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ABSTRACT

The Weighted-Mean Subsequence Reduced (W-MSR) algorithm,
the state-of-the-art method for Byzantine-resilient design of de-
centralized multi-robot systems, is based on discarding outliers
received over Linear Consensus Protocol (LCP). Although W-MSR
provides theoretical guarantees relating network connectivity to
the convergence of the underlying consensus, W-MSR comes with
several limitations: the number of Byzantine robots, F, to tolerate
should be known a priori, each robot needs to maintain 2F + 1
neighbors, F + 1 robots must independently make local measure-
ments of the consensus property in order for the swarm’s decision
to change, and W-MSR is specific to LCP and does not generalize
to applications not implemented over LCP. In this work, we pro-
pose a Decentralized Blocklist Protocol (DBP) based on inter-robot
accusations. Accusations are made on the basis of locally-made ob-
servations of misbehavior, and once shared by cooperative robots
across the network are used as input to a graph matching algorithm
that computes a blocklist. DBP generalizes to applications not im-
plemented via LCP, is adaptive to the number of Byzantine robots,
and allows for fast information propagation through the multi-
robot system while simultaneously reducing the required network
connectivity relative to W-MSR. On LCP-type applications, DBP
reduces the worst-case connectivity requirement of W-MSR from
(2F + 1)-connected to (F + 1)-connected and the minimum number
of cooperative observers required to propagate new information
from F + 1 to just 1 observer. We demonstrate that our approach to
Byzantine resilience scales to hundreds of robots on target tracking,
time synchronization, and localization case studies.
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1 INTRODUCTION

Multi-robot systems (MRS) presently employed in industry use
structured deployment environments and highly centralized de-
signs [27]. Central coordination benefits all key MRS components -
task allocation, execution, fault detection and recovery,while struc-
tured environments allow for strict physical security measures. In
contrast, emergent MRS applications in unstructured environments
(such as patrol, search and rescue, coverage, shape formation, and
collective transport) are typically not amenable to centralized ap-
proaches due to communication constraints [11]. Decentralized
methods to mitigate the negative impact of faulty and/or malicious
robots in unstructured environments have therefore attracted much
research attention, especially since a wide range of attacks have
been shown to disrupt MRS function and safety, e.g. sensor perturba-
tion and denial-of-service (DoS) [7, 16, 31], actuator jamming [14],
networking DoS [29], or Sybil/fraudulent identity attacks [12, 17].
Given the multitude of possible attacks, it is important to under-
stand the resilience of the MRS from Byzantine attackers — that is
if an unknown subset of the robots is allowed to have arbitrarily
different behaviors relative to the cooperative robots in terms of
physical actions and communication.

Byzantine-unaware MRS implementations are often highly vul-
nerable, and break completely, when even one robot has been com-
prised. In our case studies for example, Byzantine robots may cause
robots within a swarm to follow a false target, or have arbitrarily
large errors in time synchronization or localization. The main ap-
proach proposed for Byzantine-resilient MRS is the Weighted-Mean
Subsequence Reduced (W-MSR) algorithm [15, 18, 24]. W-MSR is
easy to implement and has well-understood theoretical guarantees.
However, W-MSR can only be used for MRS applications that are
implemented via Linear Consensus Protocol (LCP), performance
does not scale with the number of robots in the system, and the
number of Byzantine robots to tolerate, F, is a parameter that must
be known a priori. Suppose that LCP is the means by which the
robots reach a collective decision about a physical property of the
environment. The choice of F in W-MSR dictates how many outliers
robots should discard in each update of linear consensus; each robot
needs at minimum 2F + 1 neighbors in order to update their local
consensus variable and at minimum F + 1 cooperative robots must
independently make direct measurement of the underlying physical
quantity. If F is chosen smaller than the number of Byzantine robots,
then the mitigation provided by W-MSR is forfeit. For large F, the
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network connectivity requirement and the logistics of maintaining
F + 1 cooperative observers renders W-MSR impractical.

In this work we propose Decentralized Blocklist Protocol (DBP), an
approach to Byzantine resilience inspired by P2P networks, based
on inter-robot accusations. Cooperative robots make use of local
observations to detect misbehaving peers and make accusations
accordingly. Accusations propagate through the cooperative robots,
which each robot then independently processes with a matching
algorithm to compute a blocklist. We derive necessary and suffi-
cient conditions on the set of accusations that must be made and
connectivity of the MRS that ensures that all Byzantine robots are
eventually blocked by the cooperative robots, and their influence
mitigated. Specifically, we show that for a closed MRS satisfying an
analogous (F + 1)-connectivity requirement for time-varying net-
works, blocking all of the Byzantine robots is equivalent to Hall’s
marriage condition on the accusations made within the system. In
addition to W-MSR requiring the number of Byzantine robots to tol-
erate be known a priori, we claim that W-MSR does not scale with
the number of robots in practice. We show empirically on target
tracking and time synchronization applications that this is the case,
and that our proposed approach adaptively scales to hundreds of
robots/attackers, in contrast to just one or two attackers in a swarm
of no more than 20 robots as in related works. W-MSR cannot be
used to provide Byzantine resilience for MRS not implemented over
LCP, such as cooperative localization. We implement Byzantine-
resilient cooperative localization using our approach as a proof of
concept; to our knowledge ours is the first successful technique for
decentralized and Byzantine-resilient cooperative localization.

