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Abstract. Nowadays, the data collected in physical/engineering systems allows
various machine learning methods to conduct system monitoring and control,
when the physical knowledge on the system edge is limited and challenging to
recover completely. Solving such problems typically requires identifying forward
system mapping rules, from system states to the output measurements. However,
the forward system identification based on digital twin can hardly provide com-
plete monitoring functions, such as state estimation, e.g., to infer the states from
measurements. While one can directly learn the inverse mapping rule, it is more
desirable to re-utilize the forward digital twin since it is relatively easy to embed
physical law there to regularize the inverse process and avoid overfitting. For this
purpose, this paper proposes an invertible learning structure based on designing
parallel paths in structural neural networks with basis functionals and embedding
virtual storage variables for information preservation. For such a two-way digital
twin modeling, there is an additional challenge of multiple solutions for system
inverse, which contradict the reality of one feasible solution for the current sys-
tem. To avoid ambiguous inverse, the proposed model maximizes the physical
likelihood to contract the original solution space, leading to the unique system
operation status of interest. We validate the proposed method on various physi-
cal system monitoring tasks and scenarios, such as inverse kinematics problems,
power system state estimation, etc. Furthermore, by building a perfect match of a
forward-inverse pair, the proposed method obtains accurate and computation-
efficient inverse predictions, given observations. Finally, the forward physical in-
terpretation and small prediction errors guarantee the explainability of the invert-
ible structure, compared to standard learning methods.

Keywords: Inverse system identification · Invertible neural network · System
edge · System unobservability.

1 Introduction

Monitoring is essential for the sustainable operation of physical systems. However,
physical knowledge may be partially unknown, and sensor measurements are limited
for system identification on the system edges [22,11,19,10]. Such weak knowledge on
the edge challenges traditional monitoring approaches based on accurate physical mod-
els. To bridge the gap, there are works on machine learning models using collected data
for system identification [1,4,36]. However, although the data-driven method can mimic
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the behavior of a physical system, they are not indeed a digital twin to be used for sys-
tem operation at any operating point [5], e.g., at new operating points never happened in
the past. The problems have two causes. One is the lack of physical interpretation, and
the other is the mismatch between forward and inverse mapping. These two are natural
properties when the physical governing function is available. Therefore, it is essential to
build the digital twin with both logical check (consistency of two-way mappings) and
physics for an actual replica of the physical counterpart. This paper looks into the
inverse learning for state estimation that is consistent with the forward mapping and has
physics embedded.

Specifically, an intuitive way for inverse learning is to directly learn the inverse
mapping rule from collected data in a discriminative manner. However, it easily causes
poor performance due to overfitting. Even worse, the inverse mapping is usually more
complex than the forward. For example, unlike the physical priors of the forward sys-
tem model, the inverse model usually does not have a pre-defined physical form as a
reference. Therefore, it is hard to maintain high accuracy directly using fitting models
like deep neural networks (DNNs), especially in the extrapolation scenario.

Therefore, this paper aims to learn an accurate forward system with physical reg-
ularization while enforcing invertibility. As the prior physical knowledge is embedded
into the forward mapping, the physics will regularize the inverse process automatically
against overfitting in the second. Such an idea has some similarities to the (variational)
auto-encoder [15,25,13,33]. However, the forward-inverse pair in the auto-encoder is
forced by the reconstruction loss instead of the interoperability. So, the auto-encoder
has neither a decoder providing a perfect inverse nor a physical interpretability. Thus,
we would like to build a forward mapping with physics and inverse the forward DNN if
possible.

For invertible transformation, we propose splitting the input variables into two groups
with a swap of DNN links in the forward mapping to invert the forward DNN for sys-
tem states. Such a method is much better than auto-encoder, as it can create a perfect
pair of encoder and decoder without the approximation errors in typical auto-encoder
[7,8]. Now that we know the principles of designing invertible DNN, we want to sys-
tematically embed physicals with three considerations. First, we aim to embed physical
functionals to reveal similar forms as the physical laws. Second, we aim to embed the
physical size of input/output variables into the functionals. Third, we aim to have a
unique solution, since the current system state is unique no matter how many possible
algebraic solutions there can be according to the mathematical function.

