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Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
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Abstract

We consider the prediction of the Hamiltonian
matrix, which finds use in quantum chemistry and
condensed matter physics. Efficiency and equiv-
ariance are two important, but conflicting factors.
In this work, we propose a SE(3)-equivariant net-
work, named QHNet, that achieves efficiency and
equivariance. Our key advance lies at the inno-
vative design of QHNet architecture, which not
only obeys the underlying symmetries, but also en-
ables the reduction of number of tensor products
by 92%. In addition, QHNet prevents the expo-
nential growth of channel dimension when more
atom types are involved. We perform experiments
on MD17 datasets, including four molecular sys-
tems. Experimental results show that our QHNet
can achieve comparable performance to the state
of the art methods at a significantly faster speed.
Besides, our QHNet consumes 50% less mem-
ory due to its streamlined architecture. Our code
is publicly available as part of the AIRS library
(https://github.com/divelab/AIRS).

1. Introduction

Deep learning has achieved significant progress in compu-
tational quantum chemistry in recent years. Existing deep
learning methods have demonstrated their efficiency and
expressiveness in tackling various challenging quantum me-
chanical simulation tasks. For example, deep graph learning
methods can now accurately predict quantum properties of a
molecule, such as molecular energy and the HOMO-LUMO
gap (Schiitt et al., 2017; Liu et al., 2022b; Gasteiger et al.,
2020; Klicpera et al., 2020; Wang et al., 2022b; Liu et al.,
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2021; Wang et al., 2022a; Brandstetter et al., 2022; Yan et al.,
2022). Recent deep generative models have also shown to be
capable of generating new materials and molecules by faith-
fully learning the distribution of their structures (Simm &
Hernandez-Lobato, 2020; Mansimov et al., 2019; Xu et al.,
2021b; Shi et al., 2021; Xu et al., 2021a; Ganea et al., 2021;
Luo & Ji, 2022). Recent efforts on modeling interaction of
two and more molecules also shed light on protein-ligand
docking for drug development (Corso et al., 2022; Ganea
et al., 2022; Stérk et al., 2022; Zhang et al., 2022; Lu et al.,
2022; Jiang et al., 2022; Liu et al., 2022a). Inspired by all
these advancements, we aim to predict a more fundamental
target in computational physics, quantum tensors, by devel-
oping a new deep graph learning model framework in this
work.

Quantum tensors, such as Hamiltonian matrix, eigen wave-
functions, and eigen energies, can be used to describe molec-
ular systems and their quantum states. Since quantum ten-
sors contain the most critical information about molecular
systems, many molecular properties can be directly derived
from quantum tensors and wavefunctions. Unfortunately,
obtaining precise quantum tensors is at considerably high
cost. Density functional theory (DFT) (Hohenberg & Kohn,
1964; Kohn & Sham, 1965) and ab initio quantum chem-
istry methods (Szabo & Ostlund, 2012) are routinely used to
calculate electronic wavefunctions, charge density, and total
energy of molecules and solids. However, first-principles
methods are computationally very expensive, limiting their
use in small systems. Therefore, deep learning is believed
to have the potential to accelerate quantum mechanical sim-
ulations if it can accurately and reliably predict quantum
tensors (Schiitt et al., 2019; Unke et al., 2021) .

Unlike invariant molecular properties such as energy and
equivariant properties such as atomic forces, quantum ten-
sors possess a higher rotation order to reflect the exact ro-
tation of a molecule. Therefore, developing deep learn-
ing methods to predict quantum tensors is challenging and
requires elaborate designs of model architectures. SE(3)-
equivariant graph neural networks (Satorras et al., 2021;
Schiitt et al., 2021; Thomas et al., 2018; Anderson et al.,
2019; Gasteiger et al., 2021) have the promising potential
in predicting quantum tensors since they ensure the equiv-
ariance of permutation, translation, and rotation. Output
quantum tensors are guaranteed to be permuted, translated,
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Figure 1. The rotation equivariance relationship between the input
molecule and output Hamiltonian matrix.

and rotated in the same way as the input molecule shown
in Figure 1. However, the efficiency of SE(3)-equivariant
models are generally low as a trade-off for equivariance. In
this work, we propose an efficient and equivariant graph
network, named QHNet, for predicting quantum tensors
including Hamiltonian matrices.

The high efficiency of the proposed QHNet is mainly be-
cause QHNet adopts much fewer tensor product (TP) op-
erations than existing SE(3)-equivariant graph networks.
Note that TP operation causes most of the time overheads
though they are critical for learning quantum tensors. As a
result, QHNet boosts efficiency by more than three times
and reduces 50% of GPU memory, which is a significant
advance compared to existing SE(3)-equivariant networks.
With such an efficient architecture, our QHNet surprisingly
achieves comparable performance to the state of the art
methods.

In addition to better efficiency and prediction performance,
QHNet has another advantage of more flexible applicabil-
ity. The expansion module of QHNet outputs intermediate
blocks with a fixed shape for all node pairs despite atom
types. The fixed shape is predefined by full orbitals needed
for a particular dataset. Then, the pairwise blocks of every
two atoms are extracted to build the quantum tensor accord-
ing to specific atomic orbitals. This design enables an easy
extension to cases where more atom types are involved, i.e.,
the model architecture is not affected by different types of
atoms. Therefore, given the advantages of efficacy, effi-
ciency, and applicability, our QHNet is an excellent choice
for predicting quantum tensors such as quantum Hamilto-
nian, in more general molecular systems.

