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Abstract

Inverse decision theory (IDT) aims to learn a per-
formance metric for classification by eliciting ex-
pert classifications on examples. However, elicita-
tion in practical settings may require many classi-
fications of potentially ambiguous examples. To
improve the efficiency of elicitation, we propose
the cooperative inverse decision theory (CIDT)
framework as a formalization of the performance
metric elicitation problem. In cooperative inverse
decision theory, the expert and a machine play
a game where both are rewarded according to
the expert’s performance metric, but the machine
does not initially know what this function is. We
show that optimal policies in this framework pro-
duce active learning that leads to an exponential
improvement in sample complexity over previous
work. One of our key findings is that a broad
class of sub-optimal experts can be represented
as having uncertain preferences. We use this find-
ing to show such experts naturally fit into our
proposed framework extending inverse decision
theory to efficiently deal with decision data that is
sub-optimal due to noise, conflicting experts, or
systematic error.

1 INTRODUCTION

Computer-assisted detection (CAD) systems are increas-
ingly used as a source for efficient screening, especially in
the medical domain [Lindsey et al., 2018, Jin et al., 2020,
Calisto et al., 2021]. However, it is still not clear how
this influences decision-making or if there is a best ap-
proach to maximize the benefits of Human-AI collaboration
[Calisto et al., 2021]. Indeed, while AI approaches have
been able to make use of large amounts of data to learn
classification models they frequently lack mechanisms to
adapt to particular human preferences.
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Inverse decision theory (IDT) and performance metric elic-
itation (PME) are promising approaches to this problem
[Davies, 2005, Hiranandani et al., 2019b]. By incorporat-
ing human preferences through a small amount of feedback,
these approaches aim to calibrate a classification model to
better reflect human values and judgment, reducing the prob-
lem to a fine-tuning or few-shot problem. IDT in particular
has proven useful in real-world settings since it addresses
the description-experience gap, the observation that it is
relatively difficult for humans to reason abstractly about
preferences versus directly decide classifications for exam-
ples [Hertwig and Erev, 2009, Swartz et al., 2006].

In practice, these methods can require a large number of
samples and have limited ability to deal with conflicting pref-
erences from multiple experts or non-realizable preference
models [Paolacci et al., 2010]. In this work, we propose a
novel framework that can reduce human sample complexity
in these settings. The central contributions are as follows.

1. Cooperative Inverse Decision Theory. We propose
the cooperative inverse decision theory (CIDT) frame-
work as a formalization of the performance metric
elicitation problem. In CIDT the expert and a machine
play a game where both are rewarded according to a
surrogate of the expert’s performance metric, but the
machine does not initially know what this function
is. In our analysis, we show optimal joint policies in
the CIDT framework have exponential improvement
in sample complexity over IDT. See Figure 1 for an
overview of our framework.

2. Uncertain Preferences. We extend our framework to
handle experts which may be represented as having un-
certain preferences or, equivalently, a random decision
threshold. Our study suggests that this may create a
situation where it is optimal to teach differently than
classify, creating a "description-experience gap."

3. Practical Implementation. We address uncertain pref-
erence elicitation with a practical implementation that
is robust to demonstrations that are sub-optimal due
to noise, conflicting experts, or the presence of miss-
ing/additional information. In our theoretical analysis
and experiments, we demonstrate advantages over pas-
sive approaches.
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Figure 1: An illustration of the cooperative inverse decision theory framework. A doctor (H) and computer (R) cooperate to
elicit the human’s decision rule. The computer can not directly observe the decision rule used by the doctor. Left, there is a
dataset of examples ordered by positive likelihood. The computer has a prior τR for the doctor’s decision rule. Middle, the
computer selects examples to show to the doctor and observes their decisions. The computer updates their belief about the
doctor’s decision rule. Right, the computer has an updated estimate for the decision rule that better reflects the doctor’s
preferences for false-positive and false-negative errors.

2 RELATED WORK

Metric selection is often critical to the practicality
of machine learning as optimizing the wrong metric
can lead to inappropriate models and critical errors
[Dmitriev and Wu, 2016, Lindsey et al., 2018]. In the bi-
nary setting, one could select a suitable operating point on
the ROC curve [Hajian-Tilaki, 2013]. However, humans are
poor at providing such absolute preferences – which moti-
vates the use of alternative elicitation strategies to compare
metrics and classifiers [Qian et al., 2013]. Inverse decision
theory uses decisions on a few classification examples to
produce estimates of the underlying performance metric
[Davies, 2005, Laidlaw and Russell, 2021]. However, this
method doesn’t make use of the interactivity available in the
computer-assisted detection setting and fails to account for
noise, diverse opinions, or missing/additional context.

Our work extends inverse decision theory to be useful in
more cooperative settings, such as computer-assisted detec-
tion, by introducing the cooperative inverse decision theory
framework (CIDT). Our framework can be considered as a
special case of cooperative inverse reinforcement learning
(CIRL) [Hadfield-Menell et al., 2016]. In CIRL, the demon-
strator interacts cooperatively in a two-player game of par-
tial information with the imitator to communicate the reward
function. Such work is closely related to optimal teach-
ing and active learning, demonstrations that optimally train
an imitator [Balbach and Zeugmann, 2009, Settles, 2009].
However, our main purpose is not to present improvements
to CIRL algorithms. Instead, we present an analysis of the
difference between interactive and passive settings for the
special case of classifier preference learning.

Another approach to the metric selection is performance
metric elicitation, which uses pairwise comparisons, as rep-
resented by their confusion matrices, to estimate the un-
derlying performance metric generating the comparisons
[Hiranandani et al., 2019a]. There have been various exten-
sions of the basic framework along with application in real-
world settings [Hiranandani et al., 2019b, Robertson, 2022,
Ali et al., 2022]. However, this method suffers from the
description-experience gap, that is, it may be relatively diffi-
cult for humans to compare confusion matrices versus de-
cide classifications for examples [Hertwig and Erev, 2009].
In general, inferring preferences from proxy tasks may not
generalize well to tasks of interest [Buçinca et al., 2020].

