
Globally Aware Contextual Embeddings for Named
Entity Recognition in Social Media Streams

Satadisha Saha Bhowmick
Department of Computer Science

Binghamton University

Eduard C. Dragut
Department of Computer Science

Temple University

Weiyi Meng
Department of Computer Science

Binghamton University

Abstract—An important task for Information Extraction from
Microblogs is Named Entity Recognition (NER) that extracts
mentions of real-world entities from microblog messages and
meta-information like entity type for better entity characteriza-
tion. A lot of microblog NER systems have rightly sought to
prioritize modeling the non-literary nature of microblog text.
These systems are trained on offline static datasets and extract
a combination of surface-level features – orthographic, lexical,
and semantic – from individual messages for noisy text modeling
and entity extraction. But given the constantly evolving nature
of microblog streams, detecting all entity mentions from such
varying yet limited context in short messages remains a difficult
problem to generalize. In this paper, we propose the NER
Globalizer pipeline better suited for NER on microblog streams.
It characterizes the isolated message processing by existing NER
systems as modeling local contextual embeddings, where learned
knowledge from the immediate context of a message is used to
suggest seed entity candidates. Additionally, it recognizes that
messages within a microblog stream are topically related and
often repeat mentions of the same entity. This suggests building
NER systems that go beyond localized processing. By leveraging
occurrence mining, the proposed system therefore follows up
traditional NER modeling by extracting additional mentions of
seed entity candidates that were previously missed. Candidate
mentions are separated into well-defined clusters which are
then used to generate a pooled global embedding drawn from
the collective context of the candidate within a stream. The
global embeddings are utilized to separate false positives from
entities whose mentions are produced in the final NER output.
Our experiments show that the proposed NER system exhibits
superior effectiveness on multiple NER datasets with an average
Macro F1 improvement of 47.04% over the best NER baseline
while adding only a small computational overhead.

I. INTRODUCTION

In recent years, Named Entity Recognition (NER) from

microblogs such as tweets has received much attention as a

task of the automatic Information Extraction pipeline for a

variety of analytical efforts [1]. NER deals with the extraction

of contiguous strings within text that represent entities of

interest in the real world. These strings (also known as surface

forms as described in WNUT17 [2]), are referred to as Entity

Mentions (EMs). Broadly, NER consists of two sub-tasks: 1)

Entity Mention Detection (EMD) involves compiling the string

variations of entities within text, and 2) Entity Typing attaches

a type (e.g., person, location) to each EM for better context-

specific characterization of EMs. In this paper, we focus on

the challenges involving both NER sub-tasks on microblog

streams, and propose a system to maximize NER effectiveness.

Fig. 1: NER on a message stream discussing Coronavirus

Example 1. Tweets in Figure 1 have mentions (in many

string variations) from six unique entities of four different

entity types: ‘beshear’ in T1 and T4, and ‘trump’ in T5 are of

type Person; ‘italy’ in T2 and T6, ‘US’ in T5, and ‘canada’ in

T6 are of type Location; ‘NHS’ in T7 is of type Organization;

and, ‘coronavirus’ in T2, T3, and T5 is a disease that we

categorize into the Miscellaneous type.

Microblog focused NER systems primarily seek to general-

ize the non-normative language of Microblogs. Their solutions

to this problem follow an off-line paradigm, mostly employing

supervised models that are specifically trained on messages

sampled from Microblogs. To extract contextual information

from messages, they use different surface level features – word

embeddings, lexical, orthographic and semantic (POS tags,

dependency trees), and sometimes even external gazetteers.

The processing philosophy of these NER systems is to exam-

ine individual microblog messages once, in the order of their

arrival in the stream. However these models do not make any

distinction in handling the incremental and topically-correlated

content generation process in Microblog streams from the

offline static datasets that they use for model training.

Microblog character-limits leave inadequate context to be

extracted from singular message points. This only exacerbates

the challenge models face when dealing with the varied

contextual possibilities, non-traditional language usage and

novel tokens that populate Microblog messages. The rarity

of many microblog entities in off-the-shelf lexical resources

therefore still limits the performance of NER systems [3]

that supplement the local context from individual messages

by referencing gazetteers. The isolated message execution

philosophy of existing systems has two major drawbacks

1544

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00122

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

12
2

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

that lead to sub-optimal effectiveness for NER on Microblog

streams: (1) the inconsistency in detecting the same entity

string across the entire breadth of a Microblog stream, i.e.,

the same entity mention is detected in some contexts but

missed in others, and (2) the erroneous type classification of

certain entities. Since type classification is heavily context-

dependent, the sparse local context can often lead to incorrect

entity typing. To better understand these problems, we perform

NER on a message stream discussing the most prevalent

conversation topic of recent times – the Coronavirus. We use

a variant of the BERT language model pre-trained on a large

Twitter corpus, namely BERTweet [4], that is better attuned

to this noisy language setting. We fine-tune the BERTweet

language model on the WNUT17 [2] training data for NER.

A Case Study. The objective of this study is to explore the

performance of a deep NER system on a microblog stream and

understand its limitations. We run BERTweet on a streaming

dataset of 2K tweets (D2, see Table 1 in Section VI) generated

from a Coronavirus tweet stream. Although BERTweet reports

state-of-the-art performance on benchmarking datasets like

WNUT17, its effectiveness on this microblog stream’s subset

is modest, with a macro-F1 score of 43%. Not only was the

extraction of novel but frequent entities inconsistent across

different messages in the stream, but the F1-score also varied

heavily depending on the target entity type.

Takeaways. A closer examination of the BERTweet model

on the Coronavirus dataset reveals evidence for the limitations

of isolated message processing. Figure 1 shows that BERTweet

often missed mentions of one of the most important and

frequent entities in this stream, i.e. ‘Coronavirus’. Other entity

mentions that came up frequently but were also missed include

‘Italy’ and ‘US’. In addition, the F1-score of BERTweet across

different entity types exhibited high variance. As a disease,

entities like ‘Coronavirus’ or ‘Covid 19’ have been labelled

as the Miscellaneous type, however their inconsistent detection

had an impact on the final F1-score of this entity type. Apart

from missed entity mentions, the frequent mistyping of entities

also contribute to this. The few mentions of ‘Coronavirus’

recovered by BERTweet were misclassified as type ‘Person’.

Only 7% of the entities of type ‘Miscellaneous’ were ulti-

mately recovered by BERTweet yielding a low F1-score of

only 9% for this entity type. In contrast, BERTweet’s F1-score

for entity type ‘Person’ is 75%, showing how inconsistent the

performance can be over different entity types when solely

considering messages in isolation. BERTweet’s performance

also shows similar behaviour for other streaming data in our

experiments. For example in dataset D3 (see Table IV), entities

of type ‘Organization’ like ‘Justice Department’ or ‘Russian

Government’ were repeatedly mistyped.

Entities appear in many syntactic variations in the microblog

ecosystem that constantly generates messages on multiple

contemporaneous topics, i.e. conversation streams, evolving

over time [5], [6]. The failure to consistently identify these

entity mentions leads to reduced EMD performance. The high

contextual variance in microblog messages with locally sparse

contexts makes it difficult even for sophisticated NER models

like BERT to make accurate type inferences in this setting.

Also fine-tuning deep NER models for better performance

with messages from newer topic streams is not always a

scalable proposition, given the sheer volume and variety of

conversation topics continuously emerging in platforms like

Twitter. As an alternative, we propose a solution that adapts

better to the shifting conversation trends of microblogs by

utilizing the potential of ‘Global Contextual Embeddings’ to

yield better NER performance.

Collective processing with non-local context. Deep NER

models operate on messages individually by first using a

language model to generate token-level contextual embeddings

and then a token classification head to generate outputs that

encode both entity boundaries and type from the local context.

Since local contexts can be inadequate for accurate inference

in downstream tasks, some systems have explored collating

non-local information. Akbik et al. [7] derived ‘global con-

texts’ for every unique token in its training set by performing

an average pooling operation on all the local contextual

embeddings generated for their mentions within a dataset.

These global contexts are attached to the local embedding,

when a token from the training set is encountered at test

time. We argue that microblog streams are even better suited

to generate global contextual representations aggregated over

multiple non-local contexts, owing to their heavy entity/token

recurrence. Expanding on this insight, we propose generating

global contextual representations to alleviate the issues of

inconsistent EMD for microblog streams in [8]. It begins

with a clear delineation of local and global contexts in EMD

computation for a streaming setting. Local contexts suggest

entity candidates. It then aggregates local representations of

candidate mentions to generate global contextual embeddings

and distinguish entities from false positives. In essence, [8]

shifts the focus of EMD computation beyond the confines of

a single sentence to collectively process mentions of an entity

across the entire span of a stream.

