arXiv:2110.04350v3 [cs.LG] 16 Aug 2022

FRL: Federated Rank Learning

Hamid Mozaffari, Virat Shejwalkar & Amir Houmansadr
University of Massachusetts Amherst
{hamid, vshejwalkar, amir} @ cs.umass.edu

Abstract

Federated learning (FL) allows mutually untrusted clients
to collaboratively train a common machine learning model
without sharing their private/proprietary training data among
each other. FL is unfortunately susceptible to poisoning by
malicious clients who aim to hamper the accuracy of the
commonly trained model through sending malicious model
updates during FL’s training process.

We argue that the key factor to the success of poisoning at-
tacks against existing FL systems is the large space of model
updates available to the clients, allowing malicious clients to
search for the most poisonous model updates, e.g., by solv-
ing an optimization problem. To address this, we propose
Federated Rank Learning (FRL). FRL reduces the space of
client updates from model parameter updates (a continuous
space of float numbers) in standard FL to the space of param-
eter rankings (a discrete space of integer values). To be able
to train the global model using parameter ranks (instead of
parameter weights), FRL leverage ideas from recent super-
masks training mechanisms. Specifically, FRL clients rank
the parameters of a randomly initialized neural network (pro-
vided by the server) based on their local training data. The
FRL server uses a voting mechanism to aggregate the param-
eter rankings submitted by clients in each training epoch to
generate the global ranking of the next training epoch.

Intuitively, our voting-based aggregation mechanism pre-
vents poisoning clients from making significant adversarial
modifications to the global model, as each client will have a
single vote! We demonstrate the robustness of FRL to poi-
soning through analytical proofs and experimentation. We
also show FRL’s high communication efficiency. Our experi-
ments demonstrate the superiority of FRL in real-world FL
settings. In particular, (1) FRL is substantially more robust
to poisoning attacks than state-of-the-art robust aggregation
algorithms; (2) FRL achieves performances similar to the
state-of-the-art federated averaging (FedAvg) with signifi-
cantly lower communication costs, e.g., for CIFAR10, FRL
achieves same performance as FedAvg with ~ 35% lower
communication cost.

1 Introduction

Federated Learning (FL) is an emerging learning paradigm,
where mutually untrusted clients (e.g., Android devices) col-
laborate to train a shared model, called the global model,
without explicitly sharing their local training data. FL training
involves a server (e.g., a Google server) who repeatedly col-
lects model updates that the clients compute using their local
private data, aggregates the clients’ updates using an aggrega-
tion rule (AGR), and finally uses the aggregated updates to
tune the jointly trained model (called the global model), which
is broadcast to a subset of the clients at the end of each FL
training round. A major obstacle to the real-world adoption
of FL in critical tasks is the threat of poisoning [22,27,37],
which is the focus of our work.

Robustness to poisoning attacks: Most of the distributed
learning algorithms, including FedAvg [30] and FedProx [28],
operate on mutually untrusted clients and server. This makes
distributed learning susceptible to the threat of poison-
ing [9,22,37]. A poisoning adversary can either own or con-
trol a few of FL clients, called malicious clients, and instruct
them to share malicious updates with the central server in
order to reduce the performance of the global model. There
are three approaches to poisoning FL: targeted [7,39] attacks
aim to reduce the utility of the global FL. model on specific
test inputs of adversary’s choice; untargeted [4,16,36] attacks
aim to reduce the utility of global model on arbitrary test
inputs; and backdoor [3, 40, 42] attacks aim to reduce the
utility on test inputs that contain a specific signal called the
trigger. In our work, we focus on the more severe threat of un-
targeted poisoning [37], which, unlike targeted and backdoor
poisoning, affects the majority FL clients.

High-level intuition of FL untargeted poisoning attacks:
Figure | shows how the poisoning adversary finds malicious
updates in the space of possible updates which maximize the
distance between benign and malicious aggregates. When the
server’s aggregation rule (AGR) is not robust, e.g., dimension-
wise average AGR [30], there is no limitation on the adver-
sary’s choices, so they can maximize their goal using a mali-

a) Normal FL b) FL with Filtering ¢) FRL
(No Robustness (Shrinking the Space (Sparsification of the space
e.g., FedAVG) of Accepted Updates of Accepted Updates)
€.d., Multi-Krum or tream-mean)
Sparsified Space
A All Space .A\.’.)....p....
SafeSpace, | | ka s s s s s s mmns
A
@ ------------
[.
%
° ® b @ @ - -
@ Fe@. OO - -

Continuous Space Continuous Space Discrete Space

Figure 1: The space of client updates. Green circles represent
benign updates and red triangles represent malicious updates.
To defend against poisoning updates, existing robust AGRs
filter the updates by creating a safe space (continuous € R?).
On the other hand, FRL limits the choices of clients by hav-
ing a discrete space of updates (a permutation of integers
€ [1,d)). GZ (shown by green square) demonstrates the ag-
gregated model for benign users, and 83’ (shown by the red
square) demonstrates the aggregated model considering mali-
cious updates. Black objects are updates that are ruled out by
the server.

cious update that is arbitrarily far from benign updates; Fig-
ure |-a) depicts this. Therefore, even a single malicious client
can jeopardize the accuracy of the global model trained using
FedAvg [8]. Current robust AGRs, such as Multi-krum [8] or
Trimmed-mean [43] limit the space of acceptable updates, i.e.,
the safe zone shown in Figure 1-b). These robust AGRs only
consider the updates that are in the safe zone and thereby re-
duce the adversary’s choices of impactful malicious updates.

Continuous versus discrete space of updates: Figure 1-c)
shows how our proposed defense (FRL, which is introduced
next) limits the poisoning adversary’s choices of malicious
updates by making the space of acceptable updates discrete.
To the best of our knowledge, most of previous Byzantine ro-
bust FL algorithms use a continuous space of updates (€ R?),
as their frameworks are built on exchanging trained (32-bit)
weight parameters. On the other hand, in our approach, the
clients send their updates in the form of edge rankings, i.e.,
a permutation of integers € [1,d] where d is the size of the
network layer; more useful edges have higher ranks. In Fig-
ure 1-c), the black dots show the discrete space of accept-
able client updates. For example, a network with 4 edges can
have 4! possible permutations of edge rankings starting from
[1,2,3,4] to [4,3,2,1]. On the other hand, in FL algorithms
with a continuous space of updates (with or without a safe
zone), the adversary’s choices are 4 weight parameters (each
of 32 bits). Note that, sparsification of the space of acceptable
updates is different from sparsification of model updates used
in compression methods, e.g., TopK [2]), RandomK [38] and
Sketched-SGD [21]. In these methods, the FL client sends
only a fraction of model updates instead of all of them, but
each parameter still has a continuous space.

Federated Rank Learning (FRL): We present FRL, a novel

FL algorithm that concurrently achieves the two goals of
robustness against poisoning attacks and communication ef-
ficiency. FRL uses a novel learning paradigm called super-
masks training [34,44] to create edge rankings, which, as we
will show, allows FRL to reduce communication costs while
achieving significantly stronger robustness. Specifically, in
FRL, clients collaborate to find a subnetwork within a ran-
domly initialized neural network which we call the supernet-
work (this is in contrast to conventional FL. where clients
collaborate to frain a neural network). The goal of training
in FRL is to collaboratively rank the supernetwork’s edges
based on the importance of each edge and find a global rank-
ing. The global ranking can be converted to a supermask,
which is a binary mask of 1°s and 0’s, that is superimposed on
the random neural network (the supernetwork) to obtain the
final subnetwork. For example, in our experiments, the final
subnetwork is constructed using the top 50% of all edges. The
subnetwork is then used for downstream tasks, e.g., image
classification, hence it is equivalent to the global model in
conventional FL. Note that in entire FRL training, weights of
the supernetwork do not change.

More specifically, each FRL client computes the impor-
tance of the edges of the supernetwork based on their lo-
cal data. The importance of the edges is represented as a
ranking vector. Each FRL client will use the edge popup al-
gorithm [34] and their data to compute their local rankings
(the edge popup algorithm aims at learning which edges in a
supernetwork are more important over the other edges by min-
imizing the loss of the subnetwork on their local data). Each
client then will send their local edge ranking to the server.
Finally, the FRL server uses a novel voting mechanism to
aggregate client rankings into a global ranking vector, which
represents which edges of the random neural network (the
supernetwork) will form the global subnetwork.

Intuitions on FRL’s robustness: In traditional FL algo-
rithms, clients send large-dimension model updates € R (real
numbers) to the server, providing malicious clients signifi-
cant flexibility in fabricating malicious updates. By contrast,
FRL clients merely share the rankings of the edges of the
supernetwork, i.e., integers € [1,d], where d is the size of the
supernetwork. This allows the FRL server to use a voting
mechanism to aggregate client updates (i.e., ranks), therefore,
providing high resistance to adversarial ranks submitted by
poisoning clients, since each client can only cast a single vote!
Therefore, as we will show both theoretically and empirically,
FRL provides robustness by design and reduces the impact
of untargeted poisoning attacks. Furthermore, unlike most
existing robust FL frameworks, FRL does not require any
knowledge about the percentages of malicious clients.

Intuitions on FRL’s communication efficiency: In FRL, the
clients and the server communicate just the rankings of the
edges in the supernetwork, i.e., a permutation of indices in
[1,d]. Ranking vectors are generally significantly smaller than
the global model. This, as we will show, significantly reduces

the upload and download communication in FRL compared
to Federated Averaging (FedAvg) [30], where clients commu-
nicate model parameters, each of 32/64 bits.

Evaluation results: We experiment with three datasets in
real-world heterogeneous FL settings and show that: (1) FRL
achieves similar performance (e.g., model accuracy) as state-
of-the-art FedAvg but with significantly reduced communi-
cation costs: for CIFAR10, the accuracy and communication
cost per client are 85.4% and 40.2MB for FedAvg, while
85.3% and 26.2MB for FRL. (2) FRL is highly robust to
poisoning attacks as compared to state-of-the-art robust ag-
gregation algorithms: from 85.4% in the benign setting, 10%
malicious clients reduce the accuracy of FL to 56.3% and
58.8% with Trimmed-Mean [43] and Multi-Krum [8], respec-
tively, while FRL’s performance only decreases to 79.0%.