2. Background and Related Work

2.1. Quantum Tensors in Density Functional Theory

Quantum mechanical methods such as first-principles den-
sity functional theory (DFT) (Hohenberg & Kohn, 1964;

Kohn & Sham, 1965) and ab initio quantum chemistry meth-
ods (Szabo & Ostlund, 2012), are widely used to calculate
the electronic structure of solids and molecules, such as
electronic wavefunctions, charge density, total energy etc.
These quantities can in turn be used to derive many other
physical and chemical properties, for examples, electronic,
mechanical, optical, magnetic, and catalytic properties of
molecules and solids. DFT maps a many-body interact-
ing system onto a many one-body non-interacting system,
allowing to efficiently solve the Schrodinger equation for
complex materials and molecules. In principle, DFT with
exact exchange-correlation energy functional yields exact
ground-state density and total energy. The Schrodinger
equation for an n-electron interacting system is given by,
HY (rq,...,1) = EV (r1,...,75), )
where V¥ is the total wavefunction of all electrons, H is
the Hamiltonian operator, and F is the total energy. Here,
the ionic degree of freedom is not considered. DFT essen-
tially decouples the wavefunction from an interactive high
dimensional function into a combination of non-interacting
univariate wavefunctions as
U(ry,...,rmy)

=1 (r1) Y2 (r2) .. Yn(rn), )

where n is the number of electrons, r; is the coordinates
of the ¢-th electron, and 1); is the wavefunction for the ¢-th
electron. In molecular systems, ; usually represents the
1-th molecular orbital. Then v); is approximated by a linear
combination of predefined basis set ¢; as

r) = Cijo;(r), 3)
J

where C € R™*"™ denotes the molecular orbital coefficients
of interest, although it could have complex values for solids
etc. Derived from the Schrodinger equation in Eq. (1),
the coefficients C for the molecular ground state satisfy
the eigenvalue decomposition equation (Szabo & Ostlund,
2012),

HC = €SC, “)

where H is the Hamiltonian matrix with H;; =
(pi|H|p;) = [ o1 (r)He;(r )dr S is the overlap matrix
with S;; = (¢s|¢;) = [ ¢F(r)¢;(r)dr which represents
the integral of a pair of the predeﬁned basis functions,
and each element in the diagonal matrix € denotes the
energy of the corresponding molecular orbital. Note that
H, S, e € R™*™ in the present work.

The ultimate goal of DFT is to calculate these quantum
tensors H, C, and ¢, from which other properties such as
total energy and atomic forces etc. can be readily computed.
By utilizing the self-consistent field (SCF) methods (Payne
et al., 1992; Cances & Le Bris, 2000; Kudin et al., 2002),
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DFT can approximate the solution iteratively with a time
complexity of O(n?) for each step, resulting in significant
cost for running DFT simulations for large systems. This
is particularly true when multiple iterations have to be con-
ducted to obtain the final quantum tensors in settings in
which a high level of accuracy is required. With the recent
advances and successes of machine learning approaches
for scientific computing, we here propose to develop deep
learning models to predict quantum tensors within a reason-
able level of accuracy, thereby accelerating the optimization
process in the electronic structure calculations with better
accuracy.

2.2. Related Work

In recent years, graph neural networks have yielded promis-
ing results in quantum chemistry by solving problems such
as precise prediction of molecular properties (Gilmer et al.,
2017; Liu et al., 2022b; Fuchs et al., 2020; Batzner et al.,
2022; Schiitt et al., 2021; Godwin et al., 2021; Satorras et al.,
2021; Unke & Meuwly, 2019; Gasteiger et al., 2020; Qiao
et al., 2020). A molecule usually has various quantum prop-
erties that describe the molecule from different perspectives.
We divide these properties into three categories based on
their rotation orders. A typical example of the first cate-
gory is molecular energy, including the total energy and
the HOMO-LUMO gap, as molecular energy is invariant to
molecular rotation. The force falls into the second category
because force vectors rotate as a molecule rotates. Thus,
force predictions have to be equivariant to rotations of the
same order. The third category includes a higher rotation
order of the matrix that indicates the exact rotation. The
Hamiltonian matrix is an example in this category and is
more challenging to predict. To predict molecular properties
with different rotation orders, different variants of invariant
and equivariant GNNs have been proposed accordingly.

Invariant GNNs use relative geometric information of
molecules as input and predict invariant molecular prop-
erties. For instance, SchNet (Schiitt et al., 2018) considers
pairwise distances when performing message passing, while
DimeNet (Gasteiger et al., 2020) also uses angles in addition
to distance. SphereNet (Liu et al., 2022b) and ComENet
(Wang et al., 2022a) incorporate distances, angles, and tor-
sion angles to build more informative representations.

