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Many interesting search problems can be formulated as bi-objective search problems, that 

is, search problems where two kinds of costs have to be minimized, for example, travel 

distance and time for transportation problems. Instead of looking for a single optimal 

path, we compute a Pareto-optimal frontier in bi-objective search, which is a set of 

paths in which no two paths dominate each other. Bi-objective search algorithms perform 

dominance checks each time a new path is discovered. Thus, the efficiency of these checks 

is key to performance. In this article, we propose algorithms for two kinds of bi-objective 

search problems. First, we consider the problem of computing the Pareto-optimal frontier 

of the paths that connect a given start state with a given goal state. We propose Bi-

Objective A* (BOA*), a heuristic search algorithm based on A*, for this problem. Second, 

we consider the problem of computing one Pareto-optimal frontier for each state s of the 

search graph, which contains the paths that connect a given start state with s. We propose 

Bi-Objective Dijkstra (BOD), which is based on BOA*, for this problem. A common feature 

of BOA* and BOD is that all dominance checks are performed in constant time, unlike 

the dominance checks of previous algorithms. We show in our experimental evaluation 

that both BOA* and BOD are substantially faster than state-of-the-art bi-objective search 

algorithms.

 2022 Published by Elsevier B.V.

1. Introduction

The A* algorithm [1] is at the core of many heuristic search algorithms developed for solving shortest-path problems 

due to its strong theoretical properties, especially when used in conjunction with consistent h-values. In such problems, 

one has to find a path from a given start state to a given goal state that minimizes the path cost. However, there are often 

two or more kinds of path costs in real life [2–4]. For example, government agencies that transport hazardous material need 

to find routes that do not only minimize the travel distance but also the risk of exposure for residents [2]. Motivated by 
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such applications, researchers have extended A* to solve bi- and multi-objective shortest path problems where one wants 

to find the set of Pareto-optimal solutions from the start state to the goal state (or, synonymously, the optimal paths on the 

Pareto-optimal frontier), which is the set of paths that are not dominated by any path, where path p dominates path p′ iff 

each kind of path cost of p is no larger than the corresponding kind of path cost of p′ and at least one kind of path cost of 

p is smaller than the corresponding kind of path cost of p′ .

Two such state-of-the-art extensions of A* are the Multi-Objective A* (MOA*) [5] and New Approach for MOA* (NAMOA*) [6]

algorithms. These best-first multi-objective search algorithms differ from A* in various ways. The most relevant difference in 

the context of this article is that the concept of optimality is now related to (path) dominance. Since dominance checks are 

repeatedly performed throughout the execution of these algorithms, the time complexity of the checks plays a crucial role 

for their efficiency. For example, upon generating any search node, they need to check if the newly-found path to some state 

s is dominated by a previously-found path to s and, if so, discard the newly-found path. They also need to check whether a 

previously-found path to s is dominated by the newly-found path to s and, if so, discard the previously-found path.

NAMOA* performs all these dominance checks in a time that is linear in the size of the Open list and the number 

of paths found to a given state. Pulido et al. [7] proposed an improvement, called NAMOA*dr, that significantly improves 

the time complexity of some of these dominance checks to constant time. Unfortunately, the time complexity of other 

dominance checks remains linear.

In this article, we further improve the efficiency of the dominance checks. Our Bi-Objective A* (BOA*) algorithm prunes 

dominated paths more efficiently by exploiting that there are only two kinds of path costs and that the h-values are 

consistent. It performs lazy dominance checks, that is, it does not check for dominance over nodes in Open when nodes are 

generated. This allows all dominance checks to be done in constant time, which results in a significant speedup, especially 

for large instances.

Moreover, we show how we can use constant-time dominance checks to solve the problem of computing the set of 

Pareto-optimal solutions from the start state to all states (and not only to the goal state). We call this algorithm Bi-Objective 

Dijkstra (BOD).1

Our extensive experimental results on road maps show that BOA* is faster than NAMOA*, NAMOA*dr, and the bi-objective 

search algorithms Bi-Objective Dijkstra [9] and Bidirectional Bi-Objective Dijkstra [9]. BOA* is especially faster in most in-

stances, especially in the larger instances. We conclude the article by discussing how one might be able to improve and 

extend BOA*, including how to speed it up, find representative solutions on the Pareto-optimal frontier, find bounded-

suboptimal solutions, and generalize it to problems with more than two kinds of path costs.

This article extends our ICAPS-20 publication [10] by including:

• a new Bi-Objective Dijkstra (BOD) algorithm,

• new detailed examples for the operation of BOA* [10] and BOD,

• new theoretical analyses for BOA* and BOD,

• new experimental results for BOA* and BOD, and

• a real-world application of BOA* for the hazardous material transport problem (HAZMAT) in Santiago, Chile.

2. Related work

Our problem of bi-objective search falls under the general problem of multi-objective optimization. Thus, we start with 

a general overview of the topic and then detail relevant work from the search literature.

2.1. Multi-objective optimization

Multi-objective optimization is the mathematical optimization problem involving more than one objective function. It 

has applications ranging from drug design (e.g., maximizing potency while minimizing synthesis costs and unwanted side 

effects) [11,12] to the optimization of building designs (e.g., minimizing cost, energy consumption and health hazards) [13]. 

In the general setting, we are given a decision space which is the space of all possible solutions. A solution can be evaluated 

using objective functions which are typically computable equations but might also be the results of physical experiments or 

computer simulations. The goal is to find a solution or set of solutions that is optimal. Here there are different notions of 

optimality that we will discuss shortly.

One approach to solve multi-objective optimization problems is via scalarization techniques [14]. Roughly speaking, in this 

approach the objective functions are aggregated (or reformulated as constraints), and then a constrained single-objective 

problem is solved. The exact method for which the multiple objectives are aggregated dictates the different solutions that 

can be obtained. A simple scalarization technique is to use linear weighting where non-negative weights are attached to 

each objective and the weighted sum of the objective functions is minimized. It can be shown that any such solution lies on 

1 The name “Dijkstra” in BOD is an homage to Edsger Dijkstra, but the algorithm is actually an adaptation of the Uniform-Cost Search algorithm and not 
Dijkstra’s algorithm as it appears in standard textbooks. See [8] for a discussion of the subtle, yet important difference.
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the Pareto-optimal frontier, regardless of the weights chosen.2 Unfortunately, if the Pareto-optimal frontier is non convex,3

then there may be solutions on the Pareto-optimal frontier that cannot be found using this approach, regardless of the 

weights chosen [15]. A different scalarization technique is called “ε-constrained”. Here, one of the objectives is minimized 

while the rest are restricted within user-specific values. By varying these values, one can obtain different solutions on the 

Pareto-optimal frontier. However, it is difficult in practice to choose these values. For other scalarization techniques see, 

e.g., [15].

An alternative approach to solving multi-objective optimization problems is via evolutionary algorithms which use mech-

anisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection to devise generic 

population-based metaheuristic optimization algorithms. In the context of multiobjective optimization these algorithms 

gradually approach sets of Pareto-optimal solutions. Generally speaking, the algorithms differ in the paradigms used to 

define the selection operators. For additional details see, e.g., [16–19].

2.2. Multi-objective shortest path

A variant of multi-objective optimization that is the focus of this article is the multi-objective shortest-path problem, an 

extension to the classical (single-objective) shortest-path problem. Unfortunately, the general problem is NP-hard [20] and 

even determining whether a path belongs to the Pareto-optimal frontier is NP-hard [21]. Moreover, the cardinality of the 

size of the Pareto-optimal frontier may be exponential in the number of graph vertices [22,23]. Existing methods either try 

to efficiently compute the Pareto-optimal frontier or to relax the problem and only compute an approximation of this set.

2.2.1. Efficient computation of the Pareto-optimal frontier

To efficiently compute the Pareto-optimal frontier, adaptations of the celebrated Dijkstra and A∗ algorithms [1] were 

suggested. The first Dijkstra-based algorithms were suggested by Hansen [24] and Martins [25] for the bi-objective and 

multi-objective search problems, respectively. These were later extended using different techniques from single-objective 

search such as bi-directional search [9,26,27] and depth-first-search (DFS) [28].

As we have already mentioned, Stewart and White III [5] introduced Multi-Objective A* (MOA*) which is a multiobjective 

extension of A*. The most notable difference between MOA* and A* is in maintaining the Pareto-optimal frontier to inter-

mediate vertices. MOA* was later revised [7,6,29] and the work we present here can be considered as another revision that 

obtains its computational efficiency via efficient O (1) dominance checks.

2.2.2. Approximating the Pareto-optimal frontier

Initial methods in computing an approximation of the Pareto-optimal frontier were directed towards devising a Fully 

Polynomial Time Approximation Scheme (FPTAS) [30].4 Warburton [31] proposed a method for finding an approximate 

Pareto-optimal solution to the problem for any degree of accuracy using scaling and rounding techniques. Perny and Span-

jaard [32] presented another FPTAS given that a finite upper bound L on the numbers of arcs of all solution-paths in the 

Pareto-optimal frontier is known. This requirement was later relaxed [23,33] by partitioning the space of solutions into cells 

according to the approximation factor and, roughly speaking, take only one solution in each grid cell. Unfortunately, the run-

ning times of FPTASs are typically polynomials of high degree, and hence they may be slower than exact approaches when 

applied to relatively-small instances and running them on graphs with even a moderate number of states (e.g., ≈ 10, 000) 

is often impractical [23].

A different approach to compute a subset of the Pareto-optimal solution is to find all extreme supported non-dominated 

points (i.e., the extreme points on the convex hull of the Pareto-optimal set) [34]. Taking a different approach, Legriel 

et al. [35] suggest a method based on satisfiability/constraint solvers. Alternatively, a simple variation of MOA*, termed MOA∗
ε

allows to compute an approximation of the Pareto-optimal frontier by pruning intermediate paths that are approximately 

dominated by already-computed solutions [32].

