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Abstract

Guinea-worm disease (GWD) is a neglected tropical disease (NTD) caused
by the parasitic worm Dracunculus medinensis. In 1988, the Carter Center
launched the campaign to eradicate the disease. The global campaign has
been very successful, bringing the world-wide number of GWD cases down
from 3.5 million in 1986 to low double digits in 2015 and thereafter. However,
GWD now shows a peculiar pattern and is resurfacing again: not in humans,
but mostly in dogs and other animals. Moreover, despite the fact that mathe-
matical modeling is a standard and indispensable tool for NTDs elimination
efforts, there are fewer than ten models of GWD. In this paper, we review
most of those models and illustrate their basic assumptions and modeling
techniques. We demonstrate that as the understanding of the Guinea worm
biology evolved, so did the mathematical models. We also point out to what
is still missing in all of these GWD models and discuss potential future re-
search directions.
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Figure 1. Guinea worm life cycle with humans as the only primary host for mature worms. Image
courtesy of DPDx, Centers for Disease Control and Prevention (https://www.cdc.gov/dpdx)

Introduction

Guinea-worm disease (GWD) is caused by the parasitic worm Dracun-
culus medinensis. The disease used to affect primarily poor communities in
remote rural areas without adequate access to safe water [Muller 1979]. It
has been known and recognized since antiquity, mostly due to the impres-
sive size of the parasite, up to 800 mm-1200 mm in length, and its unusual
mode of life [Muller 1971].

The complex life cycle, as known by the early 2000s, is shown in Fig-
ure 1. In humans, the mature female worm migrates to the lower extrem-
ities and creates a painful blister. The pain causes the host to immerse the
blister in the water, typically a source of drinking water for the whole com-
munity. Once in water, the worm releases millions of larvae into it. The
free larvae are eaten by copepods (tiny crustaceans) or by water fleas. In-
side the copepods, the larvae undergo two molt stages. If, at that point,
the infected copepods are swallowed by humans, the larvae can then grow
into maturity, mate, and the cycle continues.

Through the global education campaign and drinking only filtered wa-
ter, GWD was thought to be essentially eradicated in most countries by the
early 2000s. However, in 2011, GWD resurfaced in Chad despite the re-
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Figure 2. Geographical distribution of times of the last reported human GWD cases. Data collected
from Our World in Data [2022] and map was made with the aid of borders.m file [Greene et al.
2019] in MATLAB.

ported absence of human cases for 10 years [The Lancet 2019]. Since 2015,
there have been fewer than 55 human cases worldwide annually. Yet, in
2021, there were still cases in Chad, Ethiopia, South Sudan and Mali; see
Figure 2. Chad, Ethiopia and Mali have also reported animal GWD cases
[The Carter Center 2022].

Recently, GWD developed a peculiar pattern [Eberhard et al. 2014]. Do-
mestic dogs, rather than humans, have been observed as the terminal hosts
for the worm. The infections are concentrated along the entire Chari river
and its tributaries [Cleveland et al. 2019; Hopkins et al. 2014, 2018]. The
working hypothesis is that the Guinea worm life cycle involves fish, frogs,
or other aquatic hosts that serve as intermediate hosts in which no devel-
opment of the parasite occurs [Hopkins et al. 2018; Molyneux and Sankara
2017]. New infections are thought to occur when humans consume inad-
equately cooked paratenic hosts and when such hosts are consumed raw
by dogs [Eberhard et al. 2014]. The up-to-date life cycle is illustrated in
Figure 3.

