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ABSTRACT

The Weighted-Mean Subsequence Reduced (W-MSR) algorithm,

the state-of-the-art method for Byzantine-resilient design of de-

centralized multi-robot systems, is based on discarding outliers

received over Linear Consensus Protocol (LCP). Although W-MSR

provides theoretical guarantees relating network connectivity to

the convergence of the underlying consensus, W-MSR comes with

several limitations: the number of Byzantine robots, 𝐹 , to tolerate

should be known a priori, each robot needs to maintain 2𝐹 + 1

neighbors, 𝐹 + 1 robots must independently make local measure-

ments of the consensus property in order for the swarm’s decision

to change, and W-MSR is specific to LCP and does not generalize

to applications not implemented over LCP. In this work, we pro-

pose a Decentralized Blocklist Protocol (DBP) based on inter-robot

accusations. Accusations are made on the basis of locally-made ob-

servations of misbehavior, and once shared by cooperative robots

across the network are used as input to a graph matching algorithm

that computes a blocklist. DBP generalizes to applications not im-

plemented via LCP, is adaptive to the number of Byzantine robots,

and allows for fast information propagation through the multi-

robot system while simultaneously reducing the required network

connectivity relative to W-MSR. On LCP-type applications, DBP

reduces the worst-case connectivity requirement of W-MSR from

(2𝐹 + 1)-connected to (𝐹 + 1)-connected and the minimum number

of cooperative observers required to propagate new information

from 𝐹 + 1 to just 1 observer. We demonstrate that our approach to

Byzantine resilience scales to hundreds of robots on target tracking,

time synchronization, and localization case studies.
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1 INTRODUCTION

Multi-robot systems (MRS) presently employed in industry use

structured deployment environments and highly centralized de-

signs [27]. Central coordination benefits all key MRS components –

task allocation, execution, fault detection and recovery,while struc-

tured environments allow for strict physical security measures. In

contrast, emergent MRS applications in unstructured environments

(such as patrol, search and rescue, coverage, shape formation, and

collective transport) are typically not amenable to centralized ap-

proaches due to communication constraints [11]. Decentralized

methods to mitigate the negative impact of faulty and/or malicious

robots in unstructured environments have therefore attracted much

research attention, especially since a wide range of attacks have

been shown to disruptMRS function and safety, e.g. sensor perturba-

tion and denial-of-service (DoS) [7, 16, 31], actuator jamming [14],

networking DoS [29], or Sybil/fraudulent identity attacks [12, 17].

Given the multitude of possible attacks, it is important to under-

stand the resilience of the MRS from Byzantine attackers – that is

if an unknown subset of the robots is allowed to have arbitrarily

different behaviors relative to the cooperative robots in terms of

physical actions and communication.

Byzantine-unaware MRS implementations are often highly vul-

nerable, and break completely, when even one robot has been com-

prised. In our case studies for example, Byzantine robots may cause

robots within a swarm to follow a false target, or have arbitrarily

large errors in time synchronization or localization. The main ap-

proach proposed for Byzantine-resilient MRS is theWeighted-Mean
Subsequence Reduced (W-MSR) algorithm [15, 18, 24]. W-MSR is

easy to implement and has well-understood theoretical guarantees.

However, W-MSR can only be used for MRS applications that are

implemented via Linear Consensus Protocol (LCP), performance

does not scale with the number of robots in the system, and the

number of Byzantine robots to tolerate, 𝐹 , is a parameter that must

be known a priori. Suppose that LCP is the means by which the

robots reach a collective decision about a physical property of the

environment. The choice of 𝐹 inW-MSR dictates howmany outliers

robots should discard in each update of linear consensus; each robot

needs at minimum 2𝐹 + 1 neighbors in order to update their local

consensus variable and at minimum 𝐹 + 1 cooperative robots must

independently make direct measurement of the underlying physical

quantity. If 𝐹 is chosen smaller than the number of Byzantine robots,

then the mitigation provided by W-MSR is forfeit. For large 𝐹 , the
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network connectivity requirement and the logistics of maintaining

𝐹 + 1 cooperative observers renders W-MSR impractical.

In this work we proposeDecentralized Blocklist Protocol (DBP), an
approach to Byzantine resilience inspired by P2P networks, based

on inter-robot accusations. Cooperative robots make use of local

observations to detect misbehaving peers and make accusations

accordingly. Accusations propagate through the cooperative robots,

which each robot then independently processes with a matching

algorithm to compute a blocklist. We derive necessary and suffi-

cient conditions on the set of accusations that must be made and

connectivity of the MRS that ensures that all Byzantine robots are

eventually blocked by the cooperative robots, and their influence

mitigated. Specifically, we show that for a closed MRS satisfying an

analogous (𝐹 + 1)-connectivity requirement for time-varying net-

works, blocking all of the Byzantine robots is equivalent to Hall’s

marriage condition on the accusations made within the system. In

addition to W-MSR requiring the number of Byzantine robots to tol-

erate be known a priori, we claim that W-MSR does not scale with

the number of robots in practice. We show empirically on target

tracking and time synchronization applications that this is the case,

and that our proposed approach adaptively scales to hundreds of

robots/attackers, in contrast to just one or two attackers in a swarm

of no more than 20 robots as in related works. W-MSR cannot be

used to provide Byzantine resilience for MRS not implemented over

LCP, such as cooperative localization. We implement Byzantine-

resilient cooperative localization using our approach as a proof of

concept; to our knowledge ours is the first successful technique for

decentralized and Byzantine-resilient cooperative localization.