3. Preliminaries

A bi-objective search graph is a tuple (S, E, c), where S is the finite set of states, E ⊆ S × S is the finite set of edges, 

and c : E → R≥0 × R≥0 is a cost function that associates a pair of non-negative real costs with each edge. Succ(s) = {t ∈ S |

(s, t) ∈ E} denotes the successors of state s. A path from s1 to sn is a sequence of states s1, s2, . . . , sn such that (si, si+1) ∈ E

for all i ∈ {1, . . . , n − 1}.

Boldface font indicates pairs. p1 denotes the first component of pair p, and p2 denotes its second component; that is, 

p = (p1, p2). The addition of two pairs p and q and the multiplication of a real-valued scalar k and a pair p are defined 

in the natural way, namely as p + q = (p1 + q1, p2 + q2) and kp = (kp1, kp2), respectively. p ≺ q denotes that (p1 < q1 and 

2 Solutions lying on the Pareto-optimal frontier are often called “efficient solutions” by the OR community.
3 A formal definition of convexity in this context requires some additional notation that are out of the scope of this article. For additional details see, 

e.g., [15].
4 An FPTAS is an approximation scheme whose time complexity is polynomial in the input size and also polynomial in 1/ε where ε is the approximation 

factor.
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p2 ≤ q2) or (p1 ≤ q1 and p2 < q2). In this case, we say that p dominates q. p ≤ q denotes that p1 ≤ q1 and p2 ≤ q2 . In this 

case, we say that p weakly dominates q. P ≺ q (resp. P ≤ q) for a set P of pairs denotes that there exists a p ∈ P such that 

p ≺ q (resp. p ≤ q).

c(π) =
∑n−1

i=1 c(si, si+1) is the cost of path π = s1, . . . , sn . π ≺ π ′ (resp. π ≤ π ′) for two paths π and π ′ denotes that 

c(π) ≺ c(π ′) (resp. c(π) ≤ c(π ′)). In this case, we say that π dominates (resp. weakly dominates) π ′.

A single-source search instance is defined as a tuple P = (S, E, c, sstart), where (S, E, c) is a search graph and sstart ∈ S is 

the start state.

Given a single-source search instance P = (S, E, c, sstart), a Pareto-optimal solution set for a state s ∈ S , denoted by sols(s), 

contains every path π from the start state to s with the property that, for every other path π ′ from the start state to s, 

π ′ ⊀ π ; that is, sol(s) contains all non-dominated paths from the start state to s. In this article, we are interested in finding 

any maximal subset of the Pareto-optimal solution set such that any two solutions in the subset do not have the same cost 

and refer to this subset as the cost-unique Pareto-optimal solution set.

In many applications, we are given a goal state sgoal ∈ S and need to find the Pareto-optimal solution set for the goal 

state only. In this case, similar to A*, we define h-values h : S → R≥0 × R≥0 . The h-value h(s) estimates the cost of a path 

from state s to the goal state. h is admissible iff h(s) ≤ c(π) for all states s and all paths π from s to the goal state, that 

is, both components of h are admissible for the corresponding components of the cost function. Similarly, h is consistent 

iff (1) h(sgoal) = (0, 0) and (2) h(s) ≤ c(s, t) + h(t) for all (s, t) ∈ E , that is, both components of h are consistent for the 

corresponding components of the cost function. We also define g- and f-values g and f : S → R≥0 × R≥0 . The g-value g(s)

stores the computed cost of a path from the start state to state s, and the f-value f(s) is the sum of the g- and h-values of 

state s.

4. Algorithmic background: best-first bi-objective search

In this section, we study the problem of computing a Pareto-optimal solution set for a single goal state with best-first 

search. In Section 6, we study the problem of computing solution sets for every state.

Open list We can compute the Pareto-optimal solution set with a modified version of A* that maintains an Open list, 

containing the frontier of the search tree (that is, the generated but not yet expanded nodes), and, optionally, a Closed list, 

containing the interior of the search tree (that is, the expanded nodes). A node is associated with a state, a g-value, an 

h-value, and an f-value and corresponds to a path to the state of a cost that is equal to the g-value. Different from A*, the 

g-, h-, and f-values are tuples rather than scalars. Also different from A*, the Open list might contain different nodes with 

the same state, corresponding to different paths to the same state, since we need to compute Pareto-optimal solution sets 

rather than a single solution.

Node selection The algorithm repeatedly extracts a node from the Open list. To guarantee optimality, the f-value of the 

extracted node must not be dominated by the f-value of any node in the Open list.

Solution recording When the algorithm extracts a node with the goal state, the path corresponding to the node is a 

solution. Different from A*, the algorithm cannot terminate and return this solution since it has to compute the Pareto-

optimal solution set. Thus, it checks whether this solution is dominated by a previously-found solution. If not, then it adds 

this solution to the solution set and removes all solutions from the solution set that are dominated by this solution. In both 

cases, it continues the search.

Node expansion When the algorithm extracts a node with a non-goal state, it expands the extracted node. Let the ex-

tracted node have state s. The algorithm then generates the child nodes of the extracted node, one for each successor t of 

s, by adding them to the Open list. It terminates when the Open list is empty and returns the solution set.

Efficiency We can improve the efficiency of the algorithm by performing the dominance checks not once it has found a 

solution but earlier. Assume that the algorithm has extracted a node and is about to generate a child node with state t . 

The f-value of the child node is a lower bound on the costs of all solutions that complete the path that the child node 

corresponds to. Thus, the algorithm does not need to generate the child node if the f-value of the child node is dominated 

by the f-value (that is, the cost) of a solution in the solution set. Similarly, the algorithm does not need to generate the child 

node if the f-value of the child node is dominated by the f-value of a node with state t that has already been generated 

(corresponding to a path to t that has already been found). In addition, it can remove all paths to t from the Open list 

whose f-values are dominated by the f-value of the newly-found path to t . If t is the goal state, it also has to remove all 

solutions from the solution set whose f-values (that is, costs) are dominated by the f-value (that is, cost) of the newly-found 

solution.

4.1. The NAMOA* algorithm

NAMOA* [6] is a best-first multi-objective search algorithm that provides the foundation for most multi-objective search 

algorithms. Algorithm 1 shows its pseudocode for bi-objective search problems. It takes as input a bi-objective search prob-

lem and consistent h-values and computes the Pareto-optimal solution set. We describe its key elements in the following.

Variables Each node in the Open list is a triple of the form (s, gs, fs) with state s, g-value gs , and f-value fs and corre-

sponds to a path to s of cost gs . In addition, NAMOA* maintains parents. Different from A*, a parent is a set of g-values 
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Algorithm 1: The NAMOA* algorithm.

Input : A search problem (S, E, c, sstart, sgoal) and consistent h-values h
Output : The Pareto-optimal solution set

1 sols ← ∅

2 for each s ∈ S do

3 Gop(s) ← ∅; Gcl(s) ← ∅

4 Gop(s) ← {(0, 0)}
5 parent((0, 0)) ← ∅

6 Initialize Open and add (sstart, (0, 0), h(sstart)) to it
7 while Open = ∅ do

8 Remove a node (s, gs, fs) from the Open list with the lexicographically smallest f-value of all nodes in the Open list

9 Remove gs from Gop(s) and add it to Gcl(s)

10 if s = sgoal then

11 Add gs to sols
12 Remove all nodes (u, gu, fu) with fs ≺ fu from the Open list

13 continue

14 for each t ∈ Succ(s) do

15 gt ← gs + c(s, t)
16 if gt ∈ Gop(t) ∪ Gcl(t) then

17 Add gs to parent(gt )
18 continue

19 if Gop(t) ∪ Gcl(t) ≺ gt then

20 continue

21 ft ← gt + h(t)

22 if sols ≺ ft then

23 continue

24 Remove all g-values g′
t from Gop(t) that are dominated by gt and remove their corresponding nodes (t, g′

t , f
′
t ) from the Open list

25 Remove all g-values from Gcl(t) that are dominated by gt
26 parent(gt ) ← {gs}

27 Add gt to Gop(t)

28 Add (t, gt , ft ) to the Open list

29 return sols

of some of the predecessors of s (rather than a single predecessor) and is associated with g-value gs (rather than state s). 

Also different from A*, NAMOA* maintains two sets of g-values for state s, namely Gcl(s), which contains the g-values of 

all expanded nodes with state s, and Gop(s), which contains the g-values of all generated but not yet expanded nodes with 

state s.

Node selection NAMOA* always extracts a node from the Open list whose f-value is not dominated by the f-value of any 

node in the Open list. Such a node can be identified efficiently for bi-objective search problems as a node in the Open

list with the lexicographically smallest f-value ( f1, f2) of all nodes in the Open list (Line 8). To see why this is correct, let 

( f ′
1, f

′
2) be the f-value of any node in the Open list. Then, either (1) f1 = f ′

1 and f2 ≤ f ′
2 or (2) f1 < f ′

1 . In both cases, 

( f ′
1, f

′
2) ⊀ ( f1, f2); that is, ( f1, f2) is not dominated by the f-value of any node in the Open list. Consequently, the nodes in 

the Open list should be ordered in increasing lexicographic order of their f-values.

Solution recording When NAMOA* extracts a node with the goal state, it has found an undominated solution. In this case, 

it adds the g-value of the node to the solution set and removes all nodes from the Open list whose f-values are dominated 

by the f-value of the node (Lines 10-13).

