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Abstract

Contraction Hierarchies (CHs) have been successfully used
as a preprocessing technique in single-objective graph search
for finding shortest paths. However, only a few existing works
on utilizing CHs for bi-objective search exist, and none of
them uses CHs to compute Pareto frontiers. This paper pro-
poses an CH-based approach capable of efficiently comput-
ing Pareto frontiers for bi-objective search along with several
speedup techniques. Specifically, we propose a new prepro-
cessing approach that computes CHs with fewer edges than
the existing preprocessing approach, which reduces both the
preprocessing times (up to 3× in our experiments) and the
query times. Furthermore, we propose a partial-expansion
technique, which dramatically speeds up the query times. We
demonstrate the advantages of our approach on road networks
with 1 to 14 million states. The longest preprocessing time is
less than 6 hours, and the average speedup in query times is
roughly two orders of magnitude compared to BOA*, a state-
of-the-art single-query bi-objective search algorithm.

Introduction

The task of bi-objective search is to find paths from a given
start vertex to a given goal vertex in a graph whose edges
are annotated with two costs. Each cost corresponds to a dif-
ferent cost metric, such as travel time, travel distance, risk,
etc., and the different objectives in the search problem cor-
respond to the minimization of different cost metrics. Bi-
objective search is important for many real-world applica-
tions, including route planning for power lines considering
economic and ecological impacts (Bachmann et al. 2018),
inspecting regions of interest with robots considering mo-
tion cost and coverage (Fu et al. 2019; Fu, Salzman, and
Alterovitz 2021), and transporting hazardous materials con-
sidering travel distance and risk (Bronfman et al. 2015).

There does not necessarily exist a single path from the
start vertex to the goal vertex that simultaneously optimizes
both objectives. Therefore, we are typically interested in
finding a set of undominated paths. A path π dominates a
path π′ iff π is not worse than π′ on any cost metric and is
better than π′ on at least one cost metric. In this paper, we
are interested in finding all undominated paths, referred to
as the Pareto frontier.
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There are many bi-objective search algorithms for com-
puting the Pareto frontier, with recent examples like
BOA* (Ulloa et al. 2023), A-BOA* (Zhang et al. 2022b), T-
MDA (Maristany de las Casas et al. 2021), and BOBA* (Ah-
madi et al. 2021). These algorithms are single-query and
only consider solving a single problem instance on a given
graph. However, in many real-world applications, the search
algorithm needs to solve multiple problem instances on the
same graph. It is common practice for such a multi-query
setting to speed up query times via preprocessing tech-
niques.

A well-studied preprocessing technique for single-
objective search is Contraction Hierarchies (CHs) (Geis-
berger et al. 2008). In single-objective search, a CH is a hier-
archical graph that assigns a level number to each vertex in
the input graph and adds additional edges (known as short-
cuts) to the input graph so that the shortest path from a given
start vertex to a given goal vertex can be found by searching
through the space of only up-down paths (paths with first
increasing and then decreasing level numbers). Similarly, in
bi-objective search, a CH needs to retain the property that
the Pareto frontier can be computed by considering only up-
down paths.

To our best knowledge, CHs have been used in graphs
with two costs but never to compute the entire Pareto fron-
tier. Specifically, Storandt (2012) proposed a CH-based ap-
proach to solving the constrained shortest-path problem. Its
preprocessing algorithm computes shortcuts heuristically,
which avoids the computational cost of computing the ex-
act shortcuts but can add unnecessary shortcuts.

This paper proposes a CH-based approach to comput-
ing Pareto frontiers for bi-objective search and several
speedup techniques that leverage recent algorithmic ad-
vances. Specifically, we show how to use BOA* (Ulloa et al.
2023) to compute shortcuts. This alternative approach al-
lows us to compute only the necessary shortcuts, reduc-
ing both the preprocessing and query times. Furthermore,
we observe that CHs in bi-objective search often contain a
large number of edges, which slow down a search algorithm
in the query phase. Consequently, we propose a (general)
partial-expansion technique, which dramatically reduces the
query time by reducing the number of unnecessary gener-
ated search nodes.

Our experimental results show that our preprocessing ap-



proach can reduce the number of shortcuts by up to 15%
with less runtime than Storandt (2012). In one scenario, the
speedup over Storandt (2012) is more than 3×. We demon-
strate the advantages of our approach on road networks with
1 to 14 million states. The longest preprocessing time is
less than 6 hours, and the average speedup in query times
is roughly two orders of magnitude compared to BOA*, a
state-of-the-art single-query bi-objective search algorithm.

Related Work

Preprocessing techniques have been used extensively in
multi-query single-objective search. Examples other than
CHs include true distance heuristics (Sturtevant et al. 2009),
embedding in Euclidean spaces (Cohen et al. 2018), and
sub-goal graphs (Uras, Koenig, and Ulloa 2013). None of
them has been generalized to bi-objective search. One of the
few existing works on computing Pareto frontiers with pre-
processing techniques is multi-criteria SHARC (Delling and
Wagner 2009). However, it has been demonstrated only on
small road networks with less than 80,000 vertices and is not
immediately scalable to larger graphs. This is partly because
its preprocessing algorithm needs to compute single-vertex-
to-all-vertices Pareto frontiers, which require a large amount
of memory for large road networks.