We also compare FRL with two communication reduc-
tion methods, SignSGD [6] and TopK [2] and show that FRL
produces comparable communication costs and model accu-
racies. For instance, on CIFAR10, FRL, SignSGD, and TopK
achieve 85.3%, 79.1%, and 82.1% test accuracy, respectively,
when the corresponding communication costs (download and
upload) are 26.2MB, 20.73MB, and 30.79MB. On the other
hand, FRL offers significantly superior robustness. For in-
stance, on CIFAR10, 10% (20%) malicious clients reduce the
accuracy of SignSGD to 39.7% (10.0%), but FRL’s accuracy
decreases to only 79.0% (69.5%). TopK is incompatible with
existing robust aggregation algorithms, hence uses Average
aggregation and is as vulnerable as FedAvg, especially in the
real-world heterogeneous settings.

In summary, we propose a federated learning approach that
is built on exchanging rankings instead of parameter weights,
and we show a ranking-based FL is more robust to untargeted
poisoning attacks. Our key contributions are as follows:

* We show that FL’s robustness to poisoning can improve
by sparsifying the space of updates sent by FL clients,
therefore reducing the attacker’s search space and en-
abling a voting-based aggregation. We particularly de-
sign Federated Rank Learning (FRL), a novel FL system
in which clients collaboratively train a global model by
ranking the importance of the edges of a random network
based on their local data.

* We evaluate FRL on three benchmark datasets including
MNIST, CIFAR10, FEMNIST where we split them in
heterogeneous fashion among a large number of users,
i.e., among 1000, 1000, 3400 users respectively. We
show that FRL provide more robustness and compet-
itive communication efficiency compared to state-of-the-
art Byzantine robust aggregation rules and compression
techniques. We evaluate the performance of FRL with
two different methods of heterogeneous data distribu-
tions to consider most of the real-world non-iid data
distributions.

* We derive theoretical robustness bounds of FRL that
shows that FRL provides robustness by design without

any knowledge of the number of malicious clients.

2 Related Works

Supermask Learning: Modern neural networks have a very
large number of parameters. These networks are generally
overparameterized [14, 15,25,26], i.e., they have more pa-
rameters than they need to perform a particular task, e.g.,
classification. The lottery ticket hypothesis [17] states that
a fully-trained neural network, i.e., supernetwork, contains
sparse subnetworks, i.e., subsets of all neurons in supernet-
work, which can be trained from scratch (i.e., by training
same initialized weights of the subnetwork) and achieve per-
formances close to the fully trained supernetwork. The lottery
ticket hypothesis allows for massive reductions in the sizes of
neural networks. Ramanujan et al. [34] offer a complemen-
tary conjecture that an overparameterized neural network with
randomly initialized weights contains subnetworks which per-
form as good as the fully trained network.

Poisoning Attacks and Defenses for Federated Learning
(FL): FL involves mutually untrusting clients. Hence, a poi-
soning adversary may own or compromise some of the FL
clients, called malicious clients, with the goal of mounting
a targeted or untargeted poisoning attack. In a targeted at-
tack [7,39], the goal is to reduce the utility of the model on
specific test inputs, while in the untargeted attack [4, 16,36],
the goal is to reduce the utility for all (or most) test inputs. It
is shown [8] that even a single malicious client can mount an
effective untargeted attack on FedAvg.

In order to make FL robust to the presence of such mali-
cious clients, the literature has designed various robust ag-
gregation rules (AGR) [8,12,31,43], which aim to remove
or attenuate the updates that are more likely to be malicious
according to some criterion. For instance, Multi-krum [8]
repeatedly removes updates that are far from the geometric
median of all the updates, and Trimmed-mean [43] removes
the largest and smallest values of each update dimension and
calculates the mean of the remaining values. Unfortunately,
these robust AGRs are not very effective in non-convex FL
settings and multiple works have demonstrated strong tar-
geted [7,40] and untargeted attacks [16,36] on them.
Communication Cost of FL: In many real-world applica-
tions of FL, it is essential to minimize the communication
between FL server and clients. Especially in cross-device FL,
the clients (e.g., mobile phones and wearable devices) have
limited resources and communication can be a major bottle-
neck. There are two major types of communication reduction
methods: (1) Qunatization methods reduce the resolution of
(i.e., number of bits used to represent) each dimension of a
client update. For instance, SignSGD [6] uses the sign (1 bit)
of each dimension of model updates. (2) Sparsification meth-
ods propose to use only a subset of all the update dimensions.
For instance, in TopK [2], only the largest K% update dimen-
sions are sent to the server in each FL round. We note that,

communication reduction methods primarily focus on and
succeed at reducing upload communication (client — server),
but they use the entire model in download communication
(server — client).

3 Preliminaries

3.1 Federated Learning

In FL [22,23,30], N clients collaborate to train a global model
without directly sharing their data. In round ¢, the service
provider (server) selects n out of N total clients and sends
them the most recent global model 6. Each client trains a
local model for E local epochs on their data starting from the
0’ using stochastic gradient descent (SGD). Then the client
sends back the calculated gradients (V for kth client) to the
server. The server then aggregates the collected gradients and
updates the global model for the next round. FL can be either
cross-device or cross-silo [22]. In cross-device FL, N is large
(from few thousands to billions) and only a small fraction of
clients is chosen in each FL training round, i.e., n < N. By
contrast, in cross-silo FL, N is moderate (up to 100) and all
clients are chosen in each round, i.e., n = N. In this work, we
evaluate the performance of FRL and other FL baselines for
cross-device FL under realistic production FL settings.

3.2 Edge-popup Algorithm

The edge-popup (EP) algorithm [34] is a novel optimization
method to find supermasks within a large, randomly initialized
neural network, i.e., a supernetwork, with performances close
to the fully trained supernetwork. EP algorithm does not train
the weights of the network, instead only decides the set of

edges to keep and removes the rest of the edges (i.e., pop).

Specifically, EP algorithm assigns a positive score to each of
the edges in the supernetwork. On forward pass, it selects top
k% edges with highest scores, where k is the percentage of
the total number of edges in the supernetwork that will remain
in the final subnetwork. On the backward pass, it updates the
scores with the straight-through gradient estimator [5].
Algorithm 1 presents EP algorithm. Suppose in a fully
connected neural network, there are L layers and layer ¢ €
[1,L] has ny neurons, denoted by V¢ = {V{, ...,V,f[}. If I, and
Z, denote the input and output for neuron v respectively, then
the input of the node v is the weighted sum of all nodes
in previous layer, i.e., I, = Y, cyc-1 Wi Z,. Here, W, is the
weight of the edge connecting u to v. Edge-popup algorithm
tries to find subnetwork E, so the input for neuron v would
be: I, = Z(u,v)eE Wi Zu-
Updating scores. Consider an edge E,, that connects two
neurons « and v, W,,,, be the weight of E,,,, and s,,,, be the score
assigned to the edge E,, by Edge-popup algorithm. Then the
edge-popup algorithm removes edge E,, from the supermask
if its score sy, is not high enough. Each iteration of supermask

training updates the scores of all edges such that, if having an
edge E,, in subnetwork reduces loss (e.g., cross-entropy loss)
over training data, the score s, increases.

Algorithm 1 Edge-popup (EP) algorithm: it finds a subnet-
work of size k% of the entire network 0

1: Input: number of local epochs E, training data D, initial

weights 6" and scores 0°, subnetwork size k%, learning

rate M
2: for e € [E] do
3: B < Split D in B batches
4: for batch b € [B] do
5: EP FORWARD (6",0° k,b)
6: 6° = 6 —nVL(6%;b)
7: end for
8: end for
9: return 6°

_
=

function EP FORWARD(6",6° k., b)
m < sort(6%)

—_ -
N =

t + int((1—k)*len(m))
13: m[:t]=0
14: mlt:] =1
15: 67 =0"Om
16: return 67 (b)

. end function

—_
=

The algorithm selects top k% edges (i.e., finds a subnetwork
with sparsity of k%) with highest scores, so I, reduces to
I, = Y cve-1 WaZ,h(sy) where h(.) returns 1 if the edge
exists in top-k% highest score edges and 0 otherwise. Because
of existence of A(.), which is not differentiable, it is impossible
to compute the gradient of loss with respect to s,,. Recall
that, the Edge-popup algorithm use straight-through gradient
estimator [5] to compute gradients. In this approach, A(.)
will be treated as the identity in the backward pass meaning
that the upstream gradient (i.e., aaTL,,) goes straight-through A(.).

Now using chain rule, we can derive gTL aa YI" = gTLWwZuwhere
. . . . v g1 .V .
L is the loss to minimize. Then we can SGD with step size N

to update scores as Sy, <— S,y — n%Zqu,.

4 Federated Rank Learning: Design

In this section, we provide the design of our federated rank
learning (FRL) algorithm. FRL clients collaborate (without
sharing their local data) to find a subnetwork within a ran-
domly initialized, untrained neural network called the super-
network. Algorithm 2 describes FRL’s training. Training a
global model in FRL means to first find a unanimous ranking
of supernetwork edges and then use the subnetwork of the top
ranked edges as the final output.

