
A Spectral Method of Moments for
Hierarchical Imitation Learning ⋆

Nguyen Nguyen ∗ Timothy L. Molloy ∗∗ Girish N. Nair ∗∗∗

Ioannis Ch. Paschalidis ∗

∗ College of Engineering and Hariri Institute for Computing &
Computational Science & Engineering, Boston University, 8 St. Mary’s
St., Boston, MA 02215, USA, E-mail: {nguyenpn, yannisp}@bu.edu

∗∗ Australian National University, Canberra, Australia, E-mail:
timothy.molloy@anu.edu.au

∗∗∗ University of Melbourne, Melbourne, Australia, E-mail:
gnair@unimelb.edu.au

Abstract: Recent empirical success has led to a rise in popularity of the options framework
for Hierarchical Reinforcement Learning (HRL). This framework tackles the scalability problem
in Reinforcement Learning (RL) by introducing a layer of abstraction (i.e. high-level options)
over the (low-level) decision process. Hierarchical Imitation Learning (HIL) is the problem of
learning low-level and high-level policies within HRL from expert demonstrations consisting
only of the low-level actions and states, with the high-level options being hidden (or latent).
Due to the latent options, recent work on HIL has focused on the development of Expectation-
Maximization (EM) algorithms inspired by approaches such as the celebrated Baum-Welch
algorithm for hidden Markov models (HMMs). In this work, we take a different approach and
derive a new HIL framework inspired by the spectral method of moments for HMMs. The method
of moments offers global and consistent convergence under mild regulatory conditions, whilst
only requiring one sweep through the data set of state and action pairs, giving it a competitive
run time.
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Imitation Learning, Method of Moments.

1. INTRODUCTION

Hierarchical Reinforcement Learning (HRL) seeks to ad-
dress the scalability problem of Reinforcement Learning
(RL) by introducing layers of abstraction over the decision
process, enabling general sweeping decisions over large
epochs and smaller specific decisions on finer (more gran-
ular) epochs (Sutton et al., 1999; Barto and Mahadevan,
2003). The success of HRL relies on discovering suitable
abstractions. In the literature, the problem of discovering
suitable abstractions has been tackled both separately and
in conjunction (in a single end-to-end process) with learn-
ing the optimal policy (Barto and Mahadevan, 2003). In
specific instances where expert demonstrations are avail-
able, the process of discovering abstractions and learning
optimal policies can be accelerated via Hierarchical Imita-
tion Learning (HIL). Specifically, HIL involves computing
a hierarchy of policies from expert demonstrations and is
the extension of Imitation Learning (IL) to HRL. In this
paper, we develop a novel HIL approach for the HRL with
options framework of (Sutton et al., 1999).
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The HRL with options framework proposed by Sutton
et al. (1999) involves a two-tiered hierarchy of policies,
with a high-level policy governing “options” or decision as
to which of a finite set of low-level policies are used to select
actions. A key challenge of HIL in this options framework
is that in practice, only (low-level) states and actions
are directly observed through expert demonstrations, not
the (high-level) options. The options thus constitute hid-
den (or latent) variables, and so recent HIL works have
drawn inspiration from Expectation-Maximization (EM)
techniques for learning Hidden Markov models (HMMs)
and other latent variable models (Daniel et al., 2016;
Zhang and Paschalidis, 2021; Giammarino and Paschalidis,
2021). These EM techniques process state-action pairs
from expert demonstrations with a Bayesian smoother
to compute a surrogate function for the (log)likelihood,
and subsequent maximization of this surrogate function
over the policy space. Whilst local-convergence theoretical
guarantees have recently been shown for such an EM
approach in the context of HIL (Zhang and Paschalidis,
2021), the nature of EM techniques as local-search proce-
dures means that they are prone to convergence to local
(non-global) maxima, and slow convergence with associ-
ated high computational expense.

In HMMs and other specific classes of latent variable
models, methods of moments have been developed to
overcome convergence issues inherent with EM techniques



(Hsu et al., 2012; Hsu and Kakade, 2013; Mattila et al.,
2020, 2015, 2017; Anandkumar et al., 2014; Parikh et al.,
2012). These moment methods are free of local conver-
gence problems (Mattila et al., 2020; Anandkumar et al.,
2014), and often offer much faster practical convergence
with less computational expense (Mattila et al., 2015,
2017). Moment methods have therefore been used both
by themselves and as initialization algorithms for EM
techniques (cf. (Zhang et al., 2016)). Nevertheless, moment
methods have not previously been investigated for HIL in
the options framework.