A few existing works other than Storandt (2012) apply
CHs to problems that consider graphs with two costs but dif-
fer from our approach (Geisberger, Kobitzsch, and Sanders
2010; Funke and Storandt 2013; Baum et al. 2015). Both
Geisberger, Kobitzsch, and Sanders (2010) and Funke and
Storandt (2013) use different weighted combinations of the
costs to map a bi-objective search problem to several single-
objective search problems. The resulting CHs cannot be
used to find paths on the Pareto frontier that do not min-
imize any weighted combination of the costs. Baum et al.
(2015) apply CHs to a constrained shortest-path problem
that considers charging, recuperation, and battery capacity
of electric vehicles. The agent (vehicle) has a fixed battery
capacity and can charge at stations. The problem objective
is to minimize the total travel time (including the time for
charging) while satisfying that the battery never gets empty.

Terminology

We use boldface font to denote pairs. For a pair p, we use
pi, i ∈ {1, 2}, to denote its i-th component. The addition of
two pairs p and p′ is defined as p+p′ = (p1+p

′
1, p2+p

′
2).

p ⪯ p′ denotes that p1 ≤ p′1 and p2 ≤ p′2. In this case, we
say that p weakly dominates p′. p ≺ p′ denotes that p ⪯ p′

and there exists an i ∈ {1, 2} for which pi < p′i. In this case,
we say that p (strictly) dominates p′.

A (bi-objective) graph is a tuple G = ⟨S,E⟩, where S is
a finite set of states, and E is a finite set of directed edges.
Each edge e = ⟨u, v, c⟩ is a tuple consisting of a source state
u ∈ S, a target state v ∈ S, and a cost c ∈ R

2
>0. We use

src(e), tar(e), and c(e) to denote the source state, the target
state, and the cost of e, respectively. We use in(s) = {e |
e ∈ E, tar(e) = s} and out(s) = {e | e ∈ E, src(e) = s}
to denote the in- and out-edges of state s, respectively. We
allow G to contain parallel edges, that is, edges from the

same source state to the same target state. State s′ is an in-
neighbor (resp. out-neighbor) of state s iff there exists an
edge from s′ to s (resp. from s to s′). We use in nbr(s) and
out nbr(s) to denote the sets of all in- and out-neighbors of
state s, respectively.

A path from state s to state s′ is a sequence of edges π =
[e1, e2 . . . eℓ] with src(e1) = s, tar(eℓ) = s′, and tar(ej) =

src(ej+1) for all j ∈ {1, 2 . . . ℓ − 1}. c(π) =
∑ℓ

j=1
c(ej)

denotes the cost of path π. Path π dominates (resp. weakly
dominates) another path π′ iff c(π) ≺ c(π′) (resp. c(π) ⪯
c(π′)).

A query q = ⟨sstart, sgoal⟩ consists of a start state sstart and
a goal state sgoal. A path is a solution to q iff it is from sstart

to sgoal. A solution is Pareto-optimal iff it is not dominated
by any other solution. In this paper, we are interested in find-
ing a (cost-unique) Pareto frontier, that is, a maximal subset
of all Pareto-optimal solutions such that any two solutions
in the subset do not have the same cost.

A heuristic function h : S → R
2
≥0 provides a lower

bound on the cost from any given state s to the goal state.
We assume that the heuristic function h is consistent, that is,
h(sgoal) = 0 and h(s) ⪯ c(e)+h(s′) for all e = ⟨s, s′, c⟩ ∈
E.

Algorithmic Background

In this section, we review CHs for single-objective search
(where there is only one cost to minimize) and BOA*.

CHs for Single-Objective Search

Since we consider only single-objective search in this sec-
tion, we use a scalar c(e) to denote the cost of edge e.

Given a single-objective graph G = ⟨S,E⟩, a CH is com-
puted by performing contractions on the states in S one by
one according to a given state ordering. Contracting a state
s removes it and its incident edges (i.e., both in- and our-
edges) from the graph while preserving the minimum-path
cost between any pair of states in the remaining graph. To do
so, before removing s and its incident edges, the preprocess-
ing algorithm iterates through every pair of in-edge e and
out-edge e′ of s. It runs a so-called witness search to deter-
mine if there is a path (witness) from src(e) to tar(e′) in the
current graph that does not traverse state s and whose cost
is smaller than or equal to c(e) + c(e′). The witness search
can be implemented with any shortest-path algorithm, such
as Dijkstra’s algorithm. If the algorithm does not find a wit-
ness, a new edge ⟨src(e), tar(e′), c(e) + c(e′)⟩ that bridges
edges e and e′, called a shortcut, is added to the graph to pre-
serve the minimum path-cost from src(e) to tar(e′). Gener-
ating a CH does not require contracting all states. Let L de-
note the number of states to contract, determined by a user.
After the first L states are contracted, a CH Gch = ⟨S,Ech⟩
is created. The state set S is the one of the input graph G,
and the edge set Ech consists of the edges in E (including
the ones that were removed during contraction) and all short-
cuts. In case there are parallel edges, only the minimum-cost
one is kept. The i-th contracted state s is assigned a level
number of lvl(s) = i, and all uncontracted states (also called
the core of the CH) are assigned level numbers of L+ 1.