2 BACKGROUND & RELATED WORK

W-MSR. Perhaps the most well-understood approach to Byzantine-

resilient decentralized MRS is the W-MSR algorithm. W-MSR can

be applied to MRS applications that are implemented over Linear

Consensus Protocol – a distributed consensus algorithm for real-

valued variables whereby in each timestep robots update their local

variable to a convex combination of their neighbor’s broadcast

values, i.e.

𝑥𝑖 (𝑡) =
∑︁

𝑗∈N𝐺 (𝑖 )
𝛼 𝑗𝑥 𝑗 (𝑡 − 1) where

∑︁
𝛼 𝑗 = 1

and N𝐺 (𝑖) are the neighbors of 𝑖 in the connectivity graph 𝐺 . The

authors of [15] first introduced W-MSR for Byzantine resilience

which discards the 𝐹 highest and 𝐹 lowest values received at each

timestep of LCP, and show that convergence despite up to 𝐹 Byzan-

tine robots is equivalent to a graph robustness property. Specifically,

if the connectivity graph of the robots is at least (2𝐹 + 1)-vertex-
connected, then the consensus will converge to a value within

the convex hull of the cooperative robots’ initial values. W-MSR

has been applied to a variety of applications, such as flocking [24]

and state estimation [18]. Extensions for the W-MSR algorithm to

time-varying networks where the union of the connectivity graphs

within a bounded window is robust are proposed in [23] and to

event-driven control in [2]. Methods to form robust graph topolo-

gies, as required by the W-MSR algorithm, are proposed in [13].

Blockchain. Distributed ledger technologies, e.g. blockchains, have

also attracted much research attention for its potential to provide re-

silience guarantees. For similar settings as considered in this paper,

[26] proposes to use an Ethereum blockchain for a MRS collective

decision-making case study. The authors of [19] investigate the

approach of consensus over blockchain. We refer the reader to a

recent survey [1] of work on blockchain for robotics applications,

including for MRS and swarm.

Inter-robot observations. The use of inter-robot observations

to detect misbehavior and establish trust is a common theme in

multi-agent systems generally. As opposed to our work, where ac-

cusations are used to compute a blocklist, the authors of [4] propose

that cooperative robots should take physical action to isolate mis-

behaving robots on observing incorrect behavior. In a cooperative

patrolling case study for example, cooperative robots surround and

impede the movement of robots that are observed not following

the correct trajectory. More commonly, inter-robot observations

are used as input to a reputation mechanism, whereby robots main-

tain real-valued reputation scores of their peers. For example, [10]

presents a connected vehicle case study where robots use partial in-

formation to determine if their local neighbors are non-cooperative,

and a later work [3] proposes an adaptive threshold-based actuator

fault detection strategy for MRS. The use of reputation scores as

input to a cooperative coverage problem is explored in [20], and [6]

introduces a general trust framework for multi-robot systems with

case studies on intelligent intersection management. Reputation

mechanisms can also be merged with consensus, i.e. [9] proposes

that robots perform consensus on the reputation values of the

robots. Ultimately, reputation mechanisms inherit the drawbacks

of W-MSR, in that 𝐹 + 1 cooperative robots would be required to

assign a low reputation to each misbehaving robot before their

influence is removed from the system, and furthermore the number

of consensus variables (the reputation scores) scales linearly with

the size of the swarm.

MRS security. Beyond the mentioned directly related works, our

work is motivated by the broader push for secure MRS. We re-

fer the reader to [5] for a comprehensive survey of open security

problems in MRS, with problem-specific recommendations for mit-

igation, and to [30] for a treatment of recent approaches to MRS

in uncertain or adversarial operating environments. Decentralized

MRS has a wide attack surface; [14] tests CPS-inspired anomaly

detection for a variety of compromise scenarios such as wheel

jamming, LiDAR denial-of-service, wheel encoder logic fault, etc.,

and [7] analyzes bounded sensor attacks. A novelty of our work is

the proof-of-concept Byzantine-resilience for cooperative localiza-

tion. Byzantine localization is a challenging problem, [28] derives

conditions under which Byzantine localization is solvable in the

centralized setting; similarly as withW-MSR, Byzantine localization

requires the graph structure of inter-robot measurements to satisfy

a robustness property.

Sybil attacks. Certain threat models have received special treat-

ment in the literature. Efficient methods for scheduling MRS under

denial of service attacks are proposed in [31], which [16] extends

to the decentralized setting. In our work, we assume that the MRS

is protected from Sybil attacks since a central trust authority issues

identities for all of the robots. We believe that Sybil-proofness of

the system via central authority is a reasonable assumption for a

closed MRS, where the set of robots does not change with time.