Equivariant GNNs use equivariant features and specific
model architectures to predict the roto-equivariant molecular
properties. For example, PaiNN (Schiitt et al., 2021) main-
tains the equivariant features of rotation order £ = 1 in the
model architecture. Tenor field networks, SE3-transformers,
and NequlP (Thomas et al., 2018; Fuchs et al., 2020; Batzner
et al., 2022) use tensor products to incorporate lifted higher-
order of equivariant features while prediction targets could
be either invariant or equivariant with order ¢ = 1.

To predict high-order quantum tensors, SchNorb (Schiitt
et al., 2019) follows SchNet (Schiitt et al., 2018) to consider
pairwise distances and incorporates direction information by
applying pairwise direction vector on pairwise interaction
features. It then constructs blocks of the Hamiltonian matrix.
SchNorb considers system coordinates through the pairwise
direction vector. However, it does not provide guarantee
on yielding an equivariant matrix. In PhiSNet (Unke et al.,
2021), tensor products (Thomas et al., 2018) are used to
ensure equivariance. In this method, the equivariant atomic
representation network is applied to extract equivariant fea-
tures for each atom. The mixing layers are then applied to
construct equivariant representations for each node pair. The
Hamiltonian matrix is finally constructed with irreducible
representations collected from the mapping from orbital in-
teractions to channel indices. The DeepH (Li et al., 2022)
uses the 3D GNN to predict the invariant Hamiltonian matrix
block. It then applies the Wigner-D matrix to the predicted
invariant matrix, thereby ensuring rotation equivariance.

3. Methodology

In this section, we describe our proposed SE(3) equivariant
graph neural network, QHNet, for quantum tensor predic-
tion tasks.

3.1. Tensor Field Networks

The tensor field network (TFN) (Thomas et al., 2018) is one
of the commonly-used equivariant neural network architec-
tures that achieve 3D rotation, translation, and permutation
equivariance. TFN uses tensor product to combine two irre-
ducible representations u and v of the rotation orders ¢; and
£5 with the Clebsch-Gordan (CG) coefficients (Griffiths &
Schroeter, 2018) to produce a new irreducible representation
of order /3 as

b gytz)ls —
Wy, = 3 Z

mi=—~f1 ma=—4

(5377713 A

£2
(£1,m1), (/Q,mg)u

VUnigs

where C' denotes the CG matrix, ¢3 satisfies [¢; — l3] <
U3 < f1 + {5, and {1, {5, ¢35 € N. Note that m denotes the
m-th element in the irreducible representation with —¢ <
m < ¢ and m € N. In the TEN (Thomas et al., 2018), each
layer is composed of filter, convolution, self-interaction and
nonlinear activation modules. First, spherical harmonic
filters Y are applied to the node pair direction #;;, then
combined with the pairwise distance r;; to obtain the filter
outputs F' as

Fi™ (rig, i) = ROV (rig) Yl (i), (5)
where R is a multiple layer perceptron (MLP) that takes
the embedding of pairwise distance as input, and c is the
channel index. Then the convolution collects information



Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian

from the irreducible representations of other nodes and the
pairwise spherical harmonics through the tensor product as

o) . R 2
Vi =3 (Fnt) (g, 745) @ Vi) fou o (6)
J
with |£in - gf‘ < gout § gin + £f9 and éimgoulvgf € N.
Then the self-interaction is a linear layer that combines

features across the channel dimension to obtain irreducible
representations with the same order ¢ as

V;é'm - flinear(‘/z'e)cm = chc’ V;t;’m (7)

In the final nonlinear layer, a nonlinear function is applied
to the invariant irreducible representations of ¢ = 0. Mean-
while, the average norm Y__ ||Vi%|| is calculated over the
channel for irreducible representations with £ > 1, and Vf
is normalized with this average norm.

3.2. Norm Gate

The irreducible representations can be represented as the
multiplication of their norm and direction vectors. When
the norm of x; is larger than other nodes, the message from
node ¢ has greater impact on node messaging updating. In-
stead of the layer norm operation in the original TFN layer,
we perform norm gate learning to rescale the norm of ir-
reducible representations before applying message passing
and tensor product. The norm of order ¢ representations for
node i, x¢, is defined as

n; = ||xi]. @

7

We apply an MLP to learn the norm of new irreducible rep-
resentations along with the new irreducible representations
with order O as

% o} orimex

Emax
1) 770" 7 3

:fMLP(X?an}w“vnz ). ©)
The irreducible representations with order higher than O are
rescaled with the factor

xh = otxt,. (10)

m M m

Since xY and the norm nf are SE(3) invariant, the scale
o; is also invariant. Therefore, the rescaled irreducible
representations X{ have the same SE(3) equivariance as x;.
The illustration of norm gate is shown in Figure 2.A.

Usually, a self-interaction layer is applied after the norm

gate to produce the representation x! as

)A(f = flinear(f(;z) (1 1)

3.3. Node-Wise Interaction Layer

The filter module in the TFN layer controls influence of
messages from other nodes. It takes pairwise distances as

input and induces most of parameters in the TFN layer. In-
tuitively, when nodes are far from each other, their influence
on each other should be weak.

In our node-wise interaction layers as illustrated in Fig-
ure 2.B, we further consider the similarity of pairwise nodes.
We calculate the inner product of the pairwise irreducible
representations of order ¢ as

Ifj = <flinear(xf)v flimar(x?» : 12)

To increase expressive power, a self-interaction linear layer
is applied before the inner product. The pairwise cosine
similarity of irreducible representations are then fed into a
MLP along with the irreducible representations of order 0
to calculate attentive scores as

aij = fypp (X0, %9, T3, Timax), (13)

Since x and the inner product I;; are invariant, the attentive
scores are also SE(3) invariant.