To achieve the first goal, we split the input into a twin set so that we not only provide
all possible candidates as input to the physical DNN to maximize the physical gains but
also preserve the structural requirement of having separated inputs for the invertible
DNN. For the second goal, we propose to add storage variables into the output of the
forward mapping rule. This step is to ensure no physical information loss, e.g., when
the output of the forward mapping is with a smaller dimension than the input. But, how
to pick up the correct output size in the forward mapping? The answer is the network
size. The minimum number of states is the network size according to the definition
of state estimation. For the third goal, we will utilize the Bayesian framework and the
maximum likelihood estimation, for which we use the historical indicator to select the
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best outcome and avoid the confusion of multiple solutions [18,14]. For example, Fig. 1
shows the collected data in a power system case. The curves of power generation,
consumption loads, and node voltages indicate the standard data pattern during system
operations. Different quantities stay within the standard operation limit of physical sys-
tems. We incorporate such a pattern in the inverse learning problems to ensure a feasible
solution and physical uniqueness.

The proposed model can be implemented on various physical/engineering systems
for monitoring with unobservability, including manipulator inverse kinematics, struc-
tural health monitoring of high-rise buildings, position estimation of robotic system,
state estimation of power and water system, etc. [18,14,29,35,32,11,27]. For example,
photovoltaic (PV) and electric vehicle (EV) penetrations change the power distribution
system dramatically, where a fast-monitoring tool like state estimation (SE) is neces-
sary for operation. Nevertheless, it is hard to conduct traditional SE  due to unavailable
power system modeling, and partial observability [20,6]. Thus, we conduct experiments
to demonstrate how the designed invertibility efficiently infers hidden system states of
interest and how the embedded physics in the forward system identification leads to
consistently better performance compared to the state-of-art learning methods.

Fig. 1: Example of power distribution system to show the standard data pattern in spring
and summer operations: (Top) generation of system-wide photovoltaics (PVs), (middle)
aggregated commercial and residential loads, and (bottom) average voltage per unit
values.
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Our main contributions include 1) designing an invertible system that can ensure
strict consistency between forward and inverse mapping for edge systems with unob-
servability; 2) embedding the physical information in the forward mapping to indirectly
regularize the inverse learning and avoid overfitting so that the state estimation can be
conducted at an arbitrary operating point; and 3) showing how to embed the physical
property comprehensively (functionals and variable size) so that information won’t get
lost due to dimension reduction for some use cases on the system edge.

2 Related Work

2.1     Solve the Inverse Problem of Physical Systems

It has been a basic task of interest to analyze the inverse process of physical/engineering
system, which is to extract true states from observations for system operation and con-
trol [9,3]. In traditional works, researchers solve such problems by iterative simulations
or algorithms based on models. These methods typically require prior system knowl-
edge, e.g., solving power flow using the Newton–Raphson method with a detailed sys-
tem model and estimating unknown states using Kalman Filter with system dynamics
model [17,30,28,34]. However, the complete system information can often be unavail-
able or inaccurate in complex physical/engineering systems, especially on the system
edge [22,11,19,10]. While traditional methods are limited, some studies propose to
leverage machine learning tools, approximating the (inverse) mapping rule with data
observations [23,35,37,14,26]. However, the data-driven methods either oversimplify
the complex physical model or directly use intractable black-box approximation, lack-
ing the interpretability and correctness for system operators to understand and trust.
This calls for an invertible structure for learning the forward and inverse processes to-
gether with one-to-one mapping.

