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Abstract—An important task for Information Extraction from
Microblogs is Named Entity Recognition (NER) that extracts
mentions of real-world entities from microblog messages and
meta-information like entity type for better entity characteriza-
tion. A lot of microblog NER systems have rightly sought to
prioritize modeling the non-literary nature of microblog text.
These systems are trained on offline static datasets and extract
a combination of surface-level features — orthographic, lexical,
and semantic — from individual messages for noisy text modeling
and entity extraction. But given the constantly evolving nature
of microblog streams, detecting all entity mentions from such
varying yet limited context in short messages remains a difficult
problem to generalize. In this paper, we propose the NER
Globalizer pipeline better suited for NER on microblog streams.
It characterizes the isolated message processing by existing NER
systems as modeling local contextual embeddings, where learned
knowledge from the immediate context of a message is used to
suggest seed entity candidates. Additionally, it recognizes that
messages within a microblog stream are topically related and
often repeat mentions of the same entity. This suggests building
NER systems that go beyond localized processing. By leveraging
occurrence mining, the proposed system therefore follows up
traditional NER modeling by extracting additional mentions of
seed entity candidates that were previously missed. Candidate
mentions are separated into well-defined clusters which are
then used to generate a pooled global embedding drawn from
the collective context of the candidate within a stream. The
global embeddings are utilized to separate false positives from
entities whose mentions are produced in the final NER output.
Our experiments show that the proposed NER system exhibits
superior effectiveness on multiple NER datasets with an average
Macro F1 improvement of 47.04% over the best NER baseline
while adding only a small computational overhead.

I. INTRODUCTION

In recent years, Named Entity Recognition (NER) from
microblogs such as tweets has received much attention as a
task of the automatic Information Extraction pipeline for a
variety of analytical efforts [1]. NER deals with the extraction
of contiguous strings within text that represent entities of
interest in the real world. These strings (also known as surface
forms as described in WNUT17 [2]), are referred to as Entity
Mentions (EMs). Broadly, NER consists of two sub-tasks: 1)
Entity Mention Detection (EMD) involves compiling the string
variations of entities within text, and 2) Entity Typing attaches
a type (e.g., person, location) to each EM for better context-
specific characterization of EMs. In this paper, we focus on
the challenges involving both NER sub-tasks on microblog
streams, and propose a system to maximize NER effectiveness.
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Emity Mentions VBERTweet labelled EMs

T1: Beshear : Social distancing is not social isolation.

T2: WE JUST BY-PASS Italy WITH CORONAVIRUS CASES. But @realDonaldTrump wants to relax
social distancing.

T3: Not a bad video to explain how the Coronavirus works as well as the reasoning for social
distancing.

T4: Beshear says he’s asking county judges and city mayors to monitor parks and shut them down if
people aren't filling

T5:lTruma to ranklUSlcounties by Eoronaviru;l risk, may 'relax’ social distancing.

T6: Canada is rising at a rate similar to the early days in ITALY

|
T7: Unless you go private NHS will continue to par you left right and Centre

Fig. 1: NER on a message stream discussing Coronavirus

Example 1. Tweets in Figure 1 have mentions (in many
string variations) from six unique entities of four different
entity types: ‘beshear’ in T1 and T4, and ‘trump’ in TS are of
type Person; ‘italy’ in T2 and T6, ‘US’ in TS, and ‘canada’ in
T6 are of type Location; ‘NHS’ in T7 is of type Organization;
and, ‘coronavirus’ in T2, T3, and T5 is a disease that we
categorize into the Miscellaneous type.

Microblog focused NER systems primarily seek to general-
ize the non-normative language of Microblogs. Their solutions
to this problem follow an off-line paradigm, mostly employing
supervised models that are specifically trained on messages
sampled from Microblogs. To extract contextual information
from messages, they use different surface level features — word
embeddings, lexical, orthographic and semantic (POS tags,
dependency trees), and sometimes even external gazetteers.
The processing philosophy of these NER systems is to exam-
ine individual microblog messages once, in the order of their
arrival in the stream. However these models do not make any
distinction in handling the incremental and topically-correlated
content generation process in Microblog streams from the
offline static datasets that they use for model training.

Microblog character-limits leave inadequate context to be
extracted from singular message points. This only exacerbates
the challenge models face when dealing with the varied
contextual possibilities, non-traditional language usage and
novel tokens that populate Microblog messages. The rarity
of many microblog entities in off-the-shelf lexical resources
therefore still limits the performance of NER systems [3]
that supplement the local context from individual messages
by referencing gazetteers. The isolated message execution
philosophy of existing systems has two major drawbacks
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that lead to sub-optimal effectiveness for NER on Microblog
streams: (1) the inconsistency in detecting the same entity
string across the entire breadth of a Microblog stream, i.e.,
the same entity mention is detected in some contexts but
missed in others, and (2) the erroneous type classification of
certain entities. Since type classification is heavily context-
dependent, the sparse local context can often lead to incorrect
entity typing. To better understand these problems, we perform
NER on a message stream discussing the most prevalent
conversation topic of recent times — the Coronavirus. We use
a variant of the BERT language model pre-trained on a large
Twitter corpus, namely BERTweet [4], that is better attuned
to this noisy language setting. We fine-tune the BERTweet
language model on the WNUT17 [2] training data for NER.

A Case Study. The objective of this study is to explore the
performance of a deep NER system on a microblog stream and
understand its limitations. We run BERTweet on a streaming
dataset of 2K tweets (D3, see Table 1 in Section VI) generated
from a Coronavirus tweet stream. Although BERTweet reports
state-of-the-art performance on benchmarking datasets like
WNUT17, its effectiveness on this microblog stream’s subset
is modest, with a macro-F1 score of 43%. Not only was the
extraction of novel but frequent entities inconsistent across
different messages in the stream, but the F1-score also varied
heavily depending on the target entity type.

Takeaways. A closer examination of the BERTweet model
on the Coronavirus dataset reveals evidence for the limitations
of isolated message processing. Figure 1 shows that BERTweet
often missed mentions of one of the most important and
frequent entities in this stream, i.e. ‘Coronavirus’. Other entity
mentions that came up frequently but were also missed include
‘Italy’ and ‘US’. In addition, the F1-score of BERTweet across
different entity types exhibited high variance. As a disease,
entities like ‘Coronavirus’ or ‘Covid 19’ have been labelled
as the Miscellaneous type, however their inconsistent detection
had an impact on the final Fl-score of this entity type. Apart
from missed entity mentions, the frequent mistyping of entities
also contribute to this. The few mentions of ‘Coronavirus’
recovered by BERTweet were misclassified as type ‘Person’.
Only 7% of the entities of type ‘Miscellaneous’ were ulti-
mately recovered by BERTweet yielding a low Fl-score of
only 9% for this entity type. In contrast, BERTweet’s F1-score
for entity type ‘Person’ is 75%, showing how inconsistent the
performance can be over different entity types when solely
considering messages in isolation. BERTweet’s performance
also shows similar behaviour for other streaming data in our
experiments. For example in dataset D3 (see Table IV), entities
of type ‘Organization’ like ‘Justice Department’ or ‘Russian
Government” were repeatedly mistyped.

Entities appear in many syntactic variations in the microblog
ecosystem that constantly generates messages on multiple
contemporaneous topics, i.e. conversation streams, evolving
over time [5], [6]. The failure to consistently identify these
entity mentions leads to reduced EMD performance. The high
contextual variance in microblog messages with locally sparse
contexts makes it difficult even for sophisticated NER models
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like BERT to make accurate type inferences in this setting.
Also fine-tuning deep NER models for better performance
with messages from newer topic streams is not always a
scalable proposition, given the sheer volume and variety of
conversation topics continuously emerging in platforms like
Twitter. As an alternative, we propose a solution that adapts
better to the shifting conversation trends of microblogs by
utilizing the potential of ‘Global Contextual Embeddings’ to
yield better NER performance.