FRL objective: The optimization problem of FRL is to find
a global ranking R, which produces a global binary mask
m that minimizes the average loss of all of clients with that

Algorithm 2 Federated Ranking Learning (FRL)

1: Input: number of FL rounds 7', number of local epochs E, number of selected users in each round n, seed SEED, learning

rate 1, subnetwork size k%

> Sort the initial scores and obtain initial rankings

> sort the scores based on the global ranking

> Client u uses Algorithm| to train a supermask on its local training data

> Ranking of the client

> Majority vote aggregation

2: Server: Initialization

3: 0%,0" « Initialize random scores and weights of global model 6 using SEED
4: Ry < ARGSORT(6")

5. fort € [1,7]) do

6: U < set of n randomly selected clients out of N total clients
7: for uin U do

8: Clients: Calculating the ranks

9: 6%,0" «+ Initialize scores and weights using SEED

10: 0°[R}] <~ SORT(6")

11: S + Edge-PopUp(E, D], 06" ,0° k,1)

12: R! < ARGSORT(S)
13: end for

14: Server: Majority Vote
15: R« VOTE(RY,1y)

16: end for

17: function VOTE(R,cyy):
18: V < ARGSORT(Ry,cyy)
19: A+ Sum(V)

20: return ARGSORT(A)

21: end function

subnetwork (8" ®@m). FRL aims to solve:

N
minF (8", R,) =min) A,L;(6"” ©'m) 1)
Re Re i3
st. m[R, < k] =0 and m[R, > k| =1

where N is the total number of participating clients and L;
is the loss function for the ith client. A; shows the importance
of the i client in empirical risk minimization; A; = % gives
same importance to all the participating clients. m is the final
mask that contains the edges of top k ranks, i.e., edges in top
k ranks (layer-wise) get *1° in the binary mask, and others
get 0’ in the mask. 0" © m shows the subnetwork inside
the random and fixed weights 6" that all clients unanimously
vote for. In Appendix B, we show how FRL minimizes its
objective.

We detail a round of FRL training and depict it in Figure 2,
where we use a supernetwork with six edges e;c[o 5] to demon-
strate a single FRL round and consider three clients Cjc[3]
who aim to find a subnetwork of size k=50% of the original
supernetwork.

4.1 Server: Initialization Phase (Only for
round r = 1)
In the first round, the FRL server chooses a random seed

SEED to generate initial random weights 6" and scores 6°
for the global supernetwork 6; note that, 6", 6°, and SEED

remain constant during the entire FRL training. Next, the FRL
server shares SEED with FRL clients, who can then locally
reconstruct the initial weights 8" and scores 6° using SEED.
Figure 2-(D) depicts this step.

Recall that, the goal of FRL training is to find the most
important edges in 0" without changing the weights. Unless
specified otherwise, both server and clients use the Signed
Kaiming Constant algorithm [34] to generate random weights
and the Kaiming Uniform algorithm [19] to generate random
scores. However, in Section 7.5, we also explore the impacts
of different weight initialization algorithms on the perfor-
mance of FRL. We use the same seed to initialize weights and
scores.

At the beginning, the FRL server finds the global rankings
of the initial random scores (Algorithm 2 line 4), i.e., Ré =
ARGSORT(6*). We define rankings of a vector as the indices
of elements of vector when the vector is sorted from low to
high, which is computed using ARGSORT function.

4.2 Clients: Calculating the ranks (For each
round ¢)

In the " round, FRL server randomly selects 7 clients among
total N clients, and shares the global rankings Ri, with them.
Each of the selected 7 clients locally reconstructs the weights
0"’s and scores 0*’s using SEED (Algorithm 2 line 9). Then,
each FRL client reorders the random scores based on the
global rankings, RZ, (Algorithm 2 line 10); we depict this in

@ Server: Initialization

0" = [wo, w1, w2, w3, w4, ws]
¢° = [0.5,0.2,0.3,0.4,0.7,1.2]

.\\e\e
[o

W
e
4 V2
./e/es

R} =[1,2,3,0,4,5)

U
U,
Uy

Clients: reordering
¢° =1[0.5,0.2,0.3,0.4,0.7,1.2]

R =12,3,0,5,1,4]

72 S
! .:el[o.n Teod). _

Clients: training

Client 1 U .
v, O
e
U, .'~.,93'~.‘
e
U @

R{=104,0,2,3,5,1]

Client 2

Client 3

@ Server: Vote

Py 1+1+0

Py 5+2+5 1

Py| |2+0+1|_

Pl |3+5+3]| |11

Pl {0+4+4
P| [4+3+2

R =10,2,4,5,3,1]

@

\ —_— a=10 = =230
— a=20 —— a=40

—_
=)
-

o)
-

2(0.2)

U: @ = e3(0;
ed(1.2)

o .'/es[o.s)

65 =1[0.4,0.7,0.2,0.3,1.2,0.5]

R =10,2,5,3,4,1]

Vote Failure Prob Upperbound

Figure 2: A single FRL round with three clients and network of 6 edges.

Figure 2—.

Next, each of the n clients uses reordered 6° and finds a sub-
network within 8" using Algorithm [; to find a subnetwork,
they use their local data and E local epochs (Algorithm 2
line 11). Note that, each iteration of Algorithm | updates
the scores 6°. Then client u computes their local rankings
R!, using the final updated scores (S) and ARGSORT(.), and
sends R!, to the server. Figure 2- shows how each of the
selected n clients reorders the random scores using global
rankings. For instance, the initial global rankings for this
round are R, = [2,3,0,5, 1,4], meaning that edge e4 should
get the highest score (s4 = 1.2), and edge e, should get the
lowest score (sp = 0.2).

Figure 2— shows, for each client, the scores and rank-
ings they obtained after finding their local subnetwork. For
example, rankings of client C; are R = [4,0,2,3,5,1], i.e.,
ey is the least important and e is the most important edge for
C;. Considering desired subnetwork size to be 50%, C| uses
edges {3,5,1} in their final subnetwork.

4.3 Server: Majority Vote (For each round r)

The server receives all the local rankings of the selected n
clients, i.e., R’{u vy Then, it performs a majority vote over
all the local rankings using VOTE(.) function. Note that, for
client u, the index i represents the importance of the edge
R! [i] for C,. For instance, in Figure 2-, rankings of C| are
R} =1[4,0,2,3,5,1], hence the edge e4 at index=0 is the least
important edge for C;, while the edge e; at index=5 is the
most important edge. Consequently, VOTE(.) function assigns
reputation=0 to edge e4, reputation=1 to ey, reputation=2 to

Figure 3: Upper bound on the failure proba-
bility of VOTE(.) function in FRL.

e2, and so on. In other words, for rankings R, of C, and edge
e;, VOTE(.) computes the reputation of e; as its index in R,
Finally, VOTE(.) computes the total reputation of e; as the sum
of reputations from each of the local rankings. In Figure 2-
, reputations of ey are 1in R/, 1 in R, and 0 in R, hence,
the total reputation of eq is 2. We depict this in Figure 2-
(); here, the final total reputations for edges eficfo,s]) e A =
[2,12,3,11,8,9]. Finally, the server computes global rankings
R’g+1 to use for round ¢ 4 1 by sorting the final total reputations
of all edges, i.e., R;,“ = ARGSORT(A).

Note that, all FRL operations that involve sorting, reorder-
ing, and voting are performed in a layer-wise manner. For
instance, the server computes global rankings ng in round ¢ for
each layer separately, and consequently, the clients selected
in round ¢ reorder their local randomly generated scores 6°
for each layer separately.

S FRL’s Robustness to Poisoning

FRL is a distributed learning algorithm with mutually un-
trusting clients. Hence, a poisoning adversary may own or
compromise some of FRL clients, called malicious clients,
and mount a fargeted or untargeted poisoning attack. In our
work, we consider the untargeted attacks as they are more
severe than targeted attacks and can cause denial-of-service
for all collaborating clients [37], and show that FRL is secure
against such poisoning attacks by design.

Intuition on FRL’s robustness: Existing FL algorithms, in-
cluding robust FL algorithms, are shown to be vulnerable to
targeted and untargeted poisoning attacks [37] where mali-
cious clients corrupt the global model by sharing malicious

model updates.

One of the key reasons behind the susceptibility of existing
algorithms is that their model updates can have a large con-
tinuous space of values. For instance, to manipulate vanilla
FedAvg, malicious clients send very large updates [8], and to
manipulate Multi-krum and Trimmed-mean, [16,36] propose
to perturb a benign update in a specific malicious direction.
On the other hand, in FRL, clients must send a permutation
of indices € [1,ny] for each layer. Hence, FRL significantly
reduces the space of the possible malicious updates that an
adversary can craft. Majority voting in FRL further reduces
the chances of successful attack. Intuitively, this makes FRL
design robust to poisoning attacks. Below, we make this intu-
ition more concrete.

The worst-case untargeted poisoning attack on FRL:
Here, the poisoning adversary aims to reduce the accuracy
of the final global FRL subnetwork on most test inputs. To
achieve this, the adversary should replace the high ranked
edges with low ranked edges in the final subnetwork. For
the worst-case analysis of FRL, we assume a very strong ad-
versary (i.e., threat model): 1) each of the malicious clients
has some data from benign distribution; 2) malicious clients
know the entire FRL algorithm and its parameters; 3) mali-
cious clients can collude. Under this threat model we design
a worst case attack on FRL (Algorithm 3), which executes
as follows: First, malicious clients compute rankings on their
benign data and use VOTE(.) algorithm to compute an aggre-
gate rankings. Finally, each of the malicious clients uses the
reverse of the aggregate rankings to share with the FRL server
in given round. The adversary should invert the rankings layer-
wise as the FRL server will aggregate the local rankings per
layer too, and it is not possible to mount a model-wise attack.

Algorithm 3 FRL Poisoning
1: Input: number of malicious clients M, number of ma-
licious local epochs E’, seed SEED, global ranking R,
learning rate 1, subnetwork size k%
function MALICIOUSUPDATE(M, SEED, Ry, E', 1, k):
for mu € [M] do
Malicious Client Executes:
0°,0" < Initialize scores and weights using SEED
0°[R}] <~ SORT(6")
S < Edge-PopUp(E’,D'I',8", 0%, k,m)
R, < ARGSORT(S) > Ranking of the
malicious client

e R A R o

9: end for
10: Aggregation:
11: R, + VOTE(Rf{mu E[M]}) > Majority vote aggregation

12: return REVERSE(R,) > reverse the ranking

13: end function

Now we justify why the attack in Algorithm 3 is the worst
case attack on FRL for the strong threat model we consider.