In our analysis, we make extensive use of the fact
that the experts and preferences are naturally ordered
along a one-dimensional axis of decision thresholds.
In particular, this suggests we are looking for a me-
dian preference [Black, 1948, Rowley, 1984]. While
previous work has approached the problem of online
median estimation using techniques such as stochas-
tic approximation [Hanson and Russo, 1981, Pap, 2010,
Meister and Nietert, 2021], our work extends this line of
research by using the probabilistic bisection algorithm
(PBA) to implement the CIDT algorithm. This ap-
proach offers advantages such as linear convergence in
low-noise settings and ease of setup in parallel environ-
ments [Horstein, 1963]. The situation is more compli-
cated for stochastic approximation [Pallone et al., 2014,
Kushner and Yin, 1987b, Kushner and Yin, 1987a].
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Figure 2: How we update the belief distribution in our cooperative inverse decision theory algorithm implementation. The
belief density fn for the optimal threshold is a piece-wise constant function. On the right, we observe a classification hn(τn)
from the decision maker of an example with positive likelihood τn. We learn about the relative location of the optimal
decision threshold τ∗ and the belief distribution for τ∗ is updated.

3 LEARNING PREFERENCES FROM
HUMAN DECISIONS

In this section, we’ll introduce the inverse decision theory
framework. Following this, we introduce our extension to
the cooperative setting. In order to simplify our analysis, we
consider the case of binary decisions in this work. However,
our results are also applicable to decision problems with
a larger number of choices. This is because, under the as-
sumption of irrelevance from independent alternatives (i.e.,
the independence axiom [Luce, 1977]), a decision among
many choices can be reduced to a series of binary choices
between pairs of alternatives [Laidlaw and Russell, 2021].
To introduce the problem we’ll give some notation for the
basic variables of interest in classification. In a binary deci-
sion problem, an agent receives an observation x ∈ X and
returns a decision y ∈ Y = {0, 1}. Agents choose decision
rules h : X → Y from a hypothesis class H such that,

h ∈ argminh∈HE(X,Y )∼D[l(h(X), Y )] (1)

with respect to some distribution D of examples paired with
labels and loss function l : Y × Y → R. We can tabulate
errors over a population of examples by using a confusion
matrix. A confusion matrix C is a two-by-two array where
the on-diagonal elements give the correct classification rates
and the off-diagonal elements are the error rates. We can de-
fine CD : H → [0, 1]2×2 as the confusion matrix generated
from using a particular classifier h ∈ H on the distribution
D. A performance metric is a function Ψ : C → R from the
space of confusion matrices to an evaluation score. A simple
example are the linear performance metrics. These are the
linear functionals Ψ(C) = ⟨ϕ,C⟩ defined on C. For exam-
ple, accuracy could be measured by ϕ = Id. It is known
that the optimal classifier according to a quasi-concave per-
formance metric produces a confusion matrix equal to that

of an optimal classifier under a linear performance metric
[Hiranandani et al., 2019a] – a class sufficiently broad to
include most of the metrics in common use.

Concretely, we can consider threshold decision rules h ∈ H
of the form hτ (x) = I(p(y = 1|x) ≥ τ) where p(y = 1|x)
is the positive class-conditional probability for the decision
problem and I(·) is an indicator function. We’ll commonly
abbreviate the positive class-conditional probability as posi-
tive likelihood p(x) and the image over the example space as
p(X ). This choice well-justified, as in the following result.

Lemma 3.1. [Hiranandani et al., 2019a] An optimal de-
cision rule h over D for some quasi-convex performance
metric ϕ : C → R is given by a threshold function of the
positive class-conditional probability for the observation.

Thus, the elicitation problem reduces to determining
a decision threshold τ∗ ∈ (0, 1). Intuitively, the
threshold τ∗ indicates a trade-off between the cost of
false-positives and false-negatives which can then be
converted to a loss function [Hiranandani et al., 2019a,
Laidlaw and Russell, 2021]. We can write a performance
metric for a distribution D as a function ΦD : [0, 1] → R
from the space of thresholds to an evaluation score. In par-
ticular, Φ(τ) = Ψ◦CD(hτ ). Because optimal classifiers are
characterized by their decision threshold, we can also repre-
sent the performance metric as a function from a decision
threshold to an evaluation score.

3.1 Inverse Decision Theory

In the inverse decision theory framework we assume we
know everything about the sample distribution (X,Y ) ∼ D.
This means we have access to class conditional statistics
and classifications from a decision maker optimal with re-
spect to the decision problem. The goal of IDT is to search
for a threshold probability τ∗ that best explains a decision
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Figure 3: Illustration of a decision rule that our framework
can estimate from observations. Shown is the likelihood
E[h(τ)] that the decision rule h makes a detection on a
random example with positive likelihood τn. We consider
cumulative decision rules in this work, decision rules that
are monotone in expectation as a function of the example’s
true likelihood.

maker’s classifications. Formally, inverse decision theory
takes individual decisions ŷ ∈ Y on samples x̂ ∈ X as
the base object of study rather than the population-based
confusion matrix.

Definition 3.2. A decision problem is a pair (D, τ∗) where
D is a joint distribution over observations x ∈ X paired
with ground truth decisions Y ∈ {0, 1} and τ∗ ∈ (0, 1) is a
decision threshold.

As discussed in the previous section, the unknown τ∗ is
equivalent to having an unknown quasi-convex loss function.
Overall, the goal of inverse decision theory is to identify a
decision map h : p(X ) → Y in a hypothesis space H that
matches the decisions of the human. When the decision
maker is optimal then they act as a threshold classifier for
some τ∗ ∈ (0, 1) that maximizes an implicit performance
metric Φ(τ). A central result is that we can identify the
decision problem given D and observations of classifications
(X, Ŷ ) ∼ D̂ from the decision maker,

Theorem 3.3. [Laidlaw and Russell, 2021] Assume that
there exists pτ∗ > 0 such that P(p(X ) ∈ (τ∗, τ∗ + ϵ]) ≥
pτ∗ϵ and P(p(X ) ∈ [τ∗ − ϵ, τ∗)) ≥ pτ∗ϵ. Let ϵ > 0 and
δ > 0. Let τ̂ be chosen to be consistent with m observed
decisions of an optimal decision maker following a distri-
bution D̂ corresponding to threshold τ∗. Then |τ̂ − τ∗| ≤ ϵ
with probability at least 1 − δ as long as the number of
samples satisfies m ≥ log(2/δ)

pcϵ
.