2.2     Enforce Inverse in Representation Learning

For the idea of unifying the forward and inverse learning, we trace back to the early
work in conventional NN inversion that iteratively finds the optimal solutions [21,31].
However, inverting the highly nonlinear and implicit NN for optimum is difficult and
computationally inefficient. Therefore, the family of representation learning uses a sim-
ilar criterion but approximates inference instead of extensive optimization iterations.
For example, the popular auto-encoders [15] connect two neural network models in se-
quence and in symmetry to approximate the inverse correlation while simultaneously
training the forward NN. Specifically, the auto-encoder minimizes the reconstruction
mismatch of inputs to enforce an imperfect decoder that approximately inverts the en-
coder. In fact, the approximation error is unavoidable so that the true inverse counterpart
cannot be reached in training. Moreover, as both the forward and inverse functions are
black-box models, there is 1) no physical guarantee over implicit learning and 2) no
physical meaning of the quantities in latent space.

In contrast, the flow-based models [7,8] construct a sequence of invertible transfor-
mations as the forward mapping. Compared to auto-encoders, they leverage the change
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of variable theorem to ensure a deterministic inverse of the forward mapping without
any approximation. Previous work usually uses such a model for complex density es-
timation tasks like image generation, which are quite different from our target cases. To
better represent complex image data, they map images to latent space with a simple
distribution in the forward process first and then obtain an “easy” inverse. These mod-els
are trained by maximizing the likelihood, in an unsupervised learning manner, to find
the solution in a high-density region, which can be viewed as the inverse of dataset [2].
Though the models show good performance in image generation, the design has a strong
requirement for splitting the input and output, which is hard to be satisfied fully in
physical systems. Also, the design doesn’t reveal any physical interpretability, which is
necessary for physical system identification. Finally, the design does not consider the
unobservability issue, either. Such problems require a comprehensive way to embed all
possible physics knowledge from different perspectives.

3  Problem Formulation for Two-Way System Monitoring with
Unobservability

Fig. 2: Example: (a) geometry of the 3-DOF kinematics system in 2D space and (b)
geometry of the 5-DOF kinematics system in 3D space.

The physical system identification is a supervised learning task to recover the for-
ward system model f  in y  =  f  (x) ,  mapping input variables x  � X  to output variables y
� Y .  Subsequently, to infer desired states of physical systems, we aim to find an
inverse mapping g : Y  → X  that satisfies x  =  g (y )  =  f − 1  (y ) , �y � Y .  For
instance, Figure 2 shows the end-effector position of a robot arm following forward
kinematics functions of joint degrees of freedom. The inverse kinematics is to control
the joint motions to reach the desired end-effector positions. For such a system, system
information is usually required to understand the forward process, e.g., physical func-
tion types. When system information is unavailable, one can use machine learning to
approximate the forward mapping in a data-driven manner. Unlike the forward map-
ping, state estimation is another monitoring tool based on inverse learning. However,
the inverse learning process is even harder for problems like (1) hard to embed physical
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law, (2) can have multiple solutions, and (3) information loss due to uneven dimensions
between input and output.

To solve these problems, we propose unifying the learning of two-way mappings
in an invertible system identification. The two-way mappings indicate learning the
forward-inverse pair. Specifically, we aim to learn the function of inverse mapping
x  =  g (y )  so that it work in a pair with the forward mapping y  =  f  (x) .  There-
fore, our goal is to let y  =  g −1  ( x )  approximate the analytical model y  =  f  (x) .
invertible structure in the approximation model g −1  (·) to enforce an automatic inverse
x  =  g (y )  for state inference. In this learning process, we have two major targets: 1)
to obtain a forward mapping rule that accurately approximates the system model and
preserves physical interpretation as much as possible, and 2) to find a perfectly matched
forward-inverse pair and estimate the most possible states under the partially observable
scenario.

3.1     Optimization Objectives to Identify Invertible System Model

To reach the first goal, we form an optimization problem to find g −1  (·) as close as pos-
sible to the ground truth of the forward model f  (·). For simple notation, we represent
g −1  as hypothesis function h,

h� =  argmin
X
ℓ1  (h (x i ) , y i ) , (1)

h�H       i = 1

where H  is a predefined class of hypothesis functions, e.g., parameterized neural net-
works. Since it is a supervised learning task, ℓ1(·) represents the regression loss func-
tion. We use mean square error to measure the mismatch in forward system model
recovery. Moreover, for a perfect match of the two-way mappings, we follow the recon-
struction loss used by auto-encoder,

h� =  argmin
X
ℓ2  

 
x i , h −1  (h (x i )), (2)

h�H       i = 1

where ℓ2(·) is the square loss and h−1  (h (x i ) )  denotes the reconstructed x i  at the
output of inverse mapping.