Note that, FRL aggregation, i.e., VOTE(.), computes the rep-
utations using clients’ rankings and sums the reputations of
each network edge. Therefore, the strongest poisoning attack
would want to reduce the reputation of good edges. This can
be achieved following the aforementioned procedure of Al-
gorithm 3 to reverse the rankings computed using benign
data.

Theoretical analysis of robustness of FRL algorithm: In
this section, we prove an upper bound on the failure probabil-
ity of robustness of FRL, i.e., the probability that a good edge
will be removed from the final subnetwork when malicious
clients mount the worst case attack.

Following the work of [6], we make two assumptions in
order to facilitate a concrete robustness analysis of FRL: a)
each malicious client has access only to its own data, and b)
we consider a simpler VOTE(.) function, where the FRL server
puts an edge e; in the final subnetwork if more than half of
the clients have e; (a good edge) in their local subnetworks. In
other words, the rankings that each client sends to the server
is just a bit mask showing that each edge should or should
not be in the final subnetwork. The server makes a majority
vote on the bit masks, and if an edge has more than half votes,
it will be in the global subnetwork. Our VOTE(.) mechanism
has more strict robustness criterion, as it uses more nuanced
reputations of edges instead of bit masks. Hence, the upper
bound on failure probability in this section also applies to the
FRL vOTE(.) function.

The probability that our voting system fails is the probabil-
ity that more than half of the votes do not include ¢; in their
subnetworks. The upper bound on the probability of failure

np(1—p)
would be 1/2y /ot E

clients being processed, p shows the probability that a benign
client puts e; in their top ranks, and o is the fraction of mali-
cious clients. Due to space limitations, we defer the detailed
proof to Appendix A. Figure 3 shows the upper bound on the
failure of VOTE(.) for different values of o and p. We note
that, the higher the probability p, the higher the robustness of
FRL.

5, Where n is the number of

6 FRL’s Communication Efficiency

In FL, and especially in the cross-device setting, clients have
limited communication bandwidth. Hence, FL algorithms
must be communication efficient. We discuss here the com-
munication cost of FRL algorithm. In the first round, the FRL
server only sends one seed of 32 bits to all the FRL clients,
so they can construct the random weights (6") and scores
(0%). In a round ¢, each of selected FRL clients receives the
global rankings R|, and sends back their local rankings Rj,.
The rankings are a permutation of the indices of the edges in
each layer, i.e., of [0,n) — 1]V/ € [L] where L is the number
of layers and ny is the number of parameters in /th layer.

We use the naive approach to communicate layer-wise rank-

-+ FedAvg (U/D)
FRL (U/D)
= FRL-LB (U/D)

40

.=+ SFRL50% (U)
= = SFRL 10% (U) | .-
.=+ SignSGD (U)

30

Communicication Cost (KB)
N
o

0 2000 4000 6000 8000
Number of Parameters

10000

Figure 4: Communication cost Analysis. U and D are show-
ing upload and download communication costs. Please note
that the download communication cost of all SFRLs would be
the same as FRL. Download communication cost of SignSGD
would be the same as FedAvg too.

ings, where each FRL client exchanges a total of } yc(z) ¢ X
log(ny) bits. Because, for the layer /, the client receives and
sends n, ranks where each one is encoded with log(ny) bits.
On the other hand, a client exchanges } s¢|7) ¢ x 32 bits in Fe-
dAvg, when 32 bits are used to represent each of n, weights in
layer £. In Section 7.3, we measure the performance and com-
munication cost of FRL with other existing FL. compressors
SignSGD [6] and TopK [1,2].

Sparse-FRL: Here, we propose Sparse-FRL, a simple ex-
tension of FRL to further reduce the communication cost. In
Sparse-FRL, a client sends only the most important ranks
of their local rankings to the server for aggregation. For in-
stance, in Figure 2, client C; sends R| = [4,0,2,3,5,1] in case
of FRL. But in sparse-FRL, with sparsity set to 50%, client
C) sends just the top 3 rankings, i.e., sends R} = (3,5, 1]. For
each client, the sparse-FRL server assumes 0 reputation for all
of the edges not included in the client’s rankings, i.e., in Fig-
ure 2, sparse-FRL server will assign reputation=0 for edges
e4, e, and e;. Then the server uses VOTE(.) to compute total
reputations of all edges and then sort them to obtain the final
aggregate global rankings, i.e., ng“, to use for subsequent
rounds. We observe in out experiments, that sparse-FRL per-
forms very close to FRL, even with sparsity as low as 10%,
while also significantly reducing the communication cost.

Lower-bound of communication cost of FRL: Since the
FRL clients send and receive layer-wise rankings of indices,
i.e., integers € [0,ny — 1], for layer ¢, there are ny! possi-
ble permutations for layer ¢ € [L]. If we use the best pos-
sible compression method in FRL, an FRL client needs to
send and receive Y.sc(;)log(ne!) bits. Therefore, the down-
load and upload bandwidth for each FRL client would be

Yoeylog (nex (ng—1) % .. 2% 1) = Ye L2, log(i) bits.

Please note that in our experiment, FRL clients send and
receive the rankings without any further compression, and
Yeen) Y.L, log(i) just shows a lower-bound of communica-
tion cost of FRL.

In Figure 4, we compare the upload and download com-
munication costs of one client per FL round for FedAvg,
SignSGD, and different variants of FRL for different number
of parameters. U and D are showing upload and download
communication cost. Please note that the download commu-
nication cost of all SFRLs would be the same as FRL, and
download communication cost of SignSGD would be similar
to FedAvg too. If we use a compression method to compress
the local rankings (for upload) and global rankings (for down-
load), we can improve communication cost of FRL to its
lower-bound (FRL-LB in Figure 4). In this Figure, we can see
that SFRL can provide competitive upload communication
cost and lower download communication cost compared to
SignSGD when the clients are sending only 10% of top local
rankings (SFRL 10%).

7 Experiments

In this section, we investigate the utility, robustness, and com-
munication cost of our FRL framework. We use MNIST, CI-
FAR10, and FEMNIST data and distribute them in non-iid
fashion among 1000, 1000, and 3400 clients respectively. We
run all the experiments for 2000 global rounds of FRL and FL
and select 25 clients in each round. At the end of the training,
we calculate the test accuracy of all the clients on the final
global model, and we report the mean and standard deviation
of all clients’ test accuracies in our experiments.

Using Dirichlet distribution: Considering the heteroge-
neous data in the real-word cross-device FL, similar to pre-
vious works [20, 35], we distribute MNIST and CIFAR10
among 1,000 clients in a non-iid fashion using Dirichlet dis-
tribution with parameter p = 1. Note that increasing B results
in more iid datasets. Next, we split datasets of each client into
training (80%) and test (20%).

In addition to FRL, we also evaluate Sparse-FRL in differ-
ent settings. We use SFRL top x% to denote a Sparse-FRL
clients who sends top x% of ranks in each round.

This section is organized as follows: in Section 7.1 we
discuss the experimental setup. In Section 7.2 we investigate
the robustness and utility of FRL, followed by Section 7.3 in
which we discuss the communication cost of FRL. In Sec-
tion 7.4 we show the effectiveness of FRL with respect to
different methods of non-iid-ness. We conclude with Sec-
tion 7.5 and Section 7.6 where we study the effect of weight
initialization and size of subnetwork in FRL.

7.1 Experiment Setup

Here, we introduce the datasets, the model architectures, the
hyper-parameter settings, and FL baselines in more details.

Table 1: Comparing the robustness of various FL algorithms: FRL and Sparse-FRL (SFRL) (in bold) outperform the state-of-the-

art robust AGRs and SignSGD against the strongest of untargeted poisoning attacks.

Dataset AGR || No malicious | 10% malicious | 20% malicious |
FedAvg 98.8 (3.2) 10.0 (10.0) 10.0 (10.0)
Trimmed-mean || 98.8 (3.2) 95.1 (7.7) 87.69.5)
MNIST + LeNet Multi-krum 988 (3.2) 986 (33) 97.9 @.1)
1000 clients SignSGD 972 (4.6) 96,6 (5.0) 962 (5.0)
FRL 98.8 (3.1) 98.8 (3.1) 98.7 (3.3)
SFRL Top 50% 98.2 (3.8) 97.04 (4.4) 95.1 (7.8)
FedAvg 854(112) | 10.0(10.1) 10.0 (10.1)
Trimmed-mean 84.9 (11.0) 56.3 (16.0) 20.5(13.2)
CIFAR10 + Conv8 Multi-krum 84.7 (11.3) 58.8 (15.8) 25.6 (14.4)
1000 clients SignSGD 79.1 (12.8) 39.7 (15.9) 10.0 (10.1)
FRL 85.3 (11.3) 79.0 (12.4) 69.5 (14.8)
SFRL Top 50% 77.6 (13.0) 41.7 (15.4) 39.7 (15.2)
FedAvg 85.8 (10.2) 6.3 (5.8) 6.3 (5.8)
Trimmed-mean || 852 (11.0) | 72.7 (15.7) 562 (20.3)
FEMNIST + LeNet | Multi-krum 852(109) | 809 (122) 3.7 (12.8)
3400 clients SignSGD 793 (124) | 76,7 (132) 55.1(14.9)
FRL 84.2 (10.7) 83.0 (10.9) 65.8 (17.8)
SFRL Top 50% || 752 (12.7) | 705 (144) | 60.39 (14.8)

7.1.1 Datasets and model architectures

We use three benchmark datasets widely used in prior works
on federated learning robustness:

MNIST is a 10-class class-balanced classification task with
70,000 gray-scale images, each of size 28 x 28. We exper-
iment with LeNet architecture given in Table 5. For local
training in each FRL/FL round, each client uses 2 epochs. For
training weights (experiments with FedAvg, SignSGD, TopK),
we use SGD optimizer with learning rate of 0.01, momentum
of 0.9, weight decay of 1e-4, and batch size 8. For training
ranks (experiments with FRL), we use SGD with learning rate
of 0.4, momentum 0.9, weight decay le-4, and batch size 8.