Collective processing with non-local context. Deep NER
models operate on messages individually by first using a
language model to generate token-level contextual embeddings
and then a token classification head to generate outputs that
encode both entity boundaries and type from the local context.
Since local contexts can be inadequate for accurate inference
in downstream tasks, some systems have explored collating
non-local information. Akbik et al. [7] derived ‘global con-
texts” for every unique token in its training set by performing
an average pooling operation on all the local contextual
embeddings generated for their mentions within a dataset.
These global contexts are attached to the local embedding,
when a token from the training set is encountered at test
time. We argue that microblog streams are even better suited
to generate global contextual representations aggregated over
multiple non-local contexts, owing to their heavy entity/token
recurrence. Expanding on this insight, we propose generating
global contextual representations to alleviate the issues of
inconsistent EMD for microblog streams in [8]. It begins
with a clear delineation of local and global contexts in EMD
computation for a streaming setting. Local contexts suggest
entity candidates. It then aggregates local representations of
candidate mentions to generate global contextual embeddings
and distinguish entities from false positives. In essence, [8]
shifts the focus of EMD computation beyond the confines of
a single sentence to collectively process mentions of an entity
across the entire span of a stream.

In [8], we first presented the potential of collective process-
ing on microblog streams for the EMD subtask. In this paper,
we lay out a system that (i) addresses the unique challenges
when bringing Entity Typing into the fold, and (ii) sets a
collective processing pipeline for the complete NER task. The
locally limited context in microblog messages results in incon-
sistent EMD and mistyping of entity mentions. Aggregating
local contextual embeddings across all syntactic variations of
an entity candidate has yielded improvements for EMD, how-
ever simply extending the framework to Entity Typing leads
to misleadingly aggregating contexts from mentions that have
the same surface form, but correspond to different entities. For
example, the candidate string ‘Washington’ can correspond
to entities of two different types — Person (the American
president) or Location (the American state) — depending on its
context. Since Entity Typing is inherently context dependent,
arbitrary aggregation of local contexts without factoring in
such surface form ambiguity reduces the benefits of collective
processing and generates incorrect entities. The solution we
propose here is specifically mindful of this issue.
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Approach Overview. In this paper we propose the NER
Globalizer system that demonstrates how to effectively mine
global contextual embeddings for NER on microblog streams.
We begin with a traditional NER step of isolated message
processing using a fine-tuned BERTweet model, but only to
generate a set of seed surface forms in which entity candidates
appear within a conversation stream. The language model also
produces token-level contextual embeddings. This constitutes
our ‘Local NER’ phase. Although Local NER encodes both
boundary information and associated entity type in its token-
level labels, these outputs can be unreliable owing to the
scarce local context from which they are generated. We
first follow up Local NER with model agnostic occurrence
mining that yields additional mentions of these surface forms
that were previously missed. This is crucial for correcting
inconsistent EMD. Next, an ‘Entity Phrase Embedder’ uses
the token-level contextual embeddings from Local NER to
generate a unified embedding for individual mention phrases
of seed candidate strings. The phrase embedder is trained
using contrastive learning such that surface form mentions of
the same type congregate closely in the candidate embedding
space but are distant from mentions of other entity types. Up
until this point the embeddings we generate are still locally
confined. Based on the local mention embeddings, we draw
an optimal clustering to group mentions of a surface form
into different (potential) entity types. Then we use a learned
pooling function to generate a global candidate embedding
for each candidate cluster. Since each cluster is arguably an
entity type, this embedding is a global representation of the
corresponding candidate-type pair. Finally an Entity Classifier
is trained to use a cluster’s global embedding and label it
as one of the preset entity types. The classifier also helps us
separate false positives from valid entities. The steps following
Local NER up to the labeling of candidate clusters constitute
what we call ‘Global NER’.

NER Globalizer reduces the inconsistencies in traditional
NER processing significantly. We test the system on several
existing benchmarks and outperform a locally limited BERT-
fine tuned NER model, which itself is a strong NER baseline,
by 47.04% on Macro F1 score. On average, the inclusion of
Global NER reports an average F1 improvement of 11.49% for
type Person and 22.58% for type Location. For entity types
that are prone to greater mislabeling the average F1 improve-
ment is even more remarkable, about 174% for Organization
and Miscellaneous. This work has also lifted the performance
ceiling on popular NER datasets WNUT17 [2] and BTC [9].
Our paper makes the following contributions:

o« We propose a novel NER system that provides a clear
delineation between the scope of local and global NER
computation for microblog streams. With Global NER we
demonstrate how to effectively aggregate contextual in-
formation for better NER performance in this setting. It
supports continuous and incremental execution which is in
tune with the message generation process of streams.

Local NER is decoupled from Global NER steps. This
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allow us to test the hypothesis that aggregating contextual
embeddings leads to better NER performance in the stream-
ing setting and it makes the the system more nimble to
incorporate future local NER designs.

In our experiments, we evaluate the proposed framework
on both in-house streaming Twitter datasets and third party
datasets. We not only report superior performance for entity
typing but also bring in improvements for EMD.

The code for NER Globalizer and experimental datasets are
available at https://github.com/satadisha/collective_NER.

II. RELATED WORK

The principal issues impacting an NER performance in the
microblog streaming setting are: a) its ability to consistently
detect entity mentions across the diverse contexts in which
they appear, and, b) resolving entity mentions to correct entity
types. [2] posits that the lack of annotated data from this
domain, and the difficulty in identifying emergent entity forms
are the major factors contributing to these issues. The NER
literature features a wide range of supervised systems that
demand a training set with token level annotations that encode
both boundary and associated type information. Usually a
variant of the BIO-type (Beginning-Inside-Outside) encoding
[10] is used to prepare these annotations. Broadly, these
systems either operate on handcrafted linguistic features in a
non-neural system or use deep neural networks with minimal
feature engineering. The first category of systems, like [11],
[12], [13] recreates an information extraction pipeline starting
with POS-taggers to extract and feed semantic features to a
CRF based entity boundary segmentation module. In some
systems, the feature set is enhanced with word embeddings or
gazetteers to supplement the limited contextual possibilities of
microblogs and the rare tokens that inhabit the medium [14],
[15], [16], [17], [18], [19], [20].

Many Deep NER systems [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30] have recently been adopted for
the sequence labeling task of NER. The recent WNUT shared
tasks [31], [2] delve into a variety of Deep NER systems for
Tweets. Aguilar et al. [3]— a BILSTM-CNN-CREF architecture—
performed best at the WNUT17 task. More recently BERTweet
[4] — a BERT language model pre-trained on a large Twitter
corpus— reported the most effective language model when
performing a variety of language tasks. For our Local NER
step, we adopt the pre-trained BERTweet model and fine-tune
it with the WNUT17 training set. [32], [33] examine the cross-
domain transferability of DNN features learned from the more
abundantly labelled well-formatted corpora to overcome the
lack of annotated data from the microblog domain.

Other alternatives include TwiNER [34], an unsupervised
approach using collocation features from the Microsoft Web
N-Gram corpus [35] or joint modeling of NER [36], [37], [38],
[39] with other information extraction subtasks.

Using global context. The idea of aggregating non-local
contextual information for NER has only been considered in
[7] for the microblog setting. However a similar rationale is
encountered in some of the recent Deep-NER pipelines for

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.