The key contribution of this paper is the development of
a new method of moments for HIL in the HRL options
framework of (Sutton et al., 1999). Inspired by the method
of moments for HMMs developed in (Hsu et al., 2012),
our method of moments for HIL offers global convergence
under mild regularity and non-degeneracy conditions, and
has the practical advantage of only requiring a single pass
through the expert demonstrations. It therefore serves as
both a useful alternative and complementary technique to
the previously developed but locally-convergent EM algo-
rithms of (Daniel et al., 2016; Giammarino and Pascha-
lidis, 2021; Zhang and Paschalidis, 2021).

Notation: Uppercase letters denote random variables, low-
ercase letters denote realizations. Uppercase bold letters
denote matrices, lowercase bold letters denote vectors.
Superscript on a quantity acts like a label in case there
are many quantities with the same symbol. Subscript on
a quantity denotes it being a subclass of the original
quantity. The Kronecker product ⊗ is defined as

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ,
where A is a m × n matrix, B is a p × q matrix, and
A⊗B is a mp×nq matrix. The Hadamard (element-wise)
product ◦ is defined as

A ◦B =

 a11b11 . . . a1nb1n
...

. . .
...

am1bm1 . . . amnbmn

 ,
where A, B, and A ◦B are m×n matrices. Furthermore,
Im denotes an m × m identity matrix, 1m×n denotes an
m × n matrix with all of its entries equal to one, 0m×n

denotes anm×nmatrix with all of its entries equal to zero,
and ej denotes the jth unit vector. The Moore–Penrose
inverse of a matrix A will be denoted A+ and its transpose
by AT.

2. PROBLEM FORMULATION

In this section, we introduce the HRL with options frame-
work (Sutton et al., 1999; Barto and Mahadevan, 2003)
and formulate the associated HIL problem.

2.1 HRL with Options Framework

The HRL with options framework corresponds to the
Bayesian network shown in Fig. 1 where Ot, St, and At

denote the option, the state, and the action at time t ≥ 1,
respectively. The triple (Ot, St, At) forms a discrete-time

O1 O2 O3 O4

A1 A2 A3 A4S1 S2 S3 S4

Fig. 1. Bayesian network of the HRL option framework.

Markov chain with Ot, St, and At defined over the finite
spacesO, S, andA, respectively. We denote the cardinality
of these spaces as |O| = ω, |S| = ζ, and |A| = α.

The initial option and state pair (o1, s1) is sampled from
an initial distribution π1(·, ·). For t ≥ 1, to advance one
time step starting from the current pair (ot, st), the action
at is sampled from a low-level policy πlo(·|st, ot). Then,
the resulting state st+1 is sampled from an environment
transition probability distribution Φ(·|st, at). Finally, the
next option ot+1 is sampled based on the new state and the
previous option from the high-level policy πhi(·|ot, st+1).
The HRL with options framework is thus characterized by
the policies πhi and πlo, and the transition distribution Φ.

Remark 2.1. The framework we consider differs slightly
from that in Sutton et al. (1999) in that:

(1) The termination random variable, along with its
decision policy is omitted, with the option transition
based solely on the high-level policy πhi. This is due to
the fact that the termination factor is only involved
in the transition between options, without directly
affecting any observables in any way. For the sake of
simplicity, the termination policy is folded into the
high-level policy as one single object.

(2) The process starts with the pair (o1, s1) instead of
(o0, s1). This difference is inconsequential as the re-
sulting extra transition would be canceled out during
the operations below.

2.2 The HIL Problem

Suppose that an expert uses the HRL with options
framework to generate a sequence of states and actions
{(st, at)}Tt=1. In the HIL problem, we seek to use this
sequence to learn the expert’s underlying low and high-
level policies πlo and πhi. The associated options {ot}Tt=1
are not observed and constitute hidden (or latent) vari-
ables. The HIL problem is thus an instance of learning
in the presence of latent variables which has motivated
its solution via EM approaches in (Daniel et al., 2016;
Zhang and Paschalidis, 2021; Giammarino and Paschalidis,
2021). Due to local convergence issues inherent in EM
approaches, we shall take a different approach and develop
a method of moments for HIL inspired by the method of
moments for HMMs developed in (Hsu et al., 2012).