CIFARI10 [24] is a 10-class classification task with 60,000
RGB images (50,000 for training and 10,000 for testing), each
of size 32 x 32. We experiment with a VGG-like architecture
given in Table 5, which is identical to what [34] used. For local
training in each FRL/FL round, each client uses 5 epochs. For
training weights (experiments with FedAvg, SignSGD, TopK),
we use SGD with learning rate of 0.1, momentum of 0.9,
weight decay of 1e-4, and batch size of 8. For training ranks
(experiments with FRL), we optimize SGD with learning rate
of 0.4, momentum of 0.9, weight decay of le-4, and batch
size of 8.

FEMNIST [10, 13] is a character recognition classification
task with 3,400 clients, 62 classes (52 for upper and lower
case letters and 10 for digits), and 671,585 gray-scale images.
Each client has data of their own handwritten digits or letters.
We use LeNet architecture given in Table 5. For local training
in each FRL/FL round, each client uses 2 epochs. For training

weights (experiments with FedAvg, SignSGD, TopK), we use
SGD with learning rate of 0.15, momentum of 0.9, weight
decay of le-4, and batch size of 10. For training ranks (ex-
periments with FRL), we optimize SGD with learning rate of
0.2, momentum of 0.9, weight decay of le-4, and batch size
of 10.

We optimize the hyperparameters based on FRL and other
baselines independently. In Appendix C.2, we show that ro-
bustness of FRL still persists even if we change the hyperpa-
rameters.

7.1.2 Baseline FL Algorithms

We compare the FRL with following FL baselines:
Federated averaging: In non-adversarial FL settings, i.e.,
without any malicious clients, the dimension-wise Average
(FedAvg) [23, 30] is an effective AGR. In fact, due to its
efficiency, Average is the only AGR implemented by FL ap-
plications in practice [29,33].

SignSGD: is a quantization method used in distributed learn-
ing to compress each dimension of gradient updates into 1
bit instead of 32 or 64 bits. To achieve this, in SignSGD [6]
the clients only send the sign of their gradient updates to
the server, and the server runs a majority vote on them.
SignSGD is designed for distributed learning where all the
clients participate in each round, so all the clients are aware
of the most updated weight parameters of the global model.
However, SignSGD only reduces upload communication
(clients—server). But, does not reduce download commu-
nication (server—clients), i.e., to achieve good performance

Table 2: Comparing the utility (test accuracy) and communication cost of FedAvg, FRL (in bold), SignSGD and, TopK and
Sparse-FRL (SFRL) with different percentages of sparsity (in bold).

Dataset Algorithm Accuracy (STD) | Upload (MB) | Download (MB)
FedAvg 988 (3.1) 6.20 6.20
FRL 98.8 (3.2) 4.05 4.05
SFRL Top 50% 98.2 (3.8) 2.03 4.05
%I(;I(I)S;i;'n{fNet SFRL Top 10% 89.5(9.2) 0.40 4.05
SignSGD 972 (4.6) 0.19 6.20
TopK 50% 98.8 (3.2) 3.29 6.20
TopK 10% 98.7 (3.2) 0.81 6.20
FedAvg 854 (11.2) 20.1 20.1
FRL 853 (11.3) 3.1 3.1
SFRL Top 50% 77.6 (13.0) 65 3.1
%ISOAESH:SCO“VS SFRL Top 10% || 27.5 (i4.4) i3 3.1
SignSGD 79.1 (13.6) 0.63 20.1
TopK 50% §2.1(11.8) 10.69 201
TopK 10% 778 (13.0) 2.64 201
FedAvg 85.8 (10.2) 6.23 6.23
FRL 842 (10.7) 4.06 4.06
SFRL Top 50% 75.2 (12.7) 2.03 4.06
ifggfﬁ:t: LeNet SR Top 10% 59.2 (15.0) 0.40 4.06
SignSGD 793 (12.4) 0.19 6.23
TopK 50% 85.7 (9.9) 331 6.23
TopK 10% 85.5 (10.0) 0.81 6.23

of the global model, the server sends all the weight parameters
(each of 32 bits) to the newly selected clients in each round.
Hence, SignSGD is as inefficient as FedAvg in download
communication.

TopK: is a sparsification method used in distributed learning
that transmits only a few dimensions of each model update
to the server. In TopK [1, 2], the clients first sort the absolute
values of their local model updates, and send the Top K%
largest model update dimensions to the server for aggregation.
TopK suffers from the same problem as SignSGD: for per-
formance reasons, the server should send the entire updated
model weights to the new selected clients.

Multi-krum: [8] proposed Multi-krum AGR as a modifica-
tion to their own Krum AGR. Multi-krum selects an update
using Krum and adds it to a selection set, S. Multi-krum
repeats this for the remaining updates (which remain after
removing the update that Krum selects) until S has ¢ updates
such that n — ¢ > 2m + 2, where n is the number of selected
clients and m is the number of compromised clients in a given
round. Finally, Multi-krum averages the updates in S.
Trimmed-mean: Yin et al. [43] proposed Trimmed-mean
that aggregates each dimension of input updates separately. It
sorts the values of the j"-dimension of all updates. Then it
removes m (i.e., the number of compromised clients) of the
largest and smallest values of that dimension, and computes
the average of the rest of the values as its aggregate for the
dimension j.

10

7.2 Security Analysis

We compare FRL with state-of-the-art robust aggregation
rules (AGRs): Mkrum [8], and Trimmed-mean [43]. Table |
gives the performances of robust AGRs, SignSGD, and FRL
with different percentages of malicious clients using attacks
proposed by Shejwalkar et al. [36], Bernstein et al. [6], and
Algorithm 3 respectively. Here, we make a rather impractical
assumption in favor of the previous robust AGRs: we assume
that the server knows the exact % of malicious clients in each
FL round. Note that, FRL does not require this knowledge.

FRL achieves higher robustness than state-of-the-art ro-
bust AGRs: We note from Table | that, FRL is more robust
to the presence of malicious clients who mount untargeted
poisoning attacks, compared to Multi-Krum and Trimmed-
mean, when percentages of malicious clients are 10% and
20%. For instance, on CIFAR10, 10% malicious clients can
decrease the accuracy of FL models to 56.3% and 58.8% for
Trimmed-mean and Multi-Krum respectively; 20% malicious
clients can decrease the accuracy of the FL models to 20.5%
and 25.6% for Trimmed-mean and Multi-Krum respectively.
On the other hand, FRL performance decreases to 79.0% and
69.5% for 10% and 20% attacking ratio respectively.

‘We make similar observations for MNIST and FEMNIST
datasets: for FEMNIST, 10% (20%) malicious clients reduce
accuracy of the global model from 85.8% to 72.7% (56.2%)
for Trimmed-Mean, and to 80.9% (23.7%) for Multi-krum,

Table 3: Comparing the performance of FRL and FedAvg in cross-device FL setting using two non-iid data distribution methods.
We distribute data among 1000 clients with two methods described briefly below; please check Section 7.4 for more details.

. Algorithm

Dataset Type of Non-IID Metric FedAvg || FRL
Mean 98.8 98.8

Dirichlet Distribution § = 1 ST-D 2 a2
VINIST Min 75.0 75.0
LeNet e o T
Randomly 2 classes assigned to each client Min 70.0 20.0

Max 100 100
Mean 85.4 85.3
Dirichlet Distribution § = 1 ST-D 12 at
CIFARLG Min 333 333
Conv8 e e 05
N=1000 I\S/I’;?)n ;(1)8 Zgg
Randomly 2 classes assigned to each client Min 0 100

Max 100 100

while FRL accuracy decreases to 83.0% (65.8%).

FRL is more accurate than SignSGD: First, we note that,
in the absence of malicious clients, FRL is significantly
more accurate than SignSGD. For instance, on CIFAR10 dis-
tributed in non-iid fashion among 1000 clients, FRL achieves
85.3% while SignSGD achieves 79.1% , or on FEMNIST,
FRL achieves 84.2% while SignSGD achieves 79.3%. This
is because, FRL clients send more nuanced information via
rankings of their subnetworks compared to SignSGD, where
clients just send the signs of their model updates.

FRL is more robust than SignSGD: Next, we note from
Table 1 that, FRL is more robust against untargeted poisoning
attacks compared to SignSGD when percentages of mali-
cious clients are 10% and 20%. For instance, on CIFAR10,
10% (20%) malicious clients can decrease the accuracy of
SignSGD model to 39.8% (10.0%). On the other hand, FRL
performance decreases to 79.0% and 69.5% for 10% and 20%
attacking ratio respectively. We make similar observations for
MNIST and FEMNIST datasets: for FEMNIST, 10% (20%)
malicious clients reduce accuracy of the global model from
85.8% to 76.7% (55.1%) for SignSGD, while FRL accuracy
decreases to 83.0% (65.8%).

Sparse-FRL robustness: We evaluate robustness of SFRL
Top 50% against 10% and 20% malicious clients. As we can
see from 1, by sending only top half of the local rankings, the
accuracy goes from 85.3% (FRL) to 77.6% (SFRL). SFRL
also can provide robustness to some extend, but adversary
has more influence on the global ranking since half of the
rankings are missing. For instance, on CIFAR10, 10% (20%)
malicious clients can decrease the accuracy of global ranking

11

to 41.7% (39.7%) from 77.6%. Also for FEMNIST, 10%
(20%) malicious clients can decrease the accuracy of global
ranking to 70.5% (60.39%) from 75.2%. We can see when
malicious clients’ percentages are higher, SFRL can perform
better compared to existing robust AGR.

FRL versus FedAvg and TopK We omit evaluating FedAvg
and TopK, because even a single malicious client [8] can
jeopardize their performances.