While the supervised learning loss penalizes errors in point estimates during train-
ing, it can not easily bypass the ill-conditioned problem for the inverse. Fortunately,
physical/engineering systems have operation standards, as the power system example in
Fig. 1 shows. Only one solution is feasible to stay within the operating limits or
satisfy specific patterns. To promote physically feasible solutions as the second target,
we leverage the common criterion for statistical inference. In particular, estimating the
probabilistic states x  is to maximize likelihood of the posterior probability density [7],
which is

x  =  argmax p(x|y). (3)
x
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This process is to learn the invertible representation of real dataset. As long as we design
an invertible function hypothesis function h, increasing the likelihood as in (3) contracts
the original output data space to the high-density regions. Namely, it tends to locate a
high-density data region and estimates the states that stay within the standard operation
limit of physical systems

3.2     Virtual Storage Variables to Compensate System Unobservability

For system identification, the recovery of the forward model is sensitive to the data
availability in the system. Unfortunately, modern physical/engineering systems are hard
to guarantee full observability. Even worse, limited sensors behind the unobservability
may lead to information reduction in the forward mapping, making inverse mapping
with insufficient knowledge. Therefore, we propose adding virtual storage variables to
the output of the forward mapping. All the input knowledge is preserved in the storage
variables in the output of the forward mapping. For example, we propose using the
network size to decide the number of storage variables. This is because the number of
system states indicates the size of the minimum number of variables in a system that
can recreate all the measurements in the network, according to the definition of state
estimation. And, the number of state variables is typically the same as the network size.
Using these variables will not only preserve information, but also format the physical
units in the latent layer, which is due to a perfect match on the number of state variables. To
exhibit such inherent properties in invertible system identification, we introduce
virtual variables y ′  on the output side. y ′  is used to compensate the dimension reduction
caused by unobservability while imitating the hidden quantities for homogeneous units in
the final expression.

During training, the virtual quantities y ′  are generated from simple orthogonal ran-
dom variables, e.g., samples from standard isotropic Gaussian distributions. We ob-
served that, compared to directly using Gaussian random variables, it’s better to update
the generation by a parameterized neural network. Specifically, we convert the virtual
variables via a fully-connected NN and update this NN simultaneously with minimizing
the reconstruction error in (2). It can better compensate for the information loss caused
by unobservability. Thus, the inverse model changes to x  =  g (y , y ′ ). y ′  are indepen-
dent from observable y  and serve as factorial prior of system uncertainties to estimate
the posterior.

4 Physically Invertible System Identification

4.1     Invertible Transformation

To unify the learning of forward and inverse mappings, the key idea is to provide an
invertible structure for system identification that find a pair of matched mappings. En-
forcing the inversion of g(·) and g−1 (·), we consider change of variables, shown below.
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Fig. 3: Illustrate invertible transformation (top) and the structure of the proposed INN.

With x  =  g (y , y ′ ), the change of variables theorem shows

p(y ′ ) =  p
 

x  =  g (y, y ′) |ydet 
∂g (y , y ′ )

,

p(x|y) =  p(y ′ )det 
∂g (y , y ′ ) −1 ,

(4)

where 
∂g (y , y ′ )  

is the Jacobian matrix of function g (·) at x  and det (·) represents the

determinant of Jacobian. (4) serves as the theoretical basis of invertible function design.
And, we need to find easily invertible functions with non-zero Jacobian determinant.