Decentralized identity management and Sybil-proofness for MRS

is however an active area of research orthogonal to our own. Using
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Figure 1: DBP is used to provide Byzantine resilience for a simple seven robot (two Byzantine) scenario of the target tracking

case study explored in Section 5.1. Byzantine robots 1 and 6 transmit false target observations (red stars) while cooperative

robot 3 makes a direct observation of the target (black star). Based on the closest observer, the cooperative robots move towards

the supposed target location. Robots 0 and 5 make it to the false locations reported by 1 and 6 respectively and accuse the

observers on the basis of missed observations that should have been made. Meanwhile, robot 3 accuses both 1 and 6 since their

observations contradict 3’s direct observation. The accusations flood through the cooperative robots, until eventually each

cooperative robot has accusation graph denoted A. Edmond’s algorithm is used by each robot to independently compute the

maximummatching {(3, 6), (0, 1)} (red edges), thus observations from robots 0, 1, 3, and 6 are blocked. Observations from robots

2, 4, and 5 are still trusted by the other cooperative robots. Note that 0 and 3 still continue to cooperate by moving towards the

target and forwarding observations from non-blocked observers.

inter-robot radio signals to detect Sybil identities is first proposed

in [12]; the same technique is later applied to a cooperative flocking

scenario under Sybil threat model in [17]. Other physics-inspired,

application-specific approaches have been proposed in the litera-

ture, for example defending against Sybil attacks on a crowdsourced

traffic light [25]. Prior work has also proposed to incorporate Sybil

attack prevention as a component of the W-MSR algorithm [22].

3 THREAT MODEL

We consider a swarm robotics system with robots connected by

time-varying network topology 𝐺 [𝑡] = (𝑉 , 𝐸 [𝑡]). Each robot has

an identity that has been issued by a trusted central authority at

deploy-time, which it uses to both send signedmessages to its neigh-

bors and to verify the authenticity of received messages. Assume

that some unknown subset of the robots have been compromised

by a Byzantine adversary. We refer to the cooperative robots as

C ∈ 𝑉 , the Byzantine ones as ¯C = 𝑉 \ C, and we assume that the

sets 𝑉 and C are fixed, i.e. the MRS is closed. We assume a strong

adversary, where the Byzantine robots can coordinate centrally

with each other online, have detailed knowledge of the system

implementation such as robot capabilities and application details,

can send arbitrary messages to the cooperative robots, and have

arbitrary physical behaviors. The goal of the Byzantine robots is to

disrupt the MRS application; the specific goal and attack strategy

will depend on the application. Each of our case studies in Section 5

will specify the attacker’s goal and strategy. Since the robots use

their trust authority-issued identities to communicate, we assume

that Sybil attacks are not possible for the adversary, since the ad-

versary is unable to forge fraudulent identities that will be accepted

by C. However, robots whose identities (secret keys) have been

compromised can be used by the adversary to send misleading

messages. Therefore, any robots in the swarm whose keys have

been compromised are considered to be part of
¯C.

4 DECENTRALIZED BLOCKLIST PROTOCOL

Decentralized Blocklist Protocol (DBP) is a swarm blocklist algo-

rithm that is adaptive to the presence of Byzantine adversaries. DBP

can be used as an alternative toW-MSR, but with lower requirement

on network connectivity and without needing to know 𝐹 ahead

of time. DBP is adaptive, and as such the requirement on robust

network topology scales with the true number of Byzantine robots.

The connectivity requirements of W-MSR scale with the parame-

ter 𝐹 , even if the actual number of Byzantine robots is lower. An

example of how DBP works on a target tracking scenario is shown

in Fig. 1. Based on locally-made observations, cooperative robots

accuse misbehaving peers. The accusations propagate through the

network via flooding and are used as input to a matching algorithm

that outputs a blocklist.

DBP relies on flooding as a networking primitive, where coop-

erative robots always re-broadcast (forward) received messages.

Messages in DBP are accusations signed by the robot initiating

the flood. Accusations Acc𝑖 ( 𝑗) are an application-agnostic message

and the payload is simply the identity of a robot 𝑗 that the origin 𝑖

wishes to accuse. The precise rules used to decide if and when an

accusation should be issued are application-specific. Accusations

serve to remove the influence of Byzantine nodes on the swarm

application. Each robot 𝑖 locally maintains a set 𝑅𝑖 [𝑡] of accusations
that it has received. A subset 𝑅∗

𝑖
[𝑡] ⊆ 𝑅𝑖 [𝑡] will be locally computed

by 𝑖 using any deterministic maximum matching algorithm (such

as Edmond’s [8]) to form the blocklist. For the remainder of this

section, we will assume that the robots have a sound accusation

mechanism:
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Definition 1 (Sound accusation). If a cooperative robot 𝑖 issues
an accusation Acc𝑖 ( 𝑗), then Acc𝑖 ( 𝑗) is sound if and only if 𝑗 ∈ ¯C.

Remark 1. In the presence of Byzantine robots, receiving amessage
Acc𝑖 ( 𝑗) implies that 𝑖 ∈ ¯C ∨ 𝑗 ∈ ¯C. The reason is that if 𝑖 ∈ C, then
𝑗 ∈ ¯C by soundness of accusations. In the other case, 𝑖 ∈ ¯C.