In [8], we first presented the potential of collective process-

ing on microblog streams for the EMD subtask. In this paper,

we lay out a system that (i) addresses the unique challenges

when bringing Entity Typing into the fold, and (ii) sets a

collective processing pipeline for the complete NER task. The

locally limited context in microblog messages results in incon-

sistent EMD and mistyping of entity mentions. Aggregating

local contextual embeddings across all syntactic variations of

an entity candidate has yielded improvements for EMD, how-

ever simply extending the framework to Entity Typing leads

to misleadingly aggregating contexts from mentions that have

the same surface form, but correspond to different entities. For

example, the candidate string ‘Washington’ can correspond

to entities of two different types – Person (the American

president) or Location (the American state) – depending on its

context. Since Entity Typing is inherently context dependent,

arbitrary aggregation of local contexts without factoring in

such surface form ambiguity reduces the benefits of collective

processing and generates incorrect entities. The solution we

propose here is specifically mindful of this issue.

1545

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

Approach Overview. In this paper we propose the NER

Globalizer system that demonstrates how to effectively mine

global contextual embeddings for NER on microblog streams.

We begin with a traditional NER step of isolated message

processing using a fine-tuned BERTweet model, but only to

generate a set of seed surface forms in which entity candidates

appear within a conversation stream. The language model also

produces token-level contextual embeddings. This constitutes

our ‘Local NER’ phase. Although Local NER encodes both

boundary information and associated entity type in its token-

level labels, these outputs can be unreliable owing to the

scarce local context from which they are generated. We

first follow up Local NER with model agnostic occurrence

mining that yields additional mentions of these surface forms

that were previously missed. This is crucial for correcting

inconsistent EMD. Next, an ‘Entity Phrase Embedder’ uses

the token-level contextual embeddings from Local NER to

generate a unified embedding for individual mention phrases

of seed candidate strings. The phrase embedder is trained

using contrastive learning such that surface form mentions of

the same type congregate closely in the candidate embedding

space but are distant from mentions of other entity types. Up

until this point the embeddings we generate are still locally

confined. Based on the local mention embeddings, we draw

an optimal clustering to group mentions of a surface form

into different (potential) entity types. Then we use a learned

pooling function to generate a global candidate embedding

for each candidate cluster. Since each cluster is arguably an

entity type, this embedding is a global representation of the

corresponding candidate-type pair. Finally an Entity Classifier
is trained to use a cluster’s global embedding and label it

as one of the preset entity types. The classifier also helps us

separate false positives from valid entities. The steps following

Local NER up to the labeling of candidate clusters constitute

what we call ‘Global NER’.

NER Globalizer reduces the inconsistencies in traditional

NER processing significantly. We test the system on several

existing benchmarks and outperform a locally limited BERT-

fine tuned NER model, which itself is a strong NER baseline,

by 47.04% on Macro F1 score. On average, the inclusion of

Global NER reports an average F1 improvement of 11.49% for

type Person and 22.58% for type Location. For entity types

that are prone to greater mislabeling the average F1 improve-

ment is even more remarkable, about 174% for Organization

and Miscellaneous. This work has also lifted the performance

ceiling on popular NER datasets WNUT17 [2] and BTC [9].

Our paper makes the following contributions:

• We propose a novel NER system that provides a clear

delineation between the scope of local and global NER

computation for microblog streams. With Global NER we

demonstrate how to effectively aggregate contextual in-

formation for better NER performance in this setting. It

supports continuous and incremental execution which is in

tune with the message generation process of streams.

• Local NER is decoupled from Global NER steps. This

allow us to test the hypothesis that aggregating contextual

embeddings leads to better NER performance in the stream-

ing setting and it makes the the system more nimble to

incorporate future local NER designs.

• In our experiments, we evaluate the proposed framework

on both in-house streaming Twitter datasets and third party

datasets. We not only report superior performance for entity

typing but also bring in improvements for EMD.

The code for NER Globalizer and experimental datasets are

available at https://github.com/satadisha/collective NER.

II. RELATED WORK

The principal issues impacting an NER performance in the

microblog streaming setting are: a) its ability to consistently

detect entity mentions across the diverse contexts in which

they appear, and, b) resolving entity mentions to correct entity

types. [2] posits that the lack of annotated data from this

domain, and the difficulty in identifying emergent entity forms

are the major factors contributing to these issues. The NER

literature features a wide range of supervised systems that

demand a training set with token level annotations that encode

both boundary and associated type information. Usually a

variant of the BIO-type (Beginning-Inside-Outside) encoding

[10] is used to prepare these annotations. Broadly, these

systems either operate on handcrafted linguistic features in a

non-neural system or use deep neural networks with minimal

feature engineering. The first category of systems, like [11],

[12], [13] recreates an information extraction pipeline starting

with POS-taggers to extract and feed semantic features to a

CRF based entity boundary segmentation module. In some

systems, the feature set is enhanced with word embeddings or

gazetteers to supplement the limited contextual possibilities of

microblogs and the rare tokens that inhabit the medium [14],

[15], [16], [17], [18], [19], [20].

Many Deep NER systems [21], [22], [23], [24], [25],

[26], [27], [28], [29], [30] have recently been adopted for

the sequence labeling task of NER. The recent WNUT shared

tasks [31], [2] delve into a variety of Deep NER systems for

Tweets. Aguilar et al. [3]– a BiLSTM-CNN-CRF architecture–

performed best at the WNUT17 task. More recently BERTweet

[4] – a BERT language model pre-trained on a large Twitter

corpus– reported the most effective language model when

performing a variety of language tasks. For our Local NER

step, we adopt the pre-trained BERTweet model and fine-tune

it with the WNUT17 training set. [32], [33] examine the cross-

domain transferability of DNN features learned from the more

abundantly labelled well-formatted corpora to overcome the

lack of annotated data from the microblog domain.

Other alternatives include TwiNER [34], an unsupervised

approach using collocation features from the Microsoft Web

N-Gram corpus [35] or joint modeling of NER [36], [37], [38],

[39] with other information extraction subtasks.

Using global context. The idea of aggregating non-local

contextual information for NER has only been considered in

[7] for the microblog setting. However a similar rationale is

encountered in some of the recent Deep-NER pipelines for

1546

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: NER Globalizer System Architecture

documents. Unlike a stream of tweets produced by multi-

ple authors, documents are structurally more cohesive with

well-formatted language. But both repeat entities and tokens

through the collective span of their contents. Document-level

NER systems like HIRE-NER [40] utilize this tendency to

distill non-local information for each unique token, from the

entire scope of the document, using a memory-structure and

append them to sentence-level contextual embeddings before

an NER decoder draws final output labels. DocL-NER [41]

additionally includes a label refinement network to enforce

label consistency across documents and improve NER results.

Therefore in our experiments, we consider [7], [40] and [41]

as baselines for Global NER and compare their performance

alongside NER Globalizer to evaluate how effectively global

information is compiled in each approach.

The idea of collectively viewing mentions to distinguish

entities from false positives has been explored for the EMD

subtask in TwiCS [42] and EMD Globalizer [8]. TwiCS [42]

uses a shallow syntactic heuristic to identify entity candidates

and then generates syntactic support from their mentions

to distinguish legitimate entities from false positives. EMD

Globalizer moves beyond narrow syntactic assumptions and

makes robust constructions towards the computation of global

contextual embeddings in the streaming space. But neither

systems provide an implementation for the complete NER

pipeline by leaving out the crucial task of type classification.

Though NER Globalizer relies on a robust language model

to fully leverage the local context of individual messages,

it ultimately differs from the traditional NER setup by: i)

aggregating local contexts for entities to incrementally build

representations that are resilient to local noise and yield better

contextualization from the entire scope of the stream, and,

ii) build solutions that can exploit both the local connectivity

of named entities to other tokens within the immediate con-

text and the (‘collective’) global contexts of entities within

the stream, in order to better resolve entity definitions. Our

approach in this work not only maintains a continuous and in-

cremental computation setup, which is conducive to processing

streams, but also improves upon the collective processing setup

of EMD Globalizer by laying out all the necessary considera-

tions, like handling surface form ambiguity, for appropriately

aggregating non-local contexts to solve both EMD and Type

Classification in an integrated pipeline.

III. SYSTEM OVERVIEW

In Figure 2 we illustrate the overall architecture of NER

Globalizer that facilitates a continuous execution setup, sus-

taining over multiple iterations, as long as new messages

are produced in a tweet stream. Each iteration consists of a

batch of incoming tweets thereby discretizing the evolution

of the underlying stream. Also for entity typing we limit

the classification to one of L preset entity types. In the

current implementation we test with four common entity

types: Person (PER), Location (LOC), Organization (ORG)

and Miscellaneous (MISC).

We commence with a few core definitions for clarity:

Definition III.1. Entity Candidate corresponds to canonical

strings within a message stream that likely represent a real-

world entity of a specific type. For example, in Figure 1

‘beshear’ is an entity candidate of type Person that corre-

sponds to Governor of Kentucky Andy Beshear.

Definition III.2. Candidate Surface Forms correspond to

canonical strings in which candidates appear within a stream.

