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Abstract: Recent empirical success has led to a rise in popularity of the options framework
for Hierarchical Reinforcement Learning (HRL). This framework tackles the scalability problem
in Reinforcement Learning (RL) by introducing a layer of abstraction (i.e. high-level options)
over the (low-level) decision process. Hierarchical Imitation Learning (HIL) is the problem of
learning low-level and high-level policies within HRL from expert demonstrations consisting
only of the low-level actions and states, with the high-level options being hidden (or latent).
Due to the latent options, recent work on HIL has focused on the development of Expectation-
Maximization (EM) algorithms inspired by approaches such as the celebrated Baum-Welch
algorithm for hidden Markov models (HMMs). In this work, we take a different approach and
derive a new HIL framework inspired by the spectral method of moments for HMMs. The method
of moments offers global and consistent convergence under mild regulatory conditions, whilst
only requiring one sweep through the data set of state and action pairs, giving it a competitive

run time.
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Imitation Learning, Method of Moments.

1. INTRODUCTION

Hierarchical Reinforcement Learning (HRL) seeks to ad-
dress the scalability problem of Reinforcement Learning
(RL) by introducing layers of abstraction over the decision
process, enabling general sweeping decisions over large
epochs and smaller specific decisions on finer (more gran-
ular) epochs (Sutton et al., 1999; Barto and Mahadevan,
2003). The success of HRL relies on discovering suitable
abstractions. In the literature, the problem of discovering
suitable abstractions has been tackled both separately and
in conjunction (in a single end-to-end process) with learn-
ing the optimal policy (Barto and Mahadevan, 2003). In
specific instances where expert demonstrations are avail-
able, the process of discovering abstractions and learning
optimal policies can be accelerated via Hierarchical Imita-
tion Learning (HIL). Specifically, HIL involves computing
a hierarchy of policies from expert demonstrations and is
the extension of Imitation Learning (IL) to HRL. In this
paper, we develop a novel HIL approach for the HRL with
options framework of (Sutton et al., 1999).
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The HRL with options framework proposed by Sutton
et al. (1999) involves a two-tiered hierarchy of policies,
with a high-level policy governing “options” or decision as
to which of a finite set of low-level policies are used to select
actions. A key challenge of HIL in this options framework
is that in practice, only (low-level) states and actions
are directly observed through expert demonstrations, not
the (high-level) options. The options thus constitute hid-
den (or latent) variables, and so recent HIL works have
drawn inspiration from Expectation-Maximization (EM)
techniques for learning Hidden Markov models (HMMs)
and other latent variable models (Daniel et al., 2016;
Zhang and Paschalidis, 2021; Giammarino and Paschalidis,
2021). These EM techniques process state-action pairs
from expert demonstrations with a Bayesian smoother
to compute a surrogate function for the (log)likelihood,
and subsequent maximization of this surrogate function
over the policy space. Whilst local-convergence theoretical
guarantees have recently been shown for such an EM
approach in the context of HIL (Zhang and Paschalidis,
2021), the nature of EM techniques as local-search proce-
dures means that they are prone to convergence to local
(non-global) maxima, and slow convergence with associ-
ated high computational expense.

In HMMs and other specific classes of latent variable
models, methods of moments have been developed to
overcome convergence issues inherent with EM techniques



(Hsu et al., 2012; Hsu and Kakade, 2013; Mattila et al.,
2020, 2015, 2017; Anandkumar et al., 2014; Parikh et al.,
2012). These moment methods are free of local conver-
gence problems (Mattila et al., 2020; Anandkumar et al.,
2014), and often offer much faster practical convergence
with less computational expense (Mattila et al., 2015,
2017). Moment methods have therefore been used both
by themselves and as initialization algorithms for EM
techniques (cf. (Zhang et al., 2016)). Nevertheless, moment
methods have not previously been investigated for HIL in
the options framework.