LOCAL NER GLOBAL NER

1
)
:
I
: T I .
oot o A S
! QIoX0X0) :é ¥
| H ves
! h §|
! BERT H
| Encoder A é
» d ] Stack i g ‘
Tweet Stream B Y S S S S e <
QRS ™
o .
™ /&

Fig. 2: NER Globalizer System Architecture

documents. Unlike a stream of tweets produced by multi-
ple authors, documents are structurally more cohesive with
well-formatted language. But both repeat entities and tokens
through the collective span of their contents. Document-level
NER systems like HIRE-NER [40] utilize this tendency to
distill non-local information for each unique token, from the
entire scope of the document, using a memory-structure and
append them to sentence-level contextual embeddings before
an NER decoder draws final output labels. DocL-NER [41]
additionally includes a label refinement network to enforce
label consistency across documents and improve NER results.
Therefore in our experiments, we consider [7], [40] and [41]
as baselines for Global NER and compare their performance
alongside NER Globalizer to evaluate how effectively global
information is compiled in each approach.

The idea of collectively viewing mentions to distinguish
entities from false positives has been explored for the EMD
subtask in TwiCS [42] and EMD Globalizer [8]. TwiCS [42]
uses a shallow syntactic heuristic to identify entity candidates
and then generates syntactic support from their mentions
to distinguish legitimate entities from false positives. EMD
Globalizer moves beyond narrow syntactic assumptions and
makes robust constructions towards the computation of global
contextual embeddings in the streaming space. But neither
systems provide an implementation for the complete NER
pipeline by leaving out the crucial task of type classification.

Though NER Globalizer relies on a robust language model
to fully leverage the local context of individual messages,
it ultimately differs from the traditional NER setup by: i)
aggregating local contexts for entities to incrementally build
representations that are resilient to local noise and yield better
contextualization from the entire scope of the stream, and,
ii) build solutions that can exploit both the local connectivity
of named entities to other tokens within the immediate con-
text and the (‘collective’) global contexts of entities within
the stream, in order to better resolve entity definitions. Our
approach in this work not only maintains a continuous and in-
cremental computation setup, which is conducive to processing
streams, but also improves upon the collective processing setup
of EMD Globalizer by laying out all the necessary considera-

tions, like handling surface form ambiguity, for appropriately
aggregating non-local contexts to solve both EMD and Type
Classification in an integrated pipeline.

III. SYSTEM OVERVIEW

In Figure 2 we illustrate the overall architecture of NER
Globalizer that facilitates a continuous execution setup, sus-
taining over multiple iterations, as long as new messages
are produced in a tweet stream. Each iteration consists of a
batch of incoming tweets thereby discretizing the evolution
of the underlying stream. Also for entity typing we limit
the classification to one of L preset entity types. In the
current implementation we test with four common entity
types: Person (PER), Location (LOC), Organization (ORG)
and Miscellaneous (MISC).

We commence with a few core definitions for clarity:

Definition IIl.1. Entity Candidate corresponds to canonical
strings within a message stream that likely represent a real-
world entity of a specific type. For example, in Figure 1
‘beshear’ is an entity candidate of type Person that corre-
sponds to Governor of Kentucky Andy Beshear.

Definition III.2. Candidate Surface Forms correspond to
canonical strings in which candidates appear within a stream.
For example, in Figure 1 we consider ‘beshear’ to be the
surface form for the corresponding entity candidate. Candidate
Surface Forms may be ambiguous, such as ‘washington’ that
may refer to different entity candidates (of type person or
location), depending on the context in which they appear.

Definition II1.3. Candidate Mention is an individual reference
to a candidate in a message. Candidate mentions can appear as
many variations of the canonical surface form for a candidate
within a stream. In Figure 1 we find three mentions of the
entity candidate ‘coronavirus’ in tweets T2, T3 and T5.

An execution cycle in NER Globalizer proceeds as follows:
(1) The Streaming module fetches a stream of tweets, on a
particular topic, using the Twitter streaming APIL.

(2) First we run a batch of tweets through a pre-trained BERT
encoder fine-tuned on the downstream NER task, one sentence
at a time. This traditional execution setup is the Local NER
step. The extracted phrases are registered as seed candidate
surface forms in which entities are likely to populate the
stream. Also the token-level outputs of the language model’s
final layer, before token classification, are stored for every
tweet in the batch, as ‘entity-aware token embeddings’.

(3) Next we initiate Global NER that is decoupled from the
Local NER step and would therefore not require any alteration
upon a different choice of language model for Local NER. It
comprises of a few additional steps:

(i) First, a scan of the tweet batch extracts all mentions
of the seed candidate surface forms discovered so far. This
involves finding mentions that were missed by local NER in
the previous step, along with the ones that were already found.

(i) For every mention we generate a contextual embed-
ding based on the immediate local context. Here the token-
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level contextual embeddings generated during Local NER are
passed through a Phrase Embedder to construct an unified
embedding for the entire mention phrase.

(iii) For type classification, we consider that the same
surface form may correspond to entities of different types
depending on the context in which it is mentioned. To resolve
this ambiguity we use the local embeddings of surface form
mentions to derive an optimal clustering of type manifolds
in the mention representation space. Each cluster of mentions
corresponds to an entity candidate likely belonging to one of
the pre-set entity types.

(iv) Local contextual embeddings of every mention in a
candidate cluster are then aggregated using a learned pool-
ing function to generate the candidate’s global embedding.
The mention subspace for a candidate surface form and the
resulting global embeddings can be incrementally updated by
adding local embeddings into the pool as new mentions of the
surface form appear.

(v) Finally global candidate embeddings are passed through
the entity classifier to separate entities from false positives
(non-entities). This is a multi-class classification module with
outputs belonging to one of L + 1 classes — we consider an
additional non-entity class along with the preset entity types.
Mentions of candidates labelled as one of the L entity types
are produced in the system’s final NER outputs for the tweet
batch along with the type labelled during classification.

We elaborate on these steps in later sections.

IV. LocAL NER

The first step in NER Globalizer is Local NER. This is a
traditional NER setup where every tweet-sentence in a batch of
tweets is processed individually to detect entities from local
context. The NER process here is a sequence labeling task
generating BIO token labels which encodes the position of
a token relative to its nearest entity boundary as well as the
associated entity type. The state-of-the-art NER technique uses
a language model (Transformer encoder [43], [44] or BiLSTM
[29], [30]) to study the immediate context and generate token-
level contextual embeddings. In practice the language model is
pre-trained unsupervised learning of language representations
from large text corpora. The token-level contextual embed-
dings are obtained at the penultimate layer of the deep neural
network. For NER, pre-trained language models are appended
with a multi-class classification head to generate the token-
level output labels. The entire model is then fine-tuned end-
to-end using an annotated training set to optimize performance
for the downstream NER task. Therefore we interpret the
contextual embeddings, post fine-tuning, as local entity-aware
embeddings, extracted from the context of a single input.

Objectives: For a targeted stream of tweets, Local NER aims
to: (1) generate a set of candidate surface forms from mentions
in individual sentences, and (2) encode local entity-aware
information for every token in a sentence.

The Local NER module acts as a weak labeller in our
system. Despite the noisy outputs, it is essential for generating
a good set of seed candidate surface forms that will be
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directly utilized in later steps and are therefore crucial for
maintaining good recall. In NER Globalizer we use a state-
of-the-art language model — BERTweet [4] — to construct an
effective Local NER module. BERTweet is the first language
model trained on a large-scale corpus of English Tweets. This
system has the same architecture as BERT},s. [44] but uses the
RoBERTa [45] pre-training procedure for better performance.

To fine-tune the language model for NER, a feed forward
neural network layer and a softmax layer are added on top
of the last Transformer encoder. The fine-tuning is conducted
using the WNUT17 training set and is repeated five times
with randomly initialized seeds. The reported performance is
the average of five test runs. We use the pre-trained BERTweet
model publicly available at the Hugging Face model hub that
amasses a large collection of pre-trained language models
catering to a variety of downstream NLP tasks. Although the
WNUT17 dataset consists of six entity types, the type coverage
for NER-Globalizer is limited to the four types mentioned
in Section III. Hence we group instances of types ‘Product’,
‘Creative-work’ and ‘Group’ as the ‘Miscellaneous’ type.