2 BACKGROUND & RELATED WORK

W-MSR. Perhaps the most well-understood approach to Byzantine-
resilient decentralized MRS is the W-MSR algorithm. W-MSR can
be applied to MRS applications that are implemented over Linear
Consensus Protocol - a distributed consensus algorithm for real-
valued variables whereby in each timestep robots update their local
variable to a convex combination of their neighbor’s broadcast
values, i.e.

xi(t) = Z ajxj(t — 1) where Zaj =1
JENG (1)

and Ng (i) are the neighbors of i in the connectivity graph G. The
authors of [15] first introduced W-MSR for Byzantine resilience
which discards the F highest and F lowest values received at each
timestep of LCP, and show that convergence despite up to F Byzan-
tine robots is equivalent to a graph robustness property. Specifically,
if the connectivity graph of the robots is at least (2F + 1)-vertex-
connected, then the consensus will converge to a value within
the convex hull of the cooperative robots’ initial values. W-MSR
has been applied to a variety of applications, such as flocking [24]
and state estimation [18]. Extensions for the W-MSR algorithm to
time-varying networks where the union of the connectivity graphs
within a bounded window is robust are proposed in [23] and to
event-driven control in [2]. Methods to form robust graph topolo-
gies, as required by the W-MSR algorithm, are proposed in [13].

Blockchain. Distributed ledger technologies, e.g. blockchains, have
also attracted much research attention for its potential to provide re-
silience guarantees. For similar settings as considered in this paper,
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[26] proposes to use an Ethereum blockchain for a MRS collective
decision-making case study. The authors of [19] investigate the
approach of consensus over blockchain. We refer the reader to a
recent survey [1] of work on blockchain for robotics applications,
including for MRS and swarm.

Inter-robot observations. The use of inter-robot observations
to detect misbehavior and establish trust is a common theme in
multi-agent systems generally. As opposed to our work, where ac-
cusations are used to compute a blocklist, the authors of [4] propose
that cooperative robots should take physical action to isolate mis-
behaving robots on observing incorrect behavior. In a cooperative
patrolling case study for example, cooperative robots surround and
impede the movement of robots that are observed not following
the correct trajectory. More commonly, inter-robot observations
are used as input to a reputation mechanism, whereby robots main-
tain real-valued reputation scores of their peers. For example, [10]
presents a connected vehicle case study where robots use partial in-
formation to determine if their local neighbors are non-cooperative,
and a later work [3] proposes an adaptive threshold-based actuator
fault detection strategy for MRS. The use of reputation scores as
input to a cooperative coverage problem is explored in [20], and [6]
introduces a general trust framework for multi-robot systems with
case studies on intelligent intersection management. Reputation
mechanisms can also be merged with consensus, i.e. [9] proposes
that robots perform consensus on the reputation values of the
robots. Ultimately, reputation mechanisms inherit the drawbacks
of W-MSR, in that F + 1 cooperative robots would be required to
assign a low reputation to each misbehaving robot before their
influence is removed from the system, and furthermore the number
of consensus variables (the reputation scores) scales linearly with
the size of the swarm.

MRS security. Beyond the mentioned directly related works, our
work is motivated by the broader push for secure MRS. We re-
fer the reader to [5] for a comprehensive survey of open security
problems in MRS, with problem-specific recommendations for mit-
igation, and to [30] for a treatment of recent approaches to MRS
in uncertain or adversarial operating environments. Decentralized
MRS has a wide attack surface; [14] tests CPS-inspired anomaly
detection for a variety of compromise scenarios such as wheel
jamming, LIDAR denial-of-service, wheel encoder logic fault, etc.,
and [7] analyzes bounded sensor attacks. A novelty of our work is
the proof-of-concept Byzantine-resilience for cooperative localiza-
tion. Byzantine localization is a challenging problem, [28] derives
conditions under which Byzantine localization is solvable in the
centralized setting; similarly as with W-MSR, Byzantine localization
requires the graph structure of inter-robot measurements to satisfy
a robustness property.