Node expansion When NAMOA* extracts a node with a non-goal state, it expands the extracted node (s, gs, fs) by cal-

culating its child nodes (t, gt , ft), one for each successor t of state s. If it has generated a node with state t and g-value 

gt before, then it adds gs to the parent set parent(gt) (Lines 16-18) (which corresponds to recording another path to t of 

cost gt and is necessary since NAMOA* computes the Pareto-optimal solution set rather than a single solution). In this case, 

it does not add the child node to the Open list. Neither does it add the child node to the Open list if gt is dominated 

by the g-value of a generated node with state t (Lines 19-20) (which corresponds to pruning the newly-found path to t

since it is dominated by another path to t that has already been found). Neither does it add the child node to the Open

list if the f-value ft is dominated by the f-value (that is, g-value and cost) of a solution in the solution set (Lines 22-23) 

(which corresponds to pruning the newly-found path to t since it is dominated by a solution that has already been found). 

Otherwise, it generates the child node by adding it to the Open list, adding gt to Gop(t), making gs the only g-value in the 

parent set parent(gt) (which corresponds to recording the first path to t of cost gt ), and removing all references to paths to 

t from the Open list, Gop(t), and Gcl(t) that are dominated by the newly-found path to t (Lines 24-28). It terminates when 

the Open list is empty and returns the solution set (Line 29).

5



C. Hernández, W. Yeoh, J.A. Baier et al. Artificial Intelligence 314 (2023) 103807

Algorithm 2: The NAMOA*dr algorithm.

Input : A search problem (S, E, c, sstart, sgoal) and consistent h-values h
Output : The Pareto-optimal solution set

1 sols ← ∅

2 for each s ∈ S do

3 Gop(s) ← ∅; Gcl(s) ← ∅; gmin
2 (s) ← ∞

4 Gop(sstart) ← {(0, 0)}
5 parent((0, 0)) ← ∅

6 Initialize the Open list and add (sstart, (0, 0), h(sstart)) to it
7 while Open = ∅ do

8 Remove a node (s, gs, fs) from the Open list with the lexicographically smallest f-value of all nodes in the Open list

9 Remove gs from Gop(s) and add it to Gcl(s)

10 if gmin
2 (sgoal) ≤ gs,2 then

11 continue /* prune s if sols ≺ gs */

12 if s = sgoal then

13 Add gs to sols
14 continue

15 gmin
2 (s) ← gs,2

16 for each t ∈ Succ(s) do

17 gt ← gs + c(s, t)
18 if gt ∈ Gop(t) ∪ Gcl(t) then

19 Add gs to parent(gt )
20 continue

21 if gmin
2 (t) ≤ gt,2 or Gop(t) ≺ gt then

22 continue

23 ft ← gt + h(t)

24 if gmin
2 (sgoal) ≤ ft,2 then

25 continue

26 Remove all g-values g′
t from Gop(t) that are dominated by gt and remove their corresponding nodes (t, g′

t , f
′
t ) from the Open list

27 parent(gt ) ← {gs}

28 Add gt to Gop(t)

29 Add (t, gt , ft ) to the Open list

30 return sols

4.2. The NAMOA*dr algorithm

Some of the operations of NAMOA* are time-consuming since they perform dominance checks that involve either the 

f-values (Lines 12 and 22) or g-values (Lines 24-25) and require it to iterate over a number of elements proportional to 

|Gop(t)|, |Gcl(t)|, |Open|, or |sols|. Pulido et al. [7] (in short: PMP) improved NAMOA* to NAMOA*dr by observing that, if 

(A1) consistent h-values are used and (A2) the Open list is sorted lexicographically, then a number of NAMOA*’s dominance 

checks can be implemented in constant rather than linear time.

PMP observed that some dominance checks can be carried out more efficiently by reducing one of the dimensions of the 

vectors involved. To see how this is done, assume that we receive as input a list ν of 2-dimensional vectors v1, v2, . . . , vn , 

which are sorted lexicographically. We want to construct a largest subset of vectors that do not dominate each other 

by considering the vectors in ν one by one, in order. Assume that V is the set of non-dominated vectors that we have 

constructed after considering the first k vectors in ν . Vector vk+1 cannot dominate any vector in V because of the way the 

vectors in ν are arranged. Therefore, vk+1 is added to V if it is not dominated by any vector in V (that is, V ⊀ vk+1), and 

discarded otherwise. By keeping track of the minimum m of the second components of all vectors in V , the dominance 

check can be done in constant time since V ≺ vk+1 if and only if the second component of vk+1 is smaller than m.

PMP’s insight can be used to implement NAMOA* more efficiently. Since we use consistent h-values and the Open list is 

lexicographically ordered, each time we extract a state s from the Open list, the g1-value of this state is greater or equal to 

the g1-values of all previously-found paths to s. This fact can be used to implement Lines 19 and 22 of NAMOA* in constant 

time when checking whether the g-value of a state t is dominated by the g-value of any state in Gcl(t).

Algorithm 2 shows the pseudocode of NAMOA*dr, a bi-objective version of NAMOA* based on PMP’s multi-objective 

search algorithm. The differences between NAMOA*dr and NAMOA* are highlighted in blue. The key conceptual difference 

between the algorithms is that NAMOA*dr keeps a gmin
2 -value for every state of the search graph. gmin

2 (s) is the minimum 

g2-value of a path from the start state to s that has been extracted from the Open list. Such a value is used to implement 

NAMOA*’s dominance checks of Lines 19 and 22 of Algorithm 1 in constant time. In addition, following PMP, NAMOA*dr, 

adds the pruning of Lines 10–11 (Algorithm 2), which discards a node just extracted from the Open list if its cost is 

dominated by the cost of a solution. This check is also implemented in constant time. Finally, NAMOA*dr returns a cost-

unique Pareto-optimal set.

6
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Algorithm 3: The Bi-Objective A* (BOA*) algorithm.

Input : A search problem (S, E, c, sstart, sgoal) and a consistent heuristic function h
Output : A cost-unique Pareto-optimal solution set

1 for each s ∈ S do

2 sols(s) ← ∅

3 gmin
2 (s) ← ∞

4 x ← new node with s(x) = sstart
5 g(x) ← (0, 0)
6 parent(x) ← null

7 f(x) ← (h1(sstart), h2(sstart))
8 Initialize Open and add x to it
9 while Open = ∅ do

10 Remove a node x from Open with the lexicographically smallest f -value of all nodes in Open

11 if g2(x) ≥ gmin
2 (s(x)) ∨ f2(x) ≥ gmin

2 (sgoal) then

12 continue

13 gmin
2 (s(x)) ← g2(x)

14 Add x to sols(s(x))
15 if s(x) = sgoal then

16 continue

17 for each t ∈ Succ(s(x)) do

18 y ← new node with s(y) = t

19 g(y) ← g(x) + c(s(x), t)
20 parent(y) ← x

21 f(y) ← g(y) + h(t)

22 if g2(y) ≥ gmin
2 (t) ∨ f2(y) ≥ gmin

2 (sgoal) then

23 continue

24 Add y to Open

25 return sols(sgoal)

5. The Bi-Objective A* (BOA*) algorithm

The improvements to NAMOA* proposed by PMP remove some, but not all, of its most time-consuming operations. 

Specifically, it still iterates over a number of g-values proportional to |Gop(t)| on Lines 21 and 26 (Algorithm 2).

In this section, we therefore describe our Bi-Objective A* (BOA*) algorithm, a best-first bi-objective search algorithm. 

Our primary design objective is to perform all dominance checks in constant time. We use PMP’s ideas and additional 

insights: (1) to avoid having to maintain the sets Gop(s) and Gcl(s) for all states s and thus not having to perform any of 

the eager checks on Line 26 (Algorithm 2) to remove g-values from these sets and (2) to make the eager check on Line 21 

(Algorithm 2) more efficient by maintaining a value gmin
2 (s) for each state s, which is the smallest g2-value of any expanded 

node with state s.

A secondary design objective is to make the presentation of BOA* similar to that of modern descriptions of A*, such as 

those in [36], thereby making it potentially easier to understand and implement. Another design objective is to compute the 

cost-unique Pareto-optimal solution set rather than the Pareto-optimal solution set since it is sufficient for our purposes to 

compute one representative solution for all cost-identical and thus equally good solutions.

The Open list of BOA* contains nodes, which are akin to the labels commonly used in the operations research litera-

ture [37]. Each node x has a state s(x), a g-value g(x), an f-value f(x), and a parent parent(x) and corresponds to a path to 

s(x) of cost g(x). The parent is a single node.

Algorithm 3 shows the pseudocode of BOA*. It takes as input a bi-objective search problem and consistent h-values and 

computes the cost-unique Pareto-optimal solution set. In each iteration, it extracts a node x from the Open list with the 

lexicographically smallest f-value of all nodes in the Open list (Line 10). It does not expand the node if its g2-value is at 

least gmin
2 (s(x)) or its f2-value is at least g

min
2 (sgoal) (Lines 11-12). Otherwise, it updates gmin

2 (s(x)) (Line 13) and expands 

the node. If s(x) is the goal state, then BOA* has found an undominated solution and adds node x to the solution set sols

(Lines 14-16). Otherwise, it calculates the child nodes of node x (Lines 18-21). It does not add a child node y to the Open

list if its g2-value is at least g
min
2 (s(y)) or its f2-value is at least g

min
2 (sgoal) (Lines 22-23). Otherwise, it generates the child 

node by adding it to the Open list (Line 24). It terminates when the Open list is empty and returns the solution set (Line 

25).