Matching. Importantly, the set of received accusations 𝑅𝑖 [𝑡] has
a structure imparted by the accusation soundness. Given an undi-

rected graph 𝐺 = (𝑉 = 𝑋 ∪ 𝑌, 𝐸) with 𝑋,𝑌 disjoint, we say that 𝐺

is 𝑋 -semi-bipartite if 𝑋 is an independent vertex set in 𝐺 . A subset

M ⊆ 𝐸 is a matching on 𝐺 if M is an independent edge set in 𝐺 .

Given a matchingM, we denote by𝑉M the matched vertices inM.

If no additional edges can be added to a matching M, then M is

maximal. If there does not exist a matching M∗
s.t. |𝑉M∗ | > |𝑉M |,

thenM is a maximum cardinality, or maximum, matching. Given a

subset 𝑆 ⊆ 𝑉 , a matching M is 𝑆-perfect if 𝑆 ⊆ 𝑉M . The following

condition allows us to connect the notion of maximum matching

and perfect matching:

Definition 2 (Hall’s Marriage condition). Given 𝐺 = (𝑋 ∪
𝑌, 𝐸) s.t.𝐺 is 𝑋 -semi-bipartite, a 𝑌 -perfect matching exists if ∀𝑆 ⊆ 𝑌 ,
|𝑆 | ≤ |N𝐺 (𝑆) ∩ 𝑋 |. Additionally, any maximum matching will be
𝑌 -perfect.

Accusation graph. Now let A𝑘 [𝑡] be the accusation graph with

edge (𝑖, 𝑗) iff Acc𝑖 ( 𝑗) ∈ 𝑅𝑘 [𝑡]. As we note in Remark 1, each accu-

sation can be viewed as a disjunction – Acc𝑖 ( 𝑗) can be understood

as “𝑖 is Byzantine or 𝑗 is Byzantine (or both are).” Therefore, A𝑘 [𝑡]
is C-semi-bipartite, and any matching 𝑀 on A𝑘 [𝑡] will satisfy
|𝑉𝑀 | ≤ 2| ¯C|. The inequality will be tight if and only if the Hall

marriage condition holds for
¯C on A𝑘 [𝑡] – in which case the maxi-

mum matching𝑀 is
¯C-perfect with |𝑉𝑀 | = 2| ¯C|. Robot 𝑘 chooses

𝑅∗
𝑘
[𝑡] to be the matched vertices of the maximum matching on

A𝑘 [𝑡] – the robots corresponding to the matched vertices are the

ones that 𝑘 will block. An example accusation graph and associated

maximum matching is shown as “A” in Fig. 1.

Network flooding. This matching result is only useful if the requi-

site accusations actually propagate through the robots in C. Given
a time-varying directed graph𝐺 [𝑡] = (𝑉 , 𝐸 [𝑡]), consider the execu-
tion of a network flood where a node 𝑣 ∈ 𝑉 initiates a flood at time

𝜏 by transmitting a message to its neighbors N𝐺 [𝜏 ] (𝑣). The flood
continues when 𝑣 ’s neighbors transmit to their neighbors so that at

time 𝜏+2,N𝐺 [𝜏+1] (N𝐺 [𝜏 ] (𝑣)) will receive the message. Continuing

the pattern, the 𝑠-frontier of the flood, for positive integer 𝑠 , is given

by

N𝑠
𝐺 [𝜏 ] (𝑣) := N𝐺 [𝜏+𝑠−1] (N𝐺 [𝜏+𝑠−2] (· · · N𝐺 [𝜏 ] (𝑣)))

The 𝑠-closure of the flood is then the union

N𝑠∗

𝐺 [𝜏 ] (𝑣) := N0

𝐺 [𝜏 ] ∪ · · · ∪ N𝑠
𝐺 [𝜏 ]

If for arbitrary initial node 𝑣 and starting time 𝜏 , there exists a

positive integer 𝑠 such thatN𝑠∗

𝐺 [𝜏 ] (𝑣) = 𝑉 , then we say that𝐺 [𝑡] is
floodable. So far we have assumed that nodes may re-transmit the

message multiple times. If we limit the number of re-transmissions

to 𝑛, and there still exists an 𝑠 s.t. the analogously defined (𝑛, 𝑠)-
closure equals𝑉 , then we say that𝐺 [𝑡] is 𝑛-floodable. If |𝑉 | ≥ 𝑘 and

after the removal of an arbitrary set of 𝑘 nodes from 𝑉 ,𝐺 [𝑡] is still
𝑛-floodable, then we say that 𝐺 [𝑡] is (𝑘, 𝑛)-floodable. Ultimately,

we can now state that cooperative nodes will eventually hear all

accusations and have the same accusation graph despite up to 𝐹

Byzantine robots:

Theorem 1 (Eventual Blocklist Consensus). Let 𝐺 [𝑡] be the
time-varying, (𝐹, 𝑛)-floodable network topology of the robot swarm
𝑉 . If | ¯C| ≤ 𝐹 , there ∃𝜏 ∈ Z+,A∀𝑖 ∈ C, 𝑠 ≥ 𝜏 s.t. A = A𝑖 [𝑠].