The set of seed surface forms derived during the entity
labeling of Local NER are stored in a CandidatePrefixTrie
(CTrie for short). CTrie is a prefix Trie forest used for efficient
indexing. During Global NER, CTrie facilitates easy lookups
to find all mentions of these discovered candidate strings.
Another data structure produced at the end of Local NER is
TweetBase that maintains individual records for every tweet
sentence indexed by a (tweet ID, sentence ID) pair and a list
of detected mentions that get updated after Global NER.

In a traditional execution set-up this would conclude the
NER process. However, as explained in Section I, for Mi-
croblogs the NER outputs at this stage can be erroneous. The
length constraint imposed on Microblog content leaves inade-
quate context to be found in individual messages. This only ex-
acerbates the challenge that models face when dealing with the
varied contextual possibilities, non-traditional language uasge
and novel tokens populating the conversations in Microblogs.
This results in the same entity being inconsistently extracted or
mistyped across the breadth of a Microblog stream. To remedy
these issues we introduce the Global NER module.

V. GLOBAL NER

Local NER produces a set of candidate surface forms that
are likely to represent entities within a message stream as well
as local contextual embeddings of sentence tokens. But these
representations and inferences drawn from them are locally
limited and can be error-prone. To address these limitations,
the Global NER module shifts the focus of entity extraction
from being limited to the confines of a single sentence to
viewing mentions of the entity candidates collectively in a
type manifold or embedding subspace across the span of the
entire stream. This idea of representing an entity candidate
collectively through its mentions is called ‘collective process-
ing’. We make robust constructions in this space supporting
incremental computations that evolve with the stream itself.
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Objectives: The Global NER step addresses issues pertaining
to both entity mention detection and typing:

1. Removal of False Negatives: False Negatives arise when
Local NER fails to tag entity mentions in some sentences. In
Figure 1, coronavirus in T2 and T5 is a false negative.

2. Removal of False Positives: False Positives happen when
Local NER extracts non-entity phrases as entities.

3. Correction of Partial Extraction: Partial extractions
happen when a part of an multi-token entity string is left
outside of a labeling window in BIO format. Correcting such
partial extractions improves both recall and precision.

4. Correction of Mistyping: Classifying an entity mention
to incorrect entity type is registered as a false negative for the
target type and also impacts NER performance.

Global NER consists of four steps that we will now describe.

A. Mention Extraction

The objective of the mention extraction step is to discover
all mentions of candidate surface forms registered in the CTrie
during Local NER. This step is crucial for finding missed
mentions of candidates that would later on be verified as
entities. Hence it has a direct impact on recall. But additional
mentions are also useful in deriving better collective context
for candidates which even though have been tagged in Local
NER would ultimately be false positives. Hence we also posit
this step to be important for precision improvement.

Empowered by the candidate surface forms seeded during
Local NER in the CTrie, we reduce the mention extraction
process to that of a simplified lookup in the CTrie. The module
analyzes every token in a tweet sentence, in conjunction with a
CTrie traversal. With a case-insensitive comparison of tokens
with CTrie nodes, this results in two possibilities:

(i) A token that matches a node on the current CTrie path,
when cases are ignored.

(ii) A token matching no node in current path.

We check if a token forms a mention of a candidate surface
form alone or together with up to k following tokens.

The extraction process scans a tweet-sentence and identifies
the set of longest subsequences that match with candidate
surface forms in the CTrie, mentions extracted during Local
NER are verified, and sometimes corrected. For example, if
Local NER finds only a partial excerpt ‘Andy’ of the candidate
‘Andy Beshear’ in a tweet, but nonetheless recognized the
entire string in other tweets, the candidate surface form (‘andy
beshear’) will be registered in the CTrie. This partial extrac-
tion can now be rectified to the complete mention. The process
is syntax agnostic. It initiates a window that incrementally
scans through a sequence of tokens. In each step it checks:

a) whether the subsequence within the current scan window
corresponds to an existing path in the CTrie. If true, it implies
that the search can continue along the same path, by including
the token to the right within the window in the next iteration.

b) whether the node on this path, matching the last token of
the subsequence, refers to a valid candidate. If true, we record
the subsequence as the current longest match.
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In case of a mismatch, the last matched subsequence within
the current window is stored, and the process then skips ahead
initializing a new window from the position of the next token.
The search for a new match starts along a new CTrie path.
However, if the last search had failed to match with any of
the existing CTrie paths, the new window starts from the token
that is to the immediate right of the first token in the previous
window. The process is repeated until all tokens are consumed.
In the end we obtain a set of mention variations for each
candidate surface form in the CTrie.

B. Local Mention Embedding Generation

Collective processing views a candidate as an aggregate of
its mentions within a stream. To achieve this, we first need to
derive semantically meaningful representations of individual
mentions, in their local context, and then aggregate these rep-
resentations to derive a candidate’s global embedding. Given
that mention phrases may have variable number of tokens, we
need to combine the token-level embeddings coming out of
Local NER into a unified, fixed-size embedding of the entire
phrase. This is the role of the Phrase Embedder.

To generate mention phrase embeddings, we refer to two
lines of work. First is the literature on generating multi-token
embeddings at a sentence level for Semantic Textual Similarity
(STS) tasks [46], [47] and second is the idea of Supervised
Contrastive Learning [48].

Design of Phrase Embedder. We adopt a modification of
the ‘siamese network structure’ from SBERT [49]. We use
Local NER to generate token-level embeddings as the principal
component of the mirrored subnetworks in a triplet network
structure. Then we use average pooling to combine token-level
representations into an average embedding. Next we apply [2-
normalization on the average embeddings and pass the unit-
norm vectors through a final dense layer. Our experiments
reveal that adding the normalization step leads to better per-
formance. The local mention embeddings (local_emb € R%)
from token-level embeddings can be computed using one of
the Entity Phrase Embedder sub-networks as

||

pooled_emb = — Z token_emij
j=1

(O]

IT| =
— pooled_emb
pooled_emb = ———————— 2)
|pooled_emb|
local_emb = Wffpooﬁé_\emb +bsy 3)

where 1" denotes the set of tokens in the candidate phrase,
token_embr; € R< is the contextual embedding of the j-
th token in 7', generated by the Local NER engine. The
weight matrix W;; € R?*? and bias b;; € R? are trainable
parameters from the mirrored sub-networks. However, unlike
SBERT, the gradient computation is not backpropagated all the
way to the BERT engine of Local NER in our case. Instead,
the weights fine-tuned during Local NER remain frozen in our
siamese network and only the weights of the layers following
it are updated. This is because the Local NER module’s role in
our framework is to produce (Local) EMD results for which
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it had already been optimized. The rest of the sub-network
however work on the ‘entity-aware’ token embeddings to
produce an optimal phrase embedding.

Training the Phrase Embedder. Supervised contrastive es-
timation [48], [50], a well-explored domain of representa-
tion learning, learns embeddings by optimizing instance-level
discrimination. Contrastive estimation is typically trained on
datasets where individual records consist of an anchor example
for which learned embeddings are tuned to be closer to a set
of positive examples in the representation space and distant
from a set of negative examples. We deem this to be suitable
when choosing our objective function as the purpose of Phrase
Embedder is not only to capture the local contextual relations
between mention tokens but also to produce a mention embed-
ding that aids in the subsequent clustering step. The clustering
is essential to map mentions correctly to the candidate they
represent and resolve the issue of candidate surface form
ambiguity. We elaborate on this issue in Section V-C. As
such the phrase embedding should be such that, when mapped
to the representation space populated by all mentions having
the same surface form, mentions of the same type should
congregate together in a manifold that is well-separated from
mentions of other types. This would not only lead to well
separated candidate clusters but also generate accurate global
embeddings for type classification. We train the Embedder
with Triplet loss [51] and Soft Nearest Neighbour loss [52],
which are both special cases of contrastive loss.