5.1. Relationship to the NAMOA*dr algorithm

The main difference between NAMOA*dr and BOA* is that BOA* avoids all linear-time dominance checks. Even though 

NAMOA*dr avoids linear-time dominance checks when checking whether the current g-value of node t is dominated by 

the g-value of an element in Gcl(t) or sols, it has to iterate through the elements in Gop(t) (Line 26, Algorithm 2) to check 

whether the current g-value of state t is dominated by the g-value of an element in Gop(t) before adding t to the Open

7
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Fig. 1. (a) An example search graph, in which pairs of numbers inside each state indicate its h-value. (b) Search tree of Bi-Objective A* for the example 
graph. Red edges are pruned successors. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1

States expanded by BOA* run on the graph of Fig. 1 (a). Nodes in red are pruned.

iteration node parent(node) s(node) g(node) f(node) gmin
2 (s(node))

1 x0 null sstart (0,0) (3,6) 0

4 x1 x0 s1 (1,1) (4,7) 1

2 x2 x0 s2 (1,5) (3,9) 5

7 x3 x0 s3 (1,1) (5,6) 1

3 x4 x2 sgoal (3,9) (3,9) 9

10 x6 x1 sgoal (8,6) (8,6)

5 x7 x1 s2 (2,3) (4,7) 3

6 x8 x7 sgoal (4,7) (4,7) 7

8 x9 x3 s2 (3,2) (5,6) 2

9 x11 x9 sgoal (5,6) (5,6) 6

Table 2

States pruned by BOA* upon generation when run on the graph of Fig. 1 (a). Nodes in red 
are pruned.

iteration node parent(node) s(node) g(node) f(node) gmin
2 (s(node))

4 x5 x1 s4 (5,7) (∞,∞) ∞

7 x10 x3 sgoal (6,8) (6,8)

list since PMP’s constant-time dominance check cannot be used for these dominance checks. BOA*, instead, does not check 

whether a node just generated has a g-value that is dominated by the g-value of a node in the Open list. Instead, it 

delays such a check until expansion time, using the condition of Line 11 (Algorithm 3). Thus, a way of interpreting the 

difference between BOA* and NAMOA*dr is that some of BOA*’s dominance checks are lazy in comparison to the eager ones 

of NAMOA*dr.

5.2. Example

Fig. 1 (a) shows a graph with six states and ten edges, where sstart is the source state and sgoal is the goal state. We use 

the perfect distances as h-values, which can be computed with Dijkstra’s algorithm. Table 1 shows the expanded states (in 

black) and those states pruned by Line 11 (in red), for each iteration of BOA*. For each node expansion, the table shows 

the node removed from the Open list for expansion (node), the parent of the node (parent(node)), the state of the node 

(s(node)), the g-values, the f-values and the gmin
2 of the state. Note that all gmin

2 -values are initialized to ∞. Finally, Table 2

shows the nodes that are pruned by BOA* in Line 22, right after generation.

• In iteration 1, the node x0 is removed from the Open list, and its three child nodes x1 , x2 , and x3 are added to the 

Open list. gmin
2 (sstart) is updated from ∞ to 0.

• In iteration 2, node x2 is removed from the Open list, and its child node x4 is added to the Open list. gmin
2 (s2) is 

updated from ∞ to 5.

• In iteration 3, node x4 is removed from the Open list. A non-dominated path is found because s(x4) is equal to sgoal . 

gmin
2 (sgoal) is updated from ∞ to 9.

• In iteration 4, node x1 is removed from the Open list, and its two child nodes x6 and x7 are added to the Open list. 

The child node x5 is pruned (in Line 22) because f2(x5) = ∞ ≥ gmin
2 (sgoal) = 9. gmin

2 (s1) is updated from ∞ to 1.

8
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Algorithm 4: The Bi-Objective Dijkstra’s (BOD) algorithm.

Input : A bi-objective weighted graph (S, E, c, sstart)
Output : A cost-unique Pareto-optimal solution set for each state in S

1 for each s ∈ S do

2 sols(s) ← ∅

3 gmin
2 (s) ← ∞

4 x ← new node with s(x) = sstart
5 g(x) ← (0, 0)
6 parent(x) ← null

7 Initialize the Open list and add x to it
8 while Open = ∅ do

9 Remove a node x from the Open list with the lexicographically smallest g-value of all nodes in the Open list

10 if g2(x) ≥ gmin
2 (s(x)) then

11 continue

12 gmin
2 (s(x)) ← g2(x)

13 Add x to sols(s(x))
14 for each t ∈ Succ(s(x)) do

15 y ← new node with s(y) = t

16 g(y) ← g(x) + c(s(x), t)
17 parent(y) ← x

18 if g2(y) ≥ gmin
2 (t) then

19 continue

20 Add y to the Open list

21 return sols

• In iteration 5, node x7 is removed from the Open list, and its child node x8 is added to the Open list. gmin
2 (s2) is 

updated from 5 to 3.

• In iteration 6, node x8 is removed from the Open list. A non-dominated path is found because s(x8) is equal to sgoal . 

gmin
2 (sgoal) is updated from 9 to 7.

• In iteration 7, node x3 is removed from the Open list, and its child node x9 is added to the Open list. The child node 

x10 is pruned (in Line 22) because g2(x10) = 8 ≥ gmin
2 (sgoal) = 7. gmin

2 (s3) is updated from ∞ to 1.

• In iteration 8, node x9 is removed from the Open list, and its child node x11 is added to the Open list. gmin
2 (s2) is 

updated from 3 to 2.

• In iteration 9, node x11 is removed from the Open list. A non-dominated path is found because s(x11) is equal to sgoal . 

gmin
2 (sgoal) is updated from 7 to 6.

• In iteration 10, node x6 is removed from the Open list. The node is pruned (in Line 11) because g2(x6) = 6 ≥

gmin
2 (sgoal) = 6.

BOA* found three solutions of cost (3, 9), (4, 7) and (5, 6). Fig. 1 (b) shows the search tree of BOA*. Pruned nodes are in 

red, and the solution nodes are in boldface.

6. The Bi-Objective Dijkstra’s (BOD) algorithm

In this section, we describe how BOA* can be modified to find Pareto-optimal solution sets for every state in the search 

graph. We call our algorithm Bi-Objective Dijkstra (BOD).

Uniform cost search without a goal condition, which is the kind of search that results when running A* with zero h-values 

for all states in a search graph, is equivalent to Dijkstra’s algorithm. However, Felner [8] shows that implementing Dijkstra’s 

algorithm as a uniform-cost search results in a faster implementation compared to a standard textbook implementation, 

when determining all single-source shortest paths.

We therefore design BOD by converting BOA* to a uniform-cost search without a goal condition. To this end, we use zero 

h-values. This results in the following modifications to Algorithm 3. First, in Line 7, we replace the h-values with zero. The 

Open list is thus a priority queue ordered by the g-values. Second, we modify the pruning conditions of Lines 11 and 22 so 

that they no longer refer to sgoal .

Fig. 2 (a) shows a graph with six states and ten edges, where sstart is the source state. Table 3 shows an execution trace 

of BOD run on that graph. For each iteration, Table 3 shows the node removed from the Open list for expansion (node), the 

parent of the node (parent(node)), the state of the node (s(node)), and the g-value of the node (g(node)). If node is pruned 

by Line 10, the entry is shown in red. Otherwise, the entry is shown in black, and the gmin
2 -value of the state associated 

with the node (gmin
2 (s(node))) after it is updated on Line 12 is also shown. Note that, when a node x is expanded (that is, 

it is not pruned on Line 10), a new non-dominated path from the start state to state s(x) has been found.

9
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Fig. 2. (a) An example search graph, and (b) a search tree corresponding to a run of BOD on the graph. Red edges are pruned.

Table 3

An execution trace of BOD run on the graph of Fig. 2 (a). Nodes in red are 
pruned.

iteration node parent(node) s(node) g(node) gmin
2 (s(node))

1 x0 null sstart (0,0) 0

2 x1 x0 s1 (1,1) 1

4 x2 x0 s2 (1,5) 5

3 x3 x0 s3 (1,1) 1

10 x4 x1 s4 (5,9) 9

14 x5 x1 s5 (8,6)

5 x6 x1 s2 (2,3) 3

6 x7 x3 s2 (3,2) 2

11 x8 x3 s5 (6,8)

7 x9 x2 s5 (3,9) 9

8 x10 x6 s5 (4,7) 7

9 x11 x7 s5 (5,6) 6

13 x12 x9 s4 (6,11)

12 x13 x10 s4 (7,9)

15 x14 x11 s4 (8,8) 8

• In iteration 1, the node x0 is removed from the Open list, and its three child nodes x1 , x2 , and x3 are added to the 

Open list. gmin
2 (sstart) is updated from ∞ to 0.

• In iteration 2, node x1 is removed from the Open list, and its three child nodes x4 , x5 and x5 are added to Open list. 

gmin
2 (s1) is updated from ∞ to 1.

• In iteration 3, node x3 is removed from the Open list, and its two child nodes x7 and x8 are added to the Open list. 

gmin
2 (s3) is updated from ∞ to 1.

• In iteration 4, node x2 is removed from the Open list, and its child node x9 is added to the Open list. gmin
2 (s2) is 

updated from ∞ to 5.

• In iteration 5, node x6 is removed from the Open list, and its child node x10 is added to the Open list. gmin
2 (s2) is 

updated from 5 to 3.

• In iteration 6, node x7 is removed from the Open list, and its child node x11 is added to the Open list. gmin
2 (s2) is 

updated from 3 to 2.

• In iteration 7, node x9 is removed from Open list, and its child node x12 is added to the Open list. gmin
2 (s5) is updated 

from ∞ to 9.

• In iteration 8, node x10 is removed from the Open list, and its child node x13 is added to the Open list. gmin
2 (s5) is 

updated from 9 to 7.

• In iteration 9, node x11 is removed from the Open list, and its child node x14 is added to the Open list. gmin
2 (s5) is 

updated from 7 to 6.

• In iteration 10, node x4 is removed from the Open list. The node has no children. gmin
2 (s4) is updated from ∞ to 9.

• In iteration 11, node x8 is removed from the Open list. The node is pruned (by Line 10) because g2(x8) = 8 ≥ gmin
2 (s5) =

6.

• In iteration 12, node x13 is removed from the Open list. The node is pruned (by Line 10) because g2(x13) = 9 ≥

gmin
2 (s4) = 9.