Algorithm 1: BOA*

Input : G = ⟨S,E⟩, sstart, sgoal,h
1 for s ∈ S do

2 gmin
2 (s)←∞

3 nroot ← new node at sstart with g(nroot) = (0, 0) and
parent(nroot) = None

4 initialize Open and add nroot to it
5 Sols← ∅
6 while Open ̸= ∅ do
7 n← Open.pop()

8 if gmin
2 (s(n)) ≤ g2(n) ∨ gmin

2 (sgoal) ≤ f2(n) then
9 continue

10 gmin
2 (s(n))← g2(n)

11 if s(n) = sgoal then
12 add n to Sols
13 continue

14 for e ∈ out(s(n)) do
15 n′ ← new node at tar(e) with g(n′) = g(n) + c(e)

and parent(n′) = n

16 if gmin
2 (s(n′)) ≤ g2(n

′) ∨ gmin
2 (sgoal) ≤ f2(n

′) then
17 continue

18 add n′ to Open

19 return Sols

An edge from state u to state v is an upward edge (resp. a
downward edge) iff lvl(u) ≤ lvl(v) (resp. lvl(u) > lvl(v)).
A path is an upward path (resp. a downward path) iff it con-
sists of only upward edges (resp. downward edges). A path
π = [e1, e2 . . . eℓ] is an up-down path iff there exists a j
such that edges ei, i ≤ j, are all upward edges and edges
ei, i > j, are all downward edges. The following theoret-
ical result is rephrased from Lemma 1 in Geisberger et al.
(2008).

Theorem 1. For any pair of states u and v, there exists an
up-down path from u to v inGch with the minimum-path cost
from u to v in the input graph G.

Given a query, a minimum-cost up-down solution in Gch

can be computed efficiently using a modified bidirectional
Dijkstra’s algorithm (Geisberger et al. 2008) or a modified
A* algorithm (Harabor and Stuckey 2018). Then, the up-
down solution can be unpacked into a minimum-cost solu-
tion inG by recursively replacing each shortcut with the two
edges that it bridges.

Different CHs can be obtained from the same input graph
using different state orderings for contraction. The ordering
plays an important role in both the preprocessing and query
times of the resulting CH and is usually determined with
heuristics that take into account the number of shortcuts to
add if a state is contracted and the number of incident edges
of that state (Geisberger et al. 2008).

BOA*

BOA* (Ulloa et al. 2023) is a best-first bi-objective search
algorithm. The inputs to BOA* are a graph G, a start state
sstart, a goal state sgoal, and a (consistent) heuristic function
h. The output of BOA* is a Pareto frontier of solutions. In
BOA*, a node n represents a path from sstart to some end

state s(n). We say that node n is a node at state s(n). The
g-value of n, denoted as g(n), is the cost of this path, and the
f -value of n is f(n) = g(n) + h(s(n)). We use parent(n)
to denote the parent of n, which is either a node or None .
BOA* generalizes A* to bi-objective search but, unlike A*,
needs to maintain several nodes, each with its own g-value,
at the same state.

BOA*, outlined in Alg. 1, maintains a priority queue
Open, which contains the frontier of the search tree (the
generated but not yet expanded nodes), and a set of nodes
Sols, which contains nodes at sgoal and represents the
Pareto-optimal solutions that it has found so far. For each
state s, BOA* uses gmin

2 (s) to store the minimum g2-value
of all expanded nodes at state s. In the beginning, BOA*
initializes Open with a root node nroot at state sstart with
g(nroot) = (0, 0) and parent(nroot) = None (Lines 3-4). At
each iteration, BOA* pops a node n with the lexicographi-
cally smallest f -value from Open. BOA* then performs the
following dominance checks for n:

1. It checks if an expanded node n′ at s(n) with g(n′) ⪯
g(n) exists. If so, any solution found via n is weakly
dominated by some solution found via n′.

2. It checks if a node n′ in Sols with g(n′) ⪯ f(n) exists.
If so, any solution found via n is weakly dominated by
the solution that n′ represents.

In either case, BOA* prunes n (Lines 8-9). Since BOA* uses
a consistent heuristic function and always pops nodes from
Open with lexicographically increasing f -values, it does
not need to check g1- or f1-values during the dominance
checks. Therefore, these two checks can be done efficiently
by checking if gmin

2 (s(n)) ≤ g2(n) and gmin
2 (sgoal) ≤ f2(n),

respectively. If n is not pruned and s(n) = sgoal, BOA* adds
n to Sols (Lines 11-13). Otherwise, for each out-edge e of
s(n), BOA* expands n and generates a child node n′ with
s(n′) = tar(e), g(n′) = g(n) + c(e), and parent(n′) = n
(Lines 14-18). BOA* also performs dominance checks for
n′ (Lines 16-17) and adds n′ to Open if it is not pruned
(Line 18). BOA* returns Sols when Open becomes empty.

CHs for Bi-Objective Search:

The Preprocessing Phase

Like a CH in single-objective search, a CH in bi-objective
search is built by contracting one state at a time in the in-
put graph G until contracting L states. Contracting a state s
removes it and its incident edges from G while preserving
at least one Pareto frontier between any pair of states in the
remaining graph. Each combination of an input edge and an
output edge of s is a shortcut candidate. The pre-processing
algorithm needs to determine whether to add a shortcut for
each candidate. To do so, we propose two approaches to
building a CH: the basic approach and the batched approach.
While the basic approach runs a witness search for every
shortcut candidate individually, the batched approach groups
the candidates for parallel shortcuts (i.e. shortcuts from the
same source state to the same target state) into a batch and
uses a single witness search to test all of them at once,
dramatically reducing the preprocessing times. Importantly,
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Figure 1: An example of CHs in bi-objective search. (a) The input graph, whose edges are labeled with their costs. (b) The CH

created after contracting all states in alphabetic order of their names. Dashed edges depict shortcuts. (c) The search graph G̃
constructed for a query with start state C and goal state D.