For example, in Figure 1 we consider ‘beshear’ to be the

surface form for the corresponding entity candidate. Candidate

Surface Forms may be ambiguous, such as ‘washington’ that

may refer to different entity candidates (of type person or

location), depending on the context in which they appear.

Definition III.3. Candidate Mention is an individual reference

to a candidate in a message. Candidate mentions can appear as

many variations of the canonical surface form for a candidate

within a stream. In Figure 1 we find three mentions of the

entity candidate ‘coronavirus’ in tweets T2, T3 and T5.

An execution cycle in NER Globalizer proceeds as follows:

(1) The Streaming module fetches a stream of tweets, on a

particular topic, using the Twitter streaming API.

(2) First we run a batch of tweets through a pre-trained BERT

encoder fine-tuned on the downstream NER task, one sentence

at a time. This traditional execution setup is the Local NER
step. The extracted phrases are registered as seed candidate

surface forms in which entities are likely to populate the

stream. Also the token-level outputs of the language model’s

final layer, before token classification, are stored for every

tweet in the batch, as ‘entity-aware token embeddings’.

(3) Next we initiate Global NER that is decoupled from the

Local NER step and would therefore not require any alteration

upon a different choice of language model for Local NER. It

comprises of a few additional steps:

(i) First, a scan of the tweet batch extracts all mentions

of the seed candidate surface forms discovered so far. This

involves finding mentions that were missed by local NER in

the previous step, along with the ones that were already found.

(ii) For every mention we generate a contextual embed-

ding based on the immediate local context. Here the token-

1547

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

level contextual embeddings generated during Local NER are

passed through a Phrase Embedder to construct an unified

embedding for the entire mention phrase.

(iii) For type classification, we consider that the same

surface form may correspond to entities of different types

depending on the context in which it is mentioned. To resolve

this ambiguity we use the local embeddings of surface form

mentions to derive an optimal clustering of type manifolds

in the mention representation space. Each cluster of mentions

corresponds to an entity candidate likely belonging to one of

the pre-set entity types.

(iv) Local contextual embeddings of every mention in a

candidate cluster are then aggregated using a learned pool-

ing function to generate the candidate’s global embedding.

The mention subspace for a candidate surface form and the

resulting global embeddings can be incrementally updated by

adding local embeddings into the pool as new mentions of the

surface form appear.

(v) Finally global candidate embeddings are passed through

the entity classifier to separate entities from false positives

(non-entities). This is a multi-class classification module with

outputs belonging to one of L + 1 classes – we consider an

additional non-entity class along with the preset entity types.

Mentions of candidates labelled as one of the L entity types

are produced in the system’s final NER outputs for the tweet

batch along with the type labelled during classification.

We elaborate on these steps in later sections.

IV. LOCAL NER

The first step in NER Globalizer is Local NER. This is a

traditional NER setup where every tweet-sentence in a batch of

tweets is processed individually to detect entities from local

context. The NER process here is a sequence labeling task

generating BIO token labels which encodes the position of

a token relative to its nearest entity boundary as well as the

associated entity type. The state-of-the-art NER technique uses

a language model (Transformer encoder [43], [44] or BiLSTM

[29], [30]) to study the immediate context and generate token-

level contextual embeddings. In practice the language model is

pre-trained unsupervised learning of language representations

from large text corpora. The token-level contextual embed-

dings are obtained at the penultimate layer of the deep neural

network. For NER, pre-trained language models are appended

with a multi-class classification head to generate the token-

level output labels. The entire model is then fine-tuned end-

to-end using an annotated training set to optimize performance

for the downstream NER task. Therefore we interpret the

contextual embeddings, post fine-tuning, as local entity-aware

embeddings, extracted from the context of a single input.

Objectives: For a targeted stream of tweets, Local NER aims

to: (1) generate a set of candidate surface forms from mentions

in individual sentences, and (2) encode local entity-aware

information for every token in a sentence.

The Local NER module acts as a weak labeller in our

system. Despite the noisy outputs, it is essential for generating

a good set of seed candidate surface forms that will be

directly utilized in later steps and are therefore crucial for

maintaining good recall. In NER Globalizer we use a state-

of-the-art language model – BERTweet [4] – to construct an

effective Local NER module. BERTweet is the first language

model trained on a large-scale corpus of English Tweets. This

system has the same architecture as BERTbase [44] but uses the

RoBERTa [45] pre-training procedure for better performance.

To fine-tune the language model for NER, a feed forward

neural network layer and a softmax layer are added on top

of the last Transformer encoder. The fine-tuning is conducted

using the WNUT17 training set and is repeated five times

with randomly initialized seeds. The reported performance is

the average of five test runs. We use the pre-trained BERTweet

model publicly available at the Hugging Face model hub that

amasses a large collection of pre-trained language models

catering to a variety of downstream NLP tasks. Although the

WNUT17 dataset consists of six entity types, the type coverage

for NER-Globalizer is limited to the four types mentioned

in Section III. Hence we group instances of types ‘Product’,

‘Creative-work’ and ‘Group’ as the ‘Miscellaneous’ type.

The set of seed surface forms derived during the entity

labeling of Local NER are stored in a CandidatePrefixTrie
(CTrie for short). CTrie is a prefix Trie forest used for efficient

indexing. During Global NER, CTrie facilitates easy lookups

to find all mentions of these discovered candidate strings.

Another data structure produced at the end of Local NER is

TweetBase that maintains individual records for every tweet

sentence indexed by a (tweet ID, sentence ID) pair and a list

of detected mentions that get updated after Global NER.

In a traditional execution set-up this would conclude the

NER process. However, as explained in Section I, for Mi-

croblogs the NER outputs at this stage can be erroneous. The

length constraint imposed on Microblog content leaves inade-

quate context to be found in individual messages. This only ex-

acerbates the challenge that models face when dealing with the

varied contextual possibilities, non-traditional language uasge

and novel tokens populating the conversations in Microblogs.

This results in the same entity being inconsistently extracted or

mistyped across the breadth of a Microblog stream. To remedy

these issues we introduce the Global NER module.

V. GLOBAL NER

Local NER produces a set of candidate surface forms that

are likely to represent entities within a message stream as well

as local contextual embeddings of sentence tokens. But these

representations and inferences drawn from them are locally

limited and can be error-prone. To address these limitations,

the Global NER module shifts the focus of entity extraction

from being limited to the confines of a single sentence to

viewing mentions of the entity candidates collectively in a

type manifold or embedding subspace across the span of the

entire stream. This idea of representing an entity candidate

collectively through its mentions is called ‘collective process-
ing’. We make robust constructions in this space supporting

incremental computations that evolve with the stream itself.

1548

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

Objectives: The Global NER step addresses issues pertaining

to both entity mention detection and typing:

1. Removal of False Negatives: False Negatives arise when

Local NER fails to tag entity mentions in some sentences. In

Figure 1, coronavirus in T2 and T5 is a false negative.

2. Removal of False Positives: False Positives happen when

Local NER extracts non-entity phrases as entities.

3. Correction of Partial Extraction: Partial extractions

happen when a part of an multi-token entity string is left

outside of a labeling window in BIO format. Correcting such

partial extractions improves both recall and precision.

4. Correction of Mistyping: Classifying an entity mention

to incorrect entity type is registered as a false negative for the

target type and also impacts NER performance.

Global NER consists of four steps that we will now describe.

A. Mention Extraction

The objective of the mention extraction step is to discover

all mentions of candidate surface forms registered in the CTrie

during Local NER. This step is crucial for finding missed

mentions of candidates that would later on be verified as

entities. Hence it has a direct impact on recall. But additional

mentions are also useful in deriving better collective context

for candidates which even though have been tagged in Local

NER would ultimately be false positives. Hence we also posit

this step to be important for precision improvement.

Empowered by the candidate surface forms seeded during

Local NER in the CTrie, we reduce the mention extraction

process to that of a simplified lookup in the CTrie. The module

analyzes every token in a tweet sentence, in conjunction with a

CTrie traversal. With a case-insensitive comparison of tokens

with CTrie nodes, this results in two possibilities:

(i) A token that matches a node on the current CTrie path,

when cases are ignored.

(ii) A token matching no node in current path.

We check if a token forms a mention of a candidate surface

form alone or together with up to k following tokens.

The extraction process scans a tweet-sentence and identifies

the set of longest subsequences that match with candidate

surface forms in the CTrie, mentions extracted during Local

NER are verified, and sometimes corrected. For example, if

Local NER finds only a partial excerpt ‘Andy’ of the candidate

‘Andy Beshear’ in a tweet, but nonetheless recognized the

entire string in other tweets, the candidate surface form (‘andy
beshear’) will be registered in the CTrie. This partial extrac-

tion can now be rectified to the complete mention. The process

is syntax agnostic. It initiates a window that incrementally

scans through a sequence of tokens. In each step it checks:

a) whether the subsequence within the current scan window

corresponds to an existing path in the CTrie. If true, it implies

that the search can continue along the same path, by including

the token to the right within the window in the next iteration.

b) whether the node on this path, matching the last token of

the subsequence, refers to a valid candidate. If true, we record

the subsequence as the current longest match.