Sybil attacks. Certain threat models have received special treat-
ment in the literature. Efficient methods for scheduling MRS under
denial of service attacks are proposed in [31], which [16] extends
to the decentralized setting. In our work, we assume that the MRS
is protected from Sybil attacks since a central trust authority issues
identities for all of the robots. We believe that Sybil-proofness of
the system via central authority is a reasonable assumption for a
closed MRS, where the set of robots does not change with time.
Decentralized identity management and Sybil-proofness for MRS
is however an active area of research orthogonal to our own. Using



Decentralized Blocklist Protocol AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

s Accusations propagate and
e ° i robots compute maximum

; ° i matchingon A. 3,6 still

; ; follow the target and forward

; observations, 5 remains as an
observer.

3 accuses (—>) 1, 6 based on direct observation.

~unme- time-varying network topology

* Byzantine 1, 6 transmit false observations 0 accuses 1 and 5 accuses 6 based on missed observation

* Cooperative 3 makes a direct observation : ° e

Figure 1: DBP is used to provide Byzantine resilience for a simple seven robot (two Byzantine) scenario of the target tracking
case study explored in Section 5.1. Byzantine robots 1 and 6 transmit false target observations (red stars) while cooperative
robot 3 makes a direct observation of the target (black star). Based on the closest observer, the cooperative robots move towards
the supposed target location. Robots 0 and 5 make it to the false locations reported by 1 and 6 respectively and accuse the
observers on the basis of missed observations that should have been made. Meanwhile, robot 3 accuses both 1 and 6 since their
observations contradict 3’s direct observation. The accusations flood through the cooperative robots, until eventually each
cooperative robot has accusation graph denoted A. Edmond’s algorithm is used by each robot to independently compute the
maximum matching {(3,6), (0,1)} (red edges), thus observations from robots 0, 1, 3, and 6 are blocked. Observations from robots
2,4, and 5 are still trusted by the other cooperative robots. Note that 0 and 3 still continue to cooperate by moving towards the
target and forwarding observations from non-blocked observers.

inter-robot radio signals to detect Sybil identities is first proposed
in [12]; the same technique is later applied to a cooperative flocking
scenario under Sybil threat model in [17]. Other physics-inspired,
application-specific approaches have been proposed in the litera-
ture, for example defending against Sybil attacks on a crowdsourced
traffic light [25]. Prior work has also proposed to incorporate Sybil
attack prevention as a component of the W-MSR algorithm [22].

3 THREAT MODEL

We consider a swarm robotics system with robots connected by
time-varying network topology G[t] = (V, E[t]). Each robot has
an identity that has been issued by a trusted central authority at
deploy-time, which it uses to both send signed messages to its neigh-
bors and to verify the authenticity of received messages. Assume
that some unknown subset of the robots have been compromised
by a Byzantine adversary. We refer to the cooperative robots as
C €V, the Byzantine ones as C = V \ C, and we assume that the
sets V and C are fixed, i.e. the MRS is closed. We assume a strong
adversary, where the Byzantine robots can coordinate centrally
with each other online, have detailed knowledge of the system
implementation such as robot capabilities and application details,
can send arbitrary messages to the cooperative robots, and have
arbitrary physical behaviors. The goal of the Byzantine robots is to
disrupt the MRS application; the specific goal and attack strategy
will depend on the application. Each of our case studies in Section 5
will specify the attacker’s goal and strategy. Since the robots use
their trust authority-issued identities to communicate, we assume
that Sybil attacks are not possible for the adversary, since the ad-
versary is unable to forge fraudulent identities that will be accepted
by C. However, robots whose identities (secret keys) have been
compromised can be used by the adversary to send misleading

messages. Therefore, any robots in the swarm whose keys have
been compromised are considered to be part of C.

4 DECENTRALIZED BLOCKLIST PROTOCOL

Decentralized Blocklist Protocol (DBP) is a swarm blocklist algo-
rithm that is adaptive to the presence of Byzantine adversaries. DBP
can be used as an alternative to W-MSR, but with lower requirement
on network connectivity and without needing to know F ahead
of time. DBP is adaptive, and as such the requirement on robust
network topology scales with the true number of Byzantine robots.
The connectivity requirements of W-MSR scale with the parame-
ter F, even if the actual number of Byzantine robots is lower. An
example of how DBP works on a target tracking scenario is shown
in Fig. 1. Based on locally-made observations, cooperative robots
accuse misbehaving peers. The accusations propagate through the
network via flooding and are used as input to a matching algorithm
that outputs a blocklist.