Even though the filter in the TFN layer assigns a weight
for each (4, £f) according to Eq. (5), the weights are the
same when the order of output features /,,, are different.
To explicitly express the difference, we extend the filter to
assign weights for each path (¢, £, £ou). Furthermore, the
filter assigns an attentive score for each path to consider
pairwise similarities. Formally,
L s,k .
Fc(nlzn f OU[)(rij7rij) —

agn o fow) pfinC-fow) (YT (7). (14)
Note that ¢ denotes the channel index and m indexes the
irreducible representations.

In the next step, we calculate the message m;; from node j
to node <. The irreducible representations x are first rescaled
with a norm gate and self-interaction layer to obtain X. Then
the rescaled representations cooperates with the filter to
produce m;; as

¢ Cinsls ou N 4
m, 7 = Z(Fc( m Ot)(Tz‘jaTij)®(Xjé‘))l°”‘~ (15)
Ly ibin

The output irreducible representations X are then obtained
by aggregating the message m;; and the self-connection
and further updated with a self-interaction layer as

if = flinear(fcf + mej) (16)
J

3.4. Building Quantum Tensor

Quantum tensors like Hamiltonian matrix characterize the
pairwise relationship between atoms in molecular systems,
and they can be divided into diagonal and non-diagonal
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Figure 2. The message passing schema of our model. A: Norm gate. The norm of node representations x at different orders are
concatenated and fed to an MLP to calculate scale factor o at each order. Irreducible representations at different orders are rescaled with
these factors and then be concatenated to output X’. Note that rescaling only applies to orders higher than 0. B: Node-wise interaction
layer. The inner product of linearly transformed representations of nodes ¢ and j is concatenated with their irreducible representation at
order ¢ = 0 and then fed to an MLP to calculate the attentive score a;;. Next, the spherical harmonics of pairwise direction 7;;, radius
basis function (RBF) transformed pairwise distance r;;, and attentive score a;; are multiplied to produce the filter. A norm gate followed
by a self-interaction layer is applied to x; to produce %; which is used in a tensor product with the filter to obtain message m;;. Finally,
messages are aggregated with X; and updated to output X;. C: Diagonal pair. Two norm gates with self-interaction are applied to node
irreducible representation x; in parallel to obtain x1; and xr;. Then, a tensor product with parameters W is used to produce the diagonal
pair representation f;;. The f;; is skip-connected with x; and processed by another norm gate with self-interaction before being outputted.
D: Non-diagonal pair. The attentive score a;; of nodes ¢ and j is multiplied with the RBF and MLP transformed pairwise distance r;; to
produce the filter. Two norm gates with self-interaction are applied to x; and x; separately to obtain X; and X;. Then, the non-diagonal
pair representation f;; is produced by a tensor product applying to X;, X;, and a;;. The f;; is outputted after going through another
norm gate with self-interaction. E: Expansion module. For a non-diagonal pair, node embeddings of atoms ¢ and j are concatenated and
transformed by an MLP, and then fed into an inverse of tensor product with linearly transformed pair representation f;; to output the
intermediate block matrix M;; in a fixed shape. For a diagonal pair, inputs of expansion are pair representation f;; and embedding of
node 7. Output is the intermediate block M,;.

blocks. The diagonal blocks consider Hamiltonian operators
on a single atom, while the non-diagonal blocks are for pairs
of two atoms. In this subsection, we explain how to produce Fc(ﬁni’zinj +£out) (ri;) =
pairwise irreducible representations and then build target

quantum matrix block-by-block using tensor expansion with
tensor product filters.

R(r;;) to produce a weight for each path (lin,, lin; , lout) as

(Zini 7£inj lout) (Zini »fjnj ,Zoul)
ije cm (Tij )-

After obtaining the above weight as well as X by rescaling
the irreducible representations x with a norm gate followed
by self-interaction, a tensor product filter is applied to pro-
duce the node pair irreducible representations f;; as

Non-Diagonal Pair. For each pair of non-diagonal nodes,
a tensor product filter controls the influence of their irre-
ducible representations onto node pair irreducible represen-
tation f;;. As shown in Figure 2.D, the filter first calculates

A

_— i
fiéj — (F(elnivzmjvzoul)(,rij) %, @ %, iybout - (17)

Diagonal Pair. Unlike non-diagonal pair, the diagonal

attentive scores a;; in the same way as Eq. (13) to consider
pairwise similarity I! ; along with the irreducible representa-
tions of order 0. Next, it combines the attentive scores with

pair fuses irreducible representations of the same node as
illustrated in Figure 2.C. First, two norm gates with self-
interaction are applied to the irreducible representation x;
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Figure 3. Construction of tensor matrix. The expansion module of
our model outputs the intermediate block M with full orbitals for
each node pair. Then, pair block M is selected from M according
to orbitals of corresponding atoms. Finally, the Hamiltonian matrix
of a molecule is built by combining M of all node pairs.

in parallel to produce two irreducible representations x1;
and xr;. Then, the pair representation ff;f’“t is calculated by
a tensor product with learnable parameters W for each path
(bings Uinyy Yout), which is defined as

Lout
fii

= (W([inlvzinweout) leiﬂl ® erinr)eout' (18)

After that, a residual connection is added between the ob-
tained diagonal pair representations and the input irreducible
representations:

£ = £, +x. (19)

Finally, a norm gate followed by a self-interaction layer
updates the pair features ff; and outputs the final irreducible
representations for diagonal pairs.