Algorithm 2: The Preprocessing Algorithm ± Basic

Input : G = ⟨S,E⟩, L
1 Sch ← S;Ech ← {}
2 while |Sch| − |S| < L do
3 s← choose the next state to contract
4 for e ∈ in(s) do
5 for e′ ∈ out(s) do
6 u← src(e); v ← tar(e′)
7 if witness search(G, u, v, c(e) + c(e′)) then
8 add shortcut(⟨u, v, c(e) + c(e′)⟩)
9 add all edges incident on s to Ech

10 remove s from S and all edges incident on s from E

11 add all remaining edges in E to Ech

12 return Gch = ⟨Sch, Ech⟩;

13 Function witness search(G, u, v,p):
14 π ← a path from u to v whose cost dominates p, or none

if no such path exists
15 return true if π = none , otherwise false

16 Function add shortcut(esc):
17 remove edges parallel to esc whose costs are weakly

dominated by c(esc) from E
18 add esc to E

in contrast to the witness search of Storandt (2012), these
two approaches use exact witness search algorithms and add
fewer shortcuts to the CH.

The Basic Approach

Our basic approach to building a CH is outlined in Alg. 2.
Here, when contracting a state s, for every pair of in-edge e
and out-edge e′ of s, it uses witness search to determine if
there exists a path (witness) from src(e) to tar(e′) whose
cost dominates c(e) + c(e′) (Lines 4-8). We omit the pseu-
docode of witness search since it is based on BOA* with
the following modifications:

• Termination: Once a witness is found, witness search
terminates and returns true .

• Pruning: witness search prunes any node n if
(i) f1(n) > c1(e) + c1(e

′) or (ii) f2(n) > c2(e) + c2(e
′)

as any solution found via n cannot be a witness.

• Heuristic computation: When planning a path to some
goal state sgoal, Ulloa et al. (2023) propose to run a

(single-objective) backward search with Dijkstra’s al-
gorithm on the reverse graph of G to compute the
heuristic function to sgoal for each objective individu-
ally. This proves to be too time-consuming to do every
time witness search is invoked. Thus, we terminate the
backward search once src(e) is expanded. Subsequently,
the heuristic value for any state s is set to the minimum
path cost from tar(e′) to s on the reverse graph if s has
been expanded or the minimum path cost from tar(e′)
to src(e) on the reverse graph otherwise. The resulting
heuristic function is consistent.

A shortcut esc := ⟨src(e), tar(e′), c(e) + c(e′)⟩ is added to
the graph if witness search does not find a witness (Line 8).
Additionally, we remove all those edges parallel to esc whose
costs are weakly dominated by c(esc) (Line 17) as such
edges are not needed to preserve any Pareto frontier.

After contracting L states, Alg. 2 returns a CH Gch =
⟨Sch, Ech⟩ whose states Sch consist of all states of the input
graph and whose edges Ech consist of all edges incident on
the contracted states before they are removed from the input
graph (Line 9) and all remaining edges (Line 11).

Example 1. Figure 1a shows an example of a bi-objective
input graph. States are contracted in alphabetic order of
their names, and L is 5:

• State A is contracted, and a shortcut from C to E with
cost (8, 10) is added to the graph.

• State B is contracted, and a shortcut from E to D with
cost (5, 5) is added to the graph. The edge from E to D
with cost (5, 6) is removed since it is weakly dominated
by the added shortcut.

• States C, D, and E are contracted in order. No shortcuts
are created.

Figure 1b shows the CH Gch after the contractions. There
are two parallel edges between states C and E, whose costs
are not weakly dominated by each other.

The Batched Approach

As demonstrated in Example 1, a contraction can add paral-
lel edges to the remaining graph. When contracting a state,
for different combinations of its parallel in-edges and its par-
allel out-edges, the search effort in witness search can be



Algorithm 3: The Preprocessing Algorithm ± Batched

Input : G = ⟨S,E⟩, L
1 Sch ← S;Ech ← {}
2 while |Sch| − |S| < L do
3 s← choose the next state to contract
4 for u ∈ in nbr(s) do
5 for v ∈ out nbr(s) do
6 Π← all 2-hop paths from u to v that traverse s
7 Πsc = witness search batch(G, u, v, s,Π)
8 for π ∈ Πsc do
9 add shortcut(⟨u, v, c(π)⟩)

10 add all edges incident on s to Ech

11 remove s from S and all edges incident on s from E

12 add all remaining edges in E to Ech

13 return Gch = ⟨Sch, Ech⟩;

14 Function witness search batch(G = ⟨S,E⟩, u, v, s,Π):
*15 q ← sort Π in a lexicographically increasing order of path

costs after removing paths dominated by other paths in Π
and, if several paths have the same cost, keeping only one
of them

*16 Πsc ← ∅
17 for s′ ∈ S do

18 gmin
2 (s′)←∞

19 nroot ← new node at u with g(nroot) = (0, 0)
20 initialize Open and add nroot to it
21 while Open ̸= ∅ ∧ q ̸= ∅ do
22 n← Open.pop()

*23 while q ̸= ∅ ∧ f1(n) > c1(q.top()) do
*24 pop q.top() from q and add it to Πsc

*25 if q = ∅ then break

*26 if gmin
2 (s(n)) ≤ g2(n) ∨ c2(q.top()) < f2(n) then

*27 continue

28 gmin
2 (s(n))← g2(n)

29 if s(n) = v then
*30 while q ̸= ∅ ∧ f2(n) ≤ c2(q.top()) do
*31 pop the top path from q
*32 if q = ∅ then break
33 continue

34 for e ∈ out(s(n)) do
35 if tar(e) = s then
36 continue

37 n′ ← new node at tar(e) with

g(n′) = g(n) + c(e)