The key contribution of this paper is the development of
a new method of moments for HIL in the HRL options
framework of (Sutton et al., 1999). Inspired by the method
of moments for HMMs developed in (Hsu et al., 2012),
our method of moments for HIL offers global convergence
under mild regularity and non-degeneracy conditions, and
has the practical advantage of only requiring a single pass
through the expert demonstrations. It therefore serves as
both a useful alternative and complementary technique to
the previously developed but locally-convergent EM algo-
rithms of (Daniel et al., 2016; Giammarino and Pascha-
lidis, 2021; Zhang and Paschalidis, 2021).

Notation: Uppercase letters denote random variables, low-
ercase letters denote realizations. Uppercase bold letters
denote matrices, lowercase bold letters denote vectors.
Superscript on a quantity acts like a label in case there
are many quantities with the same symbol. Subscript on
a quantity denotes it being a subclass of the original
quantity. The Kronecker product ® is defined as

a11B . alnB
am1B ... ampnB

where A is a m X n matrix, B is a p X ¢ matrix, and
A® B is a mp x nqg matrix. The Hadamard (element-wise)
product o is defined as

a11b11 a1nb1n

AoB =

a’mnb’mn

where A, B, and A o B are m X n matrices. Furthermore,
I,, denotes an m x m identity matrix, 1,,x, denotes an
m X n matrix with all of its entries equal to one, 0,,xn
denotes an m xn matrix with all of its entries equal to zero,
and e; denotes the j'* unit vector. The Moore-Penrose
inverse of a matrix A will be denoted A1 and its transpose

by AT.

am1 bml ..

2. PROBLEM FORMULATION

In this section, we introduce the HRL with options frame-
work (Sutton et al., 1999; Barto and Mahadevan, 2003)
and formulate the associated HIL problem.

2.1 HRL with Options Framework

The HRL with options framework corresponds to the
Bayesian network shown in Fig. 1 where Oy, S;, and A,
denote the option, the state, and the action at time ¢ > 1,
respectively. The triple (O, St, A;) forms a discrete-time

0Oy
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Fig. 1. Bayesian network of the HRL option framework.

Markov chain with O, S, and A; defined over the finite
spaces O, S, and A, respectively. We denote the cardinality
of these spaces as |O] = w, S| = ¢, and |A| = a.

The initial option and state pair (o1, s1) is sampled from
an initial distribution m(-,-). For ¢ > 1, to advance one
time step starting from the current pair (o, s¢), the action
a; is sampled from a low-level policy 7, (¢|st, 0¢). Then,
the resulting state s;41 is sampled from an environment
transition probability distribution ®(:|s¢, a;). Finally, the
next option 0,41 is sampled based on the new state and the
previous option from the high-level policy mx;(+|ot, St+1)-
The HRL with options framework is thus characterized by
the policies 7p; and 7;,, and the transition distribution .

Remark 2.1. The framework we consider differs slightly
from that in Sutton et al. (1999) in that:

(1) The termination random variable, along with its
decision policy is omitted, with the option transition
based solely on the high-level policy ;. This is due to
the fact that the termination factor is only involved
in the transition between options, without directly
affecting any observables in any way. For the sake of
simplicity, the termination policy is folded into the
high-level policy as one single object.

(2) The process starts with the pair (o1, s1) instead of
(00, s1). This difference is inconsequential as the re-
sulting extra transition would be canceled out during
the operations below.

2.2 The HIL Problem

Suppose that an expert uses the HRL with options
framework to generate a sequence of states and actions
{(s¢,a¢)}_ ;. In the HIL problem, we seek to use this
sequence to learn the expert’s underlying low and high-
level policies 7, and ;. The associated options {o;}i_,
are not observed and constitute hidden (or latent) vari-
ables. The HIL problem is thus an instance of learning
in the presence of latent variables which has motivated
its solution via EM approaches in (Daniel et al., 2016;
Zhang and Paschalidis, 2021; Giammarino and Paschalidis,
2021). Due to local convergence issues inherent in EM
approaches, we shall take a different approach and develop
a method of moments for HIL inspired by the method of
moments for HMMs developed in (Hsu et al., 2012).