There are very few mathematical models of GWD; we provide a basic
overview of most of them. The purpose of most of the models is to in-
vestigate which steps should be taken to eradicate the disease. For each
model, we briefly describe the background anf assumptions and display
its diagram. We outline general ideas behind the model’s analysis and dis-
cuss issues with model calibration and validation. We include a discussion
about what constitutes a good model. We conclude by identifying several
promising directions for future research in GWD modeling.
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Figure 3. Guinea worm life cycle with humans and dogs as the terminal hosts for mature worms.
Image courtesy of DPDx, Centers for Disease Control and Prevention (https://www.cdc.gov/dp
dx).
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Overview of Compartmental Models

In this section, we provide a basic overview of the different compart-
mental models of GWD. We try to keep notation as uniform as possible,
more or less following the conventions in Engelhard et al. [2021]. Thus, we
often deviate from the notation used in the original papers.

e For the classical compartments of susceptible, exposed, and infectious
individuals, we use capital letters S, I/, and I. We also use R for recov-
ered/removed and () for quarantined population. If the model consid-
ers two populations of humans, we use superscripts (1) and (2).

e For transmission rates, we typically use lower-case Greek letters.

e We denote death rates by p, contact rates by 3, maturation rates by +,
larvae-shedding rates by o, and recovery-from-infection rates by 7.

e To distinguish among humans, dogs, copepods, and fish/frogs, we use
subscripts H, D, C, and F’; we also use 1" for tadpoles.

e Birth rates are denoted by A.
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There are also some differences in modeling details; for example, some
models consider logistic growth, use variations of the transmission rates,
and/or explicitly account for copepod mortality from dogs or humans

drinking copepods. In the interest of brevity, we use symbols such as A,

B, or 1t and encourage interested readers to consult the original paper for
detailed exposition.

Model of Smith? et al. (2012)

The tirst mathematical model of GWD was developed in Smith? et al.
[2012]. The purpose of the model was to examine the theoretical likeli-
hood of eradication of the disease using existing intervention techniques
in resource-constrained settings. The possible interventions included wa-
ter filtration, public education or chlorination of the water supply.

Smith? et al. [2012] consider a classic SEIS (Susceptible-Exposed-Infected-
Susceptible) model with an additional compartment W, for larvae present
in the water. The model is illustrated in Figure 4 and briefly described
below.

Figure 4. The schematic diagram of GWD transmission adapted from Smith? et al. [2012]. The
solid arrows represent transition of individuals between compartments; the letters next to the
arrows are (per capita) transition rates. The dashed arrows represent an influence of one compart-
ment on a transition rate. The thick gray arrows represent the (simplified) life cycle of the parasite.

Individuals are born susceptible, Sy, at rate A . They become exposed,
Ey, at rate W1, where [ is the infection rate and W, is the number of
parasites in the water. Once inside the human body, the parasites mature at
rate vy and the individual becomes infectious, Iy. Infectious individuals
contribute to W, atrate o, and they recover and become susceptible again
at rate ng.

The graphical representation of the model in Figure 4 yields the follow-
ing system of differential equations:
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Each equation is based on a corresponding compartment of the model.
For every solid arrow going into the compartment, one adds a product of
the transition rate and the outgoing compartment. For every arrow going
out, one subtracts a product of the transition rate and the compartment
itself. The dashed arrows in the model diagram mean that the transition
rate is multiplied by the outgoing compartment as well.

Smith? et al. [2012] also included impulse reduction of larvae in the wa-
ter, W, by means of chlorination and showed that education was the most
effective countermeasure.

Model of Link and Victor (2012)

Link and Victor [2012] extended the model from Smith? et al. [2012] by
explicitly incorporating more details in the parasite life cycle; see Figure 5.
The authors aimed to analyze key model parameters to determine effective
combinations of intervention strategies.
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Figure 5. The schematic diagram of GWD transmission adapted from Link and Victor [2012]; the
model created by Adewole and Onifade [2013] is very similar. For explanation, see the text and
the caption to Figure 4. We note that Link and Victor [2012] assume that the adult mature female
releases eggs that become larvae. Since this assumption is not supported by Guinea-worm biology,
we omit this aspect in our description of their model.