*38 if gmin
2 (s(n′)) ≤ g2(n

′) ∨ c2(q.top()) < f2(n
′)

then
*39 continue

40 add n′ to Open

41 add all remaining paths in q to Πsc

42 return Πsc

duplicated. Our batched approach, outlined in Alg. 3, at-
tempts to eliminate such duplicated search effort. Specifi-
cally, for every pair of in-neighbor u and out-neighbor v of
s, the algorithm finds all 2-hop paths Π from u to v that
traverse s, that is, all paths consisting of an in-edge e′ of s
with src(e) = u and an out-edge e′′ of s with tar(e′) = v. It
then uses a single run of witness search batch to determine
which paths in Π need to result in shortcuts (Line 7). Func-
tion witness search batch returns a subset of Π, denoted as

Πsc, which consists of all paths in Π that are not weakly
dominated by any path from u to v that does not traverse s.

Function witness search batch , like witness search , is
based on BOA* (Lines 14-40). However, here the changes
are not straightforward, and we thus highlight the ma-
jor changes by using ª*º before line numbers in its
pseudo-code. The changes include (i) initializing variables
(Lines 15-16), (ii) deciding if a path in Π should result in
a shortcut (Lines 23-24 and 30-31), and (iii) pruning nodes
(Lines 26-27 and 38-39). We now elaborate on each change.

During the initialization, Function witness search batch
removes path dominated by other paths in Π from Π and, if
several paths have the same cost, keeps only one of them.
It sorts the remaining paths in lexicographically increasing
order of their costs and inserts them into a priority queue q
(Line 15). Since paths in q do not dominate each other and
have unique costs, their c1 costs monotonically increase, and
their c2 costs monotonically decrease. Intuitively, q contains
the shortcut candidates that need to be checked. Function
witness search batch also uses variable Πsc (Line 16), ini-
tialized to ∅, to store the paths that need to result in shortcuts.

Function witness search batch then runs a BOA*-like
search from the source state u. The next difference from
BOA* occurs when a node n is popped from Open with
f1(n) > f1(q.top()), in which case the algorithm pops
q.top() and adds it to Πsc (Lines 23-24). The algorithm
does this because any solutions that can be found via n will
only have c1-values larger than or equal to the f1-value of n
and hence cannot weakly dominate any path in q. Note that
q.top() has the smallest c1-value in q.

When the algorithm finds a solution node n (Line 29), it
removes all paths in q whose costs are weakly dominated
by f(n). We have f1(n) ≤ c1(q.top()) (otherwise, the algo-
rithm cannot get out of the while-loop on Lines 23-24) and
thus f1(n) ≤ c1(π) for every π ∈ q. Therefore, to check
if there is a path in q whose cost is weakly dominated by
f(n), the algorithm only needs to check q.top(), which has
the largest c2-value. If f2(n) ≤ c2(q.top()), the algorithm
has found a path (represented by n) that weakly dominates
q.top() and hence pops q.top() from q (without adding it
to Πsc). The algorithm repeats this process until q becomes
empty or f2(n) ≤ c2(q.top()) does not hold (Lines 30-31).

Function witness search batch also has different domi-
nance checks from BOA*. It prunes node n if c2(q.top()) <
f2(n) because, in this case, no path from u to v found via
n weakly dominates any path in q. Note that, in the case of
c2(q.top()) = f2(n), it is still possible for a path from u to
v found via n to weakly dominate q.top(). Finally, when q
or Open becomes empty, the algorithm adds all remaining
paths in q to Πsc and returns Πsc (Line 42).

CHs for Bi-Objective Search:

The Query Phase

In this section, we describe how we combine CHs with
BOA* in the query phase. Additionally, we describe a
simple-yet-effective partial-expansion technique that re-
duces the query time by reducing the number of nodes in-
serted into Open.



Constructing Search Graphs

The query phase relies on the up-down property of CHs.
That is, for any path π from state u to state v in the input
graphG, there exists an up-down path from state u to state v
in the CH Gch that weakly dominates π. Therefore, a Pareto
frontier can be found by searching through the space of only
up-down paths in Gch.

While it is customary to use bi-directional Dijkstra’s al-
gorithm over CHs in the query phase of single-objective
search with one direction considering only upward paths and
the other direction considering only downward paths, the
analogue for bi-objective search requires careful examina-
tion. One such algorithm is Bi-directional Bi-objective Dijk-
stra’s algorithm (Sedeño-Noda and Colebrook 2019). How-
ever, Ulloa et al. (2023) show that it is less efficient than
BOA*. BOBA* (Ahmadi et al. 2021) is another bi-objective
search algorithm that utilizes two simultaneous bi-objective
searches, one from the source and one from the target. How-
ever, the search in each direction is independent of the other
one and hence cannot focus on only upward or downward
paths, respectively.

Our approach is to first build a search graph G̃ for the

input query ⟨sstart, sgoal⟩. G̃ is a subgraph ofGch and consists
of all up-down paths from sstart to sgoal. Then, we can run any

bi-objective search algorithm (here, we use BOA*) on G̃ to

find a Pareto frontier. We denote G̃ as ⟨S̃ = S↑ ∪ S↓, Ẽ⟩,
where S↑ consists of all states that can be reached from sstart

via an upward path and S↓ consists of all states that can
reach sgoal via a downward path. S↑ and S↓ are computed
by running a depth-first search on Gch and its inverse graph,

respectively. Ẽ consists of (i) all upward edges with source
states in S↑ and (ii) all downward edges with target states
in S↓.