To develop our method, we define the following matrices.

Definition 2.1. For s ∈ S, define Πlo
s ∈ Rω×α with

Πlo
s [o, a] = πlo(At = a|Ot = o, St = s)

as the matrix representation of πlo under the state s.

Definition 2.2. For s ∈ S, define Πhi
s ∈ Rω×ω with

Πhi
s [o, o′] = πhi(Ot+1 = o′|Ot = o, St+1 = s)

as the matrix representation of πhi under the state s.



Definition 2.3. For a ∈ A, define ΦA
a ∈ Rζ×ζ with

ΦA
a [s, s

′] = Φ(St+1 = s′|St = s,At = a)

as matrix representations of the transition dynamics.

Definition 2.4. For s′ ∈ S, define Ξs′ ∈ Rζ×ω with

Ξs′ [s, o] = P (St = s,Ot = o, St+1 = s′).

We also require the following mild regulatory assumptions.

Assumption 1. (Option-Action Identifiability). Under the
same state, no two options contain the same policy for
choosing an action, i.e., Πlo

s has full row rank ∀s ∈ S.
Assumption 2. (Option-Option Identifiability). Under the
same state, no two options give the same policy for
choosing the next option, i.e., Πhi

s has full rank ∀s ∈ S.
Assumption 3. Ξs has full column rank ∀s ∈ S.
Assumption 4. All actions have a non-zero chance of tran-
sitioning a state to all of its neighboring states and one
state is another state’s neighbor if there exists an action
under which the probability of transitioning from the latter
to the former is non-zero, i.e., for any s, s′ ∈ S, if there
exists a ∈ A such that ΦA

a [s, s
′] > 0, then ΦA

a′ [s, s′] >
0 ∀a′ ∈ A.
Assumption 5. (Stationary). The process (Ot, St) starts
with the stationary distribution, that is π1

s [o] = π∞
s [o]

where πt
s ∈ Rω with πt

s[o] = P (Ot = o, st = s) for s ∈ S.
Remark 2.2. Assumptions 1, 2, and 3 follow the same
line of reasoning as Condition 1 of Hsu et al. (2012);
they remove malicious instances that can cause learning
to confuse options that have the same transition/action
probability. Assumption 4 is needed as the method of
moments relies on the cancellation of certain terms across
all actions, it can be interpreted as an action emission noise
in the expert or a transition noise in the environment.

3. SPECTRAL METHOD OF MOMENTS

In this section, we develop our method of moments for
HIL. We specifically identify observable moments of the
states and actions, and show that they enable recovery
of the low-policy πlo via matrix diagonalization and the
high-level policy πhi via simple matrix algebra.

3.1 Moments in HIL

We note that under Assumption 5, the moments of the
states, options, and actions are time-invariant. Thus, with-
out loss of generality, we consider the moments Ma ∈
Rζζ×ζα for a ∈ A with

Ma [s2ζ + s1, s3α+ a3]

= P (S2 = s2, S1 = s1, A2 = a, S3 = s3, A3 = a3),

and Ks ∈ Rζ×α for s ∈ S with

Ks[s1, a2] = P (S1 = s1, S2 = s,A2 = a2).

Our goal now is to construct an expression of these
observable moments that allows the recovery of the low-
level policy via matrix diagonalization.

3.2 Diagonalizable Forms

We first examine the properties of Ks for s ∈ S. Specifi-
cally, let Vs ∈ Rα×ω for s ∈ S be a matrix of right singular
vectors corresponding to the ω largest singular values of
Ks. We then have the following lemma.

Lemma 3.1. Define the block-diagonal matrices

V =

V1

. . .

Vζ

 and Πlo =


Πlo

1

. . .

Πlo
ζ

 . (1)

Then the product matrix

ΠloV =


Πlo

1 V1

. . .

Πlo
ζ Vζ


is invertible.