10
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• In iteration 13, node x12 is removed from the Open list. The node is pruned (by Line 10) because g2(x12) = 11 ≥

gmin
2 (s4) = 9.

• In iteration 14, node x5 is removed from the Open list. The node is pruned (by Line 10) because g2(x5) = 6 ≥ gmin
2 (s5) =

6.

• In iteration 15, node x14 is removed from Open list. The node has no children. gmin
2 (s4) is updated from 9 to 8.

BOD finds the following sets of solutions:

sols(s1) = {(1,1)},

sols(s2) = {(1,5), (2,3), (3,2)},

sols(s3) = {(1,1)},

sols(s4) = {(5,9), (8,8)},

sols(s5) = {(3,9), (4,7), (5,6)}.

Fig. 2 (b) shows the search tree of BOD for this execution. The pruned nodes are in red.

7. Theoretical results for the BOA* and BOD algorithms

We first provide theoretical results for BOA*, where we assume that the h-values are consistent, before providing the-

oretical results for BOD. We say that a node x1 dominates (resp. weakly dominates) a node x2 iff the g-value of node x1
dominates (resp. weakly dominates) the g-value of node x2 .

7.1. Theoretical results for the BOA* algorithm

Lemma 1. Each generated (or about to be generated but pruned) node x has f1- and f2-values that are no smaller than the f1- and 

f2-values, respectively, of its parent node p.

Proof Sketch. Since the h-values are consistent, c1(s(p), s(x)) + h1(s(x)) ≥ h1(s(p)). Therefore, we get:

f1(x) = g1(x) + h1(s(x))

= g1(p) + c1(s(p), s(x)) + h1(s(x))

≥ g1(p) + h1(s(p))

= f1(p)

The same proof strategy yields f2(x) ≥ f2(p). �

Lemma 2. The sequences of extracted nodes and of expanded nodes have monotonically non-decreasing f1-values.

Proof Sketch. BOA* extracts the node from the Open list with the lexicographically smallest f-value of all nodes in the 

Open list (Line 10). This node has the smallest f1-value of all nodes in the Open list. Since generated nodes that are added 

to the Open list have f1-values that are no smaller than those of their expanded parent nodes (Lemma 1), the sequence 

of extracted nodes has monotonically non-decreasing f1-values. Since nodes are expanded in the same order in which they 

are extracted, the sequence of expanded nodes also has monotonically non-decreasing f1-values. �

Lemma 3. The sequence of expanded nodes with the same state has strictly monotonically decreasing f2-values.

Proof Sketch. Assume for a proof by contradiction that BOA* expands node x1 with state s before node x2 with state s, that 

it expands no node with state s after node x1 and before node x2 , and that f2(x1) ≤ f2(x2). Then, g2(x1) + h2(s) = f2(x1) ≤

f2(x2) = g2(x2) + h2(s). Thus, g2(x1) ≤ g2(x2). After node x1 is expanded and before node x2 is expanded, gmin
2 (s) = g2(x1)

(Line 13). Combining both (in)equalities yields gmin
2 (s) ≤ g2(x2), which is the first pruning condition on Line 11. Therefore, 

node x2 is not expanded, which contradicts the assumption. �

Lemma 4. The sequence of expanded nodes with the same state has strictly monotonically increasing f1-values.

Proof Sketch. Since the sequence of expanded nodes has monotonically non-decreasing f1-values (Lemma 2), the sequence 

of expanded nodes with the same state also has monotonically non-decreasing f1-values. Assume for a proof by contradic-

tion that BOA* expands node x1 with state s before node x2 with state s, that it expands no node with state s after node x1
and before node x2 , and that f1(x1) = f1(x2). We distinguish two cases:

11



C. Hernández, W. Yeoh, J.A. Baier et al. Artificial Intelligence 314 (2023) 103807

• Node x2 is in the Open list when BOA* expands node x1: When BOA* expands node x1 , node x1 has the lexicographically 

smallest f-value of all nodes in the Open list. Since f1(x1) = f1(x2), it follows that f2(x1) ≤ f2(x2), which contradicts 

Lemma 3.

• Node x2 is not in the Open list when BOA* expands node x1: BOA* thus generates node x2 after it expands node 

x1 . Thus, there is a node x3 in the Open list when BOA* expands node x1 that is expanded after node x1 (or is 

equal to it) and before node x2 and becomes an ancestor node of node x2 in the search tree. Since the sequence of 

expanded nodes has monotonically non-decreasing f1-values (Lemma 2) and f1(x1) = f1(x2), f1(x1) = f1(x3) = f1(x2). 

When BOA* expands node x1 , node x1 has the lexicographically smallest f-value of all nodes in the Open list. Since 

f1(x1) = f1(x3), it follows that f2(x1) ≤ f2(x3). Since each node has an f2-value that is no smaller than the f2-values 

of its ancestor nodes (Lemma 1), f2(x3) ≤ f2(x2). Combining both inequalities yields f2(x1) ≤ f2(x2), which contradicts 

Lemma 3. �

Lemma 5. Expanded nodes with the same state do not weakly dominate each other.

Proof Sketch. Assume that BOA* expands node x1 with state s before node x2 with state s. Since the sequence of ex-

panded nodes with the same state has strictly monotonically decreasing f2-values (Lemma 3), f2(x1) > f2(x2). It follows 

that g2(x1) + h(s) = f2(x1) > f2(x2) = g2(x2) + h(s) and thus g2(x1) > g2(x2). Since the sequence has strictly monotonically 

increasing f1-values (Lemma 4), the same reasoning yields g1(x1) < g1(x2). According to the two inequalities, nodes x1 and 

x2 do not weakly dominate each other. �

Lemma 6. If node x1 with state s is weakly dominated by node x2 with state s, then each node with another state s′ in the subtree of 

the search tree rooted at node x1 is weakly dominated by a node with the state s′ in the subtree rooted at node x2.

Proof Sketch. Since node x1 is weakly dominated by node x2 , g1(x2) ≤ g1(x1). Assume that node x3 is a node with state 

s′ in the subtree of the search tree rooted at node x1. Let the sequence of states of the nodes along a branch of the search 

tree from the root node to node x1 be s1, . . . , si (with s1 = sstart and si = s), the sequence of states of the nodes along 

a branch of the search tree from the root node to node x2 be s′1, . . . , s
′
j (with s′1 = sstart and s′j = s), and the sequence 

of states of the nodes along a branch of the search tree from node x1 to node x3 be π = si, . . . , sk (with sk = s′). Then, 

there is a node x4 with state s′ in the subtree rooted at node x2 such that the sequence of states of the nodes along a 

branch of the search tree from the root node to node x4 is s′1, . . . , s
′
j, si+1, . . . , sk . Since g1(x2) ≤ g1(x1), it follows that 

g1(x4) = g1(x2) + c1(π) ≤ g1(x1) + c1(π) = g1(x3) and thus g1(x4) ≤ g1(x3). The same proof strategy yields g2(x4) ≤ g2(x3). 

Combining both inequalities yields that node x3 is weakly dominated by node x4 . �

Lemma 7. When BOA* prunes a node x1 with state s (on Line 11 or 22) and this prevents it in the future from adding a node x2 (with 

the goal state) to the solution set of state sgoal (on Line 14), then it can still add in the future a node with the goal state that weakly 

dominates node x2 (on Line 14).

Proof Sketch. We prove the statement by induction on the number of pruned nodes so far, including node x1 . If the number 

of pruned nodes is zero, then the lemma trivially holds. Now assume that the number of pruned nodes is n + 1 and the 

lemma holds for n ≥ 0. We distinguish three cases:

• Case 1: BOA* prunes node x1 on Line 11 because of the (first) pruning condition g2(x1) ≥ gmin
2 (s). Then, BOA* has 

expanded a node x4 with state s previously such that gmin
2 (s) = g2(x4) since otherwise gmin

2 (s) = ∞ and the prun-

ing condition could not hold. Combining both (in)equalities yields g2(x1) ≥ g2(x4). Since f1(x1) ≥ f1(x4) (Lemma 2), 

g1(x1) + h(s) = f1(x1) ≥ f1(x4) = g1(x4) + h(s) and thus g1(x1) ≥ g1(x4). Combining both inequalities yields that node 

x1 is weakly dominated by node x4 and thus each node with state s′ in the subtree rooted at node x1 , including node 

x2 , is weakly dominated by a node x5 with state s′ in the subtree rooted at node x4 (Lemma 6). In case BOA* has 

pruned a node that prevents it in the future from adding node x5 to the solution set of state s′ , then it can still add in 

the future a node (with state s′) that weakly dominates node x5 and thus also node x2 (induction assumption).

• Case 2: BOA* prunes node x1 on Line 11 because of the (second) pruning condition f2(x1) ≥ gmin
2 (sgoal). Then, BOA* 

has expanded a node x4 with the goal state previously such that gmin
2 (sgoal) = g2(x4) since otherwise gmin

2 (sgoal) = ∞

and the pruning condition could not hold. Combining both (in)equalities yields that f2(x1) ≥ g2(x4). Since node x1 is 

an ancestor node of node x2 in the search tree, f2(x2) ≥ f2(x1) (Lemma 1). Combining both inequalities yields g2(x2) =

f2(x2) ≥ g2(x4). Since node x1 is an ancestor node of node x2 in the search tree, g1(x2) = f1(x2) ≥ f1(x1) (Lemma 1). 

Since f1(x1) ≥ f1(x4) (Lemma 2), it follows that g1(x2) ≥ f1(x1) ≥ f1(x4) = g1(x4). Combining g1(x2) ≥ g1(x4) and 

g2(x2) ≥ g2(x4) yields that node x2 is weakly dominated by node x4 (with the goal state). In case BOA* has pruned a 

node that prevents it in the future from adding node x4 to the solution set of the goal state, then it can still add in the 

future a node (with the goal state) that weakly dominates node x4 and thus also node x2 (induction assumption).