Example 2. Figure 1c shows the search graph G̃ con-
structed for query ⟨C,D⟩ and the CH in Figure 1b. State
set S↑ consists of C and E, and state set S↓ consists of D
and E. The edge set of the search graph only contains the
upward edges from C to E and the downward edge from E
to D.

For query ⟨C,D⟩, there are only two Pareto-optimal
paths π1 = [⟨C,A, (5, 5)⟩, ⟨A,E, (3, 5)⟩, ⟨E,B, (2, 2)⟩,
⟨B,D, (3, 3)⟩] with a cost of (13, 15) and π2 =
[⟨C,E, (12, 9)⟩, ⟨E,B, (2, 2)⟩, ⟨B,D, (3, 3)⟩] with a cost of
(17, 14) in the graph in Figure 1a . These two paths have the
same costs as paths π′

1 = [⟨C,E, (8, 10)⟩, ⟨E,D, (5, 5)⟩]
and π′

2 = [⟨C,E, (12, 9)⟩, ⟨E,D, (5, 5)⟩] in the constructed

search graph G̃, respectively. Paths π′
1 and π′

2 can be found
with BOA*, and paths π1 and π2 can then be obtained by
unpacking paths π′

1 and π′
2, respectively.

Partial Expansions

In a CH for bi-objective search, there can be many (up to
several hundred in our experiments) parallel edges from a
state s to another state s′ due to contractions. When expand-
ing a node at state s, BOA* generates child nodes for all
edges from s to s′, which may be unnecessary if some of
these child nodes are pruned later. Therefore, we propose

Algorithm 4: BOA* with Partial Expansion

Input : G = ⟨S,E⟩, sstart, sgoal,h
1 for s ∈ S do

2 gmin
2 (s)←∞

3 nroot ← new node at sstart with g(nroot) = (0, 0) and
parent(nroot) = None

4 Initialize Open and add nroot to it
5 Sols← ∅
6 while Open ̸= ∅ do
7 n← Open.pop()

*8 if parent(n) ̸= None then
*9 generate next(parent(n), s(n), idx (n) + 1)

10 if g2(n) ≥ gmin
2 (s(n)) ∨ f2(n) ≥ gmin

2 (sgoal) then
11 continue

12 gmin
2 (s(n))← g2(n)

13 if s(n) = sgoal then
14 add n to Sols
15 continue

16 for s′ ∈ out neighbor(s(n)) do
*17 generate next(n, s′, 1)
18 return Sols

*19 Function generate next(n, s, i):
*20 if g2(n) + cmin

2 (s(n), s) ≥ gmin
2 (s)∨

g2(n) + cmin
2 (s(n), s) + h2(s) ≥ gmin

2 (sgoal) then
*21 return
*22 for j = i, i+ 1 . . .ms(n),s do

*23 n′ ← new node at s with g(n′) = g(n) + c(ej
s(n),s),

idx (n′) = j, and parent(n′) = n

*24 if g2(n
′) ≥ gmin

2 (s)∨ f2(n
′) ≥ gmin

2 (sgoal) then
*25 continue

*26 add n′ to Open
*27 return

a ªlazyº variant of BOA* that utilizes partial expansions to
avoid generating all child nodes in many cases by gener-
ating them one by one, as needed. The idea of partial ex-
pansions comes from single-objective search (Felner et al.
2012), where it keeps track of the child node to generate next
for each expanded node. We adapt this idea to keep track of
the child node to generate next for each pair of an expanded
node n and one of the out-neighbors of s(n). This enables
the algorithm to identify quickly whether all child nodes at
the out-neighbor can be pruned without checking all corre-
sponding out-edges.

BOA* with partial expansions, outlined in Alg. 4, re-
quires that, for any two states s and s′, all edges from s to
s′ that are dominated by other edges from s to s′ are re-
moved, and, if several edges have the same cost, only one
of them is kept. The remaining edges are sorted in order of
lexicographically increasing costs. These changes (remov-
ing and sorting edges) are done in the preprocessing phase.
We usems,s′ to denote the number of edges from s to s′ and

e1s,s′ , e
2
s,s′ . . . e

m
s,s′

s,s′ to denote the sequence of these edges

when sorted in the lexicographical order. We say that i is the
index of edge eis,s′ . Additionally, we use cmin

2 (s, s′) to de-

note the minimum c2-value of all edges from s to s′, that is,

c2(e
m

s,s′

s,s′ ). We highlight the major changes of Alg. 4 over



BOA* by using ª*º before line numbers. When expand-
ing a node n, the algorithm uses generate next for each
out-neighbor s of s(n) (Line 17). Function generate next
first checks if there is any undominated child node at s
can be generated (Lines 20-21). This is done by check-
ing if the minimum g2-value of these child node, that is,
g2(n) + cmin

2 (s(n), s), is larger than or equal to gmin
2 (s) and

if the minimum f2-value of these child node, that is, g2(n)+
cmin
2 (s(n), s) + h2(s), is larger than or equal to fmin

2 (sgoal).
If such a node exists, generate next iterates over the edges

e1s,s′ , e
2
s,s′ . . . e

m
s,s′

s,s′ until it finds the first edge that results in

an undominated child node n′. Function generate next then
adds n′ toOpen and returns (Lines 22-27). For each node n,
the algorithm uses idx (n) to record the index of the edge that
was used to generate it. When n is popped fromOpen and is
not the root node, the algorithm calls generate next to gen-
erate the next undominated child node of parent(n) at state
s(n), if one exists (Line 9). When iterating over the edges
from s(parent(n)) to s(n), generate next starts with the
edge with index idx (n) + 1 because all edges with smaller
indices have already been iterated over in the previous calls
of generate next for parent(n). The rest of Alg. 4 is the
same as BOA*.