Proof. We have

Ks[s1, a2] =
∑
o1

∑
o2

P (O1 = o1, S1 = s1, S2 = s)

× πhi(O2 = o2|O1 = o1, S2 = s)

× πlo(A2 = a2|O2 = o2, S2 = s)

=
{
ΞsΠ

hi
s Πlo

s

}
[s1, a2]. (2)

This implies rowspan(Ks) ⊆ rowspan(Πlo
s ). In addition,

because Ξs is full column rank and Πhi
s is full rank

(Assumption 2 and 3),

Πlo
s = (ΞsΠ

hi
s )+Ks,

which implies rowspan(Πlo
s ) ⊆ rowspan(Ks). Thus,

rowspan(V T
s ) = rowspan(Ks) = rowspan(Πlo

s ).

Therefore, Πlo
s Vs is invertible. Since s is chosen arbitrarily,

this applies for all s. Because Πlo
s Vs is invertible for all s,

it follows that ΠloV is also invertible. ✷

We next examine the properties of the moments Ma.
Before doing so, note that the moments Ma involve the
transition dynamics ΦA

a as well as the underlying low-
and high-level policies we are interested in. To remove the
influence of the transition dynamics on Ma, let us define
the kernel matrix Ψ ∈ Rζ×ζ with

Ψ[s2, s3] =

{
ψs2s3 , if ΦA

a [s2, s3] > 0 ∀a ∈ A,
0, otherwise,

(3)

and normalizer matrices Ψ ∈ Rζ×ζ for a ∈ A with

Na[s2, s3] =


1

ΦA
a [s2, s3]

, if ΦA
a [s2, s3] > 0,

0, otherwise,
(4)

where ψs2s3 are constants of choice such that Ψ is full rank
(such constants will always exist under Assumption 4). We
then may define the surrogate moments

M̂a = (Ψ⊗ 1ζ×α) ◦ (Na ⊗ 1ζ×α) ◦Ma, (5)

for a ∈ A and
M̂ =

∑
a∈A

M̂a (6)

that do not depend on the transition dynamics where M̂a

and M̂ have the same dimensions as Ma.

These surrogate moments combined with Lemma 3.1 lead
to the following theorem that establishes that the observ-
able moments allow the recovery of the low-level policy via
matrix diagonalization.

Theorem 3.2. The product V TM̂+M̂aV admits the fac-
torization:

V TM̂+M̂aV = B−1ΛaB, (7)



where

Λa =


diag(Πlo

1 ea)

. . .

diag(Πlo
ζ ea)

 . (8)

Proof. Let

Ξ =

Ξ1

. . .

Ξζ

 and Πhi =


Πhi

1

. . .

Πhi
ζ

 .
Then,

Ma [s2ζ + s1, s3α+ a3]

=
∑
s′2,o1

∑
s′′2 ,o2

∑
s′′′2 ,o′2

∑
s3,o′2

∑
s′3,o

′′
2

P (O1 = o1, S1 = s1, S2 = s2 = s′2)

× πhi(O2 = o2, S2 = s′′2 |O1 = o1, S2 = s′2)

× πlo(A2 = a, S2 = s′′′2 , O2 = o′2|O2 = o2, S2 = s′′2)

× P (S3 = s3, O2 = o′′2 |A2 = a, S2 = s′′′2 , O2 = o′2)

× πhi(O3 = o3, S3 = s′3|O2 = o′′2 , S3 = s3)

× πlo(A3 = a3, S3 = s′′3 |O3 = o3, S3 = s′3)

=
{
ΞΠhiΛa(Φ

A
a ⊗ Iω)Π

hiΠlo
}
[s2ζ + s1, s3α+ a3] .

Consider the ζ × α submatrix

Ua
s2s3 [s1, a3] = Ma[s2ζ + s1, s3α+ a3]

⇔ Ua
s2s3 = Ξs2Π

hi
s2diag(Π

lo
s2ea)Φ

A
a [s2, s3]Π

hi
s3Π

lo
s3 .