Construction of Tensor Matrix. After collecting irre-
ducible representations for diagonal and non-diagonal pairs,
the next step is to build the final Hamiltonian matrix. As il-
lustrated in Figure 3, each entry in the matrix denotes the in-
teraction between two orbitals. Specifically, pair block 1\~/Iij
contains all the interactions between atoms ¢ and j. Since
atoms have different numbers of orbitals, pair blocks 1\7[7; 'S
are in different shapes that should be determined when con-
structing the Hamiltonian matrix. In our framework, we
introduce an intermediate block M,;; with full orbitals and
then extract 1\~/Iij from that based on corresponding atom
orbitals. For example, there are four atoms H, C, N, and O,
in the MD17 dataset. In this case, full orbitals contain 1s, 2s,
3s, 2p, 3p, and 3d, and M € R'*!4 When dealing with
the hydrogen atom H, only 1s, 2s, 2p orbitals are selected
to construct the Hamiltonian matrix. In this way, each node
pair irreducible representation f;; can be converted to an
intermediate pair block M;; with a predefined shape despite
the atom type. This strategy is advantageous as it can be
easily extended to different molecules.

To construct the intermediate pair blocks with full orbitals
using pair irreducible representations, we apply a tensor
expansion operation with the filter operation as shown in

o1rloy) = (0,1) W
3s

2

o) = (1,1) 3p

Tensor
expansion

=
®. @ c=4

3d

1s2s3s 2p 3p 3d

Figure 4. The relationship between the channel of equivariant ma-
trix and the intermediate full orbital matrix. Here, c is the number
of channel for equivariant matrices, and (Io1, lo2) is the rotation
order of the equivariant matrix. Then, these equivariant matrices
composed of the intermediate full orbital matrix for each node pair.

Figure 2.E. The tensor expansion is defined as
(02,82) S
Syl (L1l _
CMISEREEDY

177,3:—(3

O(flﬁml)v(fzvmz) O3 (20)

(f3 ,’I’ng) wm3 ?

where C is the CG matrix and ® denotes tensor expansion
which is the inverse operation of tensor product. Since CG
matrix can be transformed to a unitary matrix, when wh =
(ur @ v*2)%, we deduce that u® © v = 37, @w’ with
|61 — €o] <3 < £1 + ¢5. Then, the filter takes atom types
as input to produce a weight for each path (¢o1, £o2, lin):

F_(_eol’eorzin) —_ f(Zi, Z])

Fi(ieol’eo%[in) — f(Zi)) (21)

where Z denotes the embedding of atom types. Finally, the
intermediate blocks M are built by the filter and node pair
irreducible representations as

M(Zol 602 Z F'(éol7 02> 1n)(®fZ

iic iicc! iic’
Lip ¢’
(Lo1:402) (L5152 :4in)
Myer'o?) = 37 Fuer e, (22)
i,

where ¢’ denotes the channel index in the input irreducible
representations and ¢ denotes the channel index in M. For
example, there are nine channels with (41, £52) = (0,0),
and four channel with (¢o1,%,,) = (1,1). Note that a bias
term is learned for node pair representation with ¢;, = 0.
We provide a demonstration showing the mapping from the
output of expansion module to the full orbital matrices in
Figure 4.

In the tensor expansion module of PhiSNet (Schiitt et al.,
2019), a record has to be maintained to map the relationship
of atom-orbital pair interactions so that a unique channel
index in irreducible representations can be selected for each
interaction. In contrast to determining the channel dimen-
sion by the number of atom-orbital pair interactions in PhiS-
Net, our model does not need to keep the record because our
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Figure 5. The whole architecture of the proposed QHNet. Inputs
of the QHNet include atom types Z and atom positions p. Five
layers of node-wise interaction are used to learn SE(3)-equivariant
irreducible representations for atoms. Then, diagonal and non-
diagonal atom pairs are passed to distinctive modules to create
pairwise representations f;; and f;;. Finally, the expansion module
converts pairwise representations to the intermediate blocks M
that are post-processed to build the quantum tensor.

Table 1. Comparison of the total number and maximum sequential
number of tensor products in PhiSNet and QHNet.

Methods # of TP  # of sequential TP
PhiSNet 121 76
QHNet 9 6

channel dimension is fixed as a hyper-parameter. As a result,
our model can effectively prevent the exponential growth of
channel dimension when more atom types are involved.

3.5. Model Architecture

We now describe our whole framework. The model takes
atom types Z € NV*1 and their positions p € RV*3 as
inputs. Here IV denotes the number of atoms in a molecule.
As shown in Figure 3.4, our network uses five node-wise
interaction layers under the default setting to learn SE(3)-
equivariant irreducible representations for atoms. Next, we
take atom representations outputted by the last two layers to
construct the diagonal and non-diagonal irreducible repre-
sentations. Then, we combine the pairwise representations
obtained after both layers with a sum operation and feed

them into the expansion module.