DBP relies on flooding as a networking primitive, where coop-
erative robots always re-broadcast (forward) received messages.
Messages in DBP are accusations signed by the robot initiating
the flood. Accusations Acc;(j) are an application-agnostic message
and the payload is simply the identity of a robot j that the origin i
wishes to accuse. The precise rules used to decide if and when an
accusation should be issued are application-specific. Accusations
serve to remove the influence of Byzantine nodes on the swarm
application. Each robot i locally maintains a set R; [¢] of accusations
that it has received. A subset R [t] € R;[t] will be locally computed
by i using any deterministic maximum matching algorithm (such
as Edmond’s [8]) to form the blocklist. For the remainder of this
section, we will assume that the robots have a sound accusation
mechanism:
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DEFINITION 1 (SOUND ACCUSATION). Ifa cooperative robot i issues
an accusation Acc;(j), then Acc;(j) is sound if and only if j € C.

REMARK 1. In the presence of Byzantine robots, receiving a message
Acc;i(j) implies thati € C V j € C. The reason is that if i € C, then
j € C by soundness of accusations. In the other case, i € C.

Matching. Importantly, the set of received accusations R;[¢] has
a structure imparted by the accusation soundness. Given an undi-
rected graph G = (V = X U Y, E) with X, Y disjoint, we say that G
is X -semi-bipartite if X is an independent vertex set in G. A subset
M C E is a matching on G if M is an independent edge set in G.
Given a matching M, we denote by V)y( the matched vertices in M.
If no additional edges can be added to a matching M, then M is
maximal. If there does not exist a matching M* s.t. [V > [Vaql,
then M is a maximum cardinality, or maximum, matching. Given a
subset S C V, a matching M is S-perfect if S € V. The following
condition allows us to connect the notion of maximum matching
and perfect matching:

DEFINITION 2 (HALL’'S MARRIAGE CONDITION). Given G = (X U
Y,E) s.t. G is X-semi-bipartite, a Y -perfect matching exists if VS C Y,
[S] < ING(S) N X|. Additionally, any maximum matching will be
Y-perfect.

Accusation graph. Now let Ay [t] be the accusation graph with
edge (i, j) iff Acc;(j) € R [t]. As we note in Remark 1, each accu-
sation can be viewed as a disjunction - Acc;(j) can be understood
as “i is Byzantine or j is Byzantine (or both are).” Therefore, Ay [¢]
is C-semi-bipartite, and any matching M on A [t] will satisfy
[Vum| < 2|C|. The inequality will be tight if and only if the Hall
marriage condition holds for C on Ay [t] - in which case the maxi-
mum matching M is C-perfect with |Vjs| = 2|C|. Robot k chooses
RZ[t] to be the matched vertices of the maximum matching on
Ap [t] - the robots corresponding to the matched vertices are the
ones that k will block. An example accusation graph and associated
maximum matching is shown as “A” in Fig. 1.

Network flooding. This matching result is only useful if the requi-
site accusations actually propagate through the robots in C. Given
a time-varying directed graph G[t] = (V, E[t]), consider the execu-
tion of a network flood where a node v € V initiates a flood at time
7 by transmitting a message to its neighbors N[ (v). The flood
continues when v’s neighbors transmit to their neighbors so that at
time 7+2, Ng[11] (Ng[7] (v)) will receive the message. Continuing
the pattern, the s-frontier of the flood, for positive integer s, is given
by

Ng[f] (v) = NG[T+$*1] (NG[T+S*2] (- NG[T] (0)))

The s-closure of the flood is then the union
. 0
Ném (v) := NG[T] U---u Ngm

If for arbitrary initial node v and starting time 7, there exists a
positive integer s such that Ng[r] (v) =V, then we say that G[¢] is
floodable. So far we have assumed that nodes may re-transmit the
message multiple times. If we limit the number of re-transmissions
to n, and there still exists an s s.t. the analogously defined (n, s)-
closure equals V, then we say that G[t] is n-floodable. If |V| > k and
after the removal of an arbitrary set of k nodes from V, G|t] is still
n-floodable, then we say that G[¢] is (k, n)-floodable. Ultimately,
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we can now state that cooperative nodes will eventually hear all
accusations and have the same accusation graph despite up to F
Byzantine robots:

THEOREM 1 (EVENTUAL BLOCKLIST CONSENSUS). Let G[¢t] be the
time-varying, (F, n)-floodable network topology of the robot swarm
V.If|C| < F, there 3r € Z*, AVi € C,s > r s.t. A = A;[s].