One intuitive way of invertible design is the linear and addictive function, e.g., the
forward y =  ax +  b and the inverse x  =  1 y −  b . The determinant of Jacobian is con-
stant a to ensure invertibility. Motivated by the simple inverse, we follow the invertible
design in [7] to split the multi-variate inputs and outputs and construct the following
transformation unit:

y 1  =  a1 x1 , y2  =  a2 x2  +  t1 (x1 ),                                               (5)

x 1  =  
1 

(y�) , x2  =  
1  

y� −  t1 (x1 ),                                     (6)
1 2

where y� =  [y, y ′ ] for simple notation. Similar to the linear and addictive function, the
inverse mapping (6) is easy to derive and the determinant of Jacobian is a1a2. Such a
split formula is flexible that the nonlinear functions t1 (·) can be arbitrarily complex for
representation, without affecting the invertible property.
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The unit transforms one part of inputs for invertibility and leaves the other un-
touched. To enable complete coupling of all dimensions, we composite several units
and transform each part in turn. We show in the following proposition 1 that more than
three compositions are necessary to completely transform all inputs dimensions and
coupling with the output.

Proposition 1. With each transformation unit in (5), more than three compositions are
necessary to completely transform all input dimensions and coupling with the output.

The proof is intuitive by deriving the Jacobian matrix of the composited invertible func-
tions. For the kth unit, the Jacobian is

�
∂ y 1

( k )       ∂ y ( k )  
� �

( k )
�

J k  =  � ∂ x ( k )        ∂ x ( k )  

� =  �∂ t ( k ) ( x 1 )       ( k )       �. (7)

∂ x ( k )        ∂ x ( k ) ∂ x ( k ) 2

For every other layer, the columns exchange due to the in-turn transformation. Using
the chain rule, the Jacobian of the composited function is Π k J k .  Only when k ≥  3, the
0’s are eliminated from Jacobian matrix and thus indicate a full transformation of all
dimensions.

Fig. 3 (top) illustrates the invertible transformation. As for the NN structure in the
bottom, with each unit to be invertible, the sequence of composited units is invertible,
and the Jacobian determinant is easily computed for optimizing (3).

4.2     Building Invertible NN Structure for Physical Interpretability

The sequence of invertible transformations is trained to maximize the likelihood of the
training data. However, the unsupervised learning manner performs poorly in generaliz-
ing to the out-of-range dataset and reaching global optimum [16]. Furthermore, unlike
image density estimation, extrapolation is often the primary concern in the physical
system when new operation points occur and have never been recorded in the histori-cal
data. In such cases, an accurate inverse solution requires perfect forward mapping
learning to recover the governing function of a physical system. Thus, we aim to find a
hypothesis that not only minimizes the empirical prediction error (1) but also reveals the
underlying analytical function.

However, it is challenging to meet the latter target as any large physical systems
(e.g., power, water, traffic systems) have limited sensor deployment for full observ-
ability. For these cases, we need to simultaneously recover governing functions in the
observable region and approximate hidden correlation in data whenever physical re-
covery is impossible. According to [36], we express the ground truth f ( ·)  in the form y
=  f  ( x )  =  f1  ( x ) + f 2  ( x )  =  W1ϕ (x) + f2  (x) .  f1 (·)  denotes the recoverable phys-ical
law of the observable, and f2 (·)  denotes the mapping regarding the unobservable
region. Learning f 1 ( x )  only is a system identification problem, where ϕ (x)  are the
physical features of specific systems (e.g., coupling of quadratic and sinusoidal terms
for power system) and W1 represents unknown system parameters to be recovered. To
enable physical interpretability, we embed ϕ (x)  into the invertible hypothesis function
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(5). In this way, the invertible unit can reveal physics and match the underlying model
during learning.

Thus, the proposed invertible NN structure unifies the forward and inverse map-
pings. The model is trained by optimizing two loss functions simultaneously to reach
the optimal inverse solution. On one hand, using the supervised learning loss aims to
minimize the mismatch of sample predictions and makes the forward mapping as close to
the governing function as possible. On the other hand, using the unsupervised learn-ing
loss focuses on a high-density region to avoid ill-conditioned problems in an inverse
process. In practice, we observe a trade-off between the two loss terms. Therefore, a
hyperparameter is adopted to balance the penalization. The hyperparameter is chosen
through cross-validation in the experiments. By training the invertible NN structure, if
we find the optimal forward mapping that reveals physics, we naturally obtain the
inverse following physical laws.