The biological motivation behind a more detailed model is as follows.
Once in contact with water, the mature adult female worms release Stage 1
larvae, W,; see Figures 1 and 3. The larvae must first be eaten by copepods
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to develop through further larval stages to be harmful to humans. The
authors assume that copepods undergo classical SI (Susceptible-Infected)
dynamics. The copepods are not infectious right away, because the larvae
have to molt twice. However, the time needed for that is about two weeks
and it is assumed negligible compared to other processes, such as 10-14
months the worms need to mature in humans [Muller 1985]. At the same
time, the copepods do not live long enough to recover from the infection; in
fact, the larvae damage copepods and cause their premature death [Bapna
1985], although this fact was not explicitly modeled.

As an additional layer of realism, authors also assume logistic growth of
humans and copepods; i.e., the death rates are given by

N
—p
="K

with appropriate subscripts, where b is the birth rate, K is carrying capac-
ity, and IV the total population size.
Also, on top of natural deaths, the authors assume that larvae are eaten

by copepods at the per-capita rate SN, where

~ _ fe
/BC_ 70

K is a saturation parameter, and (¢ is the contact rate. Similarly, they
assume that copepods are eaten by humans at rate 555y, where

5 _ Pm
Bu = =

Perhaps a bit more precise would be to consider this rate to be B g Ny or

Bu(Su + Eg), since there is no reason to believe that exposed individuals
in Ey would modify their behavior and consume fewer copepods.

Finally, the authors assume that not every larva or copepod eaten results
in an infection, and thus the transmission rates are given by

Ny N¢
_— d )
€H5H Ne + Ké; an ECBCL T K/L

The advantage of creating a more realistic model is that it allows for a
better and more accurate parameter estimation. The model predictions will
also be more quantitatively precise.

Model of Losio and Mushayabasa (2018)

Losio and Mushayabasa [2018] extended the model of Smith? et al. [2012]
in yet another way. Most importantly, they consider two communities
sharing the same source of water. Consequently, instead of one human
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population undergoing an SEIS cycle, they have two human populations
(with subscripts (i) for i = 1, 2) do so. Furthermore, they add a parameter
p to account for the fact that individuals can learn from the unpleasant ex-
perience and modify their behavior. For example, after individuals recover
from the infection, they may opt to drink only filtered water from then on.
Such individuals become effectively removed (R) from the SEIS cycle, as
they do not contribute to the parasite life-cycle any longer. The model is
shown in Figure 6.
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Figure 6. The schematic diagram of GWD transmission adapted from Losio and Mushayabasa
[2018]. See caption to Figure 4 and the text for explanation. We note that the original model of

Losio and Mushayabasa [2018] did not formally separate compartments Eg) A S), and Rg,).

As another modification, the authors introduce seasonal variation into
the parameter values; i.e., instead of considering the parameters By, vu,
on, and py to be constant in time, they assume that the parameters are
periodic functions with given means and periods. The model is set up
in such a way that the amplitudes of the variations are the same for all
parameters.

The aim of the model was to understand the effects of spatial hetero-
geneity and seasonality on GWD transmission. Furthermore, Mushayabasa
et al. [2020] consider the optimal control of GWD using this model.

Model of Ghosh et al. (2018)

Ghosh et al. [2018] created a model that effectively combines the models
of Link and Victor [2012] and Losio and Mushayabasa [2018]. This model
includes a realistic description of larvae being eaten by copepods (which
are assumed to follow an SI dynamics). The model also considers two
sets of individuals, depending on their awareness of the disease. Aware
individuals intentionally prevent the emerging mature females from con-
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taminating sources of potable water; i.e., these individuals do not spread
the infection further. Also, at the time when this model was created, dogs
were already known to act as terminal hosts, so dogs are incorporated into
the model. The Guinea worm develops in dogs almost in the same way
as in humans [Cairncross et al. 2002; Guagliardo et al. 2020], and thus the
dogs are assumed to undergo SEIS dynamics similar to that of the human
population. Furthermore, the authors incorporate dog quarantine into the
model. The model is illustrated in Figure 7.
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Figure 7. The schematic diagram of GWD transmission adapted from Ghosh et al. [2018]. See
caption to Figure 4 and the text for explanation. The aware individuals in [ g) do not contaminate
water sources, and the same holds for quarantined and tethered dogs. For simplicity, we keep