Experimental Results

In this section, we evaluate our CH-based approach on road
networks from the 9th DIMACS Implementation Challenge:
Shortest Path.1 The two cost metrics are travel distance and
time from the DIMACS data set. For each road network, we
use the same 100 queries used by Ahmadi et al. (2021). The
runtime limit for each query is 30 minutes. We implemented
all algorithms in C++ on a common code base2 and ran all
experiments on a MacBook Pro with an M1 Pro CPU and
32GB of memory.

To order states for contraction (Line 3 in Alg. 2 and 3),
we assign a priority ψ(s) to each state s and contract the
lowest-priority state at each iteration. To define ψ, we use
κ(s) to denote the ratio of the number of shortcuts to add
when contracting s and the number of edges incident on s.
Furthermore, we use η(s) to denote the height of a state s
to be one plus the height of the highest state with an upward
edge to s or a value of one if no such state exists. Intuitively,
contracting states with small heights leads to a more even
contraction across the graph. In our implementation, we set
ψ(s) := 10 · κ(s) + η(s). We also implemented the lazy-
update scheme (Geisberger et al. 2008), which recalculates
the priority of a state when it is popped from the priority
queue and reinserts it into the priority queue if its priority
becomes higher than the second-lowest priority.

Comparing different contraction approaches and con-
traction ratios: We start by evaluating the impact of differ-
ent contraction ratios (i.e., percentages of states to contract,
which is captured by L in Alg. 2 and 3) and different pre-
processing approaches. Here, we use the NE road network
(1.5M states and 3.9M edges) and the LKS road network

1http://users.diag.uniroma1.it/challenge9/download.shtml.
2https://github.com/HanZhang39/Bi-Objective-Contraction-

Hierarchy.

Preprocessing Query

Algorithm tprep |Ech| #exp t+CH
BOA* t

+CH+p

BOA*

NE

contracting 99% of states

support-point 6min 8.0M 265K 3.93(100) 2.56
basic 8min 8.0M 262K 3.92(100) 2.48
batched 7min 8.0M 262K 3.82(100) 2.41

contracting 99.5% of states

support-point 8min 8.1M 145K 3.78(100) 1.81
basic 13min 8.1M 142K 3.20(100) 1.62
batched 10min 8.1M 141K 3.14(100) 1.52

contracting 99.95% of states

support-point 37min 9.2M 40K 6.10(100) 0.71
basic 3hr53min 8.8M 35K 3.62(100) 0.51
batched 21min 8.8M 36K 3.80(100) 0.51

contracting 100% of states

support-point 2hr53min 11.8M 38K 19.92(100) 0.89
basic timeout
batched 1hr46min 10.3M 32K 11.67(100) 0.64

LKS

contracting 99% of states

support-point 14min 14.2M 1,155K 25.96(100) 14.87
basic 19min 14.2M 1,158K 24.41(100) 13.90
batched 16min 14.2M 1,156K 25.32(100) 15.27

contracting 99.5% of states

support-point 23min 14.6M 604K 19.35(100) 8.80
basic 41min 14.6M 607K 20.32(100) 9.54
batched 24min 14.6M 613K 17.86(100) 8.42

contracting 99.95% of states

support-point 3hr34min 18.7M 167K 78.11 (87) 5.56
basic timeout
batched 1hr08min 16.5M 163K 39.27 (96) 4.35

contracting 100% of states

support-point timeout
basic timeout
batched 10hr08min 21.1M 161K 137.86 (84) 5.41

Table 1: Experimental results for different contraction ap-
proaches and contraction ratios on the NE and LKS maps.
We report the preprocessing times tprep, the numbers of
edges |Ech| in each CH, the average numbers of expanded

nodes #exp, the average query times (in seconds) t+CH
BOA* for

BOA* with CH (but without partial expansions), with the
number of solved instances in parenthesis, and the average

query time (in seconds) t+CH+p
BOA* for BOA* with CH and par-

tial expansions (here, all algorithms solved all instances).
For each road network, the average runtimes are taken over
instances that are solved by both BOA* and BOA* with par-
tial expansion for all CHs.

(2.8M states and 6.9M edges), two medium-sized maps from
the DIMACS dataset, and set a time limit of 24 hours for the
preprocessing phase.

We evaluate the contraction ratios 99%, 99.5%, 99.95%,
and 100% and three preprocessing approaches: The ba-
sic and batched approaches are referred to as basic and
batched, respectively. We also implement the approach pro-
posed by Storandt (2012), referred to as support-point.
For each in-neighbor s′ and out-neighbor s′′ of state s, the
witness search of support-point runs a series of single-



objective searches from s′ to s′′. Each single-objective
search is parameterized by a λ-value and finds a path π′ that
minimizes λc1(π

′)+ (1−λ)c2(π
′). For every 2-hop path π

from s′ via s to s′′, if the witness search finds a path whose
cost dominates c(π), then π does not result in a shortcut.
Otherwise, a shortcut is added. Adding the shortcut may be
unnecessary but does not affect the correctness of the query
phase. We use a sequence of three λ-values [λ1, λ2, λ3] as
described in Storandt (2012), with λ1 = 0, λ2 = 1, and
λ3 = (c2 − c′2)/(c2 − c′2 + c1 − c′1), where c and c′ denote
the path cost found with λ1 and λ2, respectively.