5 Experiments

The proposed invertible NN is applicable for various inverse problems in physical sys-
tems. We validate the algorithm on kinematics systems, power systems, robotic sys-
tems, and high-rise buildings (structural health). The results are similar, so we focus on
the two most representative systems for in-depth evaluation with respect to each of the
proposed designs. They are the inverse kinematics, where hidden states follow one-way
cascading correlation, and the inverse power flow, where states yield two-way interactive
correlation.

Evaluation Criteria: Learning the inverse mapping in physical system can be seen as a
regression problem. Therefore, we use the evaluation metric mean square error (MSE)
for state estimation. For the physical system analysis, the interpretability is essential so
that we evaluate by the accuracy of learning system parameters for the forward system
model. The higher the accuracy, the more reducible is the learned model.

Baselines: We compare the proposed model with the following state-of-the-art base-
lines on learning the inverse system mapping: support vector regression (SVR) with
polynomial kernel or RBF  kernel [35], residual neural network (ResNet) [12], varia-
tional autoencoder (VAE) to approximate the forward-inverse pair [15], NICE/RealNVP
to learn the invertible transformation [7,8]. The first two methods directly learn the in-
verse mapping while the other two methods enforce the inverse model from forward
model to obtain inverse solutions [13,37]. In particular, we use the same architecture
(depth, width, and activation) for the NN t1(·) in invertible structure, ResNet, and auto-
encoder. We showed previously that at least three invertible units are required to com-
pletely transform all dimensions. Therefore, the depth of NNs is a hyper-parameter
selected from 3 −  10 layers in validation, and the width depends on the problem size of
the test system.

The Adam optimizer is used to train NNs for 200 epochs for each experiment, where
we set up a learning rate hyper-parameter set {0.001, 0.0002, 0.00005}, and momentum
parameters β1 =  0.5,β2 =  0.999. All the experiments are implemented on a computer
equipped with Inter(R) Core(TM) i7-9700k CPU and Nvidia Geforce RT X  3090 GPU.
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Table 1: The prediction errors (MSE×10−3 ) of invertible kinematics system identifica-
tion: the inverse solution and forward mapping recovery.

Joint Angle     Forward Model
Prediction Prediction

S V R           0.0004 ±  0.00            N/A
ResNet         0.001 ±  0.00             N/A

3-DOF          VA E            0.001 ±  0.01 0.0015 ±  0.00
RealNVP      0.0005 ±  0.00 0.0004 ±  0.00

Proposed INN 0.0002 ±  0.00 0.0001 ±  0.00
S V R 0.19 ±  0.07 N/A

ResNet 0.12 ±  0.03 N/A
5-DOF          VA E              0.10 ±  0.04       0.09 ±  0.02

RealNVP        0.08 ±  0.01       0.04 ±  0.02
Proposed INN 0.06 ±  0.02 0.02 ±  0.00

5.1     Inverse Kinematics Problem

To test the applicability of the proposed model on physical inverse process, we start with a
basic inverse kinematics problem, where instruments are not fully equipped to collect all
the data. As shown in Figure 2(a), the movement of end-effectors is determined by
multiple degrees of freedom (DOF) chains in the robotic systems. The manipulator in
2D space moves with the rotations of three joints (3 DOFs) that connect 4 rigid parts.
The task is to find the most likely joint motions to reach the desired end-effector posi-
tion. Given the configuration of joint angles, the forward kinematics equations describe
the motion of the hierarchical skeleton structure. However, the system parameters, e.g.,
joint lengths, are unknown. We aim to identify the possible rotation angles of three
joints given the expected end-effector coordinates. In this case, 1000 different configu-
rations are sampled for training and random Gaussian noises are added (N (0, 0.01)).