Triplet Objective Function. Triplet loss uses one positive
(p) and negative (n) example per anchor. p is another instance
from the same class as the anchor (a) while n is from a
different class. Mathematically, we minimize the following
loss such that the distance between the anchor and positive
example is less than its distance with the negative example.

mazx(||local_emb, — local_emb, || — ||local_emb, — local_emb., || + €, 0)

local_emb,, is the embedding generated for a/p/n, ||.| is a
distance function, and e is the margin value. We choose the
Cosine distance function and set the margin value to be 1
to encourage orthogonality between the mentions of a surface
form that ultimately correspond to different entity types.

Soft-Nearest Neighbour Objective Function. For using
multiple positive and negative examples per anchor, noise-
contrastive optimization is extended to the Soft Nearest Neigh-
bour Loss [53], [52]. The loss measures entanglements of
type manifolds which characterizes how close pairs of men-
tion representations of the same entity (type) are, relative to
representations of surface form mentions of different entities.

—||tocal_emb; —local_emb, ||
™

) ) e
Jel...b:]¢z;y1:yj

>
f% > log( ) ®

L —”local_em,bi:local_evnbk Il

stl...b:k#i €

The loss computation is approximated over mini-batches.
Intuitively this loss is the negative log probability of sampling
a mention j from the same candidate cluster (type manifold)
as the anchor mention 7. The hyperparameter temperature ()
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controls the relative importance given to the distance between
pairs of mentions. [52] suggests setting the temperature to a
lower value for neighbouring points from the same class to
have more importance in tuning the representation space than
distant point from other classes. Here we use C'osine distance
and typically start with smaller values of 7 that we fine-tune.
Our experiments reveal that training the Phrase Embedder
with Triplet loss generates more accurate candidate clusters
and better performance for the Entity Classifier. Hence we
use this loss for the production version of NER Globalizer.
We provide more details on the training process of Phrase
Embedder with contrastive estimation in Section VI.

C. Candidate Cluster Generation

At this point NER Globalizer has extracted all mentions
of the various candidate surface forms in the CTrie along
with their local contextual representations in the embedding
space. But we need to consider the issue of ‘ambiguous
candidate surface forms’. Depending on the context in which
they appear, mentions of the same candidate surface form
can in fact refer to different entities or non-entities. Consider
in Figure 1 the commonly used pronoun us that has the
same surface form as the commonly used abbreviation of
United States i.e. ‘US’. When aggregating local mention-level
representations to generate global candidate embeddings, it is
crucial to first map mentions to their appropriate candidate
(type) manifold. Hence we use contrastive estimation when
generating local mention representations to leverage better
separation among mentions of different candidate types that
share the same surface form. We follow this up by deriving
an optimal clustering over the mention embeddings of every
unique candidate surface form discovered during Local NER.
This reveals the different underlying candidates that share the
representation space through the same candidate surface form.
For example, in case of the surface form ‘us’ we would ideally
have two separate clusters one corresponding to the non-entity
pronoun and the other corresponding to the country.

The candidate cluster generation step serves two purposes
in the execution cycle of NER Globalizer:

1. By studying the relative distance of a mention represen-
tation to that of other mentions in the embedding space, this
step associates mentions with proper candidate-type thereby
rectifying the issues of mistyping with Local NER.

2. For mentions missed by Local NER but discovered during
Mention Extraction there are no types attached since Local
NER produced the ‘O’ label for their tokens. The clustering
step also makes the optimal association of these mentions with
candidates to properly leverage their discovery for recall gain.

The number of candidate clusters per surface form is
unknown in advance. Hence we use agglomerative clustering
[54] which does not need to know the number of clusters. We
use Cosine distance with average linkage for the clustering
process to leverage the separation that was optimized when the
training of local mention embeddings. Agglomerative cluster-
ing needs a distance metric threshold beyond which clusters
are considered separate during the bottom-up merging process.
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For Cosine distance a value of 1 indicates orthogonality
that we set as the margin value of our Triplet loss. Hence
we tune the appropriate threshold to be less than 1. We
also consider including a clustering loss when learning local
mention representations by looking into some recent literature
on Deep Clustering [55], [56], [57]. However these methods
also require that the number of clusters be fixed and known a
priori. Since the candidate clusters corresponding to a candi-
date surface form violate this, we keep the objective function
for representation learning limited to instance-level contrastive
learning and the subsequent clustering step unsupervised. Both
the representation space for a candidate surface form and the
clusters drawn from its mentions are updated as and when new
mentions arrive in the stream.

D. Entity Classifier

The local embeddings of individual mentions in a candidate
cluster are limited to the context of the sentence containing it.
We add these local embeddings to the candidate’s record in a
data structure called the CandidateBase, which maintains an
entry for every candidate discovered for a stream during the
previous step. In essence, every candidate cluster corresponds
to a unique entity candidate in the CandidateBase. Next, a
pooling operation on all the local mention embeddings within
a candidate cluster gives the ‘global candidate embedding’.

a; = Wflocal_embj + by

©)
exp(ay)

= Il ™
>orly exp(ag)

wj

[n|

global_emb = Z wjlocal_embﬁj ®)

j=1

where the weights W,eR% and bias term b, are learnable
parameters, 77 denotes the set of mention-level local embed-
dings for a candidate, and w, is the weight of the local
embedding (local_emby, eR?) of the j-th mention in 7. The
embedding global_emb is global in the sense that it generates
a consensus representation from all contextual possibilities in
which a candidate appears in the stream.

The global candidate embeddings are fed to a network of
multiple dense layers with ReLU activation and a softmax
output layer. This module is the Entity Classifier. 1t is trained
to determine if a candidate belongs to one of L + 1 classes —
an entity of one of the L pre-set types or a non-entity.

The classifier is trained using global embedding records of
labelled entities from D5 (see Table I). We find that adding
the non-entity class is effective in separating the L entity types
from non-entities. However, Dj is annotated only with entities.
Hence to include non-entities and their global embeddings in
the training set of the classifier, we run BERTweet instantiated
EMD Globalizer on D5 and curate a set of seed non-entities.

VI. EXPERIMENTS

We conduct extensive experiments to test NER Globalizer
for named entity recognition in tweets. First we test the
effectiveness of our Global NER technique by calculating the
improvement it brings on the standalone Local NER module in
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TABLE I: Twitter Datasets

Dataset Size  #Topics  #Hashtags  #Entities
D, 1K 1 1 283
Do 2K 1 1 461
D3 3K 3 6 906
Dy 6K 5 5 674
Ds 3430 1 1 -
WNUT17 1287 - - -
BTC 9553 - -

our implementation, i.e. BERTweet [4]. In addition, we also
use three existing Global NER systems as baselines against
NER Globalizer to compare how effectively global context is
mined and used for NER in each system. We implemented
NER Globalizer in Python 3.8 and executed it on a NVIDIA
Tesla T4 GPU on Google Colaboratory.

Datasets: The datasets used to evaluate NER Globalizer are
listed in Table I. D;-D, are streaming datasets that contain
messages crawled directly from Twitter streams. The topics
covered here are Politics, Sports, Entertainment, Science and
Health, with (D) curated from a Covid-19 tweet stream. Hav-
ing datasets that are subsets of tweet streams helps preserve
their natural topic-specificity that often repeats a finite set of
entities. This is used in Global NER to collectively process
candidates, without making the analysis biased towards a
particular topic. In real-world deployment, a topic classifier
[58] could precede an NER tool launched for streams.