Our results, summarized in Table 1, show that, for the
same contraction ratio, the CHs produced by basic and
batched have similar numbers of edges. However, basic
needs much more preprocessing time because its number of
witness searches increases dramatically with the contraction
ratio. CHs produced by support-point have the largest num-
ber of edges because of the unnecessary shortcuts it adds,
which also cause support-point to have a larger preprocess-
ing time than batched for larger (≥ 99.95%) contraction
ratios. The results also show that contracting the last 0.05%
of the states requires a large preprocessing time and results
in a large number of additional edges.

With larger contraction ratios, the number of expanded
nodes in the query phase decreases. In contrast, the aver-
age query time of BOA* with CHs increases because a large
number of edges in the CH slow down the search algorithm.
With the addition of partial expansions, the number of ex-
panded nodes does not change, but the query times are re-
duced by up to a factor of 20. For the same contraction
ratios, BOA* with CHs produced by support-point has a
larger average query time than BOA* with CHs produced by
batched due to the unnecessary edges that support-point
adds.

Comparing different approaches in the query phase:
We evaluate the scalability of our CH-based approach and
the speedups it enables in the query phase. Here, we used
seven road networks, whose numbers of states range from
1 million to 14 million, together with the batched approach
and a contraction ratio of 99.95% (varying the contraction
ratio and the ordering scheme is left to future work). For ev-
ery road network, the number of edges in the CH is smaller
than 2.5× the number of edges in the input graph.

We evaluate three algorithms for the query phase: BOA*,
BOA* with CHs (+CH), and BOA* combined CHs and par-
tial expansion (+CH+p). The results are summarized in Ta-
ble 2. All average and maximum values are taken over the in-
stances solved by all three algorithms. The numbers of gen-
erated nodes are the numbers of nodes inserted into Open
(i.e., nodes that reach Line 18 of Alg. 1 or Line 26 of Alg. 4).
We see dramatic reductions in the numbers of expanded
nodes with CHs. While BOA*+CH and BOA*+CH+p ex-
pand the same number of nodes, BOA*+CH+p generates
fewer nodes and hence has smaller average query times.
This demonstrates that many nodes inserted into Open by
BOA*+CH are later pruned when popped from Open.

Figures 2a and 2b show the query times of BOA*+CH+p
compared to BOA* and BOA*+CH on individual instances,
respectively. The diagonal dashed lines and the numbers

Algorithm #solved tavg tmax #exp #gen

FLA (1.1M states and 2.7M edges)
tprep: 6min |Ech|: 5.5M

BOA* 100 22.43 662.59 6,106K 7,507K
BOA*+CH 100 0.36 10.44 14K 151K
BOA*+CH+p 100 0.08 1.39 14K 45K

NE (1.5M states and 3.9M edges)
tprep: 21min |Ech|: 8.8M

BOA* 100 56.05 1729.45 12,578K 16,281K
BOA*+CH 100 3.80 109.33 36K 939K
BOA*+CH+p 100 0.51 12.68 36K 211K

CAL (1.9M states and 4.7M edges)
tprep: 13min |Ech|: 9.4M

BOA* 99 61.19 1617.97 14,923K 18,679K
BOA*+CH 100 1.62 43.12 28K 479K
BOA*+CH+p 100 0.29 5.70 28K 139K

LKS (2.8M states and 6.9M edges)
tprep: 1hr08min |Ech|: 16.5M

BOA* 78 208.57 1631.61 46,928K 59,342K
BOA*+CH 96 23.94 192.44 117K 5,109K
BOA*+CH+p 100 2.83 24.51 117K 918K

E (3.6M states and 8.8M edges)
tprep: 42min |Ech|: 18.9M

BOA* 79 269.10 1770.45 55,099K 69,055K
BOA*+CH 98 18.52 164.92 101K 3,306K
BOA*+CH+p 100 1.86 21.08 101K 659K

W (6.3M states and 15.2M edges)
tprep: 48min |Ech|: 29.6M

BOA* 81 228.58 1784.56 60,605K 73,867K
BOA*+CH 100 4.24 27.98 100K 1,276K
BOA*+CH+p 100 0.80 4.28 100K 370K

CTR (14.1M states and 34.3M edges)
tprep: 5hr48min |Ech|: 77.5M

BOA* 37 403.84 1634.94 87,751K 106,364K
BOA*+CH 83 28.31 223.18 165K 6,294K
BOA*+CH+p 100 3.01 19.91 165K 1,076K

Table 2: Experimental results for the query phases of differ-
ent algorithms on different road networks. For each road net-
work, we report the preprocessing times tprep and the num-
bers of edges |Ech| in the CH. For each algorithm, we report
the numbers of instances solved (#solved) within 30 min-
utes, the average (tavg) and maximal (tmax) query times in
seconds, and the average numbers of expanded (#exp) and
generated (#gen) nodes.

along them denote the minimum, median, and maximum
speedups of BOA*+CH+p among instances solved by both
algorithms. The query times of BOA*+CH+p are always
smaller than those of BOA*, with a minimum speedup of
13 times and a maximum speedup of 1268 times.

Our experimental results also show that solving a bi-
objective search instance directly can be more time-
consuming than building a CH and solving it. This is be-
cause the runtime of solving a bi-objective search instance
can be exponential in |S| (because the size of the Pareto
frontier can be exponential in |S| (Ehrgott 2005; Breugem,
Dollevoet, and van den Heuvel 2017)). This is in strik-
ing contrast to single-objective search, as a single-objective
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