Proof. By definition of (𝐹, 𝑛)-floodable, we have that all accusa-
tions made by𝑉 will eventually reach all of C, since the cooperative
robots can ensure eventual delivery of an accusation to all of C even

if up to 𝐹 Byzantines do not forward accusations. Given that the

MRS is closed, the number of possible accusations is finite (bounded

by 2|C| + | ¯C|2) and therefore there exists a time 𝜏 after which no

new accusations are made. As each cooperative robot uses the same

deterministic algorithm to compute maximum matchings on the

accusation graph, each cooperative robot will eventually compute

the same maximum matching and arrive at the same list of robots

to block. □

If the assumption that𝐺 [𝑡] is (𝐹, 𝑛)-floodable does not hold, then
some cooperative robot(s) may not receive some of the accusations.

If the 𝑅𝑘 [𝑡] are not eventually equivalent across all 𝑘 , it is possible

that not all uncooperative robots are blocked (even though globally,

enough accusations have been made to satisfy the Hall marriage

condition). However, all of
¯C will be blocked by 𝑘 provided that 𝑘’s

local accusation graph A𝑘 [𝑡] satisfies the Hall marriage condition,

but the matched cooperative robots on the blocklist may not be the

same as those on other blocklists.

5 CASE STUDIES

We run our experiments on turtlebots simulated in ARGoS [21], a

multi-physics robot simulator that can efficiently simulate large-

scale swarms of robots. The robots are equipped with a radio to

transmit to neighboring robots within 4m and have an omnidi-

rectional camera used for nearby target detection and collision

avoidance with an observation distance of ≈ 0.9m. The robot con-

troller runs at 30Hz. Source code to reproduce our experiments

can be found at https://github.com/gitsper/decentralized-blocklist-

protocol

5.1 Target Tracking

Application overview. In swarm target tracking, the goal of the

robots is to locate and cooperatively follow a mobile target that

has a maximum speed of 𝑑 . In our experimental setup, the target

is a robot that has a yellow light – robots within a distance 𝑟 can

see the light and make a direct observation of the target. To enable

the entire swarm to track the target, even for those robots that do

not directly observe the target, robots broadcast target observation

messages containing:

(1) the observer’s unique ID

(2) the time of the observation

(3) the observed location of the target

In each timestep, robots sort received observation messages by

observation time, and choose the most recent one to transmit to its

neighbors. Robots keep track of how many times a given observa-

tion message has been transmitted, and stop sharing it after fixed,

https://github.com/gitsper/decentralized-blocklist-protocol
https://github.com/gitsper/decentralized-blocklist-protocol
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finite number of times. The purpose of transmitting the same obser-

vation message multiple times is to account for the time-varying

connectivity with neighboring robots. In addition to the applica-

tion messages, DBP is used to mitigate the influence of Byzantine

robots. Robots delete and do not forward observations messages

from blocked observer IDs. Old observation messages are periodi-

cally deleted from the local cache.

2
𝑑
(𝑡
−
𝑠)

Greedily ignore

observations with

empty intersection

Figure 2: Observation-based target tracking setup for use

with DBP. Robots that do not observe the target directly sort

received observations by age and compute a bounding box for

each observation containing the target based on the elapsed

time. Reducing over the bounding boxes with the set inter-

section operator yields the robot’s current belief about the

target location. Conflicting observations, those that result in

an empty intersection, are dropped, ending the iteration.

Controller. For robots that directly observe the target, they com-

pute a heading vector pointing to the target from their current

location and move towards the target. Robots that do not directly

observe the target rely on received observation messages to com-

pute their heading vector. We denote byU𝑑 (𝑐) the closed square

centered at 𝑐 with side length 2𝑑 . Given an observation message

with time 𝑠 and observed target location 𝑥 , the implied belief is

that the set U𝑑 (𝑡−𝑠 ) (𝑥) contains the target at the current time

𝑡 > 𝑠 . First, the received observation messages are sorted by time

(𝑠1, 𝑥1), (𝑠2, 𝑥2), . . . with 𝑠1 ≥ 𝑠2 ≥ · · · . To compute the heading

vector, robots iteratively take the intersection

U𝑑 (𝑡−𝑠1 ) (𝑥1) ∩ U𝑑 (𝑡−𝑠2 ) (𝑥2) ∩ · · ·

If the intersection ever becomes emptywhile iterating, the offending

observation is dropped and the iteration ends. Robots take the center

of the intersection to be their believed target location and use it to

compute their heading vector. The control procedure is illustrated

in Fig. 2. Bounding boxes are used instead of circles to simplify the

computation of set intersections.

Accusation rules. On receiving a new observation message, robots

issue DBP accusations according to four target tracking-specific

accusation rules. Given the received observation by robot 𝑗 of 𝑥

made at time 𝑠 , let Δ𝑡 = 𝑡 − 𝑠 the elapsed time, Δ𝑝𝑖 = ∥𝑝𝑖 [𝑡] − 𝑥 ∥
the distance from 𝑖’s location 𝑝𝑖 [𝑡] to the observed target, and