Other than the four streaming datasets D1-D,, two datasets
popular for NER benchmarking, WNUT17 [2] and BTC [9],
are also used in our evaluation. These are non-streaming
datasets curated with a random sampling of tweets. Although
they do not characterize the application setting for NER
Globalizer, we use them to gauge the system’s effectiveness
against established benchmarking standards.

We use dataset D5, a collection of 3.4K tweets from a
single tweet stream to generate entity candidates and train
the supervised components of our Global NER setup, namely
the Phrase Embedder and Entity Classifier. The datasets are
labelled with entity mentions along with their associated entity
types. Since our system is also designed to recognize and
separate non-entities, we need representative non-entities to
complete the training of NER Globalizer. To this end, we run
BERTweet instantiated EMD Globalizer on D5 and generate
a set of seed non-entities that we use to both learn mention
embeddings for non-entities and train the Entity Classifier.

Performance Metrics: We use Precision (P), Recall (R)
and Fl-score for each of the four pre-set entity types to
evaluate NER effectiveness. Further, we also use Macro-
F1 (F1 (Entity) in the WNUT17 shared task [2]) to make
summary comparisons of NER performance across different
systems in our evaluation. Note that a correct NER detection
requires both EMD and Entity Typing to be handled correctly.
Local NER Baselines: We use two state-of-the-art NER
systems that exhibit good performance on the WNUT17
dataset as our Local NER baselines. Aguilar et al. [3] was the
best performing system among those featured in the WNUT17
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NER challenge. It uses a BILSTM-CNN-CREF pipeline within a
multi-task learning pipeline that learns higher-order character-
level, token-level and lexical feature representations. BERT-
NER [44] is the seminal BERT language model by Devlin et
al. that demonstrated the efficacy of contextual embeddings
for a variety of language tasks. Here we fine-tune it for NER.

Global NER Baselines: We use three baselines: Akbik et
al. [7] and two Document NER systems, HIRE-NER [40]
and DocL-NER [41], to test Global NER. We compare their
performance with NER Globalizer on our Twitter datasets.
Despite the structural differences between documents and
tweet streams, both exhibit topically correlated cross-sentence
information. Much like the intuition of aggregating local em-
beddings for global representations in NER Globalizer, HIRE-
NER and DocL-NER use a similar observation in their design
for collecting global information. Hence their Global NER
techniques are appropriately considered in our evaluation.
When executed on our datasets, both systems treat messages
in a stream as composite content, much like a document.

Training the Phrase Embedder: The Phrase Embedder dur-
ing Global NER combines token-level contextual embeddings
of a candidate surface form’s mention, obtained during Local
NER, into a unified local embedding for the entire mention
phrase. The Phrase Embedder is trained through contrastive
estimation with two different objective functions that require
their own dataset curation and data augmentation process.

1. Mention Triplet Mining: Training with triplet loss re-
quires a dataset where individual records are triplets of an
anchor, a positive and a negative example. To this end, we use
the entities and non-entities in D5 as our candidate set and
gather their corresponding mention sets. For every mention in
the mention set of an annotated candidate, a positive example
would be another mention from the same set while a negative
example would be a mention of a candidate that shares the
same surface form but is of a different type. We want to
increase the separation between the anchor and the nega-
tive example such that the mention-level phrase embeddings
produced in this step aids the clustering step over mentions
that have the same surface form but need to be separated
based on the entity type to which they correspond. Note that
not every surface form resides over all L + 1 types that we
consider during clustering and classification. In such a case,
we augment the dataset by collecting negative examples from
mention sets of candidates that do not share the same surface
form and belong to a different type. Here the objective is to
train the Phrase Embedder to yield better inter-type separation
among candidate mentions, when generating local mention-
level embeddings. Following this procedure, we obtain 15.77
million triplets from Dj to train the Phrase Embedder.

2. Mention Cluster Mining: Using Soft-NN Loss requires
a dataset where individual records are mentions of entities
or non-entities, whose distances from mentions within the
same candidate manifold, i.e. positive examples, are reduced,
in contrast to other mentions of its surface form that corre-
spond to different candidates. Even in this case we use data
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augmentation when considering mentions of surface forms
that do not reside over all L + 1 types. In these cases we
augment mentions of one randomly chosen candidate from
each remaining type. To this end, we create a dataset of 9134
records, each consisting of a mention of an entity or a non-
entity in D5 along with its positive and negative example set.
During training, we use Adam optimizer [59] with a fixed
learning rate of 0.001 and maintain a 80-20 train-to-validation
split. Given the vastly different dataset sizes for the two types
of training, we set a batch size of 2048 for training with the
Triplet objective function, and a batch size of 64 for the Soft
NN objective function, in order to optimize the overall training
time. For regularization we use both early stopping and weight
decay and also add batch normalization. We train over 200
epochs and compute performance on the validation set after
each training epoch to save the best model checkpoint but we
also enforce early stopping after 8 continuous epochs.
TABLE II: Training of Phrase Embedder and Entity Classifier

Entity
Objective Dataset Training | Validation | Classifier
Function size Loss Loss Validation
Macro F1
Triplet 1577 M 0.0012 | 0.0015 92.8%
triplets
Soft NN | 7134 candidate | 390|396 77.3%
mentions
TABLE III: NER Globalizer vs. Local NER systems
Dataset NER System PEREHHEIO?IPC (OFliGS Cor?\)/HSC M;?ro
NER Globalizer | 0.84 | 0.87 0.5 0.39 0.65
Dy Aguilar et al. 0.22 | 0.24 0.22 0.07 0.19
BERT-NER 0.65 | 0.52 0.2 0.13 0.38
NER Globalizer | 0.82 | 0.68 0.54 0.58 0.66
Do Aguilar et al. 0.57 0.59 0.19 0.05 0.35
BERT-NER 0.71 0.54 0.2 0.08 0.38
NER Globalizer 0.9 0.81 0.71 0.51 0.73
D3 Aguilar et al. 0.44 | 0.56 0.46 0.14 0.4
BERT-NER 0.65 0.65 0.12 0.15 0.39
NER Globalizer | 0.83 | 091 0.68 0.71 0.78
Dy Aguilar et al. 0.53 0.68 0.27 0.07 0.39
BERT-NER 0.65 0.68 0.38 0.41 0.53
NER Globalizer | 0.76 | 0.71 0.52 0.44 0.61
WII\I7UT Aguilar et al. 0.37 0.28 0.2 0.14 0.25
BERT-NER 0.52 | 042 0.22 0.35 0.38
NER Globalizer 0.7 0.71 0.48 0.43 0.58
BTC Aguilar et al. 0.35 0.41 0.15 0.06 0.24
BERT-NER 0.63 0.59 0.15 0.22 0.4