The computation and time overheads of quantum tensor
networks mainly come from message passing and tensor
product (TP) operations. The computational cost of TP is
much larger than a linear layer because it involves multipli-
cation with CG matrix for each path sequentially. The time
complexity analysis for the forward procedure of our mod-
ule is shown as following: linear O(C?), self-interaction
O(C?L), linear layer O(C*L?) in the norm gate, and ten-
sor product O(C'L®). Here, C represents the number of
channels, and L denotes the maximum rotation orders. No-
tably, in our experiments with QHNet and PhiSNet, we set
C =128 and L = 4. Therefore, the tensor product opera-
tion is as the most time-consuming operation in the model.
In Table 1, we compare the total number of TP and the max-
imum number of sequential TP in our model and PhiSNet.
The number of sequential TP is the number of passed TP
for one variable from input to output. Since we use fewer
TP operations, our model achieves higher efficiency and
consumes less GPU memory.

4. Experiments

Dataset. We conduct experiments to evaluate the perfor-
mance of QHNet on MD17 datasets (Schiitt et al., 2019).
MD17 consists of four datasets of small molecules, in-
cluding water, ethanol, malondialdehyde, and uracil. Each
dataset contains thousands of 3D molecular structures and
their corresponding Hamiltonian matrices. The Hamiltonian
matrices in MD17 were calculated by using the def2-SVP
basis set (Weigend & Ahlrichs, 2005) with PBE (Perdew
et al., 1996) density functionals. The statistics of MD17
dataset is shown in Table 5.

Software and Hardware. Our experiments are imple-
mented based on PyTorch 1.11.0 (Paszke et al., 2019),
PyTorch Geometric 2.1.0 (Fey & Lenssen, 2019), and
e3nn (Geiger & Smidt, 2022). In our experiments, models
are trained on a single 11GB Nvidia GeForce RTX 2080Ti
GPU and Intel Xeon Gold 6248 CPU.

4.1. Overall Performance Evaluation

Setup. To assess the efficiency and efficacy of the proposed
QHNet, we conduct experiments over four molecular sys-
tems collected in MD17 datasets, including water, ethanol,
malondialdehyde, and uracil. Since the number of opti-
mization steps plays an important role in model training
on MDI17, we set the total training steps to 200,000 for
all experiments. We adopt the learning rate scheduler to
speed up the convergence of model training. Specifically,
the scheduler increases the learning rate gradually during
the first 1,000 warm-up steps. The initial learning rate is 0,
and the maximum learning rate is 5e~%. Then, the sched-
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Table 2. Overall performance comparison in validation and test sets. Both PhiSNet and our QHNet are trained using a learning rate
scheduler with a linearly decreasing learning rate to ensure the convergence with 1,000 warm-up steps and 200,000 total steps with
double-precision floating-point. The unit for Hamiltonian H and eigen energies € is Hartree, denoted by E,. Training ‘Time’ is in days.

Training loss is described in Appendix A.1.

. Validation Test

Dataset  Method - Time  pg o611 €[10-0E,] | ¢ [1072]1 H[10-E,] | e[10-5E,] ) w[102]1
Water PhiSNet  4.67d 7.87 29.81 99.99 15.67 - 99.94

QHNet  1.27d 10.49 31.62 99.99 10.79 33.76 99.99
ey PISNet  7.45d 19.60 101.10 99.91 20.09 102.04 99.81

QHNet  3.73d 20.45 81.29 99.99 2091 81.03 99.99
Malondial- PhiSNet  8.75d 21.89 104.76 99.96 2131 100.60 99.89
dehyde  QHNet  3.33d 22.07 86.04 99.89 2152 82.12 99.92
Uracil PhiSNet  14.12d 18.89 146.14 99.87 18.65 14336 99.86

QHNet  331d 2033 113.48 99.88 20.12 113.44 99.89

Table 3. Comparing PhiSNet and QHNet in terms of training time per iteration and GPU memory consumption on the MD17 datasets.

Note that these are in double-precision floating-point.

Dataset Batch Size PhiSNet QHNet Speedup Memory Efficiency
Water 10 2.02s/3,839M  0.56s/2419M  3.61x 1.59%
Ethanol 5 3.22s/8,673M  0.84s/3917M  3.83x 2.21x
Malondialdehyde 5 3.78s/8,869M  0.88s/3,925M  4.30x 2.25x%
Uracil 3 6.10s/9,135M  0.94s/4,049M  6.49x 2.25x%

uler reduces the learning rate linearly so that the learning
rate reaches le~" at the last step. Our competing base-
line PhiSNet has five Pairmix layers that incorporate the
representations from neighbor nodes to update node repre-
sentations in the equivariant atomic representation network.
For a fair comparison, QHNet uses five node-wise interac-
tion layers to aggregate the messages from neighbor nodes
to update node irreducible representations.

Note that the batch size differs for different molecules.
Specifically, for QHNet, the batch size is set to 10 for water,
ethanol, and malondialdehyde, while it is set to 5 for uracil.
On the other hand, for PhiSNet, the batch size is as follows:
10 for water, 5 for ethanol and malondialdehyde, and 3 for
uracil.