This bound is tight to constant factors. However, this analy-
sis can be extended to address experts with suboptimal deci-
sion rules in a restricted choice set for a convergence rate of
O(m−1/2) which is also tight [Laidlaw and Russell, 2021].

Algorithm 1: Probabilistic Bisection Algorithm
Input :Classification expert’s decision rule hn,

prior density f0, number of iterations T ,
update confidence level α

Output :Density, Estimator for optimum
1 for n ∈ [0, . . . , T − 1] do
2 Fn = CDF(fn) ;
3 τn = F−1

n (1/2) ;
4 if hn(τn) = 1 then

5 fn+1(τ) =

{
2(1− α)fn(τ) if τ ≤ τn,

2αfn(τ) if τ ≥ τn
;

6 else

7 fn+1(τ) =

{
2αfn(τ) if τ ≤ τn,

2(1− α)fn(τ) if τ ≥ τn
;

8 end
9 end

10 return fn, F
−1
n (1/2) ;

3.2 How Classifications Reveal Preferences

It is natural to investigate what information about an un-
derlying threshold can be obtained from observing a clas-
sification. While inverse decision theory is able to learn
preferences from observing classifications this process is
framed in terms of matching a decision rule. Here we’ll
present a more Bayesian perspective that puts individual
classification decisions as the fundamental data.

From a single example we obtain directional information
about the optimal threshold. The positive likelihood τ ∈
(0, 1) of an example determines the agent’s classification.
Accordingly, we will define the random variable h(τ) as
the outcome of h(x) conditional on p(y = 1|x) = τ . For
an optimal decision rule, h(τ) is a parameterization of h in
terms of positive likelihood that indicates the direction of
the optimal threshold τ∗ relative to τ . The expected value
E[h(τ)|τ ] is illustrated in Figure 3. If h(x) = 0 we should
conclude that p(y = 1|x) ≤ τ∗ more than likely. Otherwise,
h(x) = 1 and we should conclude that p(y = 1|x) ≥ τ∗

more than likely.

We will frequently make observations of h(τ) without know-
ing the underlying decision rule and it is entirely plausible
that such observations will be corrupted or noisy in one
manner or another. Our ultimate goal is to use the expected
behavior of h(τ) to learn about the underlying decision rule.
The Probabilistic Bisection Algorithm (PBA) is a useful
way to proceed in such situations [Horstein, 1963]. In this
approach, we take h(τ) as a black-box oracle and perform
Bayesian updating for the position of an underlying deci-
sion threshold parameter by attaching a confidence score
α ∈ (1/2, 1] to obtained classifications at a given thresh-
old. We start with uniform prior density f0 over the unit
interval and query at the current median of the belief distri-
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bution for the optimal decision threshold. Let F0 denote the
corresponding cumulative distribution function.

This updating scheme, shown in Algorithm 1, gives the
Bayesian posterior distribution of the optimum assuming f0
has support on the unit interval. We form our estimate as
the current measurement point.

4 COOPERATIVE INVERSE DECISION
THEORY

Here we’ll introduce cooperative inverse decision theory
(CIDT) as a way to understand the benefits of cooperation
for preference learning. See Figure 1 for a illustration of
the procedure. We also propose Algorithm 2 as a baseline
implementation of CIDT which comes with theoretical guar-
antees, but there are many other possibilities that could be
explored, such as using reinforcement learning. Finally, we
demonstrate conditions under which cooperation generates
expert behavior that differs from IDT and has better human
sample-complexity properties.

To facilitate our analysis, we focus on binary decisions in
this work. However, our findings can be applied to deci-
sion problems involving a larger number of options as well.
This is because we can decompose a decision among many
choices into a series of binary choices between pairs of al-
ternatives under the assumption of independence among the
options [Luce, 1977, Laidlaw and Russell, 2021].

4.1 The Framework

To define the cooperative inverse decision theory game we
assume the imitator R can select a random example from
the set p−1(τ) for any τ ∈ (0, 1) and that the demonstrator
H has an underlying decision rule h∗ and threshold τ∗ they
consider optimal. The goal of R is to present examples to
H and learn a threshold decision rule that closely matches
H’s preferences. The goal of H is pick a classification rule
h, not necessarily equal to h∗, that will induce R to learn
τ∗. Specifically, we assume that both H and R both aim to
maximize the following performance metric

Φτ∗(τR) = −|τR − τ∗|, (2)

where τR is the learned threshold and τ∗ is the opti-
mal threshold according to H . Using a surrogate al-
lows for an evaluation independent of the underlying deci-
sion problem, making it more robust to distribution shift
[Laidlaw and Russell, 2021].

In each stage, R queries H with an example, and H re-
sponds with a classification based on h. R updates its belief
distribution for τ∗ based on this response. The state Sn at
the nth stage is the set of examples and responses generated
so far. A policy π for R is a mapping from any given state
to a query for H .

Algorithm 2: Implementation of CIDT
Input :Sampled decision rules hn, prior density

f0, iterations T , desired confidence level
α for obtained signals, weight δ

Output :Density, Estimator for optimum
1 n = 0 ;
2 τ0 = CDF(f0)−1(1/2);
3 while sum(Nn) ≤ T do

/* Empirical majority vote */
4 Resultn, Nn = Vote(hn, α, τn) ;
5 fn+1, τn+1 = PBAα(Resultn, fn, 1) ;
6 Fn+1 = CDF(fn+1);
7 n = n+ 1 ;
8 end
9 return

∑n−1
i=0 N δ

i τi/
∑n−1

i=0 N δ
i ;

The policy π induced by R will generate an allocation of
probability measures f0, . . . , fT for the optimal threshold
where fn+1 is Gn-measurable and Gn is the σ-algebra gen-
erated by the examples and classifications. Under certain
conditions, a joint policy consisting of a specific decision
rule for the demonstrator and a particular algorithm for the
imitator is optimal in expected performance.