the notation Ag for the birth rate of copepods, but we note that the original model considered
logistic growth. We also use i1, andjic for the death rate of larvae and copepods, which stand
for natural death, removal by being eaten (by copepods, dogs, or humans) and by reduction via
intervention. Quarantined dogs were not in the original diagram in Ghosh et al. [2018]; but based
on that article’s equations and Table 1, quarantined dogs belong in the diagram.

Similarly to previous models, the main goal was to investigate the im-
pact of three control interventions: awareness of humans, isolation of in-
fected dogs, and copepod clearance from contaminated water sources. The
authors also addressed the impact of combination interventions.
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Model of Engelhard et al. (2021)

The purpose of the model in Engelhard et al. [2021] was to validate the-
oretically the hypothesis that the current spread of GWD along the Chari
river region in Chad can be explained by fish and frogs being eaten by dogs
(and humans). The authors adapted the model from Ghosh et al. [2018] and
added fish/frogs into the model, as illustrated in Figure 8.

Ac

N

1292,

Figure 8. The schematic diagram of GWD transmission adapted from Engelhard et al. [2021]. See
caption to Figure 4 and the text for explanation.

They consider Susceptible-Infectious-Susceptible (SIS) dynamics for fish,
since the fish seem to be only short-term transport hosts of the parasite
[Cleveland et al. 2017; Eberhard et al. 2016]. They also make several sim-
plifying changes. They remove the distinctions between the aware and
unaware populations, consider regular growth rate A, and remove the
compartment for dog quarantine. Dog quarantine is incorporated into
the model by appropriate modification of the dogs’ larvae-shedding rate
op. Similarly, human awareness is studied by modification of the larvae-
shedding rate 0. Furthermore, the authors do not consider direct trans-
mission from infected copepods to dogs or humans. Available data did
not indicate repeated regular infections in the same location/village, sug-
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gesting that direct transmission through local potable water sources is not
happening. Removing all unnecessary transitions between compartments
simplifies the model and the subsequent analysis [Bailey 1982]. At the
same time, the authors use SEIS dynamics for copepods to properly ac-
count for the molting period that the larvae need to undergo inside the
copepods; the two-weeks-long molting period is on par with the time the
larvae spend in fish.

Model of Vinson et al. (2021)

Vinson et al. [2021] created the most recent model using the most recent
biological knowledge. Their model considers only dogs as the terminal
host (since the number of human GWD cases is indeed negligible). They
use SEI dynamics for the copepods. In their model, the infected copepod
is consumed by a tadpole. The tadpoles mature into frogs and the infected
frogs cause infections in dogs. The model diagram is shown in Figure 9.

The goal of the model was again to study the most effective intervention
strategies.
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Figure 9. The schematic diagram of GWD transmission adapted from Vinson et al. [2021]. See
caption to Figure 4 and the text for explanation.
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Analysis

While the details of the analysis of individual models differ based on the
model purpose and setup, the analysis generally follows the same pattern.

e First, authors check whether the model and resulting system of equa-
tions (like the one shown in (1)-(4)) is epidemiologically and mathemat-
ically well-posed [Hethcote 2000]. Doing so amounts to checking that,
given biologically reasonable initial conditions, the solutions of the sys-
tem will always be biologically reasonable (i.e., positive and finite).

e Next, authors solve for equilibria, the steady states of the dynamics. This
is done by setting the left-hand side of the equations to 0 and solving
the system of algebraic equations. There are typically two kinds of so-
lutions: disease-free equilibrium (DFE) and endemic equilibrium (EE).
The DFE, as the name suggests, is an equilibrium in which there is no
stage of parasite in the system. For the system (1)-(4), it means W, = 0,
Iy =0, and Ey = 0. The EE is an equilibrium at which GWD is con-
stantly maintained at a baseline level, i.e., Wi, Iy, and E are all posi-
tive constants.

e Once the equilibria are identified, their stability is examined; that is,
whether, given biologically reasonable initial conditions, the solutions
of the system converge to the equilibrium. We distinguish between

— local stability, for which we consider initial conditions to be already
near the equilibrium; and

— global stability, for which we consider any biologically reasonable
initial conditions.