7.3 Communication Cost Analysis

In FRL, both clients and server communicate just the edge
ranks instead of weight parameters. Thus, FRL reduces both
upload and download communication cost. Table 2 illustrates
the utility, i.e., the mean and standard deviation of all clients’
test accuracies and, communication cost of FRL and state-
of-the-art quantization (i.e., SignSGD [6]) and sparsification
(i.e., TopK [1,2]) communication-reduction methods.

FRL versus SignSGD: SignSGD in FL reduces only the
upload communication, but for efficiency reasons, the server
sends all of the weight parameters (each of 32 bits) to the
newly selected clients. Hence, SignSGD has very efficient up-
load communication, but very inefficient download communi-
cation. For instance, on CIFAR10, for both upload and down-
load, FRL achieves 13.1MB each while SignSGD achieves
0.63MB and 20.1MB, respectively.

FRL versus TopK: We compare FRL and TopK where
K € {10,50}%. FRL is more accurate than Topk for MNIST
and CIFAR10: on CIFAR10, FRL accuracy is 85.3%, while
TopK accuracies are 82.1% and 77.8% with K=50% and

K=10%, respectively. Similar to SignSGD, Topk more ef-
ficiently reduces upload communication, but has very high
download communication. Therefore, the combined upload
and download communication cost per client per round is
26.2MB for FRL and 30.79MB for TopK with K=50%; note
that, even then TopK performs worse than FRL.
Communication cost reduction due to Sparse-FRL
(SFRL): We now evaluate SFRL explained in Section 6.
In SFRL with top 50% ranks, clients send the top 50% of
their ranks to the server, which reduces the upload bandwidth
consumption by half. Please note that the download cost of
SFRL is the same as FRL since the FRL server should send
all the global rankings to the selected clients in each round.
We note from Table 2 that, by sending fewer ranks, SFRL re-
duces upload communication at a small cost of performance.
For instance, on CIFAR10, SFFRL with top 50% reduces the
upload communication by 50% at the cost reducing accuracy
from 85.4% to 77.6%.

7.4 Performances of FRL with Different Het-
erogeneous Data Distribution Methods

So far, we evaluated all of our experiments when the data is
distributed non-iid using Dirichlet distribution with parameter
B = 1. In this method of non-iid data distribution, all clients
will get at least a few samples from each data class with
non-zero probabilities that Dirichlet distribution generates.
However, this non-iid data distribution need not represent
all the practical FL settings. In fact, there may exist non-iid
distributions that make training FL. models more difficult.
Therefore in this section, we consider a more difficult setting
where the data distribution is more non-iid.

Assigning only two classes to each client: We experiment
with the more extreme non-iid distribution considered by
McMahan et al. [30]. More specifically, to distribute of
MNIST and CIFAR10 data among 1000 clients, we sort all
the (i.e., combined train and test) MNIST and CIFAR10 data
according to their classes and then we partition them into
2000 shards. Hence, each shards of training MNIST has 30
images and each CIFAR10 shard has 25 images of a single
class. Then we assign two random shards to each client re-
sulting in each client having data from at most two classes.
Therefore, in CIFAR10 experiments, each client has 50 train-
ing images, and 10 test images, and in MNIST experiments,
each client has 60 training images and 10 test images. We
only use this assignment in Section 7.4.

Table 3 shows the performances of FRL and FedAvg using
different methods of non-iid assignment. We distribute the
data between 1000 clients using: (I) Dirichlet distribution
with B = 1 similar to [20,35] and (IT) the method described
above from [30]. In Table 3, we note that FRL achieves simi-
lar performances as FedAvg for different heterogeneous data
distribution methods. For instance, on CIFAR10, FedAvg and
FRL achieves similar performances of 85.4% and 85.3% re-

12

spectively when data is distributed according to (I). Similarly,
when data is distributed according to (II), FedAvg and FRL
achieve similar performances of 70.6% and 70.9%, respec-
tively.

We make similar observations for MNIST as well: FedAvg
achieves 98.8% and 98.4% for the two methods of data dis-
tribution respectively, while FRL achieves 98.8% and 98.3%
accuracy.

7.5 FRL: Weights Initialization Matters

Table 4: Comparing the performance of FRL with different
random weight initialization algorithms with the performance
of vanilla FedAvg for cross-device setting. Using Singed
Kaiming Constant (Uk) as weight initialization gives the best
performance for all the datasets.

Metric Algorithm
Dataset FedAvg FRL
Winie ~ - Xn ‘ Nk ‘ Uk ‘
Mean 98.8 96.6 | 98.7 | 98.8
i’[eNNIeStT STD 31 | 52 | 32 | 31
Min 75.0 57.1 | 75.0 | 75.0
N=1000
Max 100 100 | 100 | 100
Mean 85.4 63.6 | 82.0 | 85.3
ggj}églo STD 11.2 156 | 119 | 11.3
N=1000 Min 33.3 0 0 33.3
Max 100 100 | 100 | 100
Mean 85.8 69.2 | 82.9 | 84.2
EEII\\I/EIHST STD 10.2 142 | 11.1 | 10.7
N=3400 Min 10.0 0 143 | 7.1
Max 100 100 | 100 | 100

In FRL, the weight parameters are randomly initialized at the
start and remain fixed throughout the training. An appropriate
initialization is instrumental to the success of FRL, since the
FRL clients are sending the local rankings of these edges;
more important edges get higher ranks. They generate these
rankings by feeding the subnetwork of top rank edges and
calculating the gradient of the loss with respect to the scores,
so distribution of these random weights has a high impact
on the calculated loss. We use three different distribution for
initializing the weight parameters as follows:

Glorot Normal [18] where we denote by Xy. Previous
work [44] used this initialization to demonstrate that sub-
networks of randomly weighted neural networks can achieve
impressive performance.

Kaiming Normal [19] where we denote by A} defined as

Ng =N (O, 2/ ng_l) where A shows normal distribution.

ny shows the number of parameters in the /th layer.
Singed Kaiming Constant [34] where all the wights are
a constant ¢ but they are assigned {+, —} randomly. This

99.0 — — : =
ST T T e ~ 85.0 e
N I . P ~._
S 1 S] §82.5 /‘/‘
g0 i % 2800 !
/] 2 /
§97.5 i a0 | 2775 |
Fo97.0 I i i i
! 750/
i 20| I 20
96.5f I 72,511
20 40 60 80 20 20 60 80 20 40 60 80
k% k% k%
(a) MNIST (b) CIFARI10 (c) FEMNIST

Figure 5: Comparing performance of FRL for different subnetwork sizes. k (x-axis) shows the % of weights that each client is
including in its subnetwork, test accuracy (y-axis) shows the mean of accuracies for all the clients on their test data. The chosen
clients in each round send all the ranks to the server. FRL with subnetworks of € [40%, 70%)] result in better performances.

constant, G, is the standard deviation of Kaiming Constant.
We show this initialization with Uk as we are sampling from

{—0,+0} where 6 = (\/M)

Table 4 shows the results of running FRL for three datasets
under the three aforementioned initialization algorithms. We
compare FRL with FedAvg and report the mean, standard
deviation, minimum, and maximum of the accuracies for the
clients’ accuracies in FRL and FedAvg at the end of training.
As we can see under three different random initialization,
using Signed Kaiming Constant (Uk) results in better perfor-
mance. We note from Table 4 that FRL with Signed Kaiming
Constant (Uk) initialization achieves performance very close
to the performance of FedAVg.

Note that, since the FRL clients update scores in each round,
unlike initialization of weights, initialization of scores does
not have significant impact on the final global subnetwork
search. Therefore, we do not explore different randomized
initialization algorithms for scores and simply use Kaiming
Uniform initialization for scores.

Ramanujan et al. [34] also considered these three initial-
ization to find the best subnetwork in centralized machine
learning setting. They also showed that using Singed Kaim-
ing Constant gives the best supermasks. Our results align with
their conclusions, hence we use Singed Kaiming Constant to
initialize the weights and Kaiming Uniform to initialize the
scores of the global supernetwork.

7.6 Performances of FRL with Varying Sizes
of Subnetworks

In FRL, each client uses Edge-popup (Algorithm 1) and their
local data to find a local ranking by finding a subnetwork
within a randomly initialized global network, which we call
supernetwork. Edge-popup algorithm uses parameter k which
represents the % of all the edges in a supernetwork which will
remain in the final subnetwork. For instance, k = 50% denotes
that each client finds a subnetwork within a supernetwork that
has half the number of edges as in the supernetwork.

13

Figure 5 illustrates how the performance of FRL varies
with the sizes of local subnetworks that the clients share with
the server. In other words, when we vary the sparsity k% of
edge popup algorithm during local subnetwork search k €
[10,20,30,40,50,60,70,80,90]%. Interestingly we note that,
FRL performs the worst when clients use all (k=100%) or
none (k=0%) of the edges. This is because, it is difficult to
find a subnetwork with small number of edges. While using
all of the edge essentially results in using a random neural
network. As we can see FRL with k € [40,70]%, gives the
best performances for all the three datasets. Hence, we set
k=50% by default in our experiments.

Due to space limitations, we defer more experiments of
FRL to Appendix D.

8 Conclusions

We designed a novel collaborative learning algorithm, called
Federated Rank Learning (FRL), to address the issues of
robustness to poisoning and communication efficiency in ex-
isting FL algorithms. We argue that a core reason for the sus-
ceptibility of existing FL algorithms to poisoning is the large
continuous space of values in their model updates. Hence, in
FRL, we use ranks of edges of a randomly initialized neural
network contributed by collaborating clients to find a global
ranking and then use a subnetwork based only on the top
edges. Use of rankings in a fixed range restricts the space
available to poisoning adversaries to craft malicious updates,
and also allows FRL to reduce the communication cost. We
show, both theoretically and empirically, that ranking based
collaborative learning can effectively mitigate the robustness
issue as well as reduce the communication costs involved.

Acknowledgements

This work was supported by NSF grant 2131910.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Alham Fikri Aji and Kenneth Heafield. Sparse commu-
nication for distributed gradient descent. In EMNLP,
2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola
Konstantinov, Sarit Khirirat, and Cédric Renggli. The
convergence of sparsified gradient methods. In NeurIPS,
2018.