Theorem 4.1. Consider a cooperative inverse decision the-
ory game between R and H to determine the threshold τ∗.
Suppose H plays the decision rule h = I(τ ≥ τ∗) and the
imitator uses the probabilistic bisection algorithm (PBA)
with α = 1 to select examples and update their belief dis-
tribution fT for each step T ∈ N of the game. If the initial
prior f0 for the performance parameter τ∗ is uniform on
the unit interval, then this joint policy is optimal in the
sense that it maximizes the expected performance metric
Eτ∗∼fT [Φτ∗(τR)] for any T ∈ N.

This theorem shows that, in order to optimize performance,
the demonstrator should classify examples based on their
position relative to their optimal threshold τ∗, while the
imitator should select examples that it believes are likely
to be near the optimal threshold. It is not difficult to see
that this policy has a geometric convergence rate, which
is significantly faster than the Ω(1/n) lower bound on the
sample efficiency of elicitation obtained in previous work
on inverse decision theory [Laidlaw and Russell, 2021].

4.2 Sub-optimal Teaching

The optimal policy introduced in the previous section can
be quite complex for the demonstrator to use due to the
requirement for the human demonstrator to make Bayes op-
timal classifications. Here we partially relax this assumption
by considering a more general class of decision rules that
allows for sub-optimal teaching from H . When H is a ratio-
nal, noisy, or group of decision makers this will be sufficient
for a practical implementation. In the most general setting,
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(a) (b) (c)

Figure 4: From left to right we show reconstructions predicted by cooperative inverse decision theory for noisy, group, and
suboptimal decision rules. Error bars are the standard deviation of the estimated quantiles over multiple experiments. The
results show that CIDT can recover the decision rule at various possible thresholds. In other words, CIDT can efficiently
estimate the full preference distribution pointwise, in noisy settings. Further details in text.

we need to make an assumption that H has the ability to
demonstrate a decision rule such that R can identify τ∗.

4.2.1 Uncertain Preferences

Our first assumption is that H has and demonstrates a deci-
sion rule that increases in expectation with the underlying
likelihood.
Definition 4.2. Let h be a decision rule. We define the ran-
dom variable h(τ) = h(X) where X is a random example
such that p(y = 1|X) = τ . We say that h is cumulative if
E[h(τ)|τ ] is monotone as a function of τ .

Indeed, it is possible to interpret any cumulative decision
rule as implying that the decision maker has uncertain pref-
erences following some distribution.
Lemma 4.3. Every expert with a cumulative decision rule
h has a unique representation as an expert that classifies
examples using a random decision threshold variable T .

The main implication of this result is that we can model
experts with cumulative decision rules as having uncertain
preferences. As a reminder, H views some decision rule h∗

as optimal, demonstrates a rule h, and then R will elicit a
decision threshold from observations of h acting on selected
examples such that E[h(τq)] = q. From Lemma 4.3 we see
this is some quantile of the decision threshold distribution
used by H on examples.

Cumulative decision rules are fairly general. There are sev-
eral classes of sub-optimal experts that can be represented
as an expert with uncertain preferences.

Noisy Experts: An expert whose optimal decisions are
corrupted with some constant probability corresponds to
an expert whose preferred decision threshold is uncertain
between 0, τ∗, and 1.

Multiple Experts: A mixture of experts with a distribution

of thresholds can be represented as a single expert with
uncertain thresholds following the same distribution.

Sub-optimal Experts: Sometimes the expert has an altered
context with either missing or additional information. If
they are approximately optimal with respect to the given
context we can expect their decision likelihood to increase
with the positive likelihood of given examples.

4.2.2 Description-Experience Gap

The expert (denoted H) may alter its behavior by producing
sub-optimal classifications in order to more effectively com-
municate its preferences to the algorithm (denoted R). For
the general setting, we make an assumption that H can steer
R towards the correct underlying preference. However, we
can remove this assumption when H is a rational, noisy, or
group of decision makers which we discuss in Section 4.3.

Specifically, we will assume that τq = τ∗. However, we do
not assume that τ∗q = τ∗. As a reminder, τ∗q is the threshold
such that E[h∗(τq)] = q. In fact, H may misreport on a
disagreement set defined by examples such that p(X) ∈
[min(τ∗q , τ

∗),max(τ∗q , τ
∗)].

The description-experience gap, the difference between clas-
sifying and demonstrating can be measured using the size of
this set. If the measure is larger, then H will classify more
examples sub-optimally to steer R to the correct underlying
preference. If the measure is zero, then H is well-aligned
with R and does not alter its behavior.

Uncertainty in preferences also corresponds with the size
of this disagreement set. For example, we could quantify
uncertainty with the narrowness of the support of decision
thresholds used by H . In the limit, this approximates a
Bayes optimal decision rule and the size of the disagreement
set goes to zero. Accordingly, the size of this disagreement
set can be seen as a measure of the description-experience
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gap, and highlights the role that the implicit bias of the
algorithm plays in determining its size. In practice, we may
want the description-experience gap to be small so that the
human does not have the added burden of accounting for
the dynamics of the machine it is interacting with.

4.3 Practical Implementation

In this section, we describe our approach (Algorithm 2) for
implementing a practical solution for CIDT that accounts for
sub-optimal demonstration from H . Our proposed solution
is to have the demonstrator(s) classify multiple examples
with similar positive likelihood and then process the re-
sponses using a voting mechanism. Since we use a finite
number of observations we also estimate the confidence of
the result. We then have R perform a Bayesian update for
the optimal threshold using Algorithm 1. We repeat until
we reach desired accuracy.

The voting mechanism we will consider is to take the qth

quantile of the classification responses. This is as a truthful
mechanism for noisy and group expert decision rules which
means that if we apply it as a processing step the demon-
strator(s) gain nothing from deviating away from their true
underlying decision rule [Black, 1948, Rowley, 1984]. In
this case we achieve demonstrator expressiveness, discussed
in Section 4.2, via a voting mechanism.