For a more complex setup, we consider the manipulator in 3D space with 5 DOFs
(Figure 2(b)). The new DOFs in the added dimension are intractable where measure-
ments of θ4 and θ5 are unavailable. In this case, we evaluate the prediction of joint
rotations in inverse process. Moreover, we evaluate the partial recovery of the govern-
ing function on observable parts in the forward system identification. Table 1 compares
the numerical results of the proposed physics-interpretable invertible NN with the base-
lines.

For the 3-DOF setup, both S V R  and the proposed model have good estimation re-
sults. Specifically, our physics-interpretable invertible NN outperforms the original Re-
alNVP due to the physics embedding in the forward mapping. It can also be verified by
the accuracy of system parameter recovery, where the proposed INN reaches near
100% for this fully observable case. For the 5-DOF case that has some unobservables,
the variational auto-encoder and RealNVP have much lower errors than the first two
models that directly approximate the inverse process. Although the proposed invertible
neural network can not recover all the system parameters due to the unobservability, it
shows a generally lower error in estimating inverse solution than the original RealNVP.
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5.2     Inverse Power Flow Problem: Distribution System State Estimation

Table 2: The prediction errors (MSE×10−3 /p.u.) of power system cases: the inverse
state estimation and the forward power flow mapping.

(a) Testing on the in-range data scenario.

Scenario Case S V R ResNet VA E RealNVP Proposed INN

8-bus 0.08 ±  0.02 0.04 ±  0.00 0.03 ±  0.01 0.008 ±  0.00 0.006 ±  0.00
123-bus 0.21 ±  0.04 0.17 ±  0.02 0.13 ±  0.03 0.09 ±  0.01 0.05 ±  0.03
Utility 0.27 ±  0.12 0.23 ±  0.05 0.16 ±  0.03 0.13 ±  0.07 0.11 ±  0.02
8-bus N/A N/A 0.05 ±  0.01 0.007 ±  0.00 0.002 ±  0.00

123-bus         N/A                N/A         0.11 ±  0.06 0.06 ±  0.03 0.02 ±  0.01
Utility           N/A                N/A         0.15 ±  0.01 0.13 ±  0.02 0.04 ±  0.03

(b) Testing on the out-of-range data scenario for extrapolation.

Scenario Case S V R ResNet VA E RealNVP     Proposed INN

8-bus 0.14 ±  0.04 0.09 ±  0.03 0.09 ±  0.02 0.03 ±  0.01 0.009 ±  0.00
123-bus 0.29 ±  0.11 0.22 ±  0.06 0.25 ±  0.02 0.15 ±  0.03 0.07 ±  0.02
Utility 0.43 ±  0.19 0.35 ±  0.02 0.31 ±  0.09 0.19 ±  0.06 0.15 ±  0.04
8-bus N/A N/A 0.07 ±  0.03 0.04 ±  0.02 0.004 ±  0.00

123-bus         N/A                N/A         0.21 ±  0.03 0.18 ±  0.07 0.06 ±  0.03
Utility           N/A                N/A         0.24 ±  0.06 0.22 ±  0.05 0.11 ±  0.05

After the demonstration of the basic kinematics problem, we test the proposed
model on more complex and larger systems. Different from the single link in the manip-
ulator, the standard power system can be seen as a graph with many internal couplings.
The real utility feeder usually has more complex connections and a larger scale. For an
N -node power system, the governing physical law is the classic power flow equations
(PF) [35]. The power system state estimation (SE) is of great interest for many down-
stream operation applications [24,37]. Estimating voltage phasor states from standard
measurements (e.g., power injections, branch power flows, and current magnitudes) is
an inverse process of power flow analysis. Test feeders IEEE  8- and 123-bus networks,
and a utility feeder (2721 nodes with 371 active ones) are used for experiments, shown as
8-bus, 123-bus, and Utility in Table 2. Since ground truth data is not directly avail-able,
we conduct traditional simulations with one-year real power data (15-min interval) in
MATPOWER [38]. The model information is only available to prepare the dataset and
remains unknown during training. The real-world measurements usually have er-rors
due to communication issues. We add random Gaussian noise with a 1% −  2%



Physically Invertible System Identif. for Edge Monitoring with Unobservability 13

(a) Estimated voltage magnitudes given in-range inputs (generation and load)

(b) Estimated voltage magnitudes given out-of-range inputs for extrapolation evaluation.

