the police workload
and proposed a detailed redistricting plan. Our redistricting plan
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Figure 9: Workload variance with different number of beats.

mainly changed in four areas (Figure 81): We add three new beats in
the southeast of the city near College Park, the area with the highest
workload. The biggest beat in the west of the city is split into two
beats. We add a beat in the north of the city near the airport. The
southern beat is also split into two. In total, the redistricting plan
has reduced the response time throughout the city and rebalanced
the police workload between the fifteen beats.

Later that month, the South Fulton City Council approved the
new beat design. The South Fulton Police Department plan to im-
plement the new beat design in early 2020. The new beat design
was praised by the city council, as some council members said that
our beat design and study has been long needed and that it sets an
example for other cities in the southeast. Residents of South Fulton
acclaimed about the change on social media and thanked the City
of South Fulton Police Department and our team for contributing
to the communities. The new beat design also received coverage
from several news sources, including Fox 5 Atlanta [9].

8 CONCLUSION

In this paper, we presented our work on the City of South Fulton
police beat redesign. We propose an optimization framework with
the spatial regression model as well as large-scale data analytics. We
construct an operational model to predict zone workload using an
accurate and tractable linear approximation. The proposed method
yields a redesigned zone plan with lower workload variance by only
changing eight beats. Currently, we are continuing our partnership
with the SFPD. We will continue to observe the police workload
in the City of South Fulton as the city and workload grow. If the
workload becomes unbalanced once more, we can quickly suggest
a new beat design using our already existing methods. As the SFPD
continues to grow, they will also hire an information officer that will
assist in workload analytics and carry on our workload prediction.
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