In case of a mismatch, the last matched subsequence within

the current window is stored, and the process then skips ahead

initializing a new window from the position of the next token.

The search for a new match starts along a new CTrie path.

However, if the last search had failed to match with any of

the existing CTrie paths, the new window starts from the token

that is to the immediate right of the first token in the previous

window. The process is repeated until all tokens are consumed.

In the end we obtain a set of mention variations for each

candidate surface form in the CTrie.

B. Local Mention Embedding Generation

Collective processing views a candidate as an aggregate of

its mentions within a stream. To achieve this, we first need to

derive semantically meaningful representations of individual

mentions, in their local context, and then aggregate these rep-

resentations to derive a candidate’s global embedding. Given

that mention phrases may have variable number of tokens, we

need to combine the token-level embeddings coming out of

Local NER into a unified, fixed-size embedding of the entire

phrase. This is the role of the Phrase Embedder.

To generate mention phrase embeddings, we refer to two

lines of work. First is the literature on generating multi-token

embeddings at a sentence level for Semantic Textual Similarity
(STS) tasks [46], [47] and second is the idea of Supervised
Contrastive Learning [48].

Design of Phrase Embedder. We adopt a modification of

the ‘siamese network structure’ from SBERT [49]. We use

Local NER to generate token-level embeddings as the principal

component of the mirrored subnetworks in a triplet network

structure. Then we use average pooling to combine token-level

representations into an average embedding. Next we apply l2-

normalization on the average embeddings and pass the unit-

norm vectors through a final dense layer. Our experiments

reveal that adding the normalization step leads to better per-

formance. The local mention embeddings (local emb ∈ R
d)

from token-level embeddings can be computed using one of

the Entity Phrase Embedder sub-networks as

pooled emb =
1

|T |
|T |∑

j=1

token embTj
(1)

̂pooled emb =
pooled emb

|pooled emb| (2)

local emb = Wff
̂pooled emb + bff (3)

where T denotes the set of tokens in the candidate phrase,

token embTj
∈ R

d is the contextual embedding of the j-

th token in T , generated by the Local NER engine. The

weight matrix Wff ∈ R
d×d and bias bff ∈ R

d are trainable

parameters from the mirrored sub-networks. However, unlike

SBERT, the gradient computation is not backpropagated all the

way to the BERT engine of Local NER in our case. Instead,

the weights fine-tuned during Local NER remain frozen in our

siamese network and only the weights of the layers following

it are updated. This is because the Local NER module’s role in

our framework is to produce (Local) EMD results for which

1549

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

it had already been optimized. The rest of the sub-network

however work on the ‘entity-aware’ token embeddings to

produce an optimal phrase embedding.

Training the Phrase Embedder. Supervised contrastive es-

timation [48], [50], a well-explored domain of representa-

tion learning, learns embeddings by optimizing instance-level

discrimination. Contrastive estimation is typically trained on

datasets where individual records consist of an anchor example

for which learned embeddings are tuned to be closer to a set

of positive examples in the representation space and distant

from a set of negative examples. We deem this to be suitable

when choosing our objective function as the purpose of Phrase

Embedder is not only to capture the local contextual relations

between mention tokens but also to produce a mention embed-

ding that aids in the subsequent clustering step. The clustering

is essential to map mentions correctly to the candidate they

represent and resolve the issue of candidate surface form

ambiguity. We elaborate on this issue in Section V-C. As

such the phrase embedding should be such that, when mapped

to the representation space populated by all mentions having

the same surface form, mentions of the same type should

congregate together in a manifold that is well-separated from

mentions of other types. This would not only lead to well

separated candidate clusters but also generate accurate global

embeddings for type classification. We train the Embedder

with Triplet loss [51] and Soft Nearest Neighbour loss [52],

which are both special cases of contrastive loss.

Triplet Objective Function. Triplet loss uses one positive

(p) and negative (n) example per anchor. p is another instance

from the same class as the anchor (a) while n is from a

different class. Mathematically, we minimize the following

loss such that the distance between the anchor and positive

example is less than its distance with the negative example.

max(‖local emba − local embp‖ − ‖local emba − local embn‖ + ε, 0)
(4)

local embx is the embedding generated for a/p/n, ‖.‖ is a

distance function, and ε is the margin value. We choose the

Cosine distance function and set the margin value to be 1

to encourage orthogonality between the mentions of a surface

form that ultimately correspond to different entity types.

Soft-Nearest Neighbour Objective Function. For using

multiple positive and negative examples per anchor, noise-

contrastive optimization is extended to the Soft Nearest Neigh-

bour Loss [53], [52]. The loss measures entanglements of

type manifolds which characterizes how close pairs of men-

tion representations of the same entity (type) are, relative to

representations of surface form mentions of different entities.

− 1

b

∑

iε1...b

log(

∑
jε1...b;j �=i;yi=yj

e
−‖local embi−local embj‖

τ

∑
kε1...b;k �=i e

−‖local embi−local embk‖
τ

) (5)

The loss computation is approximated over mini-batches.

Intuitively this loss is the negative log probability of sampling

a mention j from the same candidate cluster (type manifold)

as the anchor mention i. The hyperparameter temperature (τ)

controls the relative importance given to the distance between

pairs of mentions. [52] suggests setting the temperature to a

lower value for neighbouring points from the same class to

have more importance in tuning the representation space than

distant point from other classes. Here we use Cosine distance

and typically start with smaller values of τ that we fine-tune.

Our experiments reveal that training the Phrase Embedder

with Triplet loss generates more accurate candidate clusters

and better performance for the Entity Classifier. Hence we

use this loss for the production version of NER Globalizer.

We provide more details on the training process of Phrase

Embedder with contrastive estimation in Section VI.

C. Candidate Cluster Generation

At this point NER Globalizer has extracted all mentions

of the various candidate surface forms in the CTrie along

with their local contextual representations in the embedding

space. But we need to consider the issue of ‘ambiguous
candidate surface forms’. Depending on the context in which

they appear, mentions of the same candidate surface form

can in fact refer to different entities or non-entities. Consider

in Figure 1 the commonly used pronoun us that has the

same surface form as the commonly used abbreviation of

United States i.e. ‘US’. When aggregating local mention-level

representations to generate global candidate embeddings, it is

crucial to first map mentions to their appropriate candidate

(type) manifold. Hence we use contrastive estimation when

generating local mention representations to leverage better

separation among mentions of different candidate types that

share the same surface form. We follow this up by deriving

an optimal clustering over the mention embeddings of every

unique candidate surface form discovered during Local NER.

This reveals the different underlying candidates that share the

representation space through the same candidate surface form.

For example, in case of the surface form ‘us’ we would ideally

have two separate clusters one corresponding to the non-entity

pronoun and the other corresponding to the country.

The candidate cluster generation step serves two purposes

in the execution cycle of NER Globalizer:

1. By studying the relative distance of a mention represen-

tation to that of other mentions in the embedding space, this

step associates mentions with proper candidate-type thereby

rectifying the issues of mistyping with Local NER.

2. For mentions missed by Local NER but discovered during

Mention Extraction there are no types attached since Local

NER produced the ‘O’ label for their tokens. The clustering

step also makes the optimal association of these mentions with

candidates to properly leverage their discovery for recall gain.

The number of candidate clusters per surface form is

unknown in advance. Hence we use agglomerative clustering

[54] which does not need to know the number of clusters. We

use Cosine distance with average linkage for the clustering

process to leverage the separation that was optimized when the

training of local mention embeddings. Agglomerative cluster-

ing needs a distance metric threshold beyond which clusters

are considered separate during the bottom-up merging process.

1550

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

For Cosine distance a value of 1 indicates orthogonality

that we set as the margin value of our Triplet loss. Hence

we tune the appropriate threshold to be less than 1. We

also consider including a clustering loss when learning local

mention representations by looking into some recent literature

on Deep Clustering [55], [56], [57]. However these methods

also require that the number of clusters be fixed and known a

priori. Since the candidate clusters corresponding to a candi-

date surface form violate this, we keep the objective function

for representation learning limited to instance-level contrastive

learning and the subsequent clustering step unsupervised. Both

the representation space for a candidate surface form and the

clusters drawn from its mentions are updated as and when new

mentions arrive in the stream.

D. Entity Classifier

The local embeddings of individual mentions in a candidate

cluster are limited to the context of the sentence containing it.

We add these local embeddings to the candidate’s record in a

data structure called the CandidateBase, which maintains an

entry for every candidate discovered for a stream during the

previous step. In essence, every candidate cluster corresponds

to a unique entity candidate in the CandidateBase. Next, a

pooling operation on all the local mention embeddings within

a candidate cluster gives the ‘global candidate embedding’.

aj = W
T
a local embj + ba (6)

wj =
exp(αj)

∑‖η‖
k=1 exp(αk)

(7)

global emb =

|η|∑

j=1

wj local embηj (8)

where the weights WaεR
d and bias term ba are learnable

parameters, η denotes the set of mention-level local embed-

dings for a candidate, and wj is the weight of the local

embedding (local embηj
εRd) of the j-th mention in η. The

embedding global emb is global in the sense that it generates

a consensus representation from all contextual possibilities in

which a candidate appears in the stream.