ProOF. By definition of (F, n)-floodable, we have that all accusa-
tions made by V will eventually reach all of C, since the cooperative
robots can ensure eventual delivery of an accusation to all of C even
if up to F Byzantines do not forward accusations. Given that the
MRS is closed, the number of possible accusations is finite (bounded
by 2|C| + |C|?) and therefore there exists a time 7 after which no
new accusations are made. As each cooperative robot uses the same
deterministic algorithm to compute maximum matchings on the
accusation graph, each cooperative robot will eventually compute
the same maximum matching and arrive at the same list of robots
to block. O

If the assumption that G[¢] is (F, n)-floodable does not hold, then
some cooperative robot(s) may not receive some of the accusations.
If the Ry [¢] are not eventually equivalent across all k, it is possible
that not all uncooperative robots are blocked (even though globally,
enough accusations have been made to satisfy the Hall marriage
condition). However, all of C will be blocked by k provided that k’s
local accusation graph Ay [t] satisfies the Hall marriage condition,
but the matched cooperative robots on the blocklist may not be the
same as those on other blocklists.

5 CASE STUDIES

We run our experiments on turtlebots simulated in ARGoS [21], a
multi-physics robot simulator that can efficiently simulate large-
scale swarms of robots. The robots are equipped with a radio to
transmit to neighboring robots within 4m and have an omnidi-
rectional camera used for nearby target detection and collision
avoidance with an observation distance of = 0.9m. The robot con-
troller runs at 30Hz. Source code to reproduce our experiments
can be found at https://github.com/gitsper/decentralized-blocklist-
protocol

5.1 Target Tracking

Application overview. In swarm target tracking, the goal of the
robots is to locate and cooperatively follow a mobile target that
has a maximum speed of d. In our experimental setup, the target
is a robot that has a yellow light — robots within a distance r can
see the light and make a direct observation of the target. To enable
the entire swarm to track the target, even for those robots that do
not directly observe the target, robots broadcast target observation
messages containing:

(1) the observer’s unique ID
(2) the time of the observation
(3) the observed location of the target

In each timestep, robots sort received observation messages by
observation time, and choose the most recent one to transmit to its
neighbors. Robots keep track of how many times a given observa-
tion message has been transmitted, and stop sharing it after fixed,
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finite number of times. The purpose of transmitting the same obser-
vation message multiple times is to account for the time-varying
connectivity with neighboring robots. In addition to the applica-
tion messages, DBP is used to mitigate the influence of Byzantine
robots. Robots delete and do not forward observations messages
from blocked observer IDs. Old observation messages are periodi-
cally deleted from the local cache.

Greedily ignore
% | — observations with
empty intersection

2d(t—s)

Figure 2: Observation-based target tracking setup for use
with DBP. Robots that do not observe the target directly sort
received observations by age and compute a bounding box for
each observation containing the target based on the elapsed
time. Reducing over the bounding boxes with the set inter-
section operator yields the robot’s current belief about the
target location. Conflicting observations, those that result in
an empty intersection, are dropped, ending the iteration.

Controller. For robots that directly observe the target, they com-
pute a heading vector pointing to the target from their current
location and move towards the target. Robots that do not directly
observe the target rely on received observation messages to com-
pute their heading vector. We denote by U (c) the closed square
centered at ¢ with side length 2d. Given an observation message
with time s and observed target location x, the implied belief is
that the set Uy(;_s)(X) contains the target at the current time
t > s. First, the received observation messages are sorted by time
(s1,%1), (52, %2), ... with s > s3 > ---. To compute the heading
vector, robots iteratively take the intersection

Ug(t-s5y) (F1) N Ug(r—s,) (X2) N -

If the intersection ever becomes empty while iterating, the offending
observation is dropped and the iteration ends. Robots take the center
of the intersection to be their believed target location and use it to
compute their heading vector. The control procedure is illustrated
in Fig. 2. Bounding boxes are used instead of circles to simplify the
computation of set intersections.

Accusation rules. On receiving a new observation message, robots
issue DBP accusations according to four target tracking-specific
accusation rules. Given the received observation by robot j of X
made at time s, let At = t — s the elapsed time, Ap; = ||p;i[t] — X||
the distance from i’s location p;[t] to the observed target, and
c a constant denoting an upper bound on the speed with which
messages can travel through the network (in our experimental
setup, 4m/timestep). The first accusation rule is triggered when
r + cAt < Ap;, as the observation would need to have traveled
faster-than-possible through the network. The second accusation
rule is triggered when Ap; < r — dAt and i did not make a direct
observation of the target — i missed an observation that it should
have made if the received observation was legitimate. The third
accusation is rule is triggered when Ap; > r + dAt but a direct

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

observation was made by i; in this case the target couldn’t possibly
have moved fast enough from the received observation location to
the place where i observed it presently. Finally, the last accusation
rule detects oscillations from a single observer. If i has received
an observation from j in the past, it will consider the most recent
previous observation from j of %14 at time syq, and will make
an accusation of j if ||¥ — Xgq|l > d(s — sg1q)- In this case, j’s
observations are inherently inconsistent with the maximum rate of
change in x.