The local stability of the DFE is determined with the help of R, the
effective reproduction number. The value of R, can be understood as the
number of secondary infections caused by a single infectious individual
in an otherwise healthy (parasite-free) population. The DFE is stable
if Ry < 1 and unstable if Ry > 1 [van den Driessche and Watmough
2002]. For simple systems such as the one in Figure 4, one can often
determine R, by going through the disease cycle; but it is preferred to
use the next-generation matrix method developed in van den Driessche
and Watmough [2002]. The method can be adapted even for models
with non-constant transmission rates as done in Losio and Mushayabasa
[2018]. The local stability of EE is determined by finding the Jacobian
matrix of the system at the EE, finding the characteristic polynomial,
and studying its roots.

The global stabilities of the DFE and the EE are typically harder to an-
alyze, but it is possible to use general methods developed, for example,
in Castillo-Chavez et al. [2002] and La Salle [1976].
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Model Parameters: Calibration, Sensitiv-
ity and Uncertainty Analysis, Validation

Even the simplest model of GWD transmission has a lot of parameters.
Model calibration is a fancy term for assigning numerical values to the
model parameters. Ideally, all values should come directly from demo-
graphic, epidemiological, and biological observations and measurements.
For example, birth and mortality rates are often known and recorded for
various countries and even regions of the countries [CIA 2019; World Bank
2019].

The parasite needs 10-14 months to develop from L3 larva to a mature
worm. This means that it takes about 12 months for an individual to move
from the exposed compartment Ey to the infectious compartment I, so

we set vy = % months™!. Similarly, an individual stays infectious for
about a week, so we set n = ﬁ months™!. And one can estimate how

many larvae that an infectious individual sheds, giving a good estimate
of oy. Also, the mortality p;, of larvae and the birth and death rates of
copepods can be measured experimentally [Muller 1979; Tayeh et al. 2017].

On the other hand, estimating or measuring the contact or transmission
rate 3 is very hard. Most mathematical models in general thus contain at
least one parameter whose value is not based on direct observations.

Even when a parameter value can be measured or observed, it is rarely
as a single number but rather as a range. For example, we know that the
worm needs 10-14 months to mature, not just a simple 12 months. There
is evidence that GWD occurs in annual cycles; i.e., we can justify using 12
months in the model. However, it is always good practice to perform sensi-
tivity and uncertainty analysis. As the name suggests, by doing sensitivity
analysis, we study how an outcome of the model is sensitive to a change
of a parameter. For example, we may want to study 0R,/Juc to under-
stand how the change of mortality of copepods influences the stability of
the DFE and the EE. A general method for sensitivity analysis is described
by Arriola and Hyman [2009]. The sensitivity analysis also yields impor-
tant answers related to the purpose of the model, since it quantifies what
happens when a given parameter is changed.

The uncertainty analysis quantifies or illustrates how outcomes change
if we change all the parameters within their given range. This is often
done by the method of Latin hypercube sampling with partial rank cor-
relation coefficient (LHS-PRCC) scheme [Blower and Dowlatabadi 1994;
Saltelli et al. 2004]. The scheme is described in detail by Marino et al. [2008]
and the MATLAB and R implementations can be found in Kirschner [2020].

Finally, a crucial part of every model is the validation: making sure that
the model agrees with reality. This is often done by comparing model out-
come(s) with known data. For example, Losio and Mushayabasa [2018]
were able to fit their model to GWD-observed cases in South Sudan, while
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Engelhard et al. [2021] were able to match reasonably the annual number
of dog GWD cases in Chad.