Model parameters are set in double-precision floating-point
format when we run experiments for both the baseline and
our QHNet. It is because the resolution of single-precision,
1e~%, is at a similar order of magnitude to the predicted error.
Using double-precision can approximate at a higher resolu-
tion, and it provides more consistent and reliable evaluation
with DFT algorithms where double-precision is required to
ensure high accuracy. Note that we omit the task of pre-
dicting overlap matrix, since overlap matrix can be easily
calculated without any errors in 10~3s for a these molecules

shown in Table 6.

Results. We provide the overall performance results in Ta-
ble 2. Three metrics were applied to evaluate the accuracy
of the predicted Hamiltonian matrices, including mean abso-
lute error (MAE) of the Hamiltonian matrix elements H;.
Besides directly checking the prediction error of Hamilto-
nian matrices, it is also important to evaluate the error of the
predicted orbital energy € and wavefunction 1, which can
be deduced from the Hamiltonian matrix H through Egs.
(3) and (4). Therefore, we report the MAE of the predicted
energies and cosine similarity of coefficients for occupied
molecular orbitals.

As reported in Table 2, QHNet can achieve competitive
MAE on H in terms of both validation and test accuracy,
and obtain better results on orbital energies. Specifically,
on the water dataset, QHNet outperforms PhiSNet by a sig-
nificant margin of 4.88 x 107°E}, . Although its obtained
MAE:s of predicted Hamiltonian matrices H are similar to
the baseline, QHNet can better predict molecular proper-
ties from the predicted H. For orbital energies, QHNet
consistently outperforms other models on ethanol, malon-
dialdehyde, and uracil datasets. We did not include the test
MAE of € by PhiSNet on the water dataset in Table 2 as it
is ten times worse than that by QHNet (33.76). All these
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Table 4. Performance of QHNet trained on the mixed dataset. Note
that this dataset includes only 500 water examples in the training
set while there are 25,000 examples each for ethanol, malondialde-
hyde and uracil shown in Table 5 in Appendix A.2.

Dataset H[107°E,] ] €[1076E,] | < [1072]1
Water 190.03 304.48 99.99
Ethanol 51.68 130.68 99.97
Malondialdehyde 36.79 101.14 99.89
Uracil 34.77 124.86 99.80
Mixed Dataset 83.12 173.86 99.92

experimental results demonstrate the efficacy and better
generalizability of QHNet.

4.2. Time and Memory Efficiency

We further compare the running time and GPU memory
consumption of PhiSNet and QHNet. For each dataset,
we set the same batch size for both models, and show the
comparison in Table 3. The result indicates that the proposed
QHNet is much more efficient than PhiSNet. Specifically,
QHNet runs more than three times faster during training,
requiring less than half of the GPU memory. As explained
in Sec 3.5 and shown in Table 1, the high efficiency of our
QHNet is because the total number and sequential number
of tensor products are reduced to less than 14% of that in
PhiSNet.

4.3. Performance on Mixed Dataset

Experiments in Sec 4.1 and Sec 4.2 focus on training and
testing models on the same molecular system. Thus, the pre-
dicted Hamiltonian matrices have the same shape as training
Hamiltonian matrices. In this subsection, we mix previously
mentioned four datasets together while keeping the orig-
inal split of training, validation, and testing sets. In this
case, the mixed dataset contains four kinds of molecules,
and QHNet is trained to predict the Hamiltonian matrices
for multiple molecules rather than one. As described in
Sec 3.4, we adopt the design of full orbital matrices with a
fixed shape in the expansion module. Hence, QHNet can
be easily extended to this mixed dataset and still achieve
comparable performances, as demonstrated in Table 4. Note
that such a mixed task is complex for PhiSNet with potential
troubles for reasons we explain at the end of Sec 3.4. The
flexible implementation of QHNet facilitates training a uni-
versal quantum tensor prediction network to further advance
deep learning for quantum chemistry and condensed matter
physics.

5. Conclusion

In this work, we presented a SE(3)-equivariant network—
QHNet—to predict the Hamiltonian matrix with high ac-

curacy and efficiency. QHNet is built carefully to maintain
the underlying symmetry while eliminating 92% of tensor
product operations to make it super streamlined compared
to existing methods. We evaluated QHNet using the MD17
datasets to show that it can accelerate the training by more
than three times while using less than 50% of the GPU
memory. Additionally, our experimental results indicate
that QHNet achieves competitive MAE on the Hamiltonian
matrix and can derive more accurate molecular properties.
Furthermore, by outputting full orbital matrices with a fixed
shape and applying post-processing, QHNet is highly versa-
tile and can be extended to datasets mixed with a variety of
molecules. Therefore, we believe QHNet has great poten-
tial to efficiently predict accurate quantum tensors such as
Hamiltonian matrix in a wide range of molecular systems.
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Table 5. The statistics of MD17 dataset (Schiitt et al., 2019).