The global candidate embeddings are fed to a network of

multiple dense layers with ReLU activation and a softmax

output layer. This module is the Entity Classifier. It is trained

to determine if a candidate belongs to one of L+ 1 classes –

an entity of one of the L pre-set types or a non-entity.

The classifier is trained using global embedding records of

labelled entities from D5 (see Table I). We find that adding

the non-entity class is effective in separating the L entity types

from non-entities. However, D5 is annotated only with entities.

Hence to include non-entities and their global embeddings in

the training set of the classifier, we run BERTweet instantiated

EMD Globalizer on D5 and curate a set of seed non-entities.

VI. EXPERIMENTS

We conduct extensive experiments to test NER Globalizer

for named entity recognition in tweets. First we test the

effectiveness of our Global NER technique by calculating the

improvement it brings on the standalone Local NER module in

TABLE I: Twitter Datasets

Dataset Size #Topics #Hashtags #Entities

D1 1K 1 1 283
D2 2K 1 1 461
D3 3K 3 6 906
D4 6K 5 5 674
D5 3430 1 1 -

WNUT17 1287 - - -
BTC 9553 - -

our implementation, i.e. BERTweet [4]. In addition, we also

use three existing Global NER systems as baselines against

NER Globalizer to compare how effectively global context is

mined and used for NER in each system. We implemented

NER Globalizer in Python 3.8 and executed it on a NVIDIA

Tesla T4 GPU on Google Colaboratory.

Datasets: The datasets used to evaluate NER Globalizer are

listed in Table I. D1-D4 are streaming datasets that contain

messages crawled directly from Twitter streams. The topics

covered here are Politics, Sports, Entertainment, Science and

Health, with (D2) curated from a Covid-19 tweet stream. Hav-

ing datasets that are subsets of tweet streams helps preserve

their natural topic-specificity that often repeats a finite set of

entities. This is used in Global NER to collectively process

candidates, without making the analysis biased towards a

particular topic. In real-world deployment, a topic classifier

[58] could precede an NER tool launched for streams.

Other than the four streaming datasets D1-D4, two datasets

popular for NER benchmarking, WNUT17 [2] and BTC [9],

are also used in our evaluation. These are non-streaming
datasets curated with a random sampling of tweets. Although

they do not characterize the application setting for NER

Globalizer, we use them to gauge the system’s effectiveness

against established benchmarking standards.

We use dataset D5, a collection of 3.4K tweets from a

single tweet stream to generate entity candidates and train

the supervised components of our Global NER setup, namely

the Phrase Embedder and Entity Classifier. The datasets are

labelled with entity mentions along with their associated entity

types. Since our system is also designed to recognize and

separate non-entities, we need representative non-entities to

complete the training of NER Globalizer. To this end, we run

BERTweet instantiated EMD Globalizer on D5 and generate

a set of seed non-entities that we use to both learn mention

embeddings for non-entities and train the Entity Classifier.

Performance Metrics: We use Precision (P), Recall (R)

and F1-score for each of the four pre-set entity types to

evaluate NER effectiveness. Further, we also use Macro-

F1 (F1 (Entity) in the WNUT17 shared task [2]) to make

summary comparisons of NER performance across different

systems in our evaluation. Note that a correct NER detection

requires both EMD and Entity Typing to be handled correctly.

Local NER Baselines: We use two state-of-the-art NER

systems that exhibit good performance on the WNUT17

dataset as our Local NER baselines. Aguilar et al. [3] was the

best performing system among those featured in the WNUT17

1551

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

NER challenge. It uses a BiLSTM-CNN-CRF pipeline within a

multi-task learning pipeline that learns higher-order character-

level, token-level and lexical feature representations. BERT-

NER [44] is the seminal BERT language model by Devlin et

al. that demonstrated the efficacy of contextual embeddings

for a variety of language tasks. Here we fine-tune it for NER.

Global NER Baselines: We use three baselines: Akbik et

al. [7] and two Document NER systems, HIRE-NER [40]

and DocL-NER [41], to test Global NER. We compare their

performance with NER Globalizer on our Twitter datasets.

Despite the structural differences between documents and

tweet streams, both exhibit topically correlated cross-sentence

information. Much like the intuition of aggregating local em-

beddings for global representations in NER Globalizer, HIRE-

NER and DocL-NER use a similar observation in their design

for collecting global information. Hence their Global NER

techniques are appropriately considered in our evaluation.

When executed on our datasets, both systems treat messages

in a stream as composite content, much like a document.

Training the Phrase Embedder: The Phrase Embedder dur-

ing Global NER combines token-level contextual embeddings

of a candidate surface form’s mention, obtained during Local

NER, into a unified local embedding for the entire mention

phrase. The Phrase Embedder is trained through contrastive

estimation with two different objective functions that require

their own dataset curation and data augmentation process.

1. Mention Triplet Mining: Training with triplet loss re-

quires a dataset where individual records are triplets of an

anchor, a positive and a negative example. To this end, we use

the entities and non-entities in D5 as our candidate set and

gather their corresponding mention sets. For every mention in

the mention set of an annotated candidate, a positive example

would be another mention from the same set while a negative

example would be a mention of a candidate that shares the

same surface form but is of a different type. We want to

increase the separation between the anchor and the nega-

tive example such that the mention-level phrase embeddings

produced in this step aids the clustering step over mentions

that have the same surface form but need to be separated

based on the entity type to which they correspond. Note that

not every surface form resides over all L + 1 types that we

consider during clustering and classification. In such a case,

we augment the dataset by collecting negative examples from

mention sets of candidates that do not share the same surface

form and belong to a different type. Here the objective is to

train the Phrase Embedder to yield better inter-type separation

among candidate mentions, when generating local mention-

level embeddings. Following this procedure, we obtain 15.77

million triplets from D5 to train the Phrase Embedder.

2. Mention Cluster Mining: Using Soft-NN Loss requires

a dataset where individual records are mentions of entities

or non-entities, whose distances from mentions within the

same candidate manifold, i.e. positive examples, are reduced,

in contrast to other mentions of its surface form that corre-

spond to different candidates. Even in this case we use data

augmentation when considering mentions of surface forms

that do not reside over all L + 1 types. In these cases we

augment mentions of one randomly chosen candidate from

each remaining type. To this end, we create a dataset of 9134

records, each consisting of a mention of an entity or a non-

entity in D5 along with its positive and negative example set.

During training, we use Adam optimizer [59] with a fixed

learning rate of 0.001 and maintain a 80-20 train-to-validation

split. Given the vastly different dataset sizes for the two types

of training, we set a batch size of 2048 for training with the

Triplet objective function, and a batch size of 64 for the Soft

NN objective function, in order to optimize the overall training

time. For regularization we use both early stopping and weight

decay and also add batch normalization. We train over 200

epochs and compute performance on the validation set after

each training epoch to save the best model checkpoint but we

also enforce early stopping after 8 continuous epochs.

TABLE II: Training of Phrase Embedder and Entity Classifier

Objective
Function

Dataset
size

Training
Loss

Validation
Loss

Entity
Classifier
Validation
Macro F1

Triplet
15.77 M
triplets

0.0012 0.0015 92.8%

Soft NN
9134 candidate

mentions
0.3718 0.376 77.3%

TABLE III: NER Globalizer vs. Local NER systems

Dataset NER System
Entity Type (F1 Score) Macro

F1PER LOC ORG MISC

D1

NER Globalizer 0.84 0.87 0.5 0.39 0.65
Aguilar et al. 0.22 0.24 0.22 0.07 0.19
BERT-NER 0.65 0.52 0.2 0.13 0.38

D2

NER Globalizer 0.82 0.68 0.54 0.58 0.66
Aguilar et al. 0.57 0.59 0.19 0.05 0.35
BERT-NER 0.71 0.54 0.2 0.08 0.38

D3

NER Globalizer 0.9 0.81 0.71 0.51 0.73
Aguilar et al. 0.44 0.56 0.46 0.14 0.4
BERT-NER 0.65 0.65 0.12 0.15 0.39

D4

NER Globalizer 0.83 0.91 0.68 0.71 0.78
Aguilar et al. 0.53 0.68 0.27 0.07 0.39
BERT-NER 0.65 0.68 0.38 0.41 0.53

WNUT
17

NER Globalizer 0.76 0.71 0.52 0.44 0.61
Aguilar et al. 0.37 0.28 0.2 0.14 0.25
BERT-NER 0.52 0.42 0.22 0.35 0.38