Conclusions and Discussion
Why So Many Models of GWD?

e Compared to other diseases, there are practically no models of GWD.
Indeed, just two years after the emergence of COVID-19, there are thou-
sands of models of its transmission, prevention, and elimination; see,
for example, Agusto et al. [2022]. However, the very first model of
GWD appeared in 2012, thousands of years after the disease began to
plague humanity and a century after the first models of malaria [Ross
1905; Smith et al. 2012]. This circumstance only confirms that GWD is a
neglected tropical disease (NTD). Many other NTDs, such as yaws [Kim-
ball et al. 2022] or visceral leishmaniasis [Fortunato et al. 2021], have a
comparably small number of mathematical models [Kealey et al. 2010].

e The models evolve as our understanding of GWD changes. The model
of Link and Victor [2012] is a reasonably accurate approximation of the
GWD life cycle as known at that time. Once it became evident that dogs
are part of the cycle, Ghosh et al. [2018] incorporated dogs into their
model. Similarly, Engelhard et al. [2021] incorporated fish and frogs as
intermediary hosts. Finally, Vinson et al. [2021] incorporated even more-
accurate biology related to tadpoles and frogs as intermediary hosts.

e Different models are useful for different purposes. On the one hand,
one may consider the model of Link and Victor [2012] to be superior to
the model of Smith? et al. [2012] simply because the first model mimics
reality better. However, the relative simplicity and elegance of the latter
model is used to study deeper problems related to GWD eradication by
impulsive water chlorination. Carrying such an analysis within more
complicated models would be an unnecessarily hard task. The model of
Smith? et al. [2012] contains all important parts needed to carry out its
purpose, compared, for example, to Bailey [1982].

Similarly, the model of Link and Victor [2012] might have realisti-
cally described the GWD life cycle, but it did not accurately mimic what
was happening in the human populations. Often, there are multiple
communities using the same water source, and the model of Losio and
Mushayabasa [2018] was able to address exactly that.

Statistical vs. Mathematical Models

We need to stress a difference between mathematical and statistical mod-
els. A statistical model can
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e take a data set, such as the number of annual GWD cases in a given
country;

e run a time series analysis, a regression, or other statistical methodology;
and

e predict the number of cases for several years into the future.

Such models are useful and valuable for their projections. However, their
power comes in part from their major weakness: Unlike mathematical
models, they do not consider the source of the data, and the statistical
model is completely detached from the reality of the disease. This feature
is important, because most diseases are never properly understood and yet
countries need to be ready to treat cases year after year.

On the other hand, the mathematical models presented in this paper are
internally consistent, to various degrees, with the actual disease; and thus
one can make a lot of “what if” predictions. What will happen if we try
to remove more copepods from the water? Is chlorination of water once a
year enough to break the cycle, or do we need to do it more frequently?

Attributes of a Good Mathematical Model

A lot can be written about what constitutes a good mathematical model.
We refer the reader to an excellent book [Kokko 2007] for a general overview
and Bailey [1982] for specific compartmental models. Here we focus on rec-
ommendations for modeling NTDs as described in Behrend et al. [2020],
where the authors suggest to adhere to the following five principles.

1. Don’t do it alone. Engage stakeholders throughout, from the formula-
tion of questions to the discussions on the implications of the findings.

2. Prepare and make available (preferably as open-source material) com-
plete documentation of all the code, calculations, and assumptions and
their justification. This allows others to reproduce the model.

3. All data used for model quantification, calibration, goodness of fit, or
validation should be described in sufficient detail to allow the reader to
assess the type and quality of these analyses. When referencing data,
apply Principle 2.

4. Perform a sensitivity analysis of all key parameters, and for each paper
reporting model predictions, include an uncertainty assessment of those
model outputs within the paper.