We can interpret voting as a test of whether or not the ex-
pected decision of an example with positive likelihood τ
satisfies E[h(τ)] ≥ q. For a proof see the appendix. How-
ever, we need to estimate the confidence α(·) which is the
chance our election draws the wrong conclusion given some
decisions on examples with a given positive likelihood. For-
mally, we obtain a sequence of responses {hi(τ)}. If we
can confidently determine the sign of the drift θ formed by
the random walk Sm(τ) =

∑m
i=0 2hi(τ)− 1 then we’ll be

able to construct a new signal with less noise. Sequential
tests of power-one are useful for this task and allow us to
determine the sign of the drift θ [Lai, 1977].

We follow [Frazier et al., 2019] in discussing our statistical
test. A test of power one can be defined through a positive
sequence km and a stopping time N(τ) = inf{m ∈ N :
|Sm(τ)| ≥ km}. If SN(τ) ≥ kN(τ) then the test decides
θ > 0 and if SN(τ) ≤ −kN(τ) then the test decides θ < 0.
We may take for γ ∈ (0, 1),

km = (2m(log(m+ 1)− log(γ)))1/2 (3)

At the n + 1 iteration we’ll observe a random walk with
mth term Sn,m =

∑m
i=1 2 · (hi(τn)− q) which will almost

surely have a finite stopping time whenever the confidence
we have in the signal satisfies α > 1/2. Thus, we can define
a new signal,

Elicitation Error Sample size = 15 Sample size = 30
Feature Subset IDT CIDT IDT CIDT
15 0.176 0.063 0.174 0.046
25 0.171 0.061 0.157 0.061
30 0.194 0.048 0.195 0.047

Table 1: We show the mean elicitation error (cooperative)
inverse decision theory on the Breast Cancer dataset. This is
measured as the absolute difference between the elicited and
optimal threshold. We model decision makers as reasoning
over a random subset of the available features.

Voten(τn) =

{
1, if Sn,Nn

> 0,

0, if Sn,Nn < 0
(4)

From [Frazier et al., 2019] we know that conditioned on the
event the drift is above/below q we have,

P (Voten = 1|hq(τn) = 0) ≤ γ/2 (5)

P (Voten = 0|hq(τn) = 1) ≤ γ/2 (6)

Thus, we have α(τ) ≥ 1−γ/2. As a final remark, the closer
an example’s positive likelihood is to the median threshold
preference the larger the error rate. This will lead to a gap
between the number of iterations and the number of expert
queries used.

4.4 Performance Guarantees

In this section, we analyze the efficiency of the PBA imple-
mentation for CIDT under the assumptions of sub-optimal
teaching discussed in Section 4.2. We provide theoreti-
cal guarantees for the convergence of the algorithm when
responses are (noisely) optimal, demonstrating that it con-
verges to the optimal solution at a geometric rate similar to
the optimal policy of Theorem 4.1. Furthermore, we also
provide a sample complexity analysis for the general case
of a cumulative decision rule and show it is arbitrarily close
to the minimax rate [Massart and Nédélec, 2006].

When H is (noisely) optimal, the PBA implementation for
CIDT converges to the optimal solution at a geometric rate.

Theorem 4.4. [Frazier et al., 2019] Suppose H makes ac-
curate classifications with confidence α ∈ (1/2, 1]. Con-
sider having R run the PBA starting with uniform prior f0
to produce a sequence of outputs τn = F−1

n (1/2). Then
there exists an r > 0 such that ern(τn−τ∗) → 0 as n → ∞
almost surely.

The implications of this theorem are that CIDT can converge
to the optimal solution at rate similar to the optimal joint pol-
icy which is much faster than other existing methods, such
as IDT, which only have a lower bound of Ω(1/n) for sam-
ple efficiency of elicitation. However, when H demonstrates
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Figure 5: We show the elicitation error for (cooperative) inverse decision theory as a function of the number of seen examples.
From left to right, we display the performance of (cooperative) inverse decision theory for noisy, group, and suboptimal
decision rules. We display uncertainty as standard deviation over experiment trials. Choice of the underlying preference
threshold, group decision rule, and suboptimality are randomized across trials.

with a cumulative decision rule, we also need to estimate our
confidence in the responses. To do this, we repeat queries
on decisions some Ni times to satisfy a statistical test and
then run the PBA. This is described in Algorithm 2. This
implementation for CIDT converges to the optimal, but at a
slower rate than Theorem 4.4.
Theorem 4.5. Suppose H demonstrates a cumulative de-
cision rule to R which runs the PBA with repeated queries.
Let Ni be the number of comparisons used for the power-
one test at each stage and let Ti =

∑n−1
i=0 Ni be the total

number of comparisons used up to time n. Suppose that,

α(τn)− 1/2 ≥ c|τn − τ∗|γ (7)

for some c > 0 and γ > 1. Also, for δ ∈ (0, 1/2γ) define
the estimator,

τ̂n(δ) =

∑n−1
i=0 N δ

i τi∑n−1
i=0 N δ

i

(8)

where τi is the median of the ith posterior distribution. This
estimator satisfies,

E
[
(Tn−1)

δ · |τ̂n(δ)− τ∗|
]
→a.s. 0 (9)

This theorem applies directly to the setting where our ex-
pert has a cumulative decision rule so it can be used for
elicitation of noisy, group, and suboptimal decision rules.
For a proof see the appendix. However, it is slower than
the geometric rate of convergence of Theorem 4.4 be-
cause the noise-condition degrades as the algorithm ap-
proaches the optimum. However, this noise-condition
can be related to Massart noise, which can be used to
show that the rate can be made arbitrarily close to opti-
mal [Massart and Nédélec, 2006]. Despite this slower rate
of convergence, we can still use Theorem 4.4 to argue that
the algorithm can elicit the optimal solution within any fixed
error ϵ > 0 at a geometric rate.