• Case 3: BOA* prunes node x1 on Line 22 because of the pruning condition g2(x1) ≥ gmin
2 (s) or f2(x1) ≥ gmin

2 (sgoal). 

The proofs of Case (1) or Case (2), respectively, apply unchanged except that f1(x1) ≥ f1(x4) now holds for a different 
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reason. Let node x3 be the node that BOA* expands when it executes Line 22. Combining f1(x1) ≥ f1(x3) (Lemma 1) 

and f1(x3) ≥ f1(x4) (Lemma 2) yields f1(x1) ≥ f1(x4). �

Theorem 1. BOA* computes a cost-unique Pareto-optimal solution set.

Proof Sketch. Let the path of a node x (and the solution of a node x with the goal state) be the sequence of states of the 

nodes along a branch of the search tree from the root node to node x. Then, the g-value of node x is the cost of the path 

(or the solution). Since the costs are non-negative and expanded nodes with the same state do not weakly dominate each 

other (Lemma 5), the paths of the expanded nodes are cycle-free. Since there are only a finite number of cycle-free paths, 

there are only a finite number of expanded nodes and thus only a finite number of generated nodes that are put into the 

Open list. Since one node is extracted from the Open list during each iteration, there are only a finite number of iterations 

and BOA* terminates.

Now consider any non-empty set X(sgoal) of all nodes whose solutions are Pareto-optimal solutions for the goal state. 

If BOA* is prevented in the future from adding a node x1 ∈ X(sgoal) to the solution set sols(sgoal), then there exists a node 

x2 ∈ X
x1
dom

that will be added to sols(sgoal), where X
x1
dom

is the set of all nodes with the goal state that weakly dominates 

node x1 and it is guaranteed to be non-empty (Lemma 7). If this does not hold, then all nodes in X
x1
dom

are pruned and no 

node with the goal state is added to sols(sgoal), which contradicts Lemma 7. The computed solution set sols(sgoal) is thus 

a superset of a cost-unique Pareto-optimal solution set P . Since BOA* can add only expanded nodes to the solution set 

sols(sgoal) and expanded nodes with the goal state do not weakly dominate each other (Lemma 5), the computed solution 

set sols(sgoal) cannot contain solutions that are not Pareto-optimal or have the same cost as other solutions in the computed 

solution set. Thus, it is exactly the cost-unique Pareto-optimal solution set P . �

7.2. Theoretical results for the BOD algorithm

We now provide theoretical results for BOD, which are based on the theoretical results for BOA* above. Recall that the 

key algorithmic differences between BOA* and BOD are the following:

1. BOA* uses arbitrary consistent h-values, while BOD uses zero h-values.

2. BOD does not have a goal state defined.

3. BOA* uses gmin
2 (sgoal) to prune nodes (Lines 11 and 22), while BOD does not.

4. BOA* does not generate the children of those nodes x with the goal state (Lines 15-16), while BOD does generate the 

children of those nodes.

5. BOA* returns the solution set sols(sgoal) for the goal state (Line 25), while BOD returns the set sols of solution sets for 

all states (Line 21).

For Lemmata 1-6, the differences above do not affect their statements or proofs. Therefore, they apply unchanged to 

BOD. For Lemma 7, the second difference affects its proof since it assumes that a goal state is defined in Cases 2 and 3 

of the proof. Specifically, BOA* prunes node x1 when the pruning condition f2(x1) ≥ gmin
2 (sgoal) is satisfied. However, since 

BOD does not have a goal state defined, it does not use this pruning condition. Therefore, it’s pruning condition is looser 

than that of BOA*, and the following Corollary 1 for BOD trivially holds.

Corollary 1. When BOD prunes a node x1 with state s (on Line 10 or 18) and this prevents it in the future from adding a node x2
(with a different state s′) to the solution set of state s′ (on Line 13), then it can still add in the future a node (with state s′) that weakly 

dominates node x2 (on Line 13).

Finally, for Theorem 1, the difference of the solution set(s) returned by BOA* and BOD affects its statement and proof. 

Nonetheless, we can generalize Theorem 1 to the following Theorem 2 for BOD, whose proof follows closely the one of 

Theorem 1.

Theorem 2. BOD computes a cost-unique Pareto-optimal solution set for each state.

Proof Sketch. Let the path of a node x be the sequence of states of the nodes along a branch of the search tree from the 

root node to node x. Then, the g-value of node x is the cost of the path. Since the costs are non-negative and expanded 

nodes with the same state do not weakly dominate each other (Lemma 5), the paths of the expanded nodes are cycle-free. 

Since there are only a finite number of cycle-free paths, there are only a finite number of expanded nodes and thus only 

a finite number of generated nodes that are put into the Open list. Since one node is extracted from the Open list during 

each iteration, there are only a finite number of iterations and BOD terminates.

Now consider any non-empty set X(s) of all nodes whose solutions are Pareto-optimal solutions for state s. If BOD is 

prevented in the future from adding a node x1 ∈ X(s) to the solution set sols(s), then there exists a node x2 ∈ X
x1
dom

that will 

be added to sols(s), where X
x1
dom

is the set of all nodes with state s that weakly dominates node x1 and it is guaranteed to 
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be non-empty (Corollary 1). If this does not hold, then all nodes in X
x1
dom

are pruned and no node with state s is added to 

sols(s), which contradicts Corollary 1. The computed solution set sols(s) is thus a superset of a cost-unique Pareto-optimal 

solution set P (s) for state s. Since BOD can add only expanded nodes to the solution set sols(s) and expanded nodes with 

state s do not weakly dominate each other (Lemma 5), the computed solution set sols(s) cannot contain solutions that are 

not Pareto-optimal or have the same cost as other solutions in the computed solution set. Thus, it is exactly the cost-unique 

Pareto-optimal solution set P (s). �

8. Empirical evaluation

In this section, we evaluate our algorithms empirically. We first describe our empirical evaluations of BOA* and BOD in 

Sections 8.1 and 8.2, respectively. We then demonstrate in Section 8.3 how BOA* can be applied to the real-world setting of 

balancing path length and safety when transporting hazardous material in a city.

8.1. The BOA* algorithm

Setup We compare BOA*, BOA* with standard linear-time dominance checking (sBOA*), NAMOA*dr [7], Bi-Objective Di-

jkstra (BDijkstra) [9], and Bidirectional Bi-Objective Dijkstra (BBDijkstra) [9] for finding a Pareto-optimal solution set (for 

the goal state). We use the C implementations of BBDijkstra and BDijkstra provided by their authors (with two pruning 

strategies for one to one search, namely pruning by nadir points and pruning by efficient set [9]). We implement BOA*, 

sBOA*, and NAMOA*dr from scratch in C using a standard binary heap for the Open list.5 We run all experiments on a 

3.80 GHz Intel(R) I7(R) CPU Linux computer with 64 GB of RAM. We use road maps from the 9th DIMACS Implementation 

Challenge: Shortest Path.6 The cost components represent travel distances (c1) and times (c2). The h-values are the exact 

travel distances and times to the goal state, computed with Dijkstra’s algorithm. It takes 75 milliseconds to compute the 

h-values for the largest road map. The reported runtimes include this computation. All algorithms obtain the same number 

of solutions for all instances used in the experiments, implying that no two Pareto-optimal solutions have the same cost.

Results We compare the runtimes of the five algorithms on the 50 instances each of four road maps from the USA 

used by Machuca and Mandow [38]. Table 4 shows the name of the road map, the number of states and edges of the road 

map, and the average number of Pareto-optimal solutions. For each algorithm, it shows the number of instances solved for a 

runtime limit of 3,600 seconds as well as the average, maximum, minimum, median, and standard deviation of the runtimes 

(in seconds). NAMOA*dr can be an order-of-magnitude faster than sBOA*. BOA* can be faster than NAMOA*dr, especially on 

instances with a large number of Pareto-optimal solutions. For example, BOA* is 2.2 times faster than NAMOA*dr on FL (with 

739 Pareto-optimal solutions on average), while BOA* is only 1.3 times faster than NAMOA*dr on BAY (with 119 Pareto-

optimal solutions on average). BOA* can also be an order-of-magnitude faster than BBDijkstra and BDijkstra. In addition, 

we compare the runtimes of the five algorithms on 50 random instances each of four bigger road maps, see Table 5. BOA* 

solves all instances on all road maps and is faster than the other algorithms, especially on instances with a large number of 

Pareto-optimal solutions.

We now compare the runtimes of the algorithms as a function of the difficulty of the instances on the largest road maps 

of Tables 4 and 5. Figs. 3 and 4 show the cumulative runtimes (in seconds) of the algorithms on instances of FL and LKS, 

respectively, for a runtime limit of 3,600 seconds. When an algorithm reaches the runtime limit, we use 3,600 seconds in the 

calculation of the runtime metric. The instances are ordered in increasing numbers of their Pareto-optimal solutions (|sols|). 

When |sols| is small, the cumulative runtimes of the algorithms are similar. As |sols| increases, the cumulative runtimes of 

the algorithms increase proportionally. The cumulative runtime of BOA* becomes orders of magnitude smaller than the ones 

of sBOA*, BDijkstra, and BBDijkstra and several times smaller than the cumulative runtime of NAMOA*dr.

We now compare the number of op-pruning operations of BOA* and NAMOA*dr for the dominance checks on Gop . The 

term “op-pruning operations” was coined by PMP and describes the number of nodes checked on Gop when a node is 

generated. Table 6 shows the number of Pareto-optimal solutions, the ratio of generated nodes of NAMOA*dr and BOA*, 

the ratio of runtimes of NAMOA*dr and BOA*, and the number of op-pruning operations per generated node for NAMOA*dr 

on four instances of LKS. BOA* generates around 1.04 times more nodes than NAMOA*dr because BOA* can first generate 

nodes (and insert them into the Open list) and later prune them on Lines 11-12 of Algorithm 3. For Instance 1, NAMOA*dr 

and BOA* are about equally fast. However, for the other instances, BOA* is faster because NAMOA*dr performs more op-

pruning operations as |sols| increases. This advantage of BOA* demonstrates the power of BOA*, whose dominance checks 

run in constant time, over NAMOA*dr, whose dominance checks on Gop do not run in constant time (linear time in our 

implementation).