𝑐 a constant denoting an upper bound on the speed with which

messages can travel through the network (in our experimental

setup, 4m/timestep). The first accusation rule is triggered when

𝑟 + 𝑐Δ𝑡 < Δ𝑝𝑖 , as the observation would need to have traveled

faster-than-possible through the network. The second accusation

rule is triggered when Δ𝑝𝑖 < 𝑟 − 𝑑Δ𝑡 and 𝑖 did not make a direct

observation of the target – 𝑖 missed an observation that it should

have made if the received observation was legitimate. The third

accusation is rule is triggered when Δ𝑝𝑖 > 𝑟 + 𝑑Δ𝑡 but a direct

observation was made by 𝑖; in this case the target couldn’t possibly

have moved fast enough from the received observation location to

the place where 𝑖 observed it presently. Finally, the last accusation

rule detects oscillations from a single observer. If 𝑖 has received

an observation from 𝑗 in the past, it will consider the most recent

previous observation from 𝑗 of 𝑥
old

at time 𝑠
old

, and will make

an accusation of 𝑗 if ∥𝑥 − 𝑥
old

∥ > 𝑑 (𝑠 − 𝑠
old

). In this case, 𝑗 ’s

observations are inherently inconsistent with the maximum rate of

change in 𝑥 .

Experiment setup. We compare DBP-based Byzantine-resilient

target tracking with the state-of-the-art W-MSR-based approach.

Aside from not needing to know the number of Byzantine robots to

tolerate a priori and lower network connectivity requirement, our
approach requires just one non-blocked cooperative robot to observe the
moving target, whereas W-MSR requires 𝐹 +1 cooperative observers
to shift the consensus among the cooperative robots as the target

moves. We simulate |C| = 200 and | ¯C| = 100 robots to compare

tracking performance. Byzantine robots may transmit observation

messages and accusations with arbitrary contents. In our scenarios,

the behavior of the Byzantine robots is to distribute evenly through

the environment and to continuously broadcast false observations

– each Byzantine robot picks the location ∼ 0.4m away from itself

directed away from the origin as the broadcast observation. This

Byzantine strategy attempts to lower the network connectivity by

causing the cooperative robots to spread out and away from the

origin, while simultaneously not violating the speed of network

accusation rule.

Figure 3: View of DBP-based target tracking inARGoS. Byzan-

tine robots are highlighted with red circles, direct observa-

tions of the target are shown in cyan.

Experiment result. In Fig. 4 we plot the belief that each cooper-

ative robot has about the 𝑥-coordinate of the target, summarized

using a quantile heatmap. The range of beliefs decreases until ap-

prox. 𝑡 = 400, at which point all of the Byzantine robots have been

blocked and the execution enters the regime with all Byzantine

influence removed. Views of the DBP target tracking experiment

in the ARGoS simulator are shown in Fig. 3. The baseline W-MSR

algorithm requires the resilience parameter 𝐹 to be picked a priori.
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Figure 4: DBP-based target tracking performance. At top, the

black curve shows the true x-coordinate of the moving tar-

get and the shaded blue regions show the range of beliefs as

percentiles around the median. At bottom we plot min𝑖 𝑅
∗
𝑖
[𝑡],

i.e. the minimum blocklist size. At timestep ∼ 200, all of the

Byzantine robots have been blocked on each cooperative ro-

bot, and the cooperative robots track the target with close

to no error as the influence of the Byzantines has been re-

moved.

Figure 5: W-MSR-based target tracking performance. When

the resilience parameter 𝐹 = 100 (top) in order to guaran-

tee safety, the information about the moving target cannot

propagate through the cooperative robots due to the high

connectivity and simultaneous observer requirements. As

a comparison, 𝐹 = 15 (bottom) has no safety guarantee but

allows a subset of the robots to track the target successfully.

However, the influence of the Byzantines is never removed.

If 𝐹 is chosen too small, the theoretical guarantees of W-MSR are

forfeited so the cooperative robots’ consensus may be disrupted

by the Byzantine robots. Specifically, part of the swarm where the

density of Byzantine robots is low may be able to track the target

successfully, however cooperative robots with more than 𝐹 Byzan-

tine neighbors will be affected by the attack. Each cooperative

robot affected by the attack will in turn strengthen the attack as

their local value nears the attacker’s value – this scenario is shown

with 𝐹 = 15 < | ¯C| at the bottom of Fig. 5. However, W-MSR does

not scale to large 𝐹 , since the robots cannot achieve such a high

level of network connectivity and also high number of coopera-

tive observers. The large-𝐹 regime is shown at top in Fig. 5, with

𝐹 = 100 = | ¯C|.

5.2 Time Synchronization

Application overview. For this task, the robots’ objective is to

cooperatively synchronize their local clocks to a universal reference

clockwhile moving through the environment. A subset of the robots

are designated as anchors – these robots periodically make high-

precision observations of the reference clock time. As in the target

tracking application, the anchors broadcast observation messages

containing:

(1) the observer’s unique ID

(2) the observed time

In each timestep, the non-anchor robots sort received observation

messages by the observed time in decreasing order and choose the

largest value to re-transmit to neighbors, and DBP is used to delete

and selectively not forward observation messages from blocked

observers.