Experiment setup. We compare DBP-based Byzantine-resilient
target tracking with the state-of-the-art W-MSR-based approach.
Aside from not needing to know the number of Byzantine robots to
tolerate a priori and lower network connectivity requirement, our
approach requires just one non-blocked cooperative robot to observe the
moving target, whereas W-MSR requires F +1 cooperative observers
to shift the consensus among the cooperative robots as the target
moves. We simulate |C| = 200 and |C| = 100 robots to compare
tracking performance. Byzantine robots may transmit observation
messages and accusations with arbitrary contents. In our scenarios,
the behavior of the Byzantine robots is to distribute evenly through
the environment and to continuously broadcast false observations
- each Byzantine robot picks the location ~ 0.4m away from itself
directed away from the origin as the broadcast observation. This
Byzantine strategy attempts to lower the network connectivity by
causing the cooperative robots to spread out and away from the
origin, while simultaneously not violating the speed of network
accusation rule.

t =600

Figure 3: View of DBP-based target tracking in ARGoS. Byzan-
tine robots are highlighted with red circles, direct observa-
tions of the target are shown in cyan.

Experiment result. In Fig. 4 we plot the belief that each cooper-
ative robot has about the x-coordinate of the target, summarized
using a quantile heatmap. The range of beliefs decreases until ap-
prox. t = 400, at which point all of the Byzantine robots have been
blocked and the execution enters the regime with all Byzantine
influence removed. Views of the DBP target tracking experiment
in the ARGOS simulator are shown in Fig. 3. The baseline W-MSR
algorithm requires the resilience parameter F to be picked a priori.
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DBP target tracking: 200 coop., 100 byz.
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Figure 4: DBP-based target tracking performance. At top, the
black curve shows the true x-coordinate of the moving tar-
get and the shaded blue regions show the range of beliefs as
percentiles around the median. At bottom we plot min; R} [¢],
i.e. the minimum blocklist size. At timestep ~ 200, all of the
Byzantine robots have been blocked on each cooperative ro-
bot, and the cooperative robots track the target with close
to no error as the influence of the Byzantines has been re-
moved.

W-MSR target tracking: 200 coop., 100 byz. F=100
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W-MSR target tracking: 200 coop., 100 byz. F=15
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Figure 5: W-MSR-based target tracking performance. When
the resilience parameter F = 100 (top) in order to guaran-
tee safety, the information about the moving target cannot
propagate through the cooperative robots due to the high
connectivity and simultaneous observer requirements. As
a comparison, F = 15 (bottom) has no safety guarantee but
allows a subset of the robots to track the target successfully.
However, the influence of the Byzantines is never removed.

If F is chosen too small, the theoretical guarantees of W-MSR are
forfeited so the cooperative robots’ consensus may be disrupted
by the Byzantine robots. Specifically, part of the swarm where the
density of Byzantine robots is low may be able to track the target
successfully, however cooperative robots with more than F Byzan-
tine neighbors will be affected by the attack. Each cooperative
robot affected by the attack will in turn strengthen the attack as
their local value nears the attacker’s value — this scenario is shown
with F = 15 < |C]| at the bottom of Fig. 5. However, W-MSR does
not scale to large F, since the robots cannot achieve such a high
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level of network connectivity and also high number of coopera-
tive observers. The large-F regime is shown at top in Fig. 5, with
F=100=]|C|.

5.2 Time Synchronization

Application overview. For this task, the robots’ objective is to
cooperatively synchronize their local clocks to a universal reference
clock while moving through the environment. A subset of the robots
are designated as anchors — these robots periodically make high-
precision observations of the reference clock time. As in the target
tracking application, the anchors broadcast observation messages
containing:

(1) the observer’s unique ID

(2) the observed time

In each timestep, the non-anchor robots sort received observation
messages by the observed time in decreasing order and choose the
largest value to re-transmit to neighbors, and DBP is used to delete
and selectively not forward observation messages from blocked
observers.

Controller. On those timesteps when new observation messages
are received, non-anchor robots simply update their local clock by
setting it to the maximum observed time in their list of observation
messages. If a new observation message is not received during a
timestep, a non-anchor robot i’s local clock is updated by adding a
number sampled from the distribution 1+ y;+U[—0.05,0.05], where
Ula, b] is the uniform distribution on [a, b] and y; is sampled at
the beginning of the simulation from U[-0.01, 0.01]. This update
behavior is intended to simulate a random-walk clock drift when
no new observation messages are received.