We now consider the runtime of BOA* as a function of the lexicographic ordering used for the Open list, namely either 

( f1, f2) or ( f2, f1). Table 7 shows the runtime (in seconds) of BOA* with both the ( f1, f2) and ( f2, f1) orderings of the 

Open list on 50 instances of LKS. The ordering of the cost components has a strong influence on the runtime of BOA*. In 

5 The implementation of BOA*, NAMOA*dr and BOD is available at https://github .com /jorgebaier /BOAstar/.
6 http://users .diag .uniroma1.it /challenge9 /download .shtml.
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Table 4

Runtime (in seconds) on 50 instances of the specified road map.

New York City (NY)

264,346 states, 730,100 edges, |sols| = 199 on average

solved average max min median stdev

BOA* 50/50 0.20 1.29 0.07 0.09 0.29

NAMOA*dr 50/50 0.24 1.68 0.07 0.10 0.39

sBOA* 50/50 3.94 59.24 0.07 0.14 12.07

BDijkstra 50/50 1.68 13.98 0.10 0.48 3.07

BBDijkstra 50/50 1.15 14.72 0.15 0.26 2.55

San Francisco Bay (BAY)

321,270 states, 794,830 edges, |sols| = 119 on average

solved average max min median stdev

BOA* 50/50 0.15 1.66 0.08 0.09 0.23

NAMOA*dr 50/50 0.20 3.28 0.08 0.09 0.46

sBOA* 50/50 1.57 53.74 0.08 0.10 7.60

BDijkstra 50/50 1.20 23.63 0.12 0.21 3.66

BBDijkstra 50/50 0.50 5.86 0.16 0.23 0.89

Colorado (COL)

435,666 states, 1,042,400 edges, |sols| = 427 on average

solved average max min median stdev

BOA* 50/50 0.54 11.45 0.10 0.14 1.61

NAMOA*dr 50/50 1.05 31.34 0.11 0.15 4.37

sBOA* 50/50 17.04 480.18 0.11 0.27 68.64

BDijkstra 50/50 5.36 97.99 0.17 0.38 16.32

BBDijkstra 50/50 2.32 40.16 0.21 0.35 6.15

Florida (FL)

1,070,376 states, 2,712,798 edges, |sols| = 739 on average

solved average max min median stdev

BOA* 50/50 3.33 45.71 0.27 0.36 9.28

NAMOA*dr 50/50 7.42 140.00 0.27 0.39 24.54

sBOA* 50/50 180.62 3,235.10 0.27 0.81 591.82

BDijkstra 50/50 110.89 1,851.22 0.42 1.66 320.10

BBDijkstra 50/50 46.54 886.05 0.61 1.02 148.98

Fig. 3. Cumulative runtime (in seconds) on 50 instances of FL. The instances are ordered on the x-axis in increasing numbers of their Pareto-optimal 
solutions.
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Table 5

Runtime (in seconds) on 50 instances of the specified road map. When an algorithm 
reaches the runtime limit of 3,600 seconds, we use 3,600 seconds in the calculation of 
the runtime metrics.

Northwest USA (NW)

1,207,495 states, 2,840,208 edges, |sols| = 1,051 on average

solved average max min median stdev

BOA* 50/50 3.95 45.32 0.31 0.63 8.94

NAMOA*dr 50/50 9.59 121.19 0.31 0.72 24.91

sBOA* 47/50 348.76 3,600.00 0.32 4.15 946.65

BDijkstra 50/50 70.11 568.85 0.50 5.35 133.09

BBDijkstra 50/50 46.08 449.86 0.70 4.97 105.35

Northeast USA (NE)

1,524,453 states, 3,897,636 edges, |sols| = 1,071 on average

solved average max min median stdev

BOA* 50/50 8.26 48.21 0.40 2.57 11.24

NAMOA*dr 50/50 18.33 112.46 0.41 3.34 26.87

sBOA* 49/50 516.58 3,600.00 0.41 90.01 866.15

BDijkstra 50/50 194.73 1,031.57 0.66 22.93 288.93

BBDijkstra 50/50 142.35 1,222.92 0.96 15.66 246.19

California and Nevada (CAL)

1,890,815 states, 4,657,742 edges, |sols| = 907 on average

solved average max min median stdev

BOA* 50/50 8.16 98.35 0.52 0.86 18.20

NAMOA*dr 50/50 19.44 313.36 0.52 1.02 52.97

sBOA* 47/50 432.72 3,600.00 0.53 10.41 946.10

BDijkstra 48/50 269.24 3,600.00 0.85 8.56 762.84

BBDijkstra 50/50 85.43 1,034.39 1.22 4.81 194.86

Great Lakes (LKS)

2,758,119 states, 6,885,658 edges, |sols| = 6,057 on average

solved average max min median stdev

BOA* 50/50 237.86 1,250.43 1.85 86.33 315.88

NAMOA*dr 44/50 815.42 3,600.00 2.73 258.29 1,119.26

sBOA* 14/50 2,852.85 3,600.00 101.49 3,600.00 1.242.49

BDijkstra 33/50 1,793.71 3,600.00 9.66 1,584.31 1,408.82

BBDijkstra 27/50 2,095.12 3,600.00 29.17 1,920.43 1,460.94

Table 6

Four instances of LKS. (1) Ratio of generated nodes 
(NAMOA*dr/BOA*). (2) Ratio of runtimes (NAMOA*dr/BOA*). 
(3) Number of op-pruning operations per generated node for 
NAMOA*dr.

Great Lakes (LKS)

# start goal |sols| (1) (2) (3)

1 1,941,792 785,069 27 0.97 1.03 1.3

2 207,871 3,619 419 0.95 1.08 8.4

3 1,137,220 991,262 1,947 0.95 2.96 16.5

4 1,836,318 1,792,612 4,072 0.95 2.91 15.7

particular, BOA* is faster when its Open list is ordered lexicographically according to ( f2, f1) instead of ( f1, f2) because it 

generates 10% fewer nodes (and, consequently, also performs fewer heap percolations).

8.2. The BOD algorithm

Setup We compare BOD and BDijkstra for finding a Pareto-optimal solution set for every state.

Results We compare the runtimes of both algorithms on the 50 instances each of the four road maps NY, BAY, COL, and 

FL used by Machuca and Mandow [38], ignoring their goal states. Table 8 shows the name of the road map, the number 

of states and edges of the road map, and the average number of Pareto-optimal solutions. For each algorithm, it shows the 

number of instances solved for a runtime limit of 3,600 seconds as well as the average, maximum, minimum, median, and 

standard deviation of the runtimes (in seconds). BOD can be several times faster than BDijkstra. For example, it is 6.3 times 

faster than BDijkstra on average on COL and 4.5 times faster than BDijkstra on average on FL.
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Fig. 4. Cumulative runtime (in seconds) on 50 instances of LKS. The instances are ordered on the x-axis in increasing numbers of their Pareto-optimal 
solutions.

Table 7

Runtime (in seconds) on 50 instances of LKS.

Great Lakes (LKS)

solved average max min median stdev

BOA* ( f1, f2) 50/50 237.86 1,250.43 1.85 86.33 315.88

BOA* ( f2, f1) 50/50 174.41 983.49 1.62 59.16 237.21

Table 8

Runtime (in seconds) on 50 instances of the specified road map. When an algorithm 
reaches the runtime limit of 3,600 seconds, we use 3,600 seconds in the calculation 
of the runtime metrics.

New York City (NY)

264,346 states, 730,100 edges, |sols| = 166 per state on average

solved average max min median stdev

BOD 50/50 15.09 35.92 6.61 13.29 7.21

BDijkstra 50/50 57.33 141.86 17.04 48.10 33.57

San Francisco Bay (BAY)

321,270 states, 794,830 edges, |sols| = 137 per state on average

solved average max min median stdev

BOD 50/50 12.15 44.26 2.56 10.59 7.25

BDijkstra 50/50 50.14 190.51 5.34 41.81 36.89

Colorado (COL)

435,666 states, 1,042,400 edges, |sols| = 374 per state on average

solved average max min median stdev

BOD 50/50 63.44 252.04 16.61 43.84 57.90

BDijkstra 50/50 397.42 1,802.13 73.42 292.12 432.24

Florida (FL)

1,070,376 states, 2,712,798 edges, |sols| = 528 per state on average

solved average max min median stdev

BOD 48/50 414.43 3,600.00 56.20 259.57 668.77

BDijkstra 42/50 1,866.57 3,600.00 323.89 1,580.30 1,058.96
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Fig. 5. Cumulative runtime (in seconds) on 50 instances of COL. The instances are ordered on the x-axis in increasing numbers of their Pareto-optimal 
solutions.

Table 9

Runtime (in milliseconds) on 100 instances of SCL.

Santiago Chile (SCL)

2,212 states, 6,681 edges, |sols| = 29.1 on average

solved average max min median stdev

BOA* 100/100 0.61 2.51 0.28 0.45 0.42

NAMOA*dr 100/100 0.62 2.56 0.28 0.46 0.43

sBOA* 100/100 3.81 21.40 0.29 2.38 3.86

BDijkstra 100/100 2.94 18.18 0.65 1.66 2.95

BBDijkstra 100/100 2.45 11.05 0.66 1.63 1.91

Fig. 5 shows the cumulative runtimes (in seconds) of both algorithms on instances of COL for a runtime limit of 3,600 

seconds. The instances are ordered in increasing numbers of their Pareto-optimal solutions (|sols|). When |sols| is small, the 

cumulative runtimes of the algorithms are similar. As |sols| increases, the cumulative runtimes of the algorithms increase 

proportionally. The cumulative runtime of BOD becomes orders of magnitude smaller than the one of BDijkstra since it is 

faster than BDijkstra on all instances.