Fig. 4: Validating estimation results of all the nodes (from feeder head to end) on one
phase of 123-bus system.

standard deviation to simulate the measurement errors (as usually used by state estima-
tion). Moreover, we prepare out-of-range data (3× PV generation and loads) to validate
extrapolation capability.

The numerical results of estimation are included in Table 2 and Fig. 4 to com-
pare different methods. As we explained, SE  denotes the inverse process while PF de-
notes the forward mapping recovery. First, we observe a general decrease in MSEs for
forward-inverse learning methods compared to the direct inverse learning methods
(SVR and ResNet).

While the errors of inverse solutions are small, we look back to the forward learn-
ing. VA E  has a relatively poor result as the reconstruction errors cannot reach zeros in
approximation. Although RealNVP naturally has the perfect correspondence to learn an
explicit forward, the proposed INN outperforms it by a large margin for forward map-
ping recovery. This could also be explained by the ablation study of our proposed model.
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Table 3: Ablation study of the proposed invertible neural network.

Scenario Case Proposed INN W/o Physics W/o Virtual

8-bus 0.006 ±  0.00 0.01 ±  0.00 0.02 ±  0.01
123-bus 0.05 ±  0.03 0.08 ±  0.02 0.07 ±  0.01
Utility     0.11 ±  0.02 0.15 ±  0.05 0.17 ±  0.03
8-bus 0.002 ±  0.00 0.003 ±  0.00 0.002 ±  0.00

123-bus 0.02 ±  0.01 0.05 ±  0.02 0.02 ±  0.01
Utility     0.04 ±  0.03 0.15 ±  0.06 0.05 ±  0.02
8-bus 0.009 ±  0.00 0.04 ±  0.01 0.04 ±  0.00

123-bus 0.07 ±  0.02 0.13 ±  0.05 0.16 ±  0.03
Utility     0.15 ±  0.04 0.23 ±  0.03 0.23 ±  0.07
8-bus 0.004 ±  0.00 0.03 ±  0.02 0.005 ±  0.00

123-bus 0.06 ±  0.03 0.21 ±  0.05 0.08 ±  0.02
Utility     0.11 ±  0.05 0.26 ±  0.02 0.15 ±  0.04

For the observable region, the governing PF function can be recovered by the proposed
INN. The ablation study results (Table. 3) demonstrate how physics embedding greatly
impacts the forward model recovery. Without physics consistency in learning model,
both the MSEs of inverse estimation and forward output prediction are higher. Further,
the comparison of state estimation given in-range and out-of-range inputs in Fig. 4a and
Fig. 4b reveals a better extrapolation capability of the proposed INN. During the exper-
iments, we observe that, when there is no physics embedding, increasing the weight of
the density estimation loss can lower the MSE slightly.

6 Conclusion

In this paper, we propose a physics-interpretable inverse learning method to tackle the
challenge of solving the inverse process of physical systems. Rather than a direct ap-
proximation, we unify the forward and inverse learning, and simultaneously optimize
over the pair of mappings. The proposed method takes advantage of the flexible NN
structure and the recent advances in density estimation to guarantee a perfect forward-
inverse pair and solve the ill-conditioned physical systems problem. Moreover, since
the generative model has limitations in the adversarial task of physical system identi-
fication, we embed physics into the invertible structure to enable interpretability and
further enforce the inverse solution following physical laws. Numerical experiments
have been conducted on physical/engineering systems with typical couplings to eval-
uate the proposed method. Our model outperforms the baseline methods on both the
inverse process learning and the forward model recovery and output prediction.
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