Training Entity Classifier: Upon training the Phrase
Embedder, we use it to generate local embeddings of mentions
in the ground truth clusters of entities/non-entities labelled in
Ds. Next, for each ground truth cluster, the local embeddings
are aggregated using weighted pooling to generate a global
candidate embedding that is then passed through the rest of
the Entity Classifier network to generate the final class (type)
label. The learned pooling operation and the classification
network are trained end-to-end to optimize the final NER
Classification performance. We obtain 1391 candidates from
Ds and use a 80-20 training-to-validation split to train the
Entity Classifier over 200 epochs. We use Adam optimizer
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TABLE IV: Ablation Study: Effectiveness and Execution Time (in seconds) with NER Globalizer
Dataset Entity Local NER Global NER F1 Time
Type P R Fi Exe;utlon P R Fi Exef:utlon Gain Overhead
Time Time
ORG 0.85 | 0.13 | 0.22 0.55 | 045 | 0.50 121.72%
MISC | 0.19 | 0.09 | 0.12 0.56 | 0.30 | 0.39 219.87%
Dy LOC 0.69 | 0.78 | 0.73 33.16 094 | 0.83 | 0.87 34.32 20.39% 116
PER 0.82 | 0.68 | 0.74 094 | 0.76 | 0.84 13.58%
ORG 0.5 0.15 | 0.23 0.55 | 0.53 | 0.54 133.92%
MISC | 0.16 | 0.07 | 0.09 0.60 | 0.56 | 0.58 494.83%
Dy LOC 0.49 | 0.73 | 0.59 40.23 0.76 | 0.62 | 0.68 42.58 16.46% 235
PER 0.70 | 0.82 | 0.76 0.77 | 0.87 | 0.82 8.17%
ORG 0.68 0.1 0.18 0.69 | 0.88 | 0.77 343.63%
MISC | 030 | 0.22 | 0.25 0.68 | 0.54 0.6 137.14%
Ds LOC | 066 | 068 | 067 ] >0 [082 [o080 [osa| ¥ [27ma | 8
PER 0.81 0.85 | 0.83 090 | 092 | 091 9.69%
ORG 0.89 | 0.23 | 0.37 0.66 0.7 0.68 85.87%
MISC | 0.57 | 0.34 | 043 0.89 | 0.59 | 0.71 66.6%
D4 LOC 0.76 | 0.81 0.78 230.75 0.89 | 093 | 091 237.53 15.99% 6.78
PER 0.69 | 0.76 | 0.72 0.83 | 0.84 | 0.83 15.44%
ORG 0.26 | 0.16 | 0.20 0.6 045 | 0.52 160%
MISC | 049 | 0.24 | 0.33 052 | 039 | 0.44 38.34%
WNUTI7 1561047 {052 (049 | ** oo (o071 | 200 [4a31% 175
PER 0.76 | 0.62 | 0.68 0.83 | 0.69 | 0.76 11.76%
ORG 0.74 | 0.09 | 0.16 0.78 | 035 | 0.48 201.08%
MISC | 0.16 | 0.44 | 0.23 033 | 0.62 | 043 83.55%
BTC LOC 0.63 | 0.65 | 0.64 238.62 0.73 | 0.69 | 0.71 12.09 10.87% 25071
PER 0.74 | 0.56 | 0.64 0.83 | 0.61 0.7 10.3%
TABLE V: Effectiveness of Global NER systems
[59] with a fixed learning rate of 0.0015 and batch size of 32. D Global NER Entity Type (F1 score) Macro
o ataset S PER | LOC | ORG | MISC | Fl
We compute the macro-F1 score after each training epoch on ystem
th lidati ¢ d select the best checkpoint t t NER Globalizer | 0.84 0.87 0.5 0.39 0.65
e validation set, and select the best checkpoint to compute b TRE-NER 048 T 05 T 012 013 031
the performance score on the test set. Here, we also enforce E DocL-NER 04 [ 077 | 028 | 039 0.46
early stopping after 20 continuous epochs. Akbik et al. 04 | 047 | 029 | 044 | 04
.. . . . NER Globalizer | 0.82 0.68 0.54 0.58 0.66
The training details of Phrase Embedder with two different b HIRE-NER 04T T 062 T 017 T 016 034
loss functions that we explore are compiled in Table II. We 2 DocL-NER 053 [ 0.67 | 028 | 037 0.46
also provide the validation performance of Entity Classifier Akbik et al. 044 | 062 | 049 | 033 047
hat trai . h fter the Ph Embedd W NER Globalizer 0.9 0.81 0.71 0.51 0.73
tl at we train, in each case, after the Phrase Embedder. We b HIRE-NER 069 T 068 T 026 T 032 040
achieve a better performing Entity Classifier when the Phrase 3 DocL-NER 031 [ 035 | 039 | 0.12 0.29
Embedder is trained with Triplet loss. So we set our implemen- Ng]];béli ebt i‘_l- 00-873 gg? 00638 83? 833
. . . . . obalizer . . . . .
tation to th1§ variant of Phrase. Embedder and Entity Classifier b TRE-NER 042 T 073 T 021 1 0.6 033
when reporting performance in our subsequent analyses. 4 DocL-NER 036 | 046 | 0.12 | 0.09 0.26
Akbik et al. 0.39 0.65 0.61 0.33 0.5
. . NER Globalizer | 0.76 0.71 0.52 0.44 0.61
A. Evaluating NER Globalizer WNUT | HIRE-NER | 048 | 05 | 0.2 | 0.3 | 03I
) ) ) 17 DocL-NER 0.49 0.55 0.10 0.13 0.32
We evaluate the effectiveness of NER Globalizer on its AKbik et al. 059 | 059 | 0.14 | 0.17 0.37
primary objective of using collective processing for better NER NER Globalizer | 0.7 | 071 | 048 | 043 | 0.58
. HIRE-NER 0.48 0.59 0.25 0.11 0.36
performance. To this end, we compute the performance boost BTC DocL-NER 045 T 061 T 033 0.09 037
brought by Global NER by comparing F1-score at the end of AKDIK et al. 049 | 0.62 | 035 | 0.10 0.39

our system’s Local and Global NER steps for multiple datasets
and check for improvement. We also compare the performance
of NER Globalizer to state-of-the-art Local NER systems that,
although effective, follow conventional processing, as well as,
other Global NER baselines that have their own design of
mining global information for good NER performance.

Comparison with Local NER Systems: In Table Il we show
the performance of state-of-the-art but conventional Local
NER techniques for four pre-set entity types on our evaluation
datasets. We use Aguilar et al. [3] and also fine-tune a BERT
encoder (BERT-NER) that is the current state-of-the-art for
NER. NER Globalizer is able to significantly outperform these
strong baselines on both streaming and non-streaming datasets.
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Performance improvement with Global NER: We zoom
into the potential of Global NER by comparing the improve-
ments it brings upon the local module, BERTweet, which itself
is an effective Local NER system. The columns under ‘Local
NER’ in Table IV show the performance of conventional lan-
guage modeling that is fine-tuned to recognize entities of four
pre-set types. BERTweet has reportedly set the performance
bar on the WNUT17 dataset thus being an already robust
model. Hence we check if our Global NER module can still
bring in meaningful improvements. The columns in Table IV
under ‘Global NER’ show the NER performance once the
Global NER components have been executed. The column F1
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Gain indicates the percentage gain in F1 score achieved from
Local to Global NER for each entity type in a dataset. This
is the improvement that NER Globalizer achieves on top of
the Local NER module. The column Time Overhead notes the
additional execution time (in seconds) following Local NER.
These results show that Global NER produces an average
Macro-F1 gain of 47.04% across all datasets. The average
individual performance gains for the four entity types are:
a) 11.49% for Person, b) 22.58% for Location, c¢) 174.37%
for Organization, and d) 173.39% for Miscellaneous. The
highly uneven improvements across different entity types is
due to BERTweet’s under-performance in detecting the less
frequent and contextually divergent entity types, Organization
and Miscellaneous, and its tendency to label their entity
mentions as instances of the other two types. NER Globalizer
corrects many of these mislabelings thereby producing close
to 2 times F1 improvement for these types with a minuscule
overhead in execution time.
Improvement on Streaming Datasets: For datasets D;-D,
that retain the inherent properties of Twitter streams, NER
Globalizer yields an average Macro F1 gain of 49.89%. For
individual entity types, the average F1 gains are: a) 11.72% for
Person, b) 20.07% for Location, c) 171.28% for Organization,
and d) 229.61% for Miscellaneous.
Improvement on Non-Streaming Datasets: Datasets
WNUT17 and BTC are random samplings off the Twitter
sphere, avoiding the latter’s tendency to repeat the same
entities within streams. However, NER Globalizer is still able
to improve upon its Local NER performance, albeit to a less
significant degree than streaming datasets. In this case, the
average Macro F1 gain across all Local EMD systems is
41.35%. For individual entity types, the average F1 gains are:
a) 11.03% for Person, b) 27.60% for Location, c) 180.54%
for Organization, and d) 60.95% for Miscellaneous.
Comparison with Global NER Baselines: We compare the
performance of three Global NER systems: Akbik et al. [7],
HIRE-NER [40] and DocL-NER [41], with NER Globalizer
on all the annotated datasets in Table V. Here we test how
effectively global information is captured in each system. NER
Globalizer consistently outperforms other Global NER base-
lines across all datasets by 47.39% on Macro F1, especially
by achieving higher precision. Existing Global NER baselines
simultaneously update global features for every unique token
encountered during training in their memory structures and
append them to local token embeddings to infer final output
labels of tokens in a sentence. Adding non-local contextual
information inevitably introduces noise which can interfere
with the decoder’s inference of output labels. Distinct from
this, NER Globalizer limits curating global contexts only for
entity candidates that are aggregated from the local contexts
of a candidate’s mentions from within the entire scope of the
stream. Using this the system is able to better separate entities
from noisy candidates.