To develop our method, we define the following matrices.

Definition 2.1. For s € S, define I/ € R** with
1[0, a] = mo(A; = a|Oy = 0, S; = s)

as the matrix representation of 7, under the state s.

Definition 2.2. For s € S, define IT" € R¥*“ with

1"[0,0'] = 74;(Os11 = |0 = 0,541 = 5)

as the matrix representation of 7j; under the state s.



Definition 2.3. For a € A, define @2 € RS*¢ with
D [s,5'] = ®(S;11 = 5'|S; = 5, A; = a)
as matrix representations of the transition dynamics.
Definition 2.4. For s’ € S, define 2, € RS*“ with
Ev[s,0] = P(S; = 5,0, = 0,841 = 5).

We also require the following mild regulatory assumptions.

Assumption 1. (Option-Action Identifiability). Under the
same state, no two options contain the same policy for
choosing an action, i.e., Hi" has full row rank Vs € S.

Assumption 2. (Option-Option Identifiability). Under the
same state, no two options give the same policy for
choosing the next option, i.e., IT* has full rank Vs € S.

Assumption 3. B has full column rank Vs € S.

Assumption 4. All actions have a non-zero chance of tran-
sitioning a state to all of its neighboring states and one
state is another state’s neighbor if there exists an action
under which the probability of transitioning from the latter
to the former is non-zero, i.e., for any s,s’ € S, if there
exists a € A such that ®2[s,s'] > 0, then ®4[s,s'] >
0Va' € A.

Assumption 5. (Stationary). The process (O, S;) starts
with the stationary distribution, that is wl[o] = w°[0]
where 7! € R with wl[o] = P(O; = 0,s; = s) for s € S.
Remark 2.2. Assumptions 1, 2, and 3 follow the same
line of reasoning as Condition 1 of Hsu et al. (2012);
they remove malicious instances that can cause learning
to confuse options that have the same transition/action
probability. Assumption 4 is needed as the method of
moments relies on the cancellation of certain terms across
all actions, it can be interpreted as an action emission noise
in the expert or a transition noise in the environment.

3. SPECTRAL METHOD OF MOMENTS

In this section, we develop our method of moments for
HIL. We specifically identify observable moments of the
states and actions, and show that they enable recovery
of the low-policy 7, via matrix diagonalization and the
high-level policy 7; via simple matrix algebra.

8.1 Moments in HIL

We note that under Assumption 5, the moments of the
states, options, and actions are time-invariant. Thus, with-
out loss of generality, we consider the moments M, €
RSC*C for a € A with

M, [s2€ + 51,5300 + as]
= P(SQ = 82751 = Sl,AQ =a, 53 = 83,A3 = a3),
and K, € RS*“ for s € S with
KS[Sl,ag] = P(Sl = 81,52 = S,AQ = az).
Our goal now is to construct an expression of these

observable moments that allows the recovery of the low-
level policy via matrix diagonalization.

3.2 Diagonalizable Forms

We first examine the properties of K, for s € S. Specifi-
cally, let Vy € R**“ for s € S be a matrix of right singular
vectors corresponding to the w largest singular values of
K. We then have the following lemma.

Lemma 8.1. Define the block-diagonal matrices

Vi e
V= and II° = . (1)

lo

Ve II¢
Then the product matrix
v,
Hlov _ '
e,

is invertible.