Controller. On those timesteps when new observation messages

are received, non-anchor robots simply update their local clock by

setting it to the maximum observed time in their list of observation

messages. If a new observation message is not received during a

timestep, a non-anchor robot 𝑖’s local clock is updated by adding a

number sampled from the distribution 1+𝜇𝑖 +𝑈 [−0.05, 0.05], where
𝑈 [𝑎, 𝑏] is the uniform distribution on [𝑎, 𝑏] and 𝜇𝑖 is sampled at

the beginning of the simulation from 𝑈 [−0.01, 0.01]. This update
behavior is intended to simulate a random-walk clock drift when

no new observation messages are received.

Accusation rules. Whenever an anchor robot receives a new obser-

vation message, it issues an accusation of the origin if the observed

time is larger than the anchor’s local time. The intuition behind this

accusation rule is that the difference between the received observed

time and the anchor’s local time can only be negative – if the ob-

server is cooperative then the difference should correspond to the

number of hops that the observation made on a shortest path to the

receiving anchor. If the difference were to be positive, this would

imply that the observer’s local clock is ahead, violating the assump-

tion that cooperative anchors make high-precision observations of

the reference time.

Experiment setup. We compare DBP-based Byzantine-resilient

time synchronization with the state-of-the-art W-MSR-based ap-

proach. We simulate |C| = 100 (50 of which act as anchors, with

observation period of 100 timesteps) and | ¯C| = 45 robots to compare

the synchronization performance. Byzantine robots may send arbi-

trary observation messages, including impersonating anchors. The

behavior of the Byzantines in our experiments is to move through

the environment just as the cooperative robots do, while broadcast

false reference clock observations with the same period as the co-

operative anchors. The false observations are the true reference

clock value, plus an attack offset of +1000 timesteps. This choice of

Byzantine adversary attempts to disrupt the time synchronization

of the cooperative nodes by forcing the non-anchors to adopt local

clock values that are too large – too-low values would be ignored

by cooperative robots since each non-anchor always sets their local

clock to the maximum observed clock value.
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Figure 6: DBP-based time synchronization performance.

Shown at top is the error between the cooperative robots’

local clocks relative to the global reference clock. The error

spikes to the attacker offset whenever a Byzantine robot ini-

tiates an attack. After timestep ∼ 400, all of the Byzantines

have been blocked and the tracking error remains nominal.

Figure 7: W-MSR-based time synchronization performance.

As in the target tracking case study, 𝐹 = | ¯C| = 45 guarantees

safety, but the associated connectivity requirement prohibits

convergence. Conversely, a lower 𝐹 = 10 permits convergence

of the consensus at the cost of allowing the Byzantines to

adversely perturb the cooperative robots’ local clock values.

Experiment result. In Fig. 6 we plot the time synchronization

error (difference between local time and the reference time) of the

cooperative non-anchor robots over the course of the simulation.

We observe that the Byzantine robots are able to push the synchro-

nization error to the attack offset of +1000 timesteps by transmitting

the false reference time observations, until timestep ∼ 400, at which

point each cooperative robot has blocked all of the Byzantine robots

and the attacker influence is successfully removed. As with the tar-

get tracking case study, the W-MSR baseline requires a choice to

be made a priori for the resilience parameter, 𝐹 . If 𝐹 is chosen too

small, e.g. 𝐹 = 10 shown at bottom in Fig. 7, then the Byzantine

robots influence the consensus and the cooperative robots have

local clock values between the attack offset and the reference time.

If 𝐹 is chosen large enough to be resilient to | ¯C| = 45 attackers,

then the connectivity and simultaneous observation requirement

is too large for the non-anchor robots to update their local clocks

from neighbor’s observations. The large-𝐹 regime is shown at top

in Fig. 7 with 𝐹 = 45 = | ¯C|.

5.3 Cooperative Localization

Application overview. In the cooperative localization task, robots

move in an unknown and/or dynamic environment and use local

inter-robot distance measurements to estimate their position within

a global coordinate system. To facilitate this task, a subset of the

robots operate as anchors, and periodically make high-precision

observations of their position (e.g. as static, pre-positioned anchors

or mobile robots with GPS). As opposed to the target tracking and

time synchronization applications, non-anchor robots also broad-

cast a localization message containing their localization belief. The

localization message contains:

• the sender’s unique ID

• the sender’s local time

• the sender’s believed localization, expressed as bounding

box

• an anchor flag, set if and only if the sender is an anchor

– if the anchor flag is not set, the most recently received

anchor localization message

Non-anchor robots initially have no belief about their localization.

Once a belief is formed (initially, just the anchors), non-anchors

begin to periodically broadcast localization messages to their neigh-

bors. The anchor flag will be set only if the sender is an anchor.

Localization messages from non-anchors will be ignored unless the

message includes an attached localization message with the anchor

flag set.

Controller. On those timesteps when localization messages are

received, non-anchor robots sort received localization messages

by the time of the underlying anchor message (most recent first),

and then use a stable sort to sort by anchor flag (anchor messages

first). After sorting, the robot iterates over the received localization

messages and takes the intersection of each localization belief,

dilated by the transmission range, 𝑐 , plus the maximum distance a

robot can travel per timestep, 𝑑 . If the intersection ever becomes

empty while iterating, the last localization message is dropped

and the iteration ends. The resulting intersection is the bounding

box that represents the robot’s new localization belief. In the next

timestep, the robot will transmit its localization belief, bundling

the most recent anchor message encountered during the iteration

(this may be a direct transmission from an anchor, or an anchor

message that arrived as an attachment to a non-anchor’s message).