5 EXPERIMENTS

In this section, we have two aims. First, we empirically
validate the advantage of CIDT over IDT by presenting
a comparison. IDT serves as an appropriate comparison
in this setting as it is equivalent to learning from a static
data-set. Second, we demonstrate that the expected behav-
ior of cumulative decision rules are identifiable 1. More
experimental details are provided in the Appendix.

We define synthetic decision problems for our first two
experiments and then consider real decision problems for
our third experiment. We assume a joint probability for
X = R2 and Y = {−1, 1} given by a uniform distribution
fX = U[−

√
10,

√
10]10 and logistic noise model η(x) =

p(y = 1|x) = 1
1+e⟨a,x⟩ where a is randomly selected in

our experiments. To avoid giving an unfair advantage to
our approach we fix a training set of data before running
algorithms. When we query for an example such that p(y =
1|x) = τ we look through the data set for the closest match
and then query with this example.

We consider noisy, group, and suboptimal decision rules.
The noisy decision rule randomly flips the classification
from an underlying optimal decision rule with probabil-
ity 1/4. The group decision rule uses a random decision
threshold for each query. These distributions are randomly
sampled beta distributions. The suboptimal decision rule
estimates η(x) with â which is a random perturbation of
a. This is meant to simulate having a systematically sub-
optimal representation.

We aim to recover a best approximating threshold decision
rule and a reconstruction of the underlying decision rule as
a function of positive likelihood. In the first set of experi-
ments, we use CIDT to elicit quantiles of the decision rules
and then compare them with ground truth. We use thirty

1https://github.com/zrobertson466920/Cooperative-IDT

https://github.com/zrobertson466920/Cooperative-IDT
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elicitations to elicit each quantile. We construct ground truth
by classifying a large number of examples and then con-
structing a histogram based on class-conditional probability
and likelihood of detection. We repeat the experiment 30
times and average the results. In the second set of experi-
ments, we compare the convergence rate of CIDT with IDT
for eliciting optimal decision thresholds. We use thirty elici-
tations to produce an estimate. We repeat these experiments
30 times and average the results.

For our final experiment we work with the Breast Cancer
Wisconsin Diagnostic dataset containing 569 instances. This
is a real-world dataset that is particularly challenging due
to its relatively small size. For this experiment we work
with sub-optimal decision makers that reason over a random
subset of the available 30 features. We take ground-truth
to be IDT elicitation using the entire training set. We then
measure elicitation error as the absolute difference between
the elicited and the ground-truth optimal threshold. We run
our experiment 30 times and then report the mean elicitation
error.

From Figues 4 and 5 we see that we are able to recover
approximations of decision rules with uncertain underly-
ing preferences. We also see that approximations of the
underlying class-conditional probabilities suffices for the
corresponding decision rule to be cumulative. Finally we
observe that our CIDT algorithm converges at a faster rate
than IDT for noisy, group, and suboptimal decision rules.
We also report results from applying CIDT to our real-world
dataset in Table 1. We see improved elicitation using our
proposed cooperative inverse decision theory approach, sug-
gesting that CIDT may be an effective strategy in this few-
shot setting. We also see that our algorithm is effective even
when the decision maker is using a sparse subset of features
which provides some evidence that our monotone decision
rule may hold in practical settings.

6 LIMITATIONS

While our investigation makes advances in applying pref-
erence elicitation in settings with noise, group, or subopti-
mal considerations there are some limitations that may be
addressed by future work. Foremost, we do not perform
experiments with real human subjects. While our approach
is robust to a fairly general class of decision rules, it is not
clear to what degree human error or more complicated set-
tings would complicate elicitation. Related to this, our study
of preference elicitation assumes that preference distribu-
tions are well-supported. However, our experiments seem to
indicate our approach may not work for low-support regions
of a distribution. Finally, while our theoretical results are
fairly general, we do not provide optimal algorithms for the
general setting, implement our solution using RL, or provide
full analysis for the averaging parameter (δ in Algorithm 2)
used for the crowdsourced experiments. Addressing these

limitations may be promising for further work.

7 CONCLUSIONS

In this paper, we proposed cooperative inverse decision the-
ory that is able to leverage cooperation between the human
and agent to improve the sample complexity of elicitation.
This approach is flexible enough to consistently reconstruct
a broad collection of decision rules from observations of
classifications. This bypasses the description-experience
gap present in other approaches. While our work could
lead to reproducing human bias we think that understanding
human values is central in the long-term development of
human-centered AI. We hope that our work will contribute
towards AI systems that better take into account human
values in their decision making.
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A FURTHER EXPERIMENTAL DETAILS

To evaluate, we define a classification task. We assume a joint probability for X = R2 and Y = {−1, 1} given by a uniform
distribution fX = U[−5, 5]2 and logistic noise model η(x) = p(y = 1|x) = 1

1+e⟨a,x⟩ where a is selected as a = [1, 1].
To avoid giving an unfair advantage to our approach we fix a training set of data before running algorithms. We use a
dataset with 10k sampled examples, but only have the human-in-the-loop label 30. When we query for an example such that
p(y = 1|x) = τ we look through the data set for a close match and then query with a randomly selected example. In our
experiments we look for the nearest twenty examples and select from this subset randomly.

We consider noisy, group, and suboptimal decision rules. The noisy decision rule flips the classification from an underlying
optimal decision rule with probability 1/4. The group decision rule uses a random decision threshold for each query. These
distributions are randomly sampled beta distributions. Specifically, the shape parameters are sampled uniformly from
[20, 40] and [40, 100]. This produces concentrated unimodal distributions with mean roughly uniformly distributed across
the unit interval. The suboptimal decision rule estimates η(x) with â which is a random perturbation of [1, 1]. Specifically,
we select the elements for the vector uniformly at random from the interval [0.8, 1.2]. This is meant to simulate having a
systematically sub-optimal representation.

We aim to recover a best approximating threshold decision rule and a reconstruction of the underlying decision rule. In
the first set of experiments, we use CIDT to elicit quantiles of the decision rules and then compare them with ground truth.
We construct ground truth by classifying a (100k) large number of examples and then constructing a histogram based on
class-conditional probability and likelihood of detection. We run the experiment 30 times. In the second set of experiments,
we compare the convergence rate of CIDT with IDT for eliciting optimal decision thresholds. We run these experiments 30
times.