Proof. We have
K.[s1,a2] = > > P(O1=101,5 = 51,5 = )
01 02
X 71'}”'(02 = 02|01 = 01,52 = S)
X WZO(AQ = U/Q‘OQ = OQ,SQ = S)
= {E, MY} [s1, as]. (2)

This implies rowspan(K,) C rowspan(ITY). In addition,
because Z, is full column rank and TI" is full rank
(Assumption 2 and 3),

Iy = (E.000) K.,
which implies rowspan(ITL°) C rowspan(K,). Thus,
rowspan(V,') = rowspan(K,) = rowspan(IT').
Therefore, TI°V; is invertible. Since s is chosen arbitrarily,

this applies for all s. Because IT'°V is invertible for all s,
it follows that IT!°V is also invertible. O

We next examine the properties of the moments M,.
Before doing so, note that the moments M, involve the
transition dynamics ®7 as well as the underlying low-
and high-level policies we are interested in. To remove the
influence of the transition dynamics on M,, let us define
the kernel matrix ¥ € R¢*¢ with

D[sy, 53] = {wsm, if ®2[s2,53) > 0 Va € A, 3)

0, otherwise,
and normalizer matrices ¥ € R¢*¢ for a € A with

1
i ®Msy, 55 >0,
N, [sa2, s3] = { P52, 53] [52, 82

0, otherwise,

(4)

where 1,5, are constants of choice such that ¥ is full rank
(such constants will always exist under Assumption 4). We
then may define the surrogate moments

M, = (¥ ®1cxa) o (Ng ® Lexa) 0o My, (5)
for a € A and . )
M=) M, (6)
acA
that do not depend on the transition dynamics where M,
and M have the same dimensions as M,.

These surrogate moments combined with Lemma 3.1 lead
to the following theorem that establishes that the observ-
able moments allow the recovery of the low-level policy via
matrix diagonalization.

Theorem 3.2. The product VT M+ N,V admits the fac-
torization: o
VIM*M,Vv = B"'A,B, (7)



where

diag(l‘[é"ea)

Proof. Let
= Iy
and II™ =

= hi
e Hcl

—
- —
_—

Then,
M, [52¢ + 51, 830 + as]

e IDIDIDIPY

s5,01 54,02 55,0, 53,0, 5,00
P(O1 = 01,51 = 81,55 = 55 = 5})

X Thi(O2 = 02,52 = 55|01 = 01,55 = s3)

X To(As = a,Se = 55, Oy = 04|Og = 03,52 = s4)

X P(S3 = 83,05 = 05|Ay = a, S5 = 55,05 = 0})

X mhi(O3 = 03,55 = s4|0s = 0}, S3 = s3)

X mo(As = ag, S3 = 54|03 = 03,53 = s4)
= {EHhiAa(‘Ih‘? ® Iw)l_[hil_[l”} [s2C + $1, 8300 + ag] .
Consider the ¢ X a submatrix

U .. [51,a3] = My[s2C + 51, 8300 + as]
U, =5, 0" diag(II°e,) . [s0, s3I

Notice that ®4[sy, s3] is a real number that can be
estimated using observable data. We define

1
ve, =——— U
8283 @2?[82753] 5283
= E,,I1}] diag(TT,) e, )T TTY) 9)
for all sy,s3 € S such that ®2[sy, s3] > 0 Va € A, and
Us‘l2s3 O¢x o otherwise.

By the Definitions (5, 9)

Ug ... UL
Ma:(‘l’@lea)o : oo
Ug ... U

= EIMAL (¥ ® I,)ITMII,
By the Definition (6)

M= M,
acA

= B (Z Aa> (¥ @ I,)IT 1T

acA
= En"(¥ ® 1)1,
Finally, we can write Equation (7) as
VIMtN,V
— (MMIV) T (B 9 1,) Al (¥ @ L)V, (10)
and the proof is complete. O
In order to compute the eigenbasis that jointly diagonalize

(7) for all @ € A, we find a vector 7 € R* such that the
eigenvalues of

Z n.VIM*NM,V =B (Z naAa> B! (11)
acA acA

are well spread. In other words, we find 1 such that the
values e] TI'°n are distinct and non-zero for all (o, 5) € O x
S. As suggested in Hsu and Kakade (2013), this can be
satisfied in most cases if 7 is sampled uniformly from the
surface of a unit sphere in R®.