Notice that ΦA
a [s2, s3] is a real number that can be

estimated using observable data. We define

Ûa
s2s3 =

1

ΦA
a [s2, s3]

Ua
s2s3

= Ξs2Π
hi
s2diag(Π

lo
s2ea)Π

hi
s3Π

lo
s3 (9)

for all s2, s3 ∈ S such that ΦA
a [s2, s3] > 0 ∀a ∈ A, and

Ûa
s2s3 = 0ζ×α otherwise.

By the Definitions (5, 9)

M̂a = (Ψ⊗ 1ζ×α) ◦


Ûa

11 . . . Û
a
1ζ

...
. . .

...

Ûa
ζ1 . . . Û

a
ζζ


= ΞΠhiΛa(Ψ⊗ Iω)Π

hiΠlo.

By the Definition (6)

M̂ =
∑
a∈A

M̂a

= ΞΠhi

(∑
a∈A

Λa

)
(Ψ⊗ Iω)Π

hiΠlo

= ΞΠhi(Ψ⊗ Iω)Π
hiΠlo.

Finally, we can write Equation (7) as

V TM̂+M̂aV

=
(
ΠhiΠloV

)−1 (
Ψ−1 ⊗ Iω

)
Λa(Ψ⊗ Iω)Π

hiΠloV , (10)

and the proof is complete. ✷

In order to compute the eigenbasis that jointly diagonalize
(7) for all a ∈ A, we find a vector η ∈ Rα such that the
eigenvalues of

∑
a∈A

ηaV
TM̂+M̂aV = B

(∑
a∈A

ηaΛa

)
B−1 (11)

are well spread. In other words, we find η such that the
values eTo Π

lo
s η are distinct and non-zero for all (o, s) ∈ O×

S. As suggested in Hsu and Kakade (2013), this can be
satisfied in most cases if η is sampled uniformly from the
surface of a unit sphere in Rα.

The eigen-decomposition will yield an eigenbasis up to
a permutation P ∈ Rω×ζ of the pair (o, s) ∈ O × S.
To put it differently, the diagonal matrix obtained from
diagonalizing V TM̂+M̂aV using this basis will be of the
form PΛaPT. With some further processing, an order up
to a permutation P̂ ∈ Rω of o ∈ O can be recovered,
meaning the diagonal matrix obtained will be of the form

(Iζ ⊗ P̂)Λa(Iζ ⊗ P̂
T
). This ordering corresponds to the

relabeling of the options. Because this recovery process,
while necessary, does not represent the main contribution
of this work, it will be elaborated in the Appendix.

After obtaining the low-level policy matrices P̂Πlo
s , the

high-level policy matrices can be computed by the follow-
ing theorem, up to the permutation P̂ of the options.

Theorem 3.3.

P̂Πhi
s′ P̂

T
=
∑
s

ws′ [s]
(
P̂Πlo

s K
+
s K̂ss′Π

lo
s′

+P̂
T
)
, (12)

where:

• K̂ss′ is a ζ × α submatrix of M̂ defined by

K̂ss′ [s
′′, a] = M̂ [sζ + s′′, s′α+ a]. (13)

• ws′ are length ζ weight vectors of choice subject to

wT
i ΨeTi = 1, ∀i ∈ S. (14)

Proof. According to Definition (13) and Equation (2),Ks

and K̂ss′ can be written as following:

Ks = ΞsΠ
hi
s Πlo

s ,

K̂ss′ = Ψ[s, s′]
(
ΞsΠ

hi
s Πhi

s′ Π
lo
s′
)
.

Therefore,

Πlo
s Ks

+K̂ss′Π
lo
s′

+

= Ψ[s, s′]
(
Πlo

s Π
lo
s

+
Πhi

s

−1
Ξs

+ΞsΠ
hi
s Πhi

s′ Π
lo
s′Π

lo
s′

+
)

= Ψ[s, s′]Πhi
s′ .

With that, we contract the left hand side of Equation (12)∑
s

ws′ [s]
(
P̂Πlo

s K
+
s K̂ss′Π

lo
s′

+P̂
T
)

=
∑
s

ws′ [s]Ψ[s, s′]
(
P̂Πhi

s′ P̂
T
)

=P̂Πhi
s′ P̂

T
.