BTC
NER Globalizer 0.7 0.71 0.48 0.43 0.58

Aguilar et al. 0.35 0.41 0.15 0.06 0.24
BERT-NER 0.63 0.59 0.15 0.22 0.4

Training Entity Classifier: Upon training the Phrase

Embedder, we use it to generate local embeddings of mentions

in the ground truth clusters of entities/non-entities labelled in

D5. Next, for each ground truth cluster, the local embeddings

are aggregated using weighted pooling to generate a global

candidate embedding that is then passed through the rest of

the Entity Classifier network to generate the final class (type)

label. The learned pooling operation and the classification

network are trained end-to-end to optimize the final NER

Classification performance. We obtain 1391 candidates from

D5 and use a 80-20 training-to-validation split to train the

Entity Classifier over 200 epochs. We use Adam optimizer

1552

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Ablation Study: Effectiveness and Execution Time (in seconds) with NER Globalizer

Dataset
Entity
Type

Local NER Global NER F1
Gain

Time
Overhead

P R F1
Execution

Time
P R F1

Execution
Time

D1

ORG 0.85 0.13 0.22

33.16

0.55 0.45 0.50

34.32

121.72%

1.16
MISC 0.19 0.09 0.12 0.56 0.30 0.39 219.87%
LOC 0.69 0.78 0.73 0.94 0.83 0.87 20.39%
PER 0.82 0.68 0.74 0.94 0.76 0.84 13.58%

D2

ORG 0.5 0.15 0.23

40.23

0.55 0.53 0.54

42.58

133.92%

2.35
MISC 0.16 0.07 0.09 0.60 0.56 0.58 494.83%
LOC 0.49 0.73 0.59 0.76 0.62 0.68 16.46%
PER 0.70 0.82 0.76 0.77 0.87 0.82 8.17%

D3

ORG 0.68 0.1 0.18

58.6

0.69 0.88 0.77

62.18

343.63%

3.58
MISC 0.30 0.22 0.25 0.68 0.54 0.6 137.14%
LOC 0.66 0.68 0.67 0.82 0.89 0.84 27.43%
PER 0.81 0.85 0.83 0.90 0.92 0.91 9.69%

D4

ORG 0.89 0.23 0.37

230.75

0.66 0.7 0.68

237.53

85.87%

6.78
MISC 0.57 0.34 0.43 0.89 0.59 0.71 66.6%
LOC 0.76 0.81 0.78 0.89 0.93 0.91 15.99%
PER 0.69 0.76 0.72 0.83 0.84 0.83 15.44%

WNUT17

ORG 0.26 0.16 0.20

24.40

0.6 0.45 0.52

26.15

160%

1.75
MISC 0.49 0.24 0.33 0.52 0.39 0.44 38.34%
LOC 0.47 0.52 0.49 0.82 0.63 0.71 44.31%
PER 0.76 0.62 0.68 0.83 0.69 0.76 11.76%

BTC

ORG 0.74 0.09 0.16

238.62

0.78 0.35 0.48

12.09

201.08%

250.71
MISC 0.16 0.44 0.23 0.33 0.62 0.43 83.55%
LOC 0.63 0.65 0.64 0.73 0.69 0.71 10.87%
PER 0.74 0.56 0.64 0.83 0.61 0.7 10.3%

[59] with a fixed learning rate of 0.0015 and batch size of 32.

We compute the macro-F1 score after each training epoch on

the validation set, and select the best checkpoint to compute

the performance score on the test set. Here, we also enforce

early stopping after 20 continuous epochs.

The training details of Phrase Embedder with two different

loss functions that we explore are compiled in Table II. We

also provide the validation performance of Entity Classifier

that we train, in each case, after the Phrase Embedder. We

achieve a better performing Entity Classifier when the Phrase

Embedder is trained with Triplet loss. So we set our implemen-

tation to this variant of Phrase Embedder and Entity Classifier

when reporting performance in our subsequent analyses.

A. Evaluating NER Globalizer

We evaluate the effectiveness of NER Globalizer on its

primary objective of using collective processing for better NER

performance. To this end, we compute the performance boost

brought by Global NER by comparing F1-score at the end of

our system’s Local and Global NER steps for multiple datasets

and check for improvement. We also compare the performance

of NER Globalizer to state-of-the-art Local NER systems that,

although effective, follow conventional processing, as well as,

other Global NER baselines that have their own design of

mining global information for good NER performance.

Comparison with Local NER Systems: In Table III we show

the performance of state-of-the-art but conventional Local

NER techniques for four pre-set entity types on our evaluation

datasets. We use Aguilar et al. [3] and also fine-tune a BERT

encoder (BERT-NER) that is the current state-of-the-art for

NER. NER Globalizer is able to significantly outperform these

strong baselines on both streaming and non-streaming datasets.

TABLE V: Effectiveness of Global NER systems

Dataset
Global NER

System
Entity Type (F1 score) Macro

F1PER LOC ORG MISC

D1

NER Globalizer 0.84 0.87 0.5 0.39 0.65
HIRE-NER 0.48 0.5 0.12 0.13 0.31
DocL-NER 0.4 0.77 0.28 0.39 0.46
Akbik et al. 0.4 0.47 0.29 0.44 0.4

D2

NER Globalizer 0.82 0.68 0.54 0.58 0.66
HIRE-NER 0.41 0.62 0.17 0.16 0.34
DocL-NER 0.53 0.67 0.28 0.37 0.46
Akbik et al. 0.44 0.62 0.49 0.33 0.47

D3

NER Globalizer 0.9 0.81 0.71 0.51 0.73
HIRE-NER 0.69 0.68 0.26 0.32 0.49
DocL-NER 0.31 0.35 0.39 0.12 0.29
Akbik et al. 0.7 0.78 0.3 0.38 0.54

D4

NER Globalizer 0.83 0.91 0.68 0.71 0.78
HIRE-NER 0.42 0.73 0.21 0.16 0.38
DocL-NER 0.36 0.46 0.12 0.09 0.26
Akbik et al. 0.39 0.65 0.61 0.33 0.5

WNUT
17

NER Globalizer 0.76 0.71 0.52 0.44 0.61
HIRE-NER 0.48 0.5 0.12 0.13 0.31
DocL-NER 0.49 0.55 0.10 0.13 0.32
Akbik et al. 0.59 0.59 0.14 0.17 0.37

BTC

NER Globalizer 0.7 0.71 0.48 0.43 0.58
HIRE-NER 0.48 0.59 0.25 0.11 0.36
DocL-NER 0.45 0.61 0.33 0.09 0.37
Akbik et al. 0.49 0.62 0.35 0.10 0.39

Performance improvement with Global NER: We zoom

into the potential of Global NER by comparing the improve-

ments it brings upon the local module, BERTweet, which itself

is an effective Local NER system. The columns under ‘Local

NER’ in Table IV show the performance of conventional lan-

guage modeling that is fine-tuned to recognize entities of four

pre-set types. BERTweet has reportedly set the performance

bar on the WNUT17 dataset thus being an already robust

model. Hence we check if our Global NER module can still

bring in meaningful improvements. The columns in Table IV

under ‘Global NER’ show the NER performance once the

Global NER components have been executed. The column F1

1553

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

Gain indicates the percentage gain in F1 score achieved from

Local to Global NER for each entity type in a dataset. This

is the improvement that NER Globalizer achieves on top of

the Local NER module. The column Time Overhead notes the

additional execution time (in seconds) following Local NER.
These results show that Global NER produces an average

Macro-F1 gain of 47.04% across all datasets. The average

individual performance gains for the four entity types are:

a) 11.49% for Person, b) 22.58% for Location, c) 174.37%

for Organization, and d) 173.39% for Miscellaneous. The

highly uneven improvements across different entity types is

due to BERTweet’s under-performance in detecting the less

frequent and contextually divergent entity types, Organization

and Miscellaneous, and its tendency to label their entity

mentions as instances of the other two types. NER Globalizer

corrects many of these mislabelings thereby producing close

to 2 times F1 improvement for these types with a minuscule

overhead in execution time.

Improvement on Streaming Datasets: For datasets D1-D4

that retain the inherent properties of Twitter streams, NER

Globalizer yields an average Macro F1 gain of 49.89%. For

individual entity types, the average F1 gains are: a) 11.72% for

Person, b) 20.07% for Location, c) 171.28% for Organization,

and d) 229.61% for Miscellaneous.

Improvement on Non-Streaming Datasets: Datasets

WNUT17 and BTC are random samplings off the Twitter

sphere, avoiding the latter’s tendency to repeat the same

entities within streams. However, NER Globalizer is still able

to improve upon its Local NER performance, albeit to a less

significant degree than streaming datasets. In this case, the

average Macro F1 gain across all Local EMD systems is

41.35%. For individual entity types, the average F1 gains are:

a) 11.03% for Person, b) 27.60% for Location, c) 180.54%

for Organization, and d) 60.95% for Miscellaneous.