The eigen-decomposition will yield an eigenbasis up to
a permutation P € R“*¢ of the pair (0,5) € O x S.
To put it differently, the diagonal matrix obtained from
diagonalizing VTM+N,V using this basis will be of the
form PA,PT. With some further processing, an order up
to a permutation P e RY of 0 € O can be recovered,
meaning the diagonal matrix obtained will be of the form
(It @ P)A,(Ic @ 75T) This ordering corresponds to the
relabeling of the options. Because this recovery process,
while necessary, does not represent the main contribution
of this work, it will be elaborated in the Appendix.

After obtaining the low-level policy matrices 751_[20, the
high-level policy matrices can be computed by the follow-
ing theorem, up to the permutation P of the options.

TheoremS’S’
ng (HZOKJFKQS/H PT), (12)

where:
e K., is a ¢ x o submatrix of M defined by
K..[s" a] = M[s¢ + s",s'a+al. (13)
e w are length ¢ weight vectors of choice subject to
wiWel =1, VicS. (14)

Proof. According to Definition (13) and Equation (2), K
and K¢ can be written as following:
K _ _‘Sthl—[lo
K, = ¥[s,s] (.:.SHTHS, Hls‘?) .
Therefore,
MoK, K, T
= 9fs, o] (Meml Il e e Ty )
= W[s, s'|TI.
With that, we contract the left hand side of Equation (12)
Zw"' ( HloKJrKss’H PT)
I Srrhigy L
:Zws/ s]®[s, s'] (’PHS/’P )
—prip’.
The last equality holds because we chose wg such that

> s we[s]¥[s, s’ = 1. Analysis of the choice of w will be
reserved for future work. O

8.8 Proposed Method of Moments for HIL

Given the observed sequence {(s¢, a;)}i_;, our method of
moments to learn the policies 7, and 7p; is:



Step 1: Estimate M,, K,, and ®2 from data via:
M, [s2¢ + 51,530 + az]

T-2 I
_ t=1 {St:51a5t+1:521at+1:a75t+2:537at+2:a3}
T—-2 ’
T-1 I
_ t=1 “‘{st=s1,8t+1=s,a¢t41=0az2}
K [s1,a2] = T ;
T-1 I
@A[S S/] _ t=1 ‘{st=s,at=a,s5111=5"}
a I - .

T-1 I
t=1 “{st=s,ar=a}

Step 2: Compute the surrogate moments M, and M
according to Equations (5) and (6).

Step 3: Perform SVD on K, and construct the matrix V
according to Equation (1).

Step 4: Compute the joint eigenbasis B using Equation
(11). Then, recover the order of its column using
the algorithm discussed in the Appendix.

Step 5: Recover IT' using the diagonals that result from
diagonalizations according to Equation (7).

Step 6: Compute IT" with Equation (12).

3.4 Performance discussion

The algorithm consists of two parts, data collection
with complexity O(T'), and data processing with com-
plexity O(¢*aw), dominated by the cost of computing
VTM*+M,V and its eigenbasis. This gives us the total
time complexity of O(T + (*aw).

Comparison to the EM methods presented in Zhang
and Paschalidis (2021) and Giammarino and Pascha-
lidis (2021), which has time complexity of O(Tw?) and
O(Caw?) per iteration respectively, can be difficult. This is
due to the fact that they have different bottlenecks, along
with the fact that the method of moments is parameter-
less while EM methods need initialization. However, a
general rule is that the larger the number of samples is
relative to the number of states and actions, the better
the method of moments performs compared to EM.

Another thing to note is that the techniques mentioned can
be synergistic, with the output of the method of moments
being good initialization for EM methods to refine.