Eugene Bagdasaryan, Andreas Veit, Yiging Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. In AISTATS, 2020.

Moran Baruch, Baruch Gilad, and Yoav Goldberg. A
little is enough: Circumventing defenses for distributed
learning. In NeurlPS, 2019.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzade-
nesheli, and Anima Anandkumar. signsgd with majority
vote is communication efficient and fault tolerant. In
ICLR, 2019.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mit-
tal, and Seraphin Calo. Analyzing federated learning
through an adversarial lens. In ICML, 2019.

Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al.
Machine learning with adversaries: Byzantine tolerant
gradient descent. In NeurIPS, pages 119-129, 2017.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé
Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan
McMabhan, et al. Towards federated learning at scale:
System design. In MLSys, 2019.

Sebastian Caldas, Peter Wu, Tian Li, Jakub Konecny,
H. Brendan McMahan, Virginia Smith, and Ameet Tal-
walkar. LEAF: A benchmark for federated settings.
CoRR, abs/1812.01097, 2018.

Francesco Paolo Cantelli. Sui confini della probabilita.
In Atti del Congresso Internazionale dei Matematici:
Bologna del 3 al 10 de settembre di 1928, pages 47-60,
1929.

Hongyan Chang, Virat Shejwalkar, Reza Shokri, and
Amir Houmansadr. Cronus: Robust and heterogeneous
collaborative learning with black-box knowledge trans-
fer, 2019.

14

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and
André van Schaik. EMNIST: extending MNIST to hand-
written letters. In 2017 International Joint Conference
on Neural Networks, IJCNN, 2017.

Yann N Dauphin and Yoshua Bengio. Big neural net-
works waste capacity. arXiv preprint arXiv:1301.3583,
2013.

Misha Denil, Babak Shakibi, Laurent Dinh,
Marc’Aurelio Ranzato, and Nando de Freitas.
Predicting parameters in deep learning. In Proceedings
of the 26th International Conference on Neural
Information Processing Systems-Volume 2, pages

2148-2156, 2013.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and
Neil Zhengiang Gong. Local model poisoning attacks
to byzantine-robust federated learning. In USENIX
Security, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks.
ICLR, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the
difficulty of training deep feedforward neural networks.
In AISTATS, 2010.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Pro-
ceedings of the IEEFE international conference on com-
puter vision, pages 10261034, 2015.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown.
Measuring the effects of non-identical data distribu-
tion for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah,
Vladimir Braverman, Ion Stoica, and Raman Arora.
Communication-efficient distributed sgd with sketching.
In NeurIPS, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

Jakub Konec¢ny, H Brendan McMahan, Felix X Yu, Pe-
ter Richtarik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving commu-
nication efficiency. arXiv preprint arXiv:1610.05492,
2016.

[24] Alex Krizhevsky and Geoffrey Hinton. Learning multi-
ple layers of features from tiny images. 2009.

[25] AngLi, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng
Li, Yiran Chen, and Hai Li. Lotteryfl: Personalized and
communication-efficient federated learning with lottery
ticket hypothesis on non-iid datasets. CoRR, 2020.

[26] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li,

and Yiran Chen. Fedmask: Joint computation and

communication-efficient personalized federated learn-
ing via heterogeneous masking. In Proceedings of the
19th ACM Conference on Embedded Networked Sensor

Systems, pages 42-55, 2021.

[27] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Vir-

ginia Smith. Federated learning: Challenges, methods,

and future directions. IEEE Signal Processing Maga-

zine, 37(3):50-60, 2020.

[28] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-

jabi, Ameet Talwalkar, and Virginia Smith. Federated

optimization in heterogeneous networks. arXiv preprint

arXiv:1812.06127, 2018.

[29] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, and

Yi Zhou. IBM federated learning: an enterprise frame-

work white paper V0.1. CoRR, abs/2007.10987, 2020.

[30] H Brendan McMahan, Eider Moore, Daniel Ram-

age, Seth Hampson, and Blaise Aguera y Arcas.

Communication-efficient learning of deep networks

from decentralized data. AISTATS, 2017.

[31] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien

Rouault. The hidden vulnerability of distributed learning

in byzantium. In ICML, 2018.

[32] Hamid Mozaffari and Amir Houmansadr. Heteroge-
neous private information retrieval. In NDSS, 2020.

[33] Matthias Paulik, Matt Seigel, and Henry Mason. Fed-
erated evaluation and tuning for on-device personaliza-
tion: System design & applications. arXiv preprint
arXiv:2102.08503, 2021.

[34] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kem-

bhavi, Ali Farhadi, and Mohammad Rastegari. What’s

hidden in a randomly weighted neural network? In Pro-
ceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2020.

[35] Sashank J Reddi, Zachary Charles, Manzil Zaheer,

Zachary Garrett, Keith Rush, Jakub Konec¢ny, Sanjiv

Kumar, and Hugh Brendan McMahan. Adaptive feder-

ated optimization. In /CLR, 2020.

15

[36] Virat Shejwalkar and Amir Houmansadr. Manipulating
the byzantine: Optimizing model poisoning attacks and
defenses for federated learning. In NDSS, 2021.

[37] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and
Daniel Ramage. Back to the drawing board: A critical
evaluation of poisoning attacks on federated learning.

In Security and Privacy (SP). 2021.

[38] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin

Jaggi. Sparsified sgd with memory. In NeurIPS, 2018.

[39] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh,
and H Brendan McMahan. Can you really backdoor
federated learning? In NeurlPS FL Workshop, 2019.

[40] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput,
Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn,
Kangwook Lee, and Dimitris Papailiopoulos. Attack of
the tails: Yes, you really can backdoor federated learning.

In NeurIPS, 2020.

[41] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu,
Aniruddha Kembhavi, Mohammad Rastegari, Jason
Yosinski, and Ali Farhadi. Supermasks in superposi-

tion. In NeurIPS, 2020.

[42] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba:
Distributed backdoor attacks against federated learning.

In ICLR, 2019.

[43] Dong Yin, Yudong Chen, Kannan Ramchandran, and
Peter L. Bartlett. Byzantine-robust distributed learning:

Towards optimal statistical rates. In ICML, 2018.

[44] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosin-
ski. Deconstructing lottery tickets: Zeros, signs, and the

supermask. In NeurIPS, 2019.

A Theoretical analysis of robustness of FRL

In this section, we detail the proof of robustness of FRL. In
other words, we prove an upper bound on the failure proba-
bility of robustness of FRL, i.e., the probability that a good
edge will be removed from the final subnetwork when ma-
licious clients mount the worst case attack. Inspired from
SignSGD [6], for this proof, We assume a simpler VOTE(.)
function where if more than half of the clients add an edge ¢;
to their subnetworks, then the FRL server adds it to the final
global subnetwork. We also assume that the malicious clients
cannot collude in our proof.

Assume that edge ¢; is a good edge, i.e., having e; in the
final subnetwork improves the performance of the final sub-
network. Let Z be the random variable that represents the
number of clients who vote for the edge e; to be in the final
subnetwork, i.e., the number of clients whose local subnet-
work of size k% of the entire supernetwork (Algorithm 2 line

11) contains e;. Therefore, Z € [0,n] where n is the number of
clients being processed in a given FRL round.

Let G and B be the random variable that represent the
number of benign and malicious clients that vote for edge e;,
respectively; the malicious clients inadvertently exclude the
good edge e; in their local subnetwork based on their benign
training data.

There are total of o malicious clients, where o is the
fraction of malicious clients that B of them decides that e;
is a bad edge and should not be removed. Each of the ma-
licious clients computes the subnetwork on its own benign
training data, so B of them do not conclude that ¢; is a good
edge. Hence, Z = G+ B. We can say that G and B have
binomial distribution , i.e., G ~ binomial([(1 — o)n, p] and
B ~ binomial([on, 1 — p] where p is the probability that a
benign client has this edge in their local subnetwork and o is
the fraction of malicious clients. Note that the probability that
our voting in simplified FRL fails is P[failure] = P[Z <= 3],
i.e., when more than half of the clients vote against ¢;, i.e.,
they do not include e; in their local subnetworks. We can find
the mean and variance of Z as follows:

E[Z]=(1—0o)np+an(l —p) 2)

Var(Z] = (1 —a)np(1 —p)+onp(l —p) =np(1—p) (3)

[11] provides an inequality where for a random variable
X with mean u and variance 62> we have Plu—X >=] <=
L. Using this inequality, we can write:

12

n 1
Pz <=")=PE[Z]-Z>=E[Z]—n/2) <= —
2 1+ (E[i]a;["z/]z)z
4

because 1+ x2 >= 2x, we have:
on, Var[Z]

PZ <= 2] <=1/2 EZ—n/2R ®)

_ np(1—p)
n 1/2\/(111)—Ocnp—i—om—()an—n/2)2

_ np(1—p)
=1/ 2\/ (alp a1 —2p)— 1/2)P

What this means is that the probability that the simplified
VOTE(.) fails is upper bounded as in (5). We show the effect
of the different values of o and p in Figure 3. We can see from
Figure 3, if the benign clients can train better supermasks (bet-
ter chance that a good edge ended in their subnetwork), the
probability that the attackers succeed is lower (more robust-
ness). VOTE(.) in FRL (Section 4.3) is more sophisticated
and puts more constraints on the malicious clients, hence the
about upper bound also applies to FRL.

16

B Missing information about FRL optimiza-
tion function

Ramanujan et al. [34] proved that when edge (a,b) replaces
(¢,b) in layer £ and the rest of the subnetwork remains fixed
then the loss of the supermask learning decreases (provided
the loss is sufficiently smooth). Motivated by their proof, we
show that when these two edges are swapped in FRL, the loss
decreases for FRL optimization too.