Accusation rules. Whenever an anchor robot receives a new obser-
vation message, it issues an accusation of the origin if the observed
time is larger than the anchor’s local time. The intuition behind this
accusation rule is that the difference between the received observed
time and the anchor’s local time can only be negative — if the ob-
server is cooperative then the difference should correspond to the
number of hops that the observation made on a shortest path to the
receiving anchor. If the difference were to be positive, this would
imply that the observer’s local clock is ahead, violating the assump-
tion that cooperative anchors make high-precision observations of
the reference time.

Experiment setup. We compare DBP-based Byzantine-resilient
time synchronization with the state-of-the-art W-MSR-based ap-
proach. We simulate |C| = 100 (50 of which act as anchors, with
observation period of 100 timesteps) and |C| = 45 robots to compare
the synchronization performance. Byzantine robots may send arbi-
trary observation messages, including impersonating anchors. The
behavior of the Byzantines in our experiments is to move through
the environment just as the cooperative robots do, while broadcast
false reference clock observations with the same period as the co-
operative anchors. The false observations are the true reference
clock value, plus an attack offset of +1000 timesteps. This choice of
Byzantine adversary attempts to disrupt the time synchronization
of the cooperative nodes by forcing the non-anchors to adopt local
clock values that are too large — too-low values would be ignored
by cooperative robots since each non-anchor always sets their local
clock to the maximum observed clock value.
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DBP time synchronization: 100 coop. (50 anchors), 45 byz.
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Figure 6: DBP-based time synchronization performance.
Shown at top is the error between the cooperative robots’
local clocks relative to the global reference clock. The error
spikes to the attacker offset whenever a Byzantine robot ini-
tiates an attack. After timestep ~ 400, all of the Byzantines
have been blocked and the tracking error remains nominal.
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Figure 7: W-MSR-based time synchronization performance.
As in the target tracking case study, F = |C| = 45 guarantees
safety, but the associated connectivity requirement prohibits
convergence. Conversely, a lower F = 10 permits convergence
of the consensus at the cost of allowing the Byzantines to
adversely perturb the cooperative robots’ local clock values.

Experiment result. In Fig. 6 we plot the time synchronization
error (difference between local time and the reference time) of the
cooperative non-anchor robots over the course of the simulation.
We observe that the Byzantine robots are able to push the synchro-
nization error to the attack offset of +1000 timesteps by transmitting
the false reference time observations, until timestep ~ 400, at which
point each cooperative robot has blocked all of the Byzantine robots
and the attacker influence is successfully removed. As with the tar-
get tracking case study, the W-MSR baseline requires a choice to
be made a priori for the resilience parameter, F. If F is chosen too
small, e.g. F = 10 shown at bottom in Fig. 7, then the Byzantine
robots influence the consensus and the cooperative robots have
local clock values between the attack offset and the reference time.
If F is chosen large enough to be resilient to |C| = 45 attackers,
then the connectivity and simultaneous observation requirement
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is too large for the non-anchor robots to update their local clocks
from neighbor’s observations. The large-F regime is shown at top
in Fig. 7 with F = 45 = |C|.

5.3 Cooperative Localization

Application overview. In the cooperative localization task, robots
move in an unknown and/or dynamic environment and use local
inter-robot distance measurements to estimate their position within
a global coordinate system. To facilitate this task, a subset of the
robots operate as anchors, and periodically make high-precision
observations of their position (e.g. as static, pre-positioned anchors
or mobile robots with GPS). As opposed to the target tracking and
time synchronization applications, non-anchor robots also broad-
cast a localization message containing their localization belief. The
localization message contains:

o the sender’s unique ID
o the sender’s local time
o the sender’s believed localization, expressed as bounding
box
e an anchor flag, set if and only if the sender is an anchor
— if the anchor flag is not set, the most recently received
anchor localization message

Non-anchor robots initially have no belief about their localization.
Once a belief is formed (initially, just the anchors), non-anchors
begin to periodically broadcast localization messages to their neigh-
bors. The anchor flag will be set only if the sender is an anchor.
Localization messages from non-anchors will be ignored unless the
message includes an attached localization message with the anchor
flag set.

Controller. On those timesteps when localization messages are
received, non-anchor robots sort received localization messages
by the time of the underlying anchor message (most recent first),
and then use a stable sort to sort by anchor flag (anchor messages
first). After sorting, the robot iterates over the received localization
messages and takes the intersection of each localization belief,
dilated by the transmission range, ¢, plus the maximum distance a
robot can travel per timestep, d. If the intersection ever becomes
empty while iterating, the last localization message is dropped
and the iteration ends. The resulting intersection is the bounding
box that represents the robot’s new localization belief. In the next
timestep, the robot will transmit its localization belief, bundling
the most recent anchor message encountered during the iteration
(this may be a direct transmission from an anchor, or an anchor
message that arrived as an attachment to a non-anchor’s message).
The algorithm’s operation is illustrated in Fig. 8. DBP is used to
delete and ignore messages from blocked senders.