Dataset ‘ #of structures  Train  Val  Test #ofatoms # of orbitals # of occupied molecular orbitals
Water 4,900 500 500 3,900 3 24 5
Ethanol 30,000 25,000 500 4,500 9 72 10
Malondialdehyde 26,978 25,000 500 1,478 9 90 19
Uracil 30,000 25,000 500 4,500 12 132 26

Table 6. Time comparison for single example among DFT algorithm, calculating overlap matrix, PhiSNet inference and QHNet inference.
Note that we use batch size 64 to conduct inference for both PhiSNet and QHNet.

dataset ‘ DFT[s] overlap [10~*s] PhiSNet [10-2s] QHNet [102s]
water 11.38 4.87 1.26 1.09
ethanol 25.11 8.71 8.83 7.11
malondialdehyde | 40.63 7.27 9.15 7.92

A. Appendix.

A.1. Training Loss for QHNet

For training, we follow the implementation of PhiSNet (Unke et al., 2021), and use Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) as loss function to train the QHNet for predicting the Hamiltonian matrices.

1 1
L(H,HT) = ~3z Z(Hil,iz —H{T )2 + N2 Z H, 0 —H ] (23)

N 11,00 11,12
il,iz Z‘17"‘2

where H is the predicted Hamiltonian matrix, H is the ground-truth Hamiltonian matrix, and the size of H and HE is
N x N.

A.2. Statistics of the dataset

We here provide the statistics of the MD17 datasets in Table 5. Note that the mixed dataset follows the same dataset split.

A.3. Accelerating the DFT algorithm.

To study the acceleration by using QHNet, we compare the inference time of QHNet with the time consumption of DFT
algorithm. Here we use PySCF to conduct DFT algorithm with PBE correlation functional and def2-SVP basis set. Moreover,
we select DIIS as the SCF algorithm for the DFT calculation. In Table 6, QHNet exhibited an acceleration of approximately
1000x on water, and approximately 300x on both ethanol and malondialdehyde. Note that we conduct our experiments on
11GB Nvidia GeForce RTX 2080Ti GPU and Intel Xeon Gold 6248 CPU.

Next, we focus onoptimization steps ratio when continuing to opti-  Table 7. The ratio of optimization steps when taking pre-
mize the predicted Hamiltonian matrices using the DFT algorithm.  dicted Hamiltonian matrices as the initial status of the
It shows the time ratio to get the converged Hamiltonian matrix with ~ DFT algorithm to accelerate the optimization.
machine learning model acceleration and reflects the quality of the dataset ‘ QHNet PhiSNet
predlcted Har'nllltonllan matrices, with higher-quality matrices requir- water 0.494 0497
ing fewer optimization steps. Note that we use PySCF on 50 random ethanol 0.554 0.562
selected geometries in each molecular dataset to conduct DFT algo- . ’ ’

. . . . . malondialdehyde | 0.562 0.567
rithm with PBE correlation functional and def2-SVP basis set, and
select DIIS as the SCF algorithm for the DFT calculation.
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Table 8. Performance of QHNet with various training steps compared to the reported results in PhiSNet. In these experiments, QHNet are
in single-precision floating-point following the setting in original PhiSNet experiments. * denotes the training is converged and EMA is
not used in this experiment.

Dataset Method  Training statgies H[10°°E,] ] €[107°E,] ] ¢ [1072] 1
%k

Water QHNet* RLROP 10.36 36.21 99.99
PhiSNet RLROP 17.59 85.53 -
QHNet  LSW (10,000, 1,000,000) 12.78 62.97 99.99

Ethanol QHNet  RLROP 13.12 51.80 99.99
PhiSNet RLROP 12.15 62.75 -
QHNet  LSW (10,000, 1,000,000) 11.97 55.57 99.94

Malondialdehyde QHNet  RLROP 13.18 51.54 99.95
PhiSNet RLROP 12.32 73.50 -

Uracil QHNet  LSW (10,000, 1,000,000) 9.96 66.75 99.95
PhiSNet RLROP 10.73 84.03 -

Table 9. Ablation study of QHNet.

Dataset full model wo attentive ~ wo NormGate
water 10.79 10.65 10.91
ethanol 2091 - 39.26
malondialdehyde 21.52 30.89 40.79

A.4. Performance comparison

To compare with PhiSNet, we trained our QHNet using the same settings as PhiSNet, employing the Reduce Learning Rate
On Plateau (RLROP) scheduler. We initialized the scheduler with a learning rate of 5e — 4 and continued training until
it reached 1e. In order to limit the training steps, we set the maximum number of steps to 1,000, 000. The results are
presented in Table 8. QHNet successfully converged on the water dataset. However, for the other three datasets, QHNet
did not converge, and we therefore report the final results. Furthermore, we implemented a linear schedule with warmup,
specifying the warmup steps and total training steps as LSW, and (10,000, 1,000,000) denotes a warmup period of 10,000
steps and a total training duration of 1,000,000 steps. Additionally, the batch size is set to 10 for all the experiments. Note
that the results of PhiSNet comes from its original paper. For the 1), since it is reported as 1.00 in the original PhiSNet paper,
it can not compare without enough accurate digits. Therefore, we omit the number here.

A.5. Ablation studies on the model architecture

To study the various modules in QHNet, we conduct experiments to compare the QHNet without attentive scores or
NormGate in node-wise interaction layers and report the MAE of the Hamiltonian matrix on the test set in Table 9.

13