B REDUCTION TO CIRL

Definition B.1. A CIRL game M is a two-player Markov game with identical payoffs between a demonstrator H and
an imitator R. The game is described by a tuple, M = ⟨S, {AH , AR}, T (·|·, ·, ·), {Θ, R(·, ·, ·, ·)}, P0(·, ·), γ⟩ with the
following definitions. S is a set of world states: s ∈ S. AR is a set of actions for H: aH ∈ AH . AR is a set of actions for
R: aR ∈ AR. T (s′|s, aH , aR) is a conditional distribution on the next world state s′, given previous state s and actions
(aH , aR) for both agents. Θ is a set of possible static reward parameters, only observed by H where θ ∈ Θ. R(s, aH , aR, θ)
is a parameterized reward function that maps world states, actions, and reward parameters to real numbers. P0(s0, θ) is a
distribution over the initial state. γ ∈ [0, 1] is a discount factor.

We will assume that the demonstrator H has uncertain preferences indicated by some distribution of decision thresholds ν.
At each stage, the imitator R can present any example x ∈ X to the demonstrator. Accordingly, the state Sn at the n-th stage
simply consists of the examples and responses generated so far. The demonstrator will receive this example and classify it
according to its positive likelihood p(x) = P(y = 1|x) and ν.

Corollary 1 of [Hadfield-Menell et al., 2016] allows us to represent the optimal policy solely in terms of the current state
and R’s belief distribution. Thus, we can describe the imitator as taking the result of classification and updating its belief
distribution fn for the demonstrator’s preferred decision threshold. For the reward, we use the elicitation error.

R(τH , τR(fn), ν) = −Eτ∼ν [|τR − τ∗|]

τ∗ = argminτH − Eτ∼ν [|τH − τ |]

The goal of R is to present examples to H such that after a number of rounds its reward is maximized.

C PROOFS

C.1 Proof of Theorem 4.1

Theorem C.1. Consider a cooperative inverse decision theory game between R and H to determine the threshold τ∗.
Suppose H plays the decision rule h = I(τ ≥ τ∗) and the imitator uses the probabilistic bisection algorithm (PBA) with
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α = 1 to select examples and update their belief distribution fT for each step T ∈ N of the game. If the initial prior f0 for
the performance parameter τ∗ is uniform on the unit interval, then this joint policy is optimal in the sense that it maximizes
the expected performance metric Eτ∗∼fT [Φτ∗(τR)] for any T ∈ N.

Proof. It’s not hard to see noisier responses result in sub optimal performance. To be concrete consider an instance with
τ∗ ∈ {0, 1} and uniform prior f0. The performance Ω(−2−n) where n is the number of stages is only obtained for α = 1.
What remains is to show that bisection with α = 1 is in fact optimal as opposed to some other approach. This is relatively
straight-forward because query responses are constrained.

Given a belief distribution f0 for τ∗ we can show the best estimator under the performance metric is given by the median of
f0. This follows from a sub-gradient calculation given by,

∂τ∗Eτ∗∼f0 [|τ∗ − τ |] = Eτ∗∼f0 [sign(τ∗ − τ)] = CDFν(τ
∗)− (1− CDFν(τ

∗)) = 2CDFν(τ
∗)− 1 = 0

However, this only equals zero for τ∗ = CDF−1
f0

(1/2). In fact, this is equivalent to selecting the next example point to have
true positive likelihood,

argmaxτEτ∗∼f0 [Φτ∗(τ)] = argminτEτ∗∼f0 [|τ∗ − τ |] = CDF−1
f0

(1/2)

This establishes that the estimator we return at each stage is optimal with respect to the belief distribution.

What we are interested to show is that we allocate examples optimally so that the belief distribution maximizes performance.
Note that when we show an example to the demonstrator they aim to return a response that maximizes the final performance
metric. Consider the case where they report accurately then all the belief distributions will be uniform and positive support
on a sub-intervals of [0, 1] . Thus, the expected error reduces by a factor of two during each stage. Up to scaling, these
sub-intervals will be equivalent to the unit-interval and so we can consider the performance of selecting a true positive rate τ
for the examples. Up to scaling this equals,

τ · CDFν(τ) + (1− τ) · (1− CDFν(τ)) = τ2 + (1− τ)2

It’s clear that the mid-point τ = 1/2 is optimal. So we can conclude that accurate responses starting with uniform prior
allow for geometric reduction in the elicitation error across different stages. Specifically, it is optimal to use mid-point
bisection at each stage.

C.2 Proof of Lemma 4.3

Lemma C.2. Every expert with a cumulative decision rule h has a unique representation as an expert that classifies
examples using a random decision threshold variable T .

Proof. Recall that Z(τ) is equal to the expected outcome of h(x) such that the sampled x ∈ X satisfies p(y = 1|x) = τ .
Without loss of generality we assume that this function is right-continuous. If not, we can make it so by modifying the
function on at most a countable subset of points.

Since Z(0) = 0 and Z(1) = 1 we claim there is a probability space (Ω,F ,P) and a random variable T : Ω → (0, 1) defined
on this space such that Z(τ) is the cumulative distribution function of T . To see this take Ω = (0, 1), F as the restriction of
the Borel sets to (0, 1), and P as the restriction of Lebesgue measure to (0, 1), which is a probability measure. For ω ∈ Ω
we define τ̂(ω) := inf{τ ∈ R : Z(τ) ≥ ω}. Now, if τ̂(ω) ≤ τ then there is a sequence τn ↓ τ such that τ̂(τn) ≥ ω for
each n. By the right-continuity of Z(τ) this implies that Z(τ) ≥ ω. Right-continuous monotone increasing functions are
measurable so we have that τ̂ is measurable and that P(τ̂ ≤ τ) = P((0, Z(τ)]) = Z(τ).