4. EXPERIMENT

In this section, we examine the proposed algorithm in
numerical experiments. We will use a similar setup to
Zhang and Paschalidis (2021) to test our model. Let there
be a finite state machine with four states and the following
parameters:

. [0.670.33 . [0.880.12
= [0 oma| T = 006 omal

0.16 0.84 0.16 0.84
i — 0.84 0.16 pi _ [0.840.16
3 0.12 0.88|’ 4 0.33 0.67] "
0.6 0.4 0.7 0.3
lo __ lo __
Iy = [0.1 0.9} L= [0.15 0.85] ’
Tl — 0.8 0.2 o _ [09 0.1
3 0.3 0.7]° 4 0.35 0.65]

)

ERROR
)
L
T
Lol

108 107 108 10°
T

Fig. 2. Log-log plot of the error versus the number of
sample points for several realizations of the problem.

100 \

1 1 1 1
0 200 400 600 800

Iterations

ERROR

1
1,000

Fig. 3. Iterations versus error of EM runs with various
initializations, some of which do not converge.

r0.7 0.1 0.1 0.17
B4 _ 04 04 01 0.1
1 0.3 03 03 0.1’
10.25 0.25 0.25 0.25 |
r0.25 0.25 0.25 0.257
B4 0.1 03 0.3 0.3
2 0.1 0.1 04 04
| 0.1 0.1 0.1 0.7

The error will be measured by:

2

)

2

hi

— o2 T
ERROR = \/Hnlo—nl +HHM—H
2

where IT O, IT" are the predicted values of IT', TT".

For intuition, we can think of the states as locations on
a number line (i.e., states with larger index are further
right), the actions are A = {move-left, move-right}, and
the options are O = {tend-to-move-left, tend-to-move-right }.
Looking at the numbers, we can see that the agent wants
to alternately move from left to right and right to left.

In Fig. 2 we plot the error versus the number of samples for
a few runs of our method in log scale. It can be seen that
the error is polynomial relative to the number of samples.

For comparison purposes, Fig. 3 depicts a few EM runs
with randomized initialization and a sample size of 3 x 10°.
It can be seen that initialization have a significant effect
on EM’s rate of convergence and whether or not it arrives
at the correct optima. In contrast, the proposed method
of moments does not require initialization.

5. CONCLUSIONS AND FUTURE WORK

We developed a novel method of moments for Hierarchical
Imitation Learning (HIL) that offers global convergence
under mild regulatory conditions. Our method of moments
for HIL is based on similar methods for HMMs and other



latent variable models, and avoids the local convergence is-
sues inherent in previous Expectation-Maximization (EM)
approaches to HIL. Future work could include further
relaxation of the conditions under which the method holds
and examining its extension to situations in which the op-
tions form a semi-Markov (rather than a Markov) process.

Appendix A. ORDER RECOVERY PROCESS

From Equation (10), we know the eigenbasis B € R¢“*¢%
is of the form

B = ("mv) " (¥ 'oL,). (A1)
The eigen-decomposition (7) will introduce an unknown
scaling and permutation to the columns of the basis:

B = Bdiag(c)P, (A.2)
where ¢ is a vector that corresponds to the scaling of each
column, and P is a permutation operator on the columns.
For convenience, define the following shorthands:

Xs — (Hglﬂio%)—l 7
X = (IMI1°V) ™' = diag(X,, ..., X¢),

and I' = ! with elements 7;;. Rewrite (A.1) as B =
X (T ®1,). Recalling Equation (A.2), we have that the
structure of the sub-matrices J; € RwX¢w of the basis B
is Js = [751Xs ... vsc X s]diag(c)P. It is easily seen that
each of these sub-matrices contains w sets of ( linearly
dependent vectors, and that the grouping of these linearly
dependent columns are identical due to them sharing the
same permutation P. We separate and represent these sets
as (w x ¢ matrices Q, given by

- Y1 X1e,

diag(¢,)Po,

y1Xie, ..

Qo= | o (A.3)
fychCe(, ’y“XCeO

where ¢, and P, are unknown scaling factor and permu-

tation corresponding to the group o.

We define d, = [XlTeE XCTeE]T € RS. Then, (A.3)
can be rewritten as Q, = diag(d,)(T ® 1,,)diag(c,)P,. In
order to recover the original ordering of the columns of

Qo, we need to somehow match them with the columns of
I' ® 1, which is a known quantity.