The last equality holds because we chose ws′ such that∑
s ws′ [s]Ψ[s, s′] = 1. Analysis of the choice of ws′ will be

reserved for future work. ✷

3.3 Proposed Method of Moments for HIL

Given the observed sequence {(st, at)}Tt=1, our method of
moments to learn the policies πlo and πhi is:



Step 1: Estimate Ma, Ks, and ΦA
a from data via:

Ma [s2ζ + s1, s3α+ a3]

=

∑T−2
t=1 I{st=s1,st+1=s2,at+1=a,st+2=s3,at+2=a3}

T − 2
,

Ks [s1, a2] =

∑T−1
t=1 I{st=s1,st+1=s,at+1=a2}

T − 1
,

ΦA
a [s, s

′] =

∑T−1
t=1 I{st=s,at=a,st+1=s′}∑T−1

t=1 I{st=s,at=a}
.

Step 2: Compute the surrogate moments M̂a and M̂
according to Equations (5) and (6).

Step 3: Perform SVD on Ks, and construct the matrix V
according to Equation (1).

Step 4: Compute the joint eigenbasis B using Equation
(11). Then, recover the order of its column using
the algorithm discussed in the Appendix.

Step 5: Recover Πlo using the diagonals that result from
diagonalizations according to Equation (7).

Step 6: Compute Πhi with Equation (12).

3.4 Performance discussion

The algorithm consists of two parts, data collection
with complexity O(T ), and data processing with com-
plexity O(ζ4αω), dominated by the cost of computing

V TM̂+M̂aV and its eigenbasis. This gives us the total
time complexity of O(T + ζ4αω).

Comparison to the EM methods presented in Zhang
and Paschalidis (2021) and Giammarino and Pascha-
lidis (2021), which has time complexity of O(Tω2) and
O(ζαω3) per iteration respectively, can be difficult. This is
due to the fact that they have different bottlenecks, along
with the fact that the method of moments is parameter-
less while EM methods need initialization. However, a
general rule is that the larger the number of samples is
relative to the number of states and actions, the better
the method of moments performs compared to EM.

Another thing to note is that the techniques mentioned can
be synergistic, with the output of the method of moments
being good initialization for EM methods to refine.

4. EXPERIMENT

In this section, we examine the proposed algorithm in
numerical experiments. We will use a similar setup to
Zhang and Paschalidis (2021) to test our model. Let there
be a finite state machine with four states and the following
parameters:

Πhi
1 =

[
0.67 0.33

0.16 0.84

]
, Πhi

2 =

[
0.88 0.12

0.16 0.84

]
,

Πhi
3 =

[
0.84 0.16

0.12 0.88

]
, Πhi

4 =

[
0.84 0.16

0.33 0.67

]
.

Πlo
1 =

[
0.6 0.4

0.1 0.9

]
, Πlo

2 =

[
0.7 0.3

0.15 0.85

]
,

Πlo
3 =

[
0.8 0.2

0.3 0.7

]
, Πlo

4 =

[
0.9 0.1

0.35 0.65

]
.

106 107 108 109

10−2

10−1

T

E
R
R
O
R

Fig. 2. Log-log plot of the error versus the number of
sample points for several realizations of the problem.
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100
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E
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R

Fig. 3. Iterations versus error of EM runs with various
initializations, some of which do not converge.

ΦA
1 =


0.7 0.1 0.1 0.1

0.4 0.4 0.1 0.1

0.3 0.3 0.3 0.1

0.25 0.25 0.25 0.25

 ,

ΦA
2 =


0.25 0.25 0.25 0.25

0.1 0.3 0.3 0.3

0.1 0.1 0.4 0.4

0.1 0.1 0.1 0.7

 .
The error will be measured by:

ERROR =

√∥∥∥Πlo −Π
lo
∥∥∥2
2
+
∥∥∥Πhi −Π

hi
∥∥∥2
2
,

where Π
lo
,Π

hi
are the predicted values of Πlo,Πhi.

For intuition, we can think of the states as locations on
a number line (i.e., states with larger index are further
right), the actions are A = {move-left,move-right}, and
the options areO = {tend-to-move-left, tend-to-move-right}.
Looking at the numbers, we can see that the agent wants
to alternately move from left to right and right to left.

In Fig. 2 we plot the error versus the number of samples for
a few runs of our method in log scale. It can be seen that
the error is polynomial relative to the number of samples.