5. Articulate model outcomes in the form of testable hypotheses. This al-
lows comparison with other models and future events as part of the
ongoing cycle of model improvement.
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The first principle is crucial—yet often neglected—in undergraduate pro-
jects. Ideally, one should indeed collaborate with biologists, local med-
ical professionals, and eradication experts from WHO and/or CDC—on
all stages of the project, starting from the model development. Practically,
time and other constraints makes this collaboration close to impossible for
a project in a 6-10-weeks-long summer Research Experience for Under-
graduates (REU) or even in a semester-long course. Yet one can still engage
the stakeholders by sending the preprints or final published papers out to
WHO or CDC experts and by presenting the research at conferences.

Principles 2-5 are items that should be achievable even for undergrad-
uate projects, and one should adopt good modeling practice by following
those principles.

How to Create a Good Mathematical Model

Start with a good purpose. Ideally, as mentioned above, the stakehold-
ers should already be involved at this stage. What do you want to accom-
plish with your model? While this question seems obvious, in reality one
often creates a nice model using the latest and nicest technique that one just
learned; and only after that, one searches for the purpose and/or applica-
tion of the model. This latter approach is not entirely bad, but a true mod-
eler should start with a question or a goal. For example, as in Smith? et al.
[2012]: How can one best eradicate GWD using known interventions?

Next, look at available data. A lot of data is available, for example, at
Our World in Data [2022]; WHO [2020] or The Carter Center [2022]. Also,
review the literature or work with biologists, epidemiologists and other
stakeholders to collect all necessary information about the disease itself.
Decide on the desired granularity, both spatial/geographical as well as
temporal. For example, will you consider data from the whole country
or region or are you interested in modeling incidences of GWD cases in
villages along the Chari river? Will you consider month-to-month data as
in Losio and Mushayabasa [2018], or will you mostly ignore the seasonality
and consider aggregated annual data only?

Then, decide on the mathematical modeling technique(s) to use; the se-
lection of the appropriate techniques comes only now, not earlier. Will
you use compartmental ordinary differential equations (ODEs), as did the
models described in this review? Or will you use stochastic simulations
or agent-based modeling to study individual behavior in more detail? Per-
haps partial differential equations (PDEs) to study the spatio-temporal pat-
terns? The technique should be selected based on the model purpose and
available data and knowledge, not the other way around.
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Potential Extensions and Future Modeling Opportunities

There are several potential improvements and modifications that could
be incorporated into existing models.

e Asthe number of human GWD cases dwindles, the underlying assump-
tion of large and effectively infinite populations behind ODE compart-
mental models may start to be violated. It is still not an issue for mod-
els such as the one in Engelhard et al. [2021], which effectively focused
on stability or instability of disease-free equilibria when the number of
cases start low and eventually grow. Probabilistic models and stochas-
tic simulations—as done, for example, in yaws modeling [Dyson et al.
2017, 2019; Holmes et al. 2020; Marks et al. 2017; Mooring et al. 2019]—
are more appropriate approaches for modeling eradication endgames.
This is also a reason why the latest GWD model [Vinson et al. 2021]
considers only dogs and not the human GWD cases. So far, the only
stochastic model of GWD was done by Perini et al. [2020].

o All of the GWD models presented in this review ignored the important
fact that Guinea worm is a macro-parasite. Among other things, for its
life-cycle to continue, the terminal host has to carry both a male and
a female worm. A modeling methodology that is typical for modeling
macro-parasites such as lymphatic filiarisis is the next step in modeling
efforts; see Anderson and May [1992] for a general overview of macro-
parasitic models and Stolk et al. [2008], Chan et al. [1998], Norman et al.
[2000], and Irvine et al. [2015] for specific lymphatic filiarisis models that
take into account parasite distribution in the host population.

e Finally, to see whether the fish, the frogs, or the tadpoles play the crucial
role in the current outbreak along the Chari river in Chad, it would be
beneficial to create an explicit spatial model incorporating fish and/or
frogs/tadpoles movement and to match it with the spatio-temporal dis-
tribution of GWD cases.
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