Before proceeding, let us introduce the element-wise in-
verse operator @ such that A© corresponds to the ma-
trix formed by inverting each element of the matrix A,
and so that (AP)? = AP, and [diag(u)Adiag(v)]? =
diag(u) ' A%diag(v)~!.. Let’s assume that ' ® 1,, has
no zero entries. If there are zero entries, we can further
partition QO and T' ® 1, into column groups that has
the same rows with zero entries, remove those rows, and
use the following procedure on each of the groups before
combining the result.

We have the following reduction:
Q7Q; = diag(d,) ' (P°I'" @ 1,17)diag(d,)
= (d2d}) o (I°TT ®1,1)).

Therefore Q2QT o (I°TT © 1,1T7)2 = d2dT. It is easily
verifiable that diag(d2d} e;)diag(d,) = d,|[i|I.

We have diag(d2d1:,)Q, = (10,d,)(T®1,)diag(c,) P,
Notice that the columns of this matrix are just multiples
of the columns of (T' ® 1,). As such a matching can
be computed by checking linear dependence between the
columns of the two matrices.

REFERENCES

Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., and Tel-
garsky, M. (2014). Tensor decompositions for learning
latent variable models. Journal of machine learning
research, 15, 2773-2832.

Barto, A.G. and Mahadevan, S. (2003). Recent advances
in hierarchical reinforcement learning. Discrete event
dynamic systems, 13(1), 41-77.

Daniel, C., Van Hoof, H., Peters, J., and Neumann, G.
(2016). Probabilistic inference for determining options
in reinforcement learning. Machine Learning, 104(2),
337-357.

Giammarino, V. and Paschalidis, I.C. (2021). Online
Baum-Welch algorithm for hierarchical imitation learn-
ing. In 2021 60th IEEE Conference on Decision and
Control (CDC). IEEE.

Hsu, D. and Kakade, S.M. (2013). Learning mixtures
of spherical Gaussians: moment methods and spectral
decompositions. In Proceedings of the 4th Conference on
Innovations in Theoretical Computer Science, 11-20.

Hsu, D., Kakade, S.M., and Zhang, T. (2012). A spectral
algorithm for learning hidden Markov models. Journal
of Computer and System Sciences, 78(5), 1460—-1480.

Mattila, R., Rojas, C., Moulines, E., Krishnamurthy, V.,
and Wahlberg, B. (2020). Fast and consistent learn-
ing of hidden Markov models by incorporating non-
consecutive correlations. In H.D. IIT and A. Singh (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, 6785—-6796. PMLR.

Mattila, R., Rojas, C.R., Krishnamurthy, V., and
Wahlberg, B. (2017). Identification of hidden Markov
models using spectral learning with likelihood maxi-
mization. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), 5859-5864.

Mattila, R., Rojas, C.R., and Wahlberg, B. (2015). Evalu-
ation of spectral learning for the identification of hidden
Markov models. IFAC-PapersOnLine, 48(28), 897-902.
17th IFAC Symposium on System Identification SYSID
2015.

Parikh, A.P., Song, L., Ishteva, M., Teodoru, G., and Xing,
E.P. (2012). A spectral algorithm for latent junction
trees. In Proceedings of the Twenty-FEighth Conference
on Uncertainty in Artificial Intelligence, 675—684.

Sutton, R.S., Precup, D., and Singh, S. (1999). Between
MDPs and semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelli-
gence, 112(1), 181-211.

Zhang, Y., Chen, X., Zhou, D., and Jordan, M.I. (2016).
Spectral methods meet EM: A provably optimal al-
gorithm for crowdsourcing. The Journal of Machine
Learning Research, 17(1), 3537-3580.

Zhang, Z. and Paschalidis, I. (2021). Provable hierarchical
imitation learning via em. In International Confer-
ence on Artificial Intelligence and Statistics, 883—-891.
PMLR.