Note that this probability P(τ̂ ≤ τ) is a measure over the interval [0, 1]. In particular, the intersection of these half-space
sets is closed under intersection. Without loss of generality assume τ < τ ′ then {ω : T (ω) ≤ τ} and {ω : T (ω) ≤ τ ′}
intersect to {ω : T (ω) ≤ τ ′}. Such sets are known as π-systems and the half-spaces also generate the Borel σ-algebra on
[0, 1]. By Dynkin’s π-λ theorem knowledge of the measure on these subsets implies knowledge on all Borel subsets of
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[0, 1] [Gut and Gut, 2005]. Therefore, Z(τ) can be represented uniquely as the cumulative distribution of an underlying
preference measure ν. So we conclude that h(τ) can be represented as an expert that classifies examples using a random
decision threshold variable T .

C.3 Proof of Theorem 4.5

Theorem C.3. Let Ni be the number of comparisons used for the power-one test at each stage and let Ti =
∑n−1

i=0 Ni be
the total number of comparisons used up to time n. Suppose that,

α(τn)− 1/2 ≥ c|τn − τ∗|γ = ∆n (10)

for some c > 0 and γ > 1. Also, for δ ∈ (0, 1/2γ) define the estimator,

τ̂n(δ) =

∑n−1
i=0 N δ

i τi∑n−1
i=0 N δ

i

(11)

where τi is the median of the ith posterior distribution. This estimator satisfies,

E
[
(Tn−1)

δ · |τ̂n(δ)− τ∗|
]
→a.s. 0 (12)

This requires Lemma 10 from [Frazier et al., 2019] which we state here for completeness.

Lemma C.4. [Frazier et al., 2019] Let W = (Wn : n ≥ 0) be a sequence non-negative random variables, and let
(Fn : n ≥ 0) be a filtration. If

∑∞
n=0 E(Wn|Fn) almost surely, then

∑∞
n=0 Wn < ∞ almost surely.

Proof. We’ll abbreviate c|τn − τ∗|γ = ∆n. First, we’ll make some manipulations to use our lemma.

T δ
n−1|τ̂n(ϵ)− τ∗| =

T δ
n−1∑n−1

i=0 N δ
i

∣∣∣∣∣
n−1∑
i=0

N δ
i (τi − τ∗)

∣∣∣∣∣ (13)

≤
T δ
n−1∑n−1

i=0 N δ
i

n−1∑
i=0

N δ
i |τi − τ∗| ≤

n−1∑
i=0

N δ
i |τi − τ∗| (14)

If we show that this is a finite-valued random variable then we have a good bound. Recall that the Ni indicate the number of
samples used in a statistical test which depends on the drift θi = 2α(τi)− 1. We have that [Frazier et al., 2019],

lim supθ→0E[N(θ)θ2(log θ)−1] < ∞ (15)

Moreover, a sample-path argument establishes that E[N(θ)] is decreasing in θ > 0 so it follows that for any η > 0 there is a
θ0(γ) > 0 such that for θ ̸= 0 we have,

E[N(θ)] ≤ c1|θ|−(2+η)I(|θ| ≤ θ0) + c2I(|θ| ≥ θ0) (16)

Now we take a sequence {θi} from the PTA and then it follows from assumption that,

E[Ni] ≤ c3∆
−(2+η)
i I(∆i ≤ c4) + c5I(∆i > c4) (17)

⇒ E[N δ
i ] ≤ c3∆

−δ(2+η)
i I(∆i ≤ c4) + c6I(∆i > c4) (18)

We know that there is an r > 0 such that erγi ·∆i → 0. So we could define index sets,

J(1) = {∆i > c4 : i ≥ 0}, (19)

J(2) = {∆i > e−rγi : i ≥ 0 ∧ i ̸∈ J(1)}, (20)

J(3) = {i ̸∈ J(1) ∨ J(2)} (21)



Zachary Robertson, Hantao Zhang, Oluwasanmi Koyejo

This gives us,
E[N δ

i |τi − τ∗||Gi] (22)

≤ I(i ∈ J(1))c6|τi − τ∗| (23)

+I(i ∈ J(2))c3|τi − τ∗| ·∆−δ(2+η)
i (24)

+I(i ∈ J(3))c3|τi − τ∗| · eδ(2+η)rγi (25)

The first and second sets have finite cardinality almost surely. The third set will have infinite cardinality so we must rely on
the last term being geometric. We know that, for some r′ > 0 we have eri · |τi − τ∗| → 0. Reassign r = min(r′, r). Thus,

if we have 1− δ(2 + η)γ > 0 the last term will be summable. This implies that δ <
1

(2 + η)γ
≤

1

2γ
. Summing yields,

E[N δ
i |τi − τ∗||Gi] ≤ c6|J(1)|+ c3|J(2)|+ c7 (26)

and our result follows from our previous lemma.

C.4 Further Proofs

Theorem C.5. Suppose a decision maker has uncertain preferences distributed according to ν and we observe decisions on
examples with likelihood τ according to the random variable h(τ). The following threshold decision rule always indicates
the threshold closer to τq = CDF−1

ν (q),
hq(τ) = I (E[h(τ)] ≥ q) (27)

Proof. Since Z(τ) = E[h(τ)] is monotone we see that hq(τ) is determined by whether or not τ ≤ CDF−1(τ). When
τ ≤ CDF−1(q) then hq(τ) = 0 and otherwise hq(τ) = 1. Therefore, hq(τ) always indicates the direction of CDF−1(q)
relative to τ .

Lemma C.6. Whenever the population distribution of thresholds ν has full support on [0, 1] the noise generated from the
preference uncertainty respects the conditions of Theorem 4.5.

Proof. Allow τ∗ = CDF−1(q). To see that this is in fact the case note that for sufficiently small δτ > 0,

CDFν(τ
∗ + δτ) ≥ 1/2 + cδτ (28)

⇒ α(τn)− 1/2 ≥ cδτ (29)

for some c > 0. Similarly, whenever δτ < 0 then we have,

1− CDFν(τ
∗ − δτ) ≥ 1/2 + cδτ (30)

⇒ α(τn)− 1/2 ≥ cδτ (31)

for the same c > 0.