B. Ablation Study on Framework Components

While it is evident that the proposed NER framework
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is capable of enhancing performance upon Local NER, we
wanted to take a closer look at how the individual framework
components contribute towards the overall NER performance.
To this end, we execute the framework at different stages of
its execution by incrementally adding components, thereby
resulting in two additional baseline variants. Here, we use the
entire collection of annotated streaming datasets (D1-Dy) as
the test set. Figure 3 shows the improvement in performance
as individual system components are added. From bottom
to top, the first curve (with only Local NER) reports the
weakest performance, proving the limitations of the standalone
local system in capturing all the entity mention variations
within the stream. The two middle curves are the NER
performance we get just by following up Local NER with
first the mention extraction process that simply adds missed
mentions of entities detected in the local EMD phase. Surface
forms that correspond to multiple entity types are handled by
assigning the most frequent type. The next baseline adds the
local candidate embedding generation step, where the entity
classifier is trained only on local embeddings. The topmost
curve is the performance yielded at the end of run of the
entire framework with the inclusion of global embeddings.
BERTweet [4] is a very competitive NER system. Even for
such a system, NER Globalizer is still able to significantly
improve on its NER effectiveness over the streaming datasets.
Following up its execution with just the candidate mention
extraction process gives a modest improvement of 12.32%
where the focus is mainly on improving the recall by yielding
more consistent mention detection across tweets. Upon using
the local embeddings we estimate an average improvement
of 29.88% in Macro-F1 score from the local system. However
the full potential of NER Globalizer is attained when using the
global embeddings yielding an average overall improvement
of 49.89% across all streaming datasets. This is because with
all components of Global NER in place, candidates are further
verified and false positives are removed.

C. Error Analysis

Though NER Globalizer improves upon traditional NER
systems, it is not perfect. Here we analyze its errors.

1) If Local NER misses every mention of an entity, its
surface form will likely not be added to the CTrie or be
considered during Global NER and all its mentions will go
undetected by NER Globalizer. Of the 11412 entity mentions
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in our streaming datasets from 2306 unique entities, the NER
Globalizer failed to find 3008 (26.35%) mentions of 1018
entities that are entirely missed by the local NER module.

2) If Global NER mistypes a candidate, then every mention
in its candidate cluster will either be left out as a non-entity
or associated with an incorrect type. This would also include
mentions that the Local NER correctly found at first. A false
negative from Entity Classifier thus hinders the system’s ob-
jective to correctly recover entity mentions that the Local NER
had missed. In our experience, it is rare that an entity mention
correctly detected by Local NER is mislabelled at the global
step. Of the 11412 entity mentions in our streaming datasets,
NER Globalizer mistypes only 1093 mentions (9.57%) due to
error by the Entity Classifier.

3) Handling of long-tailed entities: To better understand the
false negatives from Global NER, we take a look at how the
Entity Classifier’s performance changes as more mentions of
an entity are found in a stream. Figure 4 shows that it is consis-
tently able to correctly detect high-frequency entities from the
streaming datasets. We group the annotated entities of different
mention frequency in bins of width 5 and track the classifier’s
recall in labelling them correctly. For infrequent entities, the
recall is modest — around 46.8% for entities with 5 or less
mentions. But it increases quickly with mention frequency and
most frequent entities are correctly labelled. This validates the
intuition that collectively processing more mention variations
of an entity leads to more robust global embeddings, avoiding
randomness. Although long-tailed entities are a common issue
in NER, our system can still rectify the mislabeling of many
such entities by collecting more instances further downstream.

D. Discussions

Here we summarize some additional implications we ob-
served upon evaluating the proposed system:
« EMD Gains: Although the focus of this framework is
to solve the NER problem within a collective processing
setup, the enhancements we make here also have improved
the EMD performance, especially when compared to its
previous collective processing counterpart EMD Globalizer.
The average improvement in EMD F1 score is 7.9% across
all our annotated datasets. The gains in EMD performance
come from the NER framework better handling surface form
ambiguity, especially by maintaining high precision in cases
where an entity shares the same surface form as a non-entity.
Handling surface form ambiguity: A challenge with NER
is when entity types share the same surface form with
each other or a non-entity. NER Globalizer was able to
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consistently handle various instances of such ambiguity,
e.g., differentiating mentions of the country ‘US’ from the
pronoun us, or ‘Fireflies’ the song from the insect species.
Recall vs Precision Gains: Our recall gains are consistent
across all datasets over all four entity types. We attribute
this to the Global NER process that gathers all mentions
of candidate surface forms and then groups them to appro-
priate candidate clusters such that upon validation of their
legitimacy by the Entity Classifier all mentions within an
entity cluster is produced in the final outcome. Largely we
find the curation of global entity embeddings during Global
NER to be much more robust to combat local contextual
noisiness and incorrect entity classification, thereby yielding
considerable improvements in Precision as well. The very
occasional drop in Precision (for type ORG with datasets
Dy and Dy in Table IV) is due to contextual ambiguity,
especially for entities with low mention support.
Improvement for less popular/mixed-genre entity types:
A distinct trend with NER Globalizer is its strong improve-
ment over the Local NER module for Organization and
Miscellaneous types that are less frequent in training sets or
cover entities of multiple fine-grained types (like Creative-
work/Product). Local NER’s predisposition to map entity
mentions of these types to more frequent entity types like
Person/Location is often due to confounding local context
that collective processing can overcome. On average, we saw
an F1 Gain of about 1.75 times for Organization and Mis-
cellaneous types. We link the occasional drop in Precision
in some cases for the ‘ORG’ class to mistyping stemming
from contextual ambiguity, especially among entities with
too low mention support to override ambiguous contexts.

VII. CONCLUSION

In this paper we presented the NER Globalizer pipeline for
microblog streams that builds upon the notion of collective
processing for better entity extraction. We started with the
conventional wisdom for NER to extract candidate surface
forms from the local context of individual sentences. But the
inadequacy and noisiness of local context make this unsuitable
for producing final NER outputs. We then included a Global
NER module. It first separates individual mentions within the
stream into candidate clusters and uses their local embedding
to collectively represent entity candidates. Using these global
representations leads to more accurate entity detection and
better overall NER performance. NER Globalizer reported
superior performance than several state-of-the-art Local and
Global NER systems, outperforming the best Global NER
baseline by 47.39% in Macro-F1 on average. We also recorded
a Macro-F1 improvement of 47.04% from the BERTweet
model at the Local NER stage, where traditional NER systems
typically cease execution.
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