Accusation rules. Received localization messages are subjected to
two accusation rules. The first rule is applied by anchor robots when
receiving localization messages from other anchors, either directly
or as attachments to non-anchor localization messages. Given that
the other anchor j claims to be at p; at time s, let At = t — s
the elapsed time and Ax; = ||p; — pill. The receiving anchor i
will accuse j if cAt < Axj, or in other words, if the anchor j’s
localization message has traveled faster-than-possible through the
network. The second accusation rule can be issued by all robots,
including non-anchors. The second rule asserts that the first rule
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Figure 8: Observation-based cooperative localization setup
for use with DBP. Non-anchor robots estimate their local-
ization based on localization estimates received from their
neighbors. Estimates are dilated by the transmission distance,
and then reduced with the set intersection operator to com-
pute the localization belief. Localization estimates are or-
dered by the age of the underlying anchor message, with
estimates sent directly from anchors given priority.

hold between any received non-anchor localization message and
its attached anchor message. These simple accusations could be
extended if the robot capabilities were better. For example, if the
robots could measure a lower bound on the distance from senders,
anchors would be able to issue analogous accusations in situations
where localization messages from other anchors should have been
received sooner.

Experiment setup. The W-MSR algorithm cannot be chosen as a
baseline for this case study, as cooperative localization is not solved
via linear consensus problem outside of small-scale settings where
each robot can directly observe every other robot in the swarm.
We instead demonstrate our approach as a proof-of-concept for
Byzantine-resilient cooperative localization. We simulate |C| = 120
(80 of which act as fixed-position anchors) and |C| = 50. The Byzan-
tine robots, which attempt to disrupt the localization of the cooper-
ative non-anchors, transmit false anchor localization messages by
taking their true position and adding a random attack offset to the x-
and y-coordinates sampled uniformly from [-20,20]m. The impact
of the false anchor messages on non-anchor robots is to disrupt
the iteration over localization messages — since the false anchor
localization will likely have an empty intersection with localization
messages from nearby cooperative anchors, leading to degraded
cooperative localization performance.

Experiment result. In Fig. 9 we plot the absolute error that the
cooperative non-anchor robots have in their x-coordinate, i.e. the
absolute difference between what they believe their x-coordinate
to be and the ground truth. We observe that while initially the
cooperative non-anchors may have errors near the attack offset
of ~ 20m, the Byzantine robots are rapidly accused and blocked
by the cooperative robots. After the Byzantine robots have been
blocked, the anchor localization sharing algorithm provides low-
error cooperative localization for the non-anchor robots. As a point
of comparison, we also simulate the same scenario with DBP dis-
abled, with the absolute x-coordinate localization error shown in
Fig. 10. As expected, the Byzantine robots significantly disrupt the
localization, causing the cooperative non-anchor robots to have
consistently high errors up to the attack offset.

6 CONCLUSION

This work has proposed the use of a decentralized blocklist protocol
based on inter-robot accusations as a means to provide Byzantine
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DBP cooperative localization: 120 coop. (80 anchors), 50 byz.
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Figure 9: DBP-based cooperative localization performance.
At top, we plot the absolute error that the cooperative robots
have in the estimate of the x-coordinate of their position. At
bottom we plot the minimum size of the cooperative robots’
blocklists — once all of the Byzantines are blocked the esti-
mation error returns to nominal values as the influence of
the Byzantines has been mitigated.

localization (no mitigation): 120 coop. (80 anchors), 50 byz.
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Figure 10: To support our claim that DBP is a suitable ap-
proach for this task, we show the impact that Byzantine
robots can have on cooperative localization — Byzantines can
cause the cooperative robots to have arbitrarily large local-
ization errors.

resilience for multi-robot systems. We have shown that as an alter-
native to the W-MSR algorithm, our approach permits temporary
Byzantine influence while accusations are made, but in exchange
adapts to Byzantine robots as they are detected, allows for fast
information propagation, and can be applied for applications be-
yond consensus. Based on empirical evidence from swarm target
tracking, time synchronization, and localization case studies, our
approach is more practical than W-MSR in terms of scalability to
large swarms as it does not require each cooperative robot to have
2F + 1 neighbors, nor does it require F + 1 cooperative observers
for information to propagate. In fact, our approach only requires
that messages are delivered by network floods in spite of F Byzan-
tine robots, and observations from a single cooperative robot can
propagate quickly through the entire swarm. Furthermore, we have
shown that our approach can for the first time provide Byzantine
resilience for the large-scale decentralized cooperative localization
problem. In our future work, we hope to extend our approach to
systems where accusations are not always sound and to explore
swarm algorithms that optimize the speed with which Byzantine
robots are discovered and accused.
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