Comparison with Global NER Baselines: We compare the

performance of three Global NER systems: Akbik et al. [7],

HIRE-NER [40] and DocL-NER [41], with NER Globalizer

on all the annotated datasets in Table V. Here we test how

effectively global information is captured in each system. NER

Globalizer consistently outperforms other Global NER base-

lines across all datasets by 47.39% on Macro F1, especially

by achieving higher precision. Existing Global NER baselines

simultaneously update global features for every unique token

encountered during training in their memory structures and

append them to local token embeddings to infer final output

labels of tokens in a sentence. Adding non-local contextual

information inevitably introduces noise which can interfere

with the decoder’s inference of output labels. Distinct from

this, NER Globalizer limits curating global contexts only for

entity candidates that are aggregated from the local contexts

of a candidate’s mentions from within the entire scope of the

stream. Using this the system is able to better separate entities

from noisy candidates.

B. Ablation Study on Framework Components
While it is evident that the proposed NER framework

Fig. 3: Impact of Components on Performance

is capable of enhancing performance upon Local NER, we

wanted to take a closer look at how the individual framework

components contribute towards the overall NER performance.

To this end, we execute the framework at different stages of

its execution by incrementally adding components, thereby

resulting in two additional baseline variants. Here, we use the

entire collection of annotated streaming datasets (D1-D4) as

the test set. Figure 3 shows the improvement in performance

as individual system components are added. From bottom

to top, the first curve (with only Local NER) reports the

weakest performance, proving the limitations of the standalone

local system in capturing all the entity mention variations

within the stream. The two middle curves are the NER

performance we get just by following up Local NER with

first the mention extraction process that simply adds missed

mentions of entities detected in the local EMD phase. Surface

forms that correspond to multiple entity types are handled by

assigning the most frequent type. The next baseline adds the

local candidate embedding generation step, where the entity

classifier is trained only on local embeddings. The topmost

curve is the performance yielded at the end of run of the

entire framework with the inclusion of global embeddings.

BERTweet [4] is a very competitive NER system. Even for

such a system, NER Globalizer is still able to significantly

improve on its NER effectiveness over the streaming datasets.

Following up its execution with just the candidate mention

extraction process gives a modest improvement of 12.32%

where the focus is mainly on improving the recall by yielding

more consistent mention detection across tweets. Upon using

the local embeddings we estimate an average improvement

of 29.88% in Macro-F1 score from the local system. However

the full potential of NER Globalizer is attained when using the

global embeddings yielding an average overall improvement

of 49.89% across all streaming datasets. This is because with

all components of Global NER in place, candidates are further

verified and false positives are removed.

C. Error Analysis

Though NER Globalizer improves upon traditional NER

systems, it is not perfect. Here we analyze its errors.

1) If Local NER misses every mention of an entity, its

surface form will likely not be added to the CTrie or be

considered during Global NER and all its mentions will go

undetected by NER Globalizer. Of the 11412 entity mentions

1554

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Impact of Frequency on Detecting Entities

in our streaming datasets from 2306 unique entities, the NER

Globalizer failed to find 3008 (26.35%) mentions of 1018

entities that are entirely missed by the local NER module.

2) If Global NER mistypes a candidate, then every mention

in its candidate cluster will either be left out as a non-entity

or associated with an incorrect type. This would also include

mentions that the Local NER correctly found at first. A false

negative from Entity Classifier thus hinders the system’s ob-

jective to correctly recover entity mentions that the Local NER

had missed. In our experience, it is rare that an entity mention

correctly detected by Local NER is mislabelled at the global

step. Of the 11412 entity mentions in our streaming datasets,

NER Globalizer mistypes only 1093 mentions (9.57%) due to

error by the Entity Classifier.

3) Handling of long-tailed entities: To better understand the

false negatives from Global NER, we take a look at how the

Entity Classifier’s performance changes as more mentions of

an entity are found in a stream. Figure 4 shows that it is consis-

tently able to correctly detect high-frequency entities from the

streaming datasets. We group the annotated entities of different

mention frequency in bins of width 5 and track the classifier’s

recall in labelling them correctly. For infrequent entities, the

recall is modest – around 46.8% for entities with 5 or less

mentions. But it increases quickly with mention frequency and

most frequent entities are correctly labelled. This validates the

intuition that collectively processing more mention variations

of an entity leads to more robust global embeddings, avoiding

randomness. Although long-tailed entities are a common issue

in NER, our system can still rectify the mislabeling of many

such entities by collecting more instances further downstream.

D. Discussions

Here we summarize some additional implications we ob-

served upon evaluating the proposed system:

• EMD Gains: Although the focus of this framework is

to solve the NER problem within a collective processing

setup, the enhancements we make here also have improved

the EMD performance, especially when compared to its

previous collective processing counterpart EMD Globalizer.

The average improvement in EMD F1 score is 7.9% across

all our annotated datasets. The gains in EMD performance

come from the NER framework better handling surface form

ambiguity, especially by maintaining high precision in cases

where an entity shares the same surface form as a non-entity.

• Handling surface form ambiguity: A challenge with NER

is when entity types share the same surface form with

each other or a non-entity. NER Globalizer was able to

consistently handle various instances of such ambiguity,

e.g., differentiating mentions of the country ‘US’ from the

pronoun us, or ‘Fireflies’ the song from the insect species.

• Recall vs Precision Gains: Our recall gains are consistent

across all datasets over all four entity types. We attribute

this to the Global NER process that gathers all mentions

of candidate surface forms and then groups them to appro-

priate candidate clusters such that upon validation of their

legitimacy by the Entity Classifier all mentions within an

entity cluster is produced in the final outcome. Largely we

find the curation of global entity embeddings during Global

NER to be much more robust to combat local contextual

noisiness and incorrect entity classification, thereby yielding

considerable improvements in Precision as well. The very

occasional drop in Precision (for type ORG with datasets

D1 and D4 in Table IV) is due to contextual ambiguity,

especially for entities with low mention support.

• Improvement for less popular/mixed-genre entity types:

A distinct trend with NER Globalizer is its strong improve-

ment over the Local NER module for Organization and

Miscellaneous types that are less frequent in training sets or

cover entities of multiple fine-grained types (like Creative-

work/Product). Local NER’s predisposition to map entity

mentions of these types to more frequent entity types like

Person/Location is often due to confounding local context

that collective processing can overcome. On average, we saw

an F1 Gain of about 1.75 times for Organization and Mis-

cellaneous types. We link the occasional drop in Precision

in some cases for the ‘ORG’ class to mistyping stemming

from contextual ambiguity, especially among entities with

too low mention support to override ambiguous contexts.

VII. CONCLUSION

In this paper we presented the NER Globalizer pipeline for

microblog streams that builds upon the notion of collective

processing for better entity extraction. We started with the

conventional wisdom for NER to extract candidate surface

forms from the local context of individual sentences. But the

inadequacy and noisiness of local context make this unsuitable

for producing final NER outputs. We then included a Global

NER module. It first separates individual mentions within the

stream into candidate clusters and uses their local embedding

to collectively represent entity candidates. Using these global

representations leads to more accurate entity detection and

better overall NER performance. NER Globalizer reported

superior performance than several state-of-the-art Local and

Global NER systems, outperforming the best Global NER

baseline by 47.39% in Macro-F1 on average. We also recorded

a Macro-F1 improvement of 47.04% from the BERTweet

model at the Local NER stage, where traditional NER systems

typically cease execution.

Acknowledgements: This work was supported in part by U.S.

National Science Foundation 1546480, 1546441, and 1838145

grants, and a gift from NVIDIA Corporation.

1555

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. A. Ghani, S. Hamid, I. A. T. Hashem, and E. Ahmed, “Social media
big data analytics: A survey,” Computers in Human Behavior, vol. 101,
pp. 417–428, 2019.

[2] L. Derczynski, E. Nichols, M. van Erp, and N. Limsopatham, “Results
of the wnut2017 shared task on novel and emerging entity recognition,”
in WNUT, 2017, pp. 140–147.

[3] G. Aguilar, S. Maharjan, A. P. López-Monroy, and T. Solorio, “A multi-
task approach for named entity recognition in social media data,” in
W-NUT. ACL, 2017, pp. 148–153.

[4] D. Q. Nguyen, T. Vu, and A. T. Nguyen, “BERTweet: A pre-trained
language model for English Tweets,” in EMNLP, 2020, pp. 9–14.

[5] A. Aljebreen, W. Meng, and E. C. Dragut, “Segmentation of tweets
with urls and its applications to sentiment analysis,” in AAAI, 2021, pp.
12 480–12 488.

[6] L. He, C. Han, A. Mukherjee, Z. Obradovic, and E. C. Dragut, “On
the dynamics of user engagement in news comment media,” Wiley
Interdiscip. Rev. Data Min. Knowl. Discov., vol. 10, no. 1, 2020.

[7] A. Akbik, T. Bergmann, and R. Vollgraf, “Pooled contextualized embed-
dings for named entity recognition,” in NAACL-HLT, 2019, pp. 724–728.

[8] S. Saha Bhowmick, E. C. Dragut, and W. Meng, “Boosting entity
mention detection for targetted twitter streams with global contextual
embeddings,” IEEE International Conference on Data Engineering
(ICDE), pp. 1085–1097, 2022.