The algorithm’s operation is illustrated in Fig. 8. DBP is used to

delete and ignore messages from blocked senders.

Accusation rules. Received localization messages are subjected to

two accusation rules. The first rule is applied by anchor robots when

receiving localization messages from other anchors, either directly

or as attachments to non-anchor localization messages. Given that

the other anchor 𝑗 claims to be at 𝑝 𝑗 at time 𝑠 , let Δ𝑡 = 𝑡 − 𝑠

the elapsed time and Δ𝑥𝑖 = ∥𝑝 𝑗 − 𝑝𝑖 ∥. The receiving anchor 𝑖

will accuse 𝑗 if 𝑐Δ𝑡 < Δ𝑥𝑖 , or in other words, if the anchor 𝑗 ’s

localization message has traveled faster-than-possible through the

network. The second accusation rule can be issued by all robots,

including non-anchors. The second rule asserts that the first rule
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𝑐

Neighbor’s

localization

estimate

Greedily ignore

observations with

empty intersection

Behave as if location is

the middle of this

intersection. Transmit

intersection as localization

estimate.

Figure 8: Observation-based cooperative localization setup

for use with DBP. Non-anchor robots estimate their local-

ization based on localization estimates received from their

neighbors. Estimates are dilated by the transmission distance,

and then reduced with the set intersection operator to com-

pute the localization belief. Localization estimates are or-

dered by the age of the underlying anchor message, with

estimates sent directly from anchors given priority.

hold between any received non-anchor localization message and

its attached anchor message. These simple accusations could be

extended if the robot capabilities were better. For example, if the

robots could measure a lower bound on the distance from senders,

anchors would be able to issue analogous accusations in situations

where localization messages from other anchors should have been

received sooner.

Experiment setup. The W-MSR algorithm cannot be chosen as a

baseline for this case study, as cooperative localization is not solved

via linear consensus problem outside of small-scale settings where

each robot can directly observe every other robot in the swarm.

We instead demonstrate our approach as a proof-of-concept for

Byzantine-resilient cooperative localization. We simulate |C| = 120

(80 of which act as fixed-position anchors) and | ¯C| = 50. The Byzan-

tine robots, which attempt to disrupt the localization of the cooper-

ative non-anchors, transmit false anchor localization messages by

taking their true position and adding a random attack offset to the x-

and y-coordinates sampled uniformly from [-20,20]m. The impact

of the false anchor messages on non-anchor robots is to disrupt

the iteration over localization messages – since the false anchor

localization will likely have an empty intersection with localization

messages from nearby cooperative anchors, leading to degraded

cooperative localization performance.

Experiment result. In Fig. 9 we plot the absolute error that the

cooperative non-anchor robots have in their x-coordinate, i.e. the

absolute difference between what they believe their x-coordinate

to be and the ground truth. We observe that while initially the

cooperative non-anchors may have errors near the attack offset

of ∼ 20m, the Byzantine robots are rapidly accused and blocked

by the cooperative robots. After the Byzantine robots have been

blocked, the anchor localization sharing algorithm provides low-

error cooperative localization for the non-anchor robots. As a point

of comparison, we also simulate the same scenario with DBP dis-

abled, with the absolute x-coordinate localization error shown in

Fig. 10. As expected, the Byzantine robots significantly disrupt the

localization, causing the cooperative non-anchor robots to have

consistently high errors up to the attack offset.

6 CONCLUSION

This work has proposed the use of a decentralized blocklist protocol

based on inter-robot accusations as a means to provide Byzantine

Figure 9: DBP-based cooperative localization performance.

At top, we plot the absolute error that the cooperative robots

have in the estimate of the x-coordinate of their position. At

bottom we plot the minimum size of the cooperative robots’

blocklists – once all of the Byzantines are blocked the esti-

mation error returns to nominal values as the influence of

the Byzantines has been mitigated.

Figure 10: To support our claim that DBP is a suitable ap-

proach for this task, we show the impact that Byzantine

robots can have on cooperative localization – Byzantines can

cause the cooperative robots to have arbitrarily large local-

ization errors.

resilience for multi-robot systems. We have shown that as an alter-

native to the W-MSR algorithm, our approach permits temporary

Byzantine influence while accusations are made, but in exchange

adapts to Byzantine robots as they are detected, allows for fast

information propagation, and can be applied for applications be-

yond consensus. Based on empirical evidence from swarm target

tracking, time synchronization, and localization case studies, our

approach is more practical than W-MSR in terms of scalability to

large swarms as it does not require each cooperative robot to have

2𝐹 + 1 neighbors, nor does it require 𝐹 + 1 cooperative observers

for information to propagate. In fact, our approach only requires

that messages are delivered by network floods in spite of 𝐹 Byzan-

tine robots, and observations from a single cooperative robot can

propagate quickly through the entire swarm. Furthermore, we have

shown that our approach can for the first time provide Byzantine

resilience for the large-scale decentralized cooperative localization

problem. In our future work, we hope to extend our approach to

systems where accusations are not always sound and to explore

swarm algorithms that optimize the speed with which Byzantine

robots are discovered and accused.
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