8.3. The Hazardous material transport (HAZMAT) problem in Santiago, Chile

The purpose of this section is to demonstrate the potential of BOA* and other bi-objective search algorithms on a real-

world application domain – the hazardous material (HAZMAT) transportation problem in Santiago, Chile (SCL) [2]. In this 

problem, we are given the road network of SCL, which spans an area of 641 square kilometers. There are 244 vulnerable 

locations that the transport of the HAZMAT shipments should avoid, defined to be schools with more than one thousand 

students. These schools have between 1,070 and nearly 4,500 students each, with a total of 386,254 students. The cost 

components represent travel distances (c1) and the student population exposed to hazardous material in case of an accident 

(c2) [2]. Table 9 shows the number of states and edges of the road map and, for each exposure radius, the average number 

of Pareto-optimal solutions as well as the average, maximum, minimum, median, and standard deviation of the runtimes 

(in milliseconds) for all algorithms evaluated. BOA* and NAMOA*dr compute the Pareto-optimal frontier in less than one 

millisecond for most instances while classical operations research models are only able to obtain a subset approximation 

of the Pareto-optimal frontier within several seconds [2] in this small road map, which demonstrates the potential of BOA* 

and bi-objective search algorithms for solving bi-objective routing problems.

8.4. An alternative to improve the linear-time dominance checking

The M3 algorithm by Bentley et al. [39] can potentially reduce the number of op-pruning operations in NAMOA*dr and, 

as a consequence, reduce the runtime of the algorithm. M3 was designed to obtain logarithmic-time when a new vector 

is checked over a set of non-dominating vectors. The main idea of M3 is to compare a new vector with the “powerful” 

dominators of the set first. We implemented M3 in NAMOA*dr to perform the dominance checks in Gop . The results show 
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that the reduction of the number of op-pruning operations is only 1% in average. The reasons for the small reduction 

are:

• The size of Gop is small. For example, the size of Gop in the instances of Table 6 is 6.5 on average.

• Gop is a dynamic set where the nodes of the set continually change. Nodes are inserted and removed in the node 

generation process, and nodes are removed in the node expansion process.

• The node with smaller lexicographic order is removed of Gop first. This node is generally a powerful dominator.

We did not include results of NAMOA*dr with M3 in our evaluation since only a very small runtime improvement is ob-

served. We conjecture that M3 could have a larger impact in the performance of NAMOA*dr in problems with more than 

two objectives because Gop may grow larger and M3 could also be used in Gcl .

9. Conclusions and future work

We introduced a simple, yet effective approach for performing efficient, constant-time dominance checks in bi-objective 

search algorithms. Using this approach, we presented Bi-Objective A* (BOA*) and Bi-Objective Dijkstra (BOD), that, given 

some start state, efficiently compute the Pareto-optimal frontier to a single goal state and to all states, respectively. Our 

experimental evaluation demonstrated that our algorithms are faster than state-of-the-art algorithms such as NAMOA*dr, 

Bi-Objective Dijkstra, and Bidirectional Bi-Objective Dijkstra. We intend to improve and extend our algorithmic framework 

in future work, as we discuss in the following in the context of BOA*:

Efficient computation of the Pareto-optimal frontier via node re-ordering The cost of a solution is a pair (c1, c2). The c1-

values of solutions found by BOA* are strictly monotonically increasing in time, and the c2-values are strictly monotonically 

decreasing in time. Thus, the first solution found by BOA* has the smallest c1-value, and the last solution has the smallest 

c2-value. If BOA* orders the Open list lexicographically according to ( f2, f1) instead of ( f1, f2), the opposite happens. BOA* 

might therefore run faster if it runs two BOA* instantiations in parallel, one for each ordering, and terminates when both 

instantiations find a solution of the same cost.

Efficient computation of the Pareto-optimal frontier via bi-directional search Bi-directional search simultaneously 

searches from the start state toward the goal state and from the goal state toward the start state instead of in one of these 

directions only, which typically speeds up the search without requiring better h-values. The currently best bi-directional 

bi-objective search algorithm is Bi-Directional Bi-Objective Dijkstra (BBDijkstra), but we showed that BOA* can be orders of 

magnitude faster than BBDijkstra, which is not surprising since BBDijkstra performs linear-time dominance checks, while 

BOA* performs constant-time dominance checks. There have been recent advances of the theory behind bi-directional single-

objective search that have resulted in faster bi-directional single-objective search algorithms. It might therefore be possible 

to develop faster bi-directional bi-objective search algorithms based on BOA* and recent ideas for bi-directional single-

objective search [40,41].

Extensions to multi-objective search BOA* might be able to find all cost-unique Pareto-optimal solutions for cost func-

tions with more than two components if it runs several times for different permutations of the components. For example, 

BOA* might find a subset of the Pareto-optimal solutions if it orders the Open list lexicographically according to some or-

dering of the components. Other orderings might result in different subsets. It might therefore be possible to extend BOA* 

to multi-objective search if once can prove that the union of all such subsets contains exactly all cost-unique Pareto-optimal 

solutions.

Bounded approximations of the Pareto-optimal frontier Several of our instances have thousands of Pareto-optimal solu-

tions. For example, one of the LKS instances has 17,606 solutions. Many of the Pareto-optimal solutions contain almost the 

same edges. It might therefore be possible to extend BOA* to compute an approximation of the Pareto-optimal solutions. In 

fact, we recently presented our preliminary results in this direction [42,43].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper.

Acknowledgements

The research at Universidad San Sebastián and Pontificia Universidad Católica de Chile was supported by National Center 

for Artificial Intelligence CENIA FB210017, Basal ANID. The research at the University of Southern California was supported 

by the National Science Foundation (NSF) under grant numbers 1409987, 1724392, 1817189, 1837779, and 1935712. The 

research at Washington University in St. Louis was supported by NSF under grant numbers 1812619 and 1838364. The 

research at the Technion—Israel Institute of Technology was supported by the Israeli Ministry of Science & Technology 

under grant numbers 102583 and 2028142 and by the United States-Israel Binational Science Foundation (BSF) under grant 

19



C. Hernández, W. Yeoh, J.A. Baier et al. Artificial Intelligence 314 (2023) 103807

number 1018193. Finally, we thank Antonio Sedeño for sharing the source code of the BDijkstra and BBDijkstra algorithms 

with us.

References

[1] P.E. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimal cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (1968) 100–107.
[2] A. Bronfman, V. Marianov, G. Paredes-Belmar, A. Lüer-Villagra, The maximin HAZMAT routing problem, Eur. J. Oper. Res. 241 (2015) 15–27.
[3] M. Fu, A. Kuntz, O. Salzman, R. Alterovitz, Toward asymptotically-optimal inspection planning via efficient near-optimal graph search, in: Robotics: 

Science and Systems (RSS), 2019.
[4] D. Bachmann, F. Bökler, J. Kopec, K. Popp, B. Schwarze, F. Weichert, Multi-objective optimisation based planning of power-line grid expansions, ISPRS 

Int. J. Geo-Inf. 7 (2018) 258.
[5] B.S. Stewart, C.C. White III, Multiobjective A*, J. ACM 38 (1991) 775–814.
[6] L. Mandow, J.L.P. De La Cruz, Multiobjective A* search with consistent heuristics, J. ACM 57 (2010) 27:1–27:25.
[7] F.-J. Pulido, L. Mandow, J.-L. Pérez-de-la-Cruz, Dimensionality reduction in multiobjective shortest path search, Comput. Oper. Res. 64 (2015) 60–70.
[8] A. Felner, Position paper: Dijkstra’s algorithm versus uniform cost search or a case against Dijkstra’s algorithm, in: Proceedings of the Annual Sympo-

sium on Combinatorial Search, 2011.
[9] A. Sedeño-Noda, M. Colebrook, A biobjective Dijkstra algorithm, Eur. J. Oper. Res. 276 (2019) 106–118.

[10] C. Hernandez, W. Yeoh, J. Baier, H. Zhang, L. Suazo, S. Koenig, A simple and fast bi-objective search algorithm, in: Proceedings of the International 
Conference on Automated Planning and Scheduling, 2020, pp. 143–151.

[11] E. van der Horst, P. Marqués-Gallego, T. Mulder-Krieger, J. van Veldhoven, J. Kruisselbrink, A. Aleman, M.T. Emmerich, J. Brussee, A. Bender, A.P. IJzerman, 
Multi-objective evolutionary design of adenosine receptor ligands, J. Chem. Inf. Model. 52 (2012) 1713–1721.

[12] S. Rosenthal, M. Borschbach, Design perspectives of an evolutionary process for multi-objective molecular optimization, in: Proceedings of the Interna-
tional Conference on Evolutionary Multi-Criterion Optimization, 2017, pp. 529–544.

[13] C. Hopfe, M. Emmerich, R. Marijt, J. Hensen, Robust multi-criteria design optimization in building design, in: Proceedings of the IBPSA-England Confer-
ence on Building Simulation and Optimization, 2012, pp. 118–125.

[14] K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12, Springer, 2012.
[15] M.T. Emmerich, A.H. Deutz, A tutorial on multiobjective optimization: fundamentals and evolutionary methods, Nat. Comput. 17 (2018) 585–609.
[16] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16, John Wiley & Sons, 2001.
[17] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. Da Fonseca, Performance assessment of multiobjective optimizers: an analysis and review, IEEE 

Trans. Evol. Comput. 7 (2003) 117–132.
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