[9] L. Derczynski, K. Bontcheva, and I. Roberts, “Broad Twitter corpus:
A diverse named entity recognition resource,” in COLING, 2016, pp.
1169–1179.

[10] L. A. Ramshaw and M. P. Marcus, “Text chunking using transformation-
based learning,” in Natural language processing using very large cor-
pora. Springer, 1999, pp. 157–176.

[11] A. Ritter, S. Clark, Mausam, and O. Etzioni, “Named entity recognition
in tweets: An experimental study,” in EMNLP, 2011, pp. 1524–1534.

[12] K. Bontcheva, L. Derczynski, A. Funk, M. A. Greenwood, D. Maynard,
and N. Aswani, “TwitIE: An open-source information extraction pipeline
for microblog text,” in RANLP, 2013, p. 83–90.

[13] X. Liu, S. Zhang, F. Wei, and M. Zhou, “Recognizing named entities
in tweets,” in HLT, 2011, p. 359–367.

[14] C. Cherry and H. Guo, “The unreasonable effectiveness of word rep-
resentations for twitter named entity recognition,” in HLT, 2015, p.
735–745.

[15] E.-S. Yang and Y.-S. Kim, “Hallym: Named entity recognition on twitter
with word representation,” in Proceedings of the Workshop on Noisy
User-generated Text, 2015, pp. 72–77.

[16] Z. Toh, B. Chen, and J. Su, “Improving twitter named entity recognition
using word representations,” in WNUT, 2015, p. 141–145.

[17] E.-S. Yang, Y.-B. Kim, R. Sarikaya, and Y.-S. Kim, “Drop-out condi-
tional random fields for twitter with huge mined gazetteer.” in HLT-
NAACL, 2016, pp. 282–288.

[18] M. S. Akhtar, U. K. Sikdar, and A. Ekbal, “Iitp: Multiobjective differen-
tial evolution based twitter named entity recognition,” in W-NUT, 2015,
pp. 61–67.

[19] T. Tian, M. Dinarelli, and I. Tellier, “Lattice: Data adaptation for
named entity recognition on tweets with features-rich crf,” in ACL 2015
workshop WNUT, 2015, pp. 68–71.

[20] S. Mishra and J. Diesner, “Semi-supervised named entity recognition in
noisy-text,” in WNUT, 2016, pp. 203–212.

[21] P. von Däniken and M. Cieliebak, “Transfer learning and sentence level
features for named entity recognition on tweets,” in WNUT, 2017, p.
166–171.

[22] F. Dugas and E. Nichols, “Deepnnner: Applying blstm-cnns and ex-
tended lexicons to named entity recognition in tweets,” in WNUT, 2016,
p. 178–187.

[23] Q. Zhang, J. Fu, X. Liu, and X. Huang, “Adaptive co-attention network
for named entity recognition in tweets.” in AAAI, 2018.

[24] F. Dernoncourt, J. Y. Lee, and P. Szolovits, “NeuroNER: an easy-to-use
program for named-entity recognition based on neural networks,” 2017.

[25] M. N. Gerguis, C. Salama, and M. W. El-Kharashi, “Asu: An experimen-
tal study on applying deep learning in twitter named entity recognition,”
WNUT, p. 188–196, 2016.

[26] Y. Shen, H. Yun, Z. C. Lipton, Y. Kronrod, and A. Anandkumar,
“Deep active learning for named entity recognition,” arXiv preprint
arXiv:1707.05928, p. 252–256, 2017.

[27] S. Zhang, L. He, E. C. Dragut, and S. Vucetic, “How to invest my time:
Lessons from human-in-the-loop entity extraction,” in SIGKDD, 2019,
pp. 2305–2313.

[28] S. Zhang, L. He, S. Vucetic, and E. C. Dragut, “Regular expression
guided entity mention mining from noisy web data,” in EMNLP, pp.
1991–2000.

[29] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional
LSTM-CNNs-CRF,” in ACL, 2016, pp. 1064–1074.

[30] R. Panchendrarajan and A. Amaresan, “Bidirectional lstm-crf for named
entity recognition,” in Proceedings of the 32nd Pacific Asia Conference
on Language, Information and Computation, 2018.

[31] B. Strauss, B. Toma, A. Ritter, M.-C. de Marneffe, and W. Xu, “Results
of the wnut16 named entity recognition shared task,” in WNUT, 2016.

[32] B. Y. Lin and W. Lu, “Neural adaptation layers for cross-domain named
entity recognition,” arXiv preprint arXiv:1810.06368, 2018.

[33] N. Peng and M. Dredze, “Multi-task domain adaptation for sequence
tagging,” arXiv preprint arXiv:1608.02689, 2016.

[34] C. Li, J. Weng, Q. He, Y. Yao, A. Datta, A. Sun, and B.-S. Lee, “Twiner:
Named entity recognition in targeted twitter stream,” in SIGIR, 2012, pp.
721–730.

[35] K. Wang, C. Thrasher, E. Viegas, X. Li, and B.-j. P. Hsu, “An overview
of microsoft web n-gram corpus and applications,” in NAACL HLT 2010
DEMO, 2010, pp. 45–48.

[36] X. Liu, M. Zhou, F. Wei, Z. Fu, and X. Zhou, “Joint inference of
named entity recognition and normalization for tweets,” in ACL, 2012,
p. 526–535.

[37] M. B. Habib and M. van Keulen, “Need4tweet: a twitterbot for tweets
named entity extraction and disambiguation,” p. 31–36, 2015.

[38] I. Yamada, H. Takeda, and Y. Takefuji, “Enhancing named entity
recognition in twitter messages using entity linking,” in WNUT, 2015,
p. 136–140.

[39] A. Gattani, D. S. Lamba, N. Garera, M. Tiwari, X. Chai, S. Das,
S. Subramaniam, A. Rajaraman, V. Harinarayan, and A. Doan, “En-
tity extraction, linking, classification, and tagging for social media: a
wikipedia-based approach,” PVLDB, vol. 6, no. 11, pp. 1126–1137,
2013.

[40] Y. Luo, F. Xiao, and H. Zhao, “Hierarchical contextualized repre-
sentation for named entity recognition,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 05, 2020, pp. 8441–
8448.

[41] T. Gui, J. Ye, Q. Zhang, Y. Zhou, Y. Gong, and X. Huang, “Leveraging
document-level label consistency for named entity recognition.” in
IJCAI, 2020, pp. 3976–3982.

[42] S. Saha Bhowmick, E. C. Dragut, and W. Meng, “Twics: Lightweight
entity mention detection in targeted twitter streams,” IEEE Transactions
on Knowledge and Data Engineering, pp. 1–1, 2021.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[44] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in
NAACL-HLT. Minneapolis, Minnesota: Association for Computational
Linguistics, 2019, pp. 4171–4186.

[45] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[46] A. Conneau and D. Kiela, “Senteval: An evaluation toolkit for universal
sentence representations,” arXiv preprint arXiv:1803.05449, 2018.

[47] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “Semeval-
2017 task 1: Semantic textual similarity multilingual and crosslingual
focused evaluation,” Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), 2017.

[48] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in Neural Information Processing Systems, vol. 33, pp.
18 661–18 673, 2020.

[49] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,” in EMNLP-IJCNLP. Association for
Computational Linguistics, 2019, pp. 3982–3992.

[50] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models,” in Proceedings
of the thirteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2010, pp.
297–304.

1556

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

[51] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification.” Journal of machine learning
research, vol. 10, no. 2, p. 207–244, 2009.

[52] N. Frosst, N. Papernot, and G. Hinton, “Analyzing and improving
representations with the soft nearest neighbor loss,” in International
conference on machine learning. PMLR, 2019, pp. 2012–2020.

[53] R. Salakhutdinov and G. Hinton, “Learning a nonlinear embedding
by preserving class neighbourhood structure,” in Proceedings of the
Eleventh International Conference on Artificial Intelligence and Statis-
tics. PMLR, 2007, pp. 412–419.

[54] K. C. Gowda and G. Krishna, “Agglomerative clustering using the
concept of mutual nearest neighbourhood,” Pattern recognition, vol. 10,
no. 2, pp. 105–112, 1978.

[55] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of
deep representations and image clusters,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 5147–
5156.

[56] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep adaptive
image clustering,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 5879–5887.

[57] A. Hadifar, L. Sterckx, T. Demeester, and C. Develder, “A self-training
approach for short text clustering,” in Proceedings of the 4th Workshop
on Representation Learning for NLP (RepL4NLP-2019), 2019, pp. 194–
199.

[58] K. Lee, D. Palsetia, R. Narayanan, M. M. A. Patwary, A. Agrawal, and
A. Choudhary, “Twitter trending topic classification,” in ICDM, 2011,
pp. 251–258.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

1557

Authorized licensed use limited to: Temple University. Downloaded on September 11,2023 at 14:22:51 UTC from IEEE Xplore. Restrictions apply.