Theorem 1: when edge (a,b) replaces (c,b) in layer ¢
and the rest of the subnetwork remains fixed then the loss
of the FRL optimization will decrease (provided the loss is
sufficiently smooth).

proof. First, we know that the optimization problem of FRL
is as follow:

N
rrIgnF(Gw,Rg) = r%in Y AiLi(8” ©m) (6)

¢ =1

s.t. m[R, <k]=0 and m[R, > k] =1

where A; shows the importance of the i’ client in empirical
risk minimization which A; = % gives same importance to
all the participating clients. m is the final mask that contains
the edges of top & ranks, and L; is the loss function for the
ith client. 8" © m shows the subnetwork inside the random
0" that all clients unanimously vote for. In this optimization,
the FRL clients try to minimize F by finding the best global
ranking R,.

We now wish to show F(6",R,) < F(8",R}) when in
FRL round 7 + 1, the edge (a,b) replaces (c,b) in layer £ and
the rest of the subnetwork remains fixed. Suppose global rank
of edge (a,b) was Ry[(a,b)] and global rank of edge (c,b)
was Rj[(c,b)] in round ¢, so we have:

Ry[(a,b)] < Ry[(c,b)]
R ((a,b)] > RS [(c,b)]

(7
®)

where the order of all the remaining global ranks remains
fixed, and only these two edges are swapped in global ranking.
Now let s;;) shows the score of weight wyy, in round ¢ and
i"" client and sf;l:l’i shows the updated score of it after local
training. As in our majority vote, we are calculating the sum

of the reputation of edges we will have:

N rd N ri
N N
Zsab < Zscb (9)
i=1 i=1
y t+1,i a 1,0
R N
Zsab S Zscb (10)
i=1 i=1

We also know that Edge-popup algorithm updates the
scores in the i’ client as follow:

; oL
Sav " = Sup My ZaWap an
Based on (9), and (10), we can say:
al Al +1, al 41,
Zs ZS < Z l ZSL.,, ! (12)
i=1 i=1 i=1 i=1
And based on (11), we also know that:
N ; ; N aLl .
Y (" =) =1 (—n E Z;Wab> (13)
i=1 i=1 a
N ; ; N aLz
Z (SICZL — si’b) = Z (n a[’ Wch) 14)
i=1 i=1
Based on (12), (13) and (14), we can say:
oL} oL!
Z’ —Z’W 15
¥ (Gp7ma) - 1 (Gpam) 09

So based on (15), and what [34] proved for each supermask
training we can show (16). We assume that loss is smooth and
the input to the nodes that their edges are swapped are close
before and after the swap.

i((0 om'1)) <

that means:

N
(16)

Li(6"om'))

i l

F(0",R;t') < F(0",R)) (17)

C Missing Details of Experimental Setup
C.1 Model Architectures

Table 5 show the model architectures and the number of pa-
rameters in each layer for them.

C.2 hyperparameters Tuning

We optimize the hyperparameters based on FRL and other
baselines independently. The hyperparameters that we used
in our experiments are tuned in scenario with no malicious
clients. Table 6 shows the performance of FRL and other
baselines on CIFARI10 (distributed over 1000 users using
Dirichlet distribution) for different values of hyperparameters
when there are 10% malicious clients among the clients. This
table shows the robustness of FRL still persists even if we
change the hyperparameters. We reported mean of accuracies
and standard deviation of accuracies for all the clients at the
final FRL round.

17

Table 5: Model architectures. We use identical architecture to
those [34,41] used.

’ Architecture ‘ Layer Name ‘ Number of parameters
Convolution(32) + Relu 288
LeNet [41] Com;\(/){lutsn(fé) ;r Relu 18432
MNIST axPool(2x2) -
FC(128) + Relu 1605632
FC(10) 1280
Convolution(64) + Relu 1728
Convolution(64) + Relu 36864
MaxPool(2x2) -
Convolution(128) + Relu 73728
Convolution(128) + Relu 147456
MaxPool(2x2) -
Convolution(256) + Relu 294912
S?Sﬁ%‘” Convolution(256) + Relu 589824
MaxPool(2x2) -
Convolution(512) + Relu 1179648
Convolution(512) + Relu 2359296
MaxPool(2x2) -
FC(256) + Relu 524288
FC(256) + Relu 65536
FC(10) 2560
Convolution(32) + Relu 288
LeNet [41] Convl\(/)llut;;)n(l();) ;— Relu 18432
FEMNIST axPool(2x2) -
FC(128) + Relu 1605632
FC(62) 7936
C.3 Model Poisoning Attack for Robustness
Evaluations

To evaluate robustness of various FL algorithms, we use state-
of-the-art model poisoning attack proposed by [36] in our
robustness experiments. The attack proposes a general FL poi-
soning framework and then tailors it to specific FL settings. It
first computes an average V? of the available benign updates
and perturbs it in a dynamic, data-dependent malicious direc-
tion ® to compute the final poisoned update V' = V? 4+ yw.
DYN-OPT finds the largest 7y that successfully circumvents
the target AGR. DYN-OPT is much stronger, because unlike
STAT-OPT, it finds the largest y and uses a dataset tailored ®.
Privacy preservation [32] is another major challenge to FL,
but is orthogonal to our work.

D Missing Experiments of FRL

Figure 6 is showing the learning curve of FRL for different
numbers of local epochs for CIFAR10 experiment. The data
is distributed non-iid using Dirichlet distribution. As we can
see using 5 local epochs produces the best results.

Table 7 is showing the effect of other settings on perfor-
mance of FRL trained on CIFARI10 distributed over 1000
clients using Dirichlet distribution. The bold shows the value
we used in our experiments.

Table 6: Performance of FRL with different hyperparameters trained on CIFAR10 (distributed over 1000 clients using Dirichlet
distribution).

Method hyperparameter | value | Test Accuracy with 10% malicious
6 78.4 (12.6)
batch size 8 79.0 (12.4)
16 76.4 (13.6)
2 79.8 (12.2)
local epochs 5 79.0 (12.4)
FRL 10 78.2 (12.6)
0.1 73.5(13.4)
0.2 82.4 (12.1)
learning rate 0.3 83.11 (11.8)
0.4 79.0 (12.4)
0.5 77.5 (13.1)
] FedAvg \ - \ - \ 10.0 (10.1) \
y TopK \ - R 10.0 (10.1) \
6 55.5 (14.5)
batch size 8 56.3 (16.0)
16 37.7 (15.6)
2 41.0 (15.4)
local epochs 5 56.3 (16.0)
FedAvg + Trimmed-mean 10 21.0(9.9)
0.01 34.0 (15.5)
0.05 38.3 (15.3)
learning rate 0.1 56.3 (16.0)
0.15 10.0 (10.0)
0.2 10.0 (10.0)
6 19.0 (12.5)
batch size 8 58.8 (15.8)
16 36.7 (14.8)
2 46.1 (15.9)
local epochs 5 58.8 (15.8)
FedAvg + Multi-Krum 10 24.3 (11.7)
0.01 15.3 (11.7)
0.05 50.0 (16.2)
learning rate 0.1 58.8 (15.8)
0.15 154 (11.9)
0.2 10.0 (10.0)
6 33.1 (15.6)
batch size 8 39.7 (15.9)
16 10.2 (10.1)
2 10.2 (10.5)
local epochs 5 39.7 (15.9)
SignSGD 10 41.5 (16.0)
0.01 44.2 (15.8)
0.05 41.9 (15.5)
learning rate 0.1 39.7 (15.9)
0.15 35.8 (15.3)
0.2 10.2 (10.1)

18

Table 7: The effect of other settings on performance of
FRL trained on CIFAR10 distributed over 1000 clients using
Dirichlet distribution. The bold shows the value we used in
our experiments.

Method hyperparameter value | Test Accuracy
(10% malicious)
15 84.8 (11.3)
Number of
«ss+ FRL(E=2) ==+ FRL(E=5) FRL (E=10) | participants (n) 25 85.3 (11.3)
50 84.9 (11.2)
o e 2 82.2 (12.0)

80 ——,;!“'. ..‘-—b“““"“‘ . .

. T FRL | local epochs (E) 5 85.3 (11.3)
_ PGy 10 835 (11.9)
60 s
> ‘f"Jv 1 85.3 (11.3)
€50 :3,3‘,# ’ Non-iid degree (B) 10 85.6 (11.1)
20 v‘ 100 85.6 (10.9)
¥ 30 f

20 :

10| i

0 250 500 750 1000 1250 1500 1750 2000
Epoch

(a) CIFARI1O0 (Test Accuracy)

FRL(E=2) =+=- FRL(E=5) ===+ FRL(E=10)
2.25(%
.
2.00f %
!
!
1750 %
-
& L]
91.50 K
] -";
|°_)1.25 \l%
1.00 ke
"‘"\‘,‘gz‘,’, .
0.75 R
e RN 00 Yt g NN N
050 - 'UWMWM\A
0 250 500 750 1000 1250 1500 1750 2000
Epoch

(b) CIFAR10 (Test Loss)

Figure 6: Comparing performance of FRL for different local
epochs.

19

	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Federated Learning
	3.2 Edge-popup Algorithm

	4 Federated Rank Learning: Design
	4.1 Server: Initialization Phase (Only for round t=1)
	4.2 Clients: Calculating the ranks (For each round t)
	4.3 Server: Majority Vote (For each round t)

	5 FRL's Robustness to Poisoning
	6 FRL's Communication Efficiency
	7 Experiments
	7.1 Experiment Setup
	7.1.1 Datasets and model architectures
	7.1.2 Baseline FL Algorithms

	7.2 Security Analysis
	7.3 Communication Cost Analysis
	7.4 Performances of FRL with Different Heterogeneous Data Distribution Methods
	7.5 FRL: Weights Initialization Matters
	7.6 Performances of FRL with Varying Sizes of Subnetworks

	8 Conclusions
	A Theoretical analysis of robustness of FRL
	B Missing information about FRL optimization function
	C Missing Details of Experimental Setup
	C.1 Model Architectures
	C.2 hyperparameters Tuning
	C.3 Model Poisoning Attack for Robustness Evaluations

	D Missing Experiments of FRL