For comparison purposes, Fig. 3 depicts a few EM runs
with randomized initialization and a sample size of 3×105.
It can be seen that initialization have a significant effect
on EM’s rate of convergence and whether or not it arrives
at the correct optima. In contrast, the proposed method
of moments does not require initialization.

5. CONCLUSIONS AND FUTURE WORK

We developed a novel method of moments for Hierarchical
Imitation Learning (HIL) that offers global convergence
under mild regulatory conditions. Our method of moments
for HIL is based on similar methods for HMMs and other



latent variable models, and avoids the local convergence is-
sues inherent in previous Expectation-Maximization (EM)
approaches to HIL. Future work could include further
relaxation of the conditions under which the method holds
and examining its extension to situations in which the op-
tions form a semi-Markov (rather than a Markov) process.

Appendix A. ORDER RECOVERY PROCESS

From Equation (10), we know the eigenbasis B ∈ Rζω×ζω

is of the form

B =
(
ΠhiΠloV

)−1 (
Ψ−1 ⊗ Iω

)
. (A.1)

The eigen-decomposition (7) will introduce an unknown
scaling and permutation to the columns of the basis:

B̂ = Bdiag(c)P , (A.2)

where c is a vector that corresponds to the scaling of each
column, and P is a permutation operator on the columns.

For convenience, define the following shorthands:

Xs =
(
Πhi

s Πlo
s Vs

)−1
,

X =
(
ΠhiΠloV

)−1
= diag(X1, . . . ,Xζ),

and Γ = Ψ−1 with elements γij . Rewrite (A.1) as B =
X (Γ⊗ Iω). Recalling Equation (A.2), we have that the

structure of the sub-matrices Ĵs ∈ Rω×ζω of the basis B̂
is Ĵs = [γs1Xs . . . γsζXs] diag(c)P . It is easily seen that
each of these sub-matrices contains ω sets of ζ linearly
dependent vectors, and that the grouping of these linearly
dependent columns are identical due to them sharing the
same permutation P . We separate and represent these sets
as ζω × ζ matrices Q̂o given by

Q̂o =

γ11X1eo . . . γ1ζX1eo
...

. . .
...

γζ1Xζeo . . . γζζXζeo

 diag(co)Po, (A.3)

where co and Po are unknown scaling factor and permu-
tation corresponding to the group o.

We define do =
[
XT

1 e
T
o . . . XT

ζ e
T
o

]T ∈ Rζω. Then, (A.3)

can be rewritten as Q̂o = diag(do)(Γ⊗ 1ω)diag(co)Po. In
order to recover the original ordering of the columns of
Q̂o, we need to somehow match them with the columns of
Γ⊗ 1ω, which is a known quantity.

Before proceeding, let us introduce the element-wise in-
verse operator ⊘ such that A⊘ corresponds to the ma-
trix formed by inverting each element of the matrix A,
and so that (AP)⊘ = A⊘P , and [diag(u)Adiag(v)]⊘ =
diag(u)−1A⊘diag(v)−1.. Let’s assume that Γ ⊗ 1ω has
no zero entries. If there are zero entries, we can further
partition Q̂o and Γ ⊗ 1ω into column groups that has
the same rows with zero entries, remove those rows, and
use the following procedure on each of the groups before
combining the result.

We have the following reduction:

Q̂⊘
o Q̂

T
o = diag(do)

−1(Γ⊘ΓT ⊗ 1ω1
T
ω )diag(do)

= (d⊘
o d

T
o ) ◦ (Γ⊘ΓT ⊗ 1ω1

T
ω ).

Therefore Q̂⊘
o Q̂

T
o ◦ (Γ⊘ΓT ⊗ 1ω1

T
ω )

⊘ = d⊘
o d

T
o . It is easily

verifiable that diag(d⊘
o d

T
o ei)diag(do) = do[i]I.

We have diag(d⊘
o d

T
o 1ζω)Q̂o = (1T

ζωdo)(Γ⊗1ω)diag(co)Po.
Notice that the columns of this matrix are just multiples
of the columns of (Γ ⊗ 1ω). As such a matching can
be computed by checking linear dependence between the
columns of